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Abstract

Element-by~element solution étrategies are developed for transient heat

conduction problems. Results
the procedures proposed. The
architectural features.of the

solving large scale problems.

of numerical-taests indicate the effectiveness of
small data base requirements and attractive

algorithms suggest considerable potential for
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1. Introduction

Tﬁéifiiéf example of an. element-by-element (EBE) algorithm for heat
conduction was presented by Hughes, Levit amd Winget [H4]. 1In that work the.
EBE concept was used to- develop a non-iterative second-otder time-accurate
unconditionally stable transient-algorithm for both linear-and nonlinear prob-
lems. Element arrays could be processed individually with no need.to construct
a global coefficient matrix. Our—initial numerical testing with this sclieme
proved satisfactory. However, later on we discovered that under certain cir-
cunstances the accuracy level-attained by typical globally implicit methods,
such-ds the Crark-Nicolson procedure, was not attained-by the method of [H4].
The problem was traced to spatial truncation error terms such as those which.
afflict someclassical sélit-operatof finite difference methods such as the
DuFort-Frankel method [Al]. To overcome these accuracy deficiencies we were
led-to reformulate the EBE procedure as an iterative linear equation solver so
that standard time discretization techniqués could be employed. In this way
issues of stability and accuracy are obviated. The only question which remains
18 how fast does the iterative process converge? At the same time the small
data base and attractive architectural features of the EBE process are retained.
- Anothey advantage which accrues is that coupled capacity matrices may be accomo-
dated. This improves upon [H4] which was restricted to lumped capacity.

On the other hand, relegating the EBE concept to iterative linear equation
solving does not seem to exploit its full potential. To the authors, this
represents a conservative, interim strategy. In future research we hope to

explore the use of EBE concepts throughout the entire problem solving spectrum,
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There already seems clear paths for significant increases of efficiency in-
large, nonlinear problems by adopting this bhiiosoph¥4__iz 18 interesting to
note—that the chronology of research developments 1in multigrid techniques
followed-along similar lines inthat initial success was found in iterative
linear equation solving, but subsequent improvement was obtained by procedures
in which multigrid concepts permeated all aspects of the solution process
(Brandt (B2]).

By restricting the use of the EBE concept to iterative equation solving
the research-problem is rendered tractable in that other aspects of solution
carn be done by standard means. Despite this fact there still appears to be a
greéat deal of variety to the types of EBE strategies which may be developed.
Basically, three main ingredients are necessary for an EBE iterative linear—.
equativn solver. . They are an iterative driver strategy, an EBE approximate
factorization scheme, and the definition of an array which approximates the
global coefficient matrix and is amenable to EBE approximate factorization.
These topics are explored in Sections 2 to 4, respectively. 1In Section 5,
sdmple problems are presented.

For related developments in the area of structural analysis, the inter-
ested reader is urged to consult [H5, H10, H1l, N1, 01]. A pilot study of a
transonic flow, involving an unsymmetric coefficient matrix, is presented in.
[H11]. By virtue of the fact that the present thrust to research in EBE tech-
niques has been concerned with aspects of linear equation solving, a certain
synthesis of concepts has ensued. This, as remarked above, 1is believed to be
a very temporary state of affairs. To further develop EBE algorithms which are
truly effective for different problem classes, the physics and idiuvsyncracies

of the individual classes will need to be accounted for in the structure of the




algorithms. For exémpig;_we may contrast Ehg translent heat conduction and
structural schemes presented  in [H4] and [Oi];_iébpeciiveiy. The heat con-
duction scheme was formulated in-terms of temperature degrees-of-freedon in a
very natﬁtal—way. No structural analog in terms of kinematical-variables

could be developed which attained- unconditional stability. Rather, an entirely
new globai formulation had to be created with stresses and velocities as pri-
mary unknowns! Needless to say, the developmental implications of such schemes
are significant. A unique procedure of this kind requires considerable research
on all levels to be brought to fruition. We enticipate this being the case for

the various problem classes to which the EBE concept will undoubtedly be applied.
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i 2. Iterative Aigorithma

Two candidate iterative algorithms which can be used g conjunction with

approximately factorized arrays are described below,

_.“ 2a. Parabolic Regularization

‘ The parabolic regularization algorithm is derived 1in [H5]. Table 1 pre-

gsents a flowchart—of the procedure for symmetric positive~definite systems.

