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Abst tact

i Element-by-element solution strategies are developed for transient hea_

ii_ conduction problems. Results of numer.i_a_-t.a_s indicate the effectiveness of

i the procedures proposed. The small data base requirements and attractive

_, architec£ur.al featur_a.o_ the algorithms suggest considerable potential for

_. solving large scale problems.
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• L, Intzoduct ton

The ftrs_ exmup_e of an element-by-element (EBE) algorithm for hea_

_i conduc_t_;n _ presented by Hushes, Levit and Winger [H4]. In that work th_

_! gBE concept was used tc_ develop a non-iterative second_der time-accurate
uncond4_..tonal3_y stable trensienC--algorLthm for both linear-and nonlinear prob-

_ lama. ELement arrays could be processed individually with no nee(L to construct
r

_i a global coefficient matrix. Our--initial numer_al--Cesr.tnS with this scheme
proved satisfactory. HoweVer, later on we discovered that under certain cir-

cu_stances the accuracy level-aC£ained by typical globally implicit methods,

ii such-_ Uie Crank-Nicolson procedure, wa_ no£ attained-by the method of [H4].

The problem was traced to spatial truucatio_ ercor te_s such as those which

afflict some-classical split-operator finite difference methods such as the

D_Fott-Fr_nkel method [A1]. To overcome these accuracy de£iciencies we ware

led-co reformulate the EBE procedure as an iterative linear equation solver so

that standard time discretization techniques could be employed, in this way

isoues of stability and accuracy are obviated. The only question which remains

how fast does the iterative process converse? At the same time the small

data base and attractive architectural features of the EBE process ere retained.

• Another advantase which accrues is that coupled capacity matrices may be accomo-

dated. This improves upon [H4] which was restricted to lumped capacity.

On t.he other hand, relegating the EBE concept to iterative linear equation

eolvins does not seem to exploit Its full potential. To the authors, this

represents a conservative, interim strategy. In future research we hope to

explore the use of Egg concepts throughout the entire problem solving spectrum.

• /i
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There 8].ready 8_ ¢'loar paths for significant increases of effici.cncy t_-

lirge, nonlinear proble_ns by adopting this p'hiloso_ t_ tnte_est_H_ to

nota-ghat the chgonology of research 'developments in multigrid techniques

fo_lowad-_ong similar i_es ln-_at Initial success was fo_md In iterat_ve

linea_ equation solving, b_ subeequeut improvement was obtained by procedures

in which multtgrid concepts permeated _1_ aspects of _.he Solution process

(Brandt [B2]).

Ky restricting the use of the EBE concept to iterative equation solving

the r_eaea_h-problem is rendered tractable in that other aspects of solution

ca_ be done by standard means. Despite this fact there still appears to be a

great