Table 1 Flowchirt of the parabol fc repulartzatton (PR) R)_alporithm with 1ine
search and BFCS updates
. Step 1. Initializdtion:

Ek (loop: Kk =1 » 2 4ue., “BFCS)
bx = E-L—Eo

Step 2. Line search:

5 o= o e saT g
A

-
X 1 X +8 A§

Step 3. Convergence check:

t |l£m+1'l <6

Yes: Return

: -No ¢ Continue

Step 4. Relabel old BFGS vectors:

b PRI T S v (loop: kw23 "wrs)
;yi Y ,
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Step 5. Calculate new BFGS vectors:

' T -1
fngps = (8% E)T Mx

b
gﬂs_pcs - E'ﬂ"‘l - (1 -8 )":“I

Step 6. New search direction:

2% 1

T . = -
zZ+z+ (Ek f)gk (loop: k Murcs "ures L,..., 1)

oy J
z2+B 1 2
-~ ~

~

N

vz ¢+ (gz g)gk (loop: k=1, -

» T veees Mypag)

Ax = 2

Step 7. mem+1 , g0 to Step 2,

The notation in Table 1 is given as follows: m 41s the iteration counter;

] ] 1 . R
the gk 8 and gk 8 are the BFGS vectors; MRrGS is the maximum number of

BFGS vectors allowed; B 1s a matrix which approximates A , but is more e.si-

- 1y factorized; s 18 the search parameter; xm is the mth

|

approximation of

T fa= B AX 1y the corresponding residual; ||rm|| is Its Euclidean

length; and 6§ iy g Preassigned crror tolerance. The search parameter in

step 2 is determined by minimizing the potential energy

Bl = = Gy v w A" - LAk + s an))

(2.1).

This algorithm 15 a generalizat fon of the classical conjupate gradients

method (see Hestenes-Stiefecl [H1]) in which a "preconditioning” ta performed
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using g » the matrix approximating A . The algorithm is summarized in

Table 2,
Table 2 Flowchart of Eteeonditioneg conjugate gradients (CG)
Step 1. Initializatica:

n=0 , X = 0

Stﬁp 2 .

~ Step 3,

Step 4.

Step 5.

Step 9.

oil g /T
% *In fm/gm-é Bm

EN#I .wfm + um P

M—
Sml “En m U A0,
Convergence check:

Yes: Return

No : Continue

-1
- Step 6. fotr = B “m+l
T T
Step 7. Bu - £m+1_5m+1,§m “m
Step 8.

But: " Zpe1 t B, B,

m*m+l, goto Step 2,

Remark 1. Glowinekt et al. |¢1, ¢2) (see also references therein) have success-

fully used the Preconditioned conjupgate gradients algorithm in their finite ele-

sent work. The matrix which they employ as precondit fone

r s determined by way

e 32 le gy

AP

ST
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of various “"incomplete Ch@icsky”féctorizhtiona" (sce c.g. Thomasanet [T1]| and

references thereih).

Remark 2. A fixed number of vectors 1s all that is neceded in the CG method.

This-makes it computationally more attractive than the PR algorithm with BFGS

updates, because a considerable number of BFGS vectors typically nced to be

stored.

3. Approximate Factorization

The convergence rate of the algorithms presented iIn the preceding section
depend heavily upon the approximating matrix B . It may be noted that if

B = A then both algorithms immediately obtain the exact solution x . Numer-

ous chloices for B afe possible. To explore some of the possibilities we shall

introduce the following notational scheme. Let

A= Ep(é)gp(é)gp(é) (product decomposition) (3.1)
A= Ee(e) + gs(é) + QS(A) (sum decomposition) (3.2)

where the subscripts p and s indicate "product" and "sum", respectively,

Equation (3.1) represents the Crout factorization. Thus I and Up are

lower and upper triangular matrices, respectively, with diagonal entries equal
to 1, and QP(Q) is a diagonal matrix. If A is symmetric, then LP(A) -
UT(A) + If the entries of Dp

UplA are nonnegative, then we can write
A= 1L (AT (A) 3.3
A= LT A (3.3)
where
I, = n"

L 3,
“p ~p-p . 3.4
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@p . Q:gp (1.5)

When A s eymmetrie poestivi-definite, (3.3)~(3.5) defines the Cholesky, oF

square-root, factorization.

In equation (3.2), L, and Us are lower and upper triangular matrices

with diagonal entries equal to 0, and D, 1s diagonal. 1In analogy with the

product decomposition, we may write

A=L (M) +1U () (3.6)
where

L =1+ 1 D 3.7

Y8 Vg 2 ~g *

b =u +3p (3.8)

“8 -8 2 g *

If A 48 eymmetric, then EB(Q) - QB(Q)T and

ap?

5T
S =TT,

Remark 1. The decomposition (3.6)-(3.8) has figured in the transient analysis al-

gorithme developed by Trujillo [T2, T3] and subsequently discussed by Park [P1]).

Remark 2. Note that the net total storage required for the sum decomposition

is exactly the same as for the original matrix. However, the product decom-

position entails increased storage due to "fill-in" of zeros within the skyline.

This {8 perhaps the major drawback of direct solution schemes such as Crout

eliminagion.

Remark 3. If we ignore the line scarch and quasi-Newton update ingredients of

the PR algorithm, then classical iterative algorithms are cbtained by choosing




-
Lol

[

SV T

OF POUK Wiink

B as follows:
Be=D (A (Jacabt mathod)

Be E.(e) + Qs(e) (Gauss=Seldel method)

To describe the procedures that are cmphasized heretln, we

matrices, 5 » written in the following form:

o ! P
K =W+ AW

e .

]

10

(3,9

(3.10)

first consider

(3.11)

where 1 1s the identity matrix, W is a positive-definite diagonal matrix,

€ 1s a scalar, and A 1is a matrix which .

A 1s to be thought of as an approximation of A .

€ and 'z are consgidered later in section 4,

the approximation 1s to define

1.
B=W2C(C g

.i8 the same sparsity pattern as

Specific choices of W

A .

~

The second and final stage of

(3.12)

where C 1s an approximation of | + ¢ A . Various choices are considered

below:

3a. Two-component Sglitting

Let A be deromposed as follows:

|
|
>
+
>

Then a possible definition of C is

Ee A RDA+ T =1+ K+ AR =140 K+ 00D

The last part suggests the nature of the approximat ion.

Computat {fonal

(3.13)

(3.14)

4 e e e
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simplicity 1s gained 1f Azl» and Ké are very sparse and more casily factor-

iréd than 3 .

~

For cxample, let

Ap =1, (3.15)

A, = U (A) (3.16)

Thus B has the following simple form

B=WiI +c L) (1 +e b dn:" (3.17)

As may be seen, B 18 already factored and the factors requi.e no more storage

than that for A . Only diagonal scaling, /ine focward reducticas and back sub-

stitutions with sparse triangular arr-ys cre needed to solve equations wivh B

as coefficient matrix. This eliminates the cost of factosfzation and obviates

the storage penaltieg due to "fill-in". Fquation (3.17) repicesents a symme-

trized Gauss-Seidel type approximate factorization.

3b. One-pass Multi-comgonent Splitting

Consider a multi-component sum decomposition of 3

~

n
A = Kl (3.18)
) i=1 ~
Let
n
g - I (E + éi)
i=)

(T+ed)+.e A) . L+ ER)
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Clearly, this is juat a straightforward generalization of the two-component

3c. Two-pass Multi-component Splitting

This generalization of the preceding case has qualitative advantages under

certain circumstances (Marchuk [M1|). Let

C = N (T+34) T (1+754)
N i=] 2 i=n
- £3 £a =R
s+ > 51)(1 + 3 52) e (1 4 5 Qn) x

x (.x_+.§.7~in)(§+‘573u_,) (L-O-%Ql)

- 2
= I+c¢A+o0(c) (3.20)
If each Zi 1s symmetric and positive semi-definite, then C 1is symmetric

and positive-definite.

3. Element~by-element (EBE) Approximate Factorizations

The EBE approximate factorization is simply a multi-component splitting

in which the components are the finite element arrays themselves. That is we

assune
Nel
K= 25 (3.21)
es=]

vhere '3‘ is the eth element contribution to E + Then C may be defined by

either the one-pass or two-pass formulae, viz.

Ngf
C = 1 (1+¢e2a® (3.22)
ew]
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oy 1 € 7e
S M A+3® 0 1+57T9 ("Marchuk EBE") (3.23)
i -l - C"Net

Remark 1. Wo wish to uge the term elcment in the generic se
domain sodel"

nse of a "gub-

» where an element could be an individual finite element or

& subsssembly of elements. Thus we dllow limited assembly. Various equivalent

terainologies have been used to def ine this concept, such as "substructures"

and "superelements". Subdomain finite element models inherit the symmetry and

definiteness properties of the global array., Consequently, the remark made

after (3.20) applies.

Remark 2. The element arrays in (3.22) and (3.23) need to bhe factorized {into

triangular form. This can be done exactly using product decompositions or

approximately using sum decompositions as in section 3a, equations (3.15)-(3.17);

one-pass

Corresponding to (3.22) we have

Neyg
€= M LA+cAID(I+caI(I+ea°  (product) (3.24)
~ e-l ~p - ~ -.p ~ ~ ~p ~ ~
or
fet —e n e
C = m (+cel &%) 1+ t U (AD)) (sum) (3.25)
M e=]l ~8 ~ - ~8
Note (3.24) 1s identical to (3.22) whercas (3.25) is an approximat ion of
(3.22).
two-pass

Corresponding to (3.23) we have
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C = I L(I+ -;-g")n(l+——/\)ll(1+2 ) x

1 -

x 1 EP‘E + % Ee)q 1+ §'§°)9 T+ %‘Ee) (product) (3.26)

e=ng, P P
or
fel £+ (€ £ 5 e
C e n +3L G a+50 &)

x ; a+£L &) a+350 @ (num) (3.27)

o-ne [’} - -8

Note (3.26) is identical to (3.23) whereas (3.27) 1s an approximation of
(3.23), '

Whether to use product or sum factorizations of the element arrays 1is a
question of efficiency. Belytschko and Liu [Bl] have proposed a fast exact
inversion procedure for 4-node heat conduction elements. For subassemblies,

the approximate sum factorizat ions may have advantages.

Remark 3. Note that storage demands are vastly less in the EBE case. Only one
element at a time need be stored and processed. Whether or not it is desirable
to save factorized aelement arrays depends upon the availability of high speed

RAM, and the trade-off between CPU and disk 1/0 costs.

Remark 4. The ordering of the factors influences how well C approximates

I+ ¢A . The global product decompos|{tion,

€A = L(I+c K)pp(g + ¢ g)qp([ +eh , (3.28)

-t

e Senlpiom I e T e - I SN S 3L . = . L A R S -1




abad il e b le e
>

15
ORIGINAL kiit ).
OF POOR QUALITY

suggests that it might be worthwhile to veorder the factors in (3.24)-(3.27)

such that all lower triangular factors precede diagonals which in turn precede

upper triangular factors. This results in the following "reordered” schemes:

{ncl Nl -
C = |l L(I+er™ I DA(L+¢cA®| x
 es]) P e=1
X n gp(! + ¢ Ee) (""Crout EBE") (3.29)
| 6%0eg ]

Rek - 1 Y
¢ = | Na+ci @& (1 + e § &%)

e=]1 ~ =N g
("symm. Gauss-Setdel EBE") (3.30)

Note that in the case of symmetric 3 ,
(3.30).

symmetry {is preserved by (3.29) and

Thus there seems little mot fvation for similarly reordering the two-

paass versions.
In the case of positive qu + ¢ Ee) 's, the Crout factorizat{ions can be

reordered in terms of Cholesky factors. For example, a variant of (3.,29) is

Ret , 1 _
C =|n L(+e A®) U (1t e a®
e=] N e=p P i
ef
("Cholesky EBE") (3.31)

Note (3.31) and (3.29) are not guencrally {dentical,

Cdnfe M ih ey w gt
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Remark 5. If elements are segregated Into non-contiguous subgroups then calcu-
lations are parallelizable. For example, brick-l1ike domains can be decomposed

into eight non-contiguous element proups (see Figure 1), Because the elements

in each subgroup have no common degrees-of-freedom, they can be processed in

parallel. The eight groups, however, need to be processed sequentially. For

analogous two-dimensional domains, four element groups need to be employed,

Remark 6. It has been our computational experience that if A {s symmetric

and positive-definite, then qualitatively faithful approximate factorizations,

which preserve these properties, perform much better than those that do not.

4. Selection of ! s € and A

The following two definitions of W, € and E have been employed:

a.) This choice 1s motivated by the derivation of the PR algorithm (see
(n13])

W =D(4) (4.1)
A=tyiawt (4.2)
Thus
A=D,A) +4A (4.3)
b.) In this case
W= D,(A) (4.4)

T Wi - p wt (4.5)

3}
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which leads to

A=A (4.6)

This procedure was proposed in Winget [W1].

Remark 1.

Matrices of the form A =D.(A) + A were introduced in [H5]. Nour-onid

and Parlett [N1] analytically invest igated the effectiveness of matrices of

this type on a model problem and concluded that the optimal valve of ¢ was

+ This limit is achieved by the definitions (4.4) and (4.5).

Remark 2,

The implicit-explicit finite clement concept [H2, H3, H6-H9 ] has a

very simple and clean implementation within EBE approximate factorizations.

Recall that an explicit element contributes only its diagonal mass matrix to

the coefficient matrix A . Thus W , according to any one of the preceding

definitions, totally accounts for the explicit element contributions and the

corresponding 3?'3 are identically zero. What this means is that explicit

elements may be simply omitted from the formula for ¢ . 1In norilinear problems

this opéhs the way to time-adapt ive implicit~explicit element partitions,

In calculating the element contributions to the residual (1.e. "b"), a check

can be made whether or not the critical Eime step is exceeded for the element .,

If 1t 1s not exceeded, a flag is set to indicate that element contributions

to C may be simply ignored. The potential savings {n nonlinear transient

analyesis procedures incorporating these ldeas 1f clearly considerable.
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5. Sample Problems

The computed results were obtained on a VAX computer using single precision

(32 bite per floating point word). Critical time steps were computed from

: lue. Unle -
Atcrit - zlxmax where Amax is the maximum element eigenvalue nless other

wise noted, bilinear quadrilaterals were employed with 2 x 2 (auss integration.

NASA Insulated Structure Test Problem
W

The problem description is 1llustrated in Figure 2. A number of compari-

sons of the various techniques proposed were made for this problem. 1In Table

1 the selection of A=A [Wl] is seen to converge faster than i= D,(A) +4A.

In addition, the steady-state residual potential energy, measured by loglo(— Pf)

]
attains a smaller value when A=A . This and other calculations have indicated

that é = A 1s the superior choice.
Table 2.

It is used in the comparisons shown in

The first observation which may be made here 1s that the CC algorithm

is more effective than PR with line searches. The use of BFGS updates would

doubtlessly improve upon the performances of -PR, however, the increased data

pool required to store the BFGS vectors is a significant disadvantage. Thus

our current preference in symmetric positive-definite cases is the CG method.

The EBE factorizations, ranked from best to worst, are: Crout, Cholesky,

Marchuk, and symmetrized Gauss-Seidel. Nevertheless, it must be kept in mind

that overall computational efficiency may alter this ordering. For example,

although symmetrized Gauss-Seidel was the slowest to converge, it does not re-

quire element factorization, an advantage. A final point to observe is that

convergence is typically slower during the larger time step sequences (i.e.

steps 21-50) than the smaller step sequences (1.e. steps 1-20). There appear

to be two reasons for thig. Firstly, for the larger steps the solution closely

;?é‘
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approximates the steady sgtate. Thus the initial residual is fatrly small,
resulting in a more stringent convergence criterion, (A more reasonable con-

vergence criterion would no doubt result in faster termination for the larger

Steps than for the smaller. In fact, even the "non-converged" solutions pos-




dable !, Comperiwon ot A e DAY+ A with Aea,

Algorschm: PR ¢ LS (no BFCS)

Approximate factorizatton: Marehuk EBE

Y 2
OF ¢

D.(Q) +A -

“'810“ l")‘”

13,0

steps 120

6.0

ave. it's, per -tép
P A,

10

>

15.4

5.0%

10

Iable 2. Comparison of PR and ¢C

algorithme und v

arious EBE approxioate

20

factorizations., In each case A-» A

Algorithm: PR ¢ LS (no BFCS)

) ave. it's. per step
EBE approx. fact. lolm(- Pp) ——
i steps 1-20 steps 21-50(%)
j.Z: —_——
syma. Gauss-Seidel -13.4 5.41 10
Marchuk - 15.4 5.03 10
Cholesky - 15.8 3.95 10
Crout - 15.1 3.95 10
? Algorithm: (G %
3 T3 ave. it's. per step
3. 832 approx. fact. loaw(- Pe) :
steps 1-20 steps 21-950(%)
o
syms. Causs-Seidel - 5.3 3.95 9.0
o
§
¢ Marchuk -25.3 3.50 8.3
o) .
-
) Cholesky - 25.3 3.45 7.9
i
LT Crout - 25, 2,95 8.0
b
r Notes: (*) Pg, the tinul value ot potential energy, 1s mintmized by the
exact steady-state sulutton, Consequently, the more oegative
L log)g(=~ Pg), the better the approximation of the steady-state.
{e (#) The maximum number ot iterations was 10. The PR algoritha
Vi tatled to converge fur steps 21-50,
‘Af‘ () The g algoritia converged In less than or equal to 10

iterat tuns tn 411 Cases,
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Parallel/Sequential Test Problem

The problem description 1s given in Figure 3. The purpose of thig prob-
lem 18 to compare convergence characteristics for "natural" clement orderings,
which necessitate éequential processing, with orderings that lend themselves
to parallel computations. The compar isons werc all performed with the cc
algorithm, 5 ® A and the Cholesky EBE approximate factorization.

Over the thirty time steps the sequential ordering averaged 2.53 iterations
Per etep to attain convergence, whereas the parallel ordering averaged 3.47
iterations. Despite the fact that the narallel ordering is slower, which might
be anticipated, the fact that it is reasonably fast ig extremely encouraging.
For the 256 element mesh shown a 64-processor computer could attain speeds 64

times faster than a single processor. This more than compensates for the aome-

what slower convergence of the parallel ordering. The gains in larger problems

are potentially even more spectacular.
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6. Conclusions

The numerical comparisons between the PR and CG algorithms indicate that
the CG algorithm 1is superior to PR. It is likely that BFGS updates would have
improved the performance of PR, however, the need to store the BFCS vectors is
considered a serious drawback when compared with the small, fixed-storage re-
quirements of the CG algorithm.

Among the EBE approximate factorizations, the Crout variant seemed best,
however, the Cholesky, Marchuk, and symmetrized Gauss-Seidel versions were also
effective and thus a preference for one over another may need to be based on
other computational considerations.

The calculdations comparing parallel and sequential orderings are very
exciting. The preliminary indications are that parallel processing with EBE
factorizations may be a very efficient computational strategy.

Although a number of possible improvements may still be envisioned, we
believe that the methodology developed is at a stage where it may be incorpo-
rated as an option in produétion heat conduction codes. Futurec hardware devel-
opments, such as parallel multi-processor computers, promise to further enhance

the performance of EBE techniques on large problems.
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Appendix I ~ Derivation of Linear Algchraie Syatems in the Finite Element

Analysis of Heat Conduct ion Problema

Consider the following semi-discrete system:
Ma+Cv-F (Iol)

{ where g is the capacity matrix, C 1s the conductlvity matrix, F 1is the
d heat-~-supply vector, v 4is the temperature vector and as= é is the time-

: rate-of-témperature vector. We assume that M and g are symmetric and
positive definite, and they may depend upon vV and t (time). We employ a
Predictor-multicorrector method to time-discretize the system. To this end

we define the temperature "predictor" by

~

Vosl = v + At (1 - Y)gn (1.2)

where subscripts refer to the step number; At is the time step; Yo and a,

are the approximations to g(tn) and g(tn) » respectively; and y ig a

parameter governing stability and accuracy characteristics of the algorithm

(H3]. calculations begin with the initial data Vo and 8y 3 a, may be

calculated from

o 20 = Fo - Kg 4 (1.3)

In each time step a nonlinear algebraic problem arises which may be

solved b& Newton-type iterative procedures:

(1 is the iteration counter) (1.4)

ORiGINAL PAGYE V¥
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ORIGINAL PAGE g
OF POOR QUALITY

SO o s
il " Yol (1.5)
(predictor phase)
al) o
. () (1) (1) ()
R Fntl = Soel Ynel ~ Moel @ n+l (residual) (1.7)
E* " “(1) + yAt C:ii (effective capacity) (1.8)
5* Ag = R (1.9)
a4t (D)
a1 41 + 02 (I.10)
(corrector phase)
D ()
Yol Ypt1 * YAt As (I.11)

If additional iterations are to be performed, 1 1is replaced by i+l

and calculations resume with (I.7). Either a fixed number of iterations may
be performed, or iterating may be terminated when Aa and/or R satisfy
preassigned convergence conditions. When the iterative phase is compieted the
solution at step n+l 1s defined by the last iterates (viz. v (1+1)

Yo+l ~n+1 and
a (1 1)

). At this point, n is replaced by n+l , and calculations for
Zn+l * Zn41

the next time step may begin.

So-called implicit-explicit element partitions [H2, H3, H6-H9] may be
encompassed by the above formulation simply be excluding explicit element contri-
butions from C . A totally explicit formulation is attained by ignoring c.

In these cases it is necessary to employ a diagonal capacity matrix in explicit

regions to attain full computational efficiency.

To simplify the writing in the body of this paper we adopt the following




notations in place of (I.9):

Axs=)H

Thus during each step, at each iteration,

is assembled from element arrays, that is

Nag
AC

~

13>
n

e=1l
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(1.12)

we wish to solve (I.12) in which A

(1.13)
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Figure 1. Decompostion of three-dimensional domain into cight
groups of brick clements for parallel processing.
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ng OF POOR QUALITY
Oet
Material propenties:
. _Insulctor Metal
k(conductivity)  1.57x10-% ¢.002
oc, 0.11x10-¢ 9,02
Time step data:
Step
1-10 0.02 9788 Va2
11-20 0.20 9.768 Ye
21-30 2.00 97.65 s
31-40 20.0 978.8 1
41-50 2000 9,7650 1
T Weulation Ervor tolerance = 0.001 111
Homogeneous Neumann boundary conditions
(36/3n = 0)are specitied on ail surfaces where ©
lo not prescribed.
/7Y L 10
) /Moul
e ©=100cos 4nu,,
e ] 8 [ ] 4 [ ] t>0
Ve | 9 2 ] ] ‘ g
F'hﬂ'-'lu-l‘— Yhe e

Figure 2. Problem description for NASA insul

L 1]

ated structure test problem,
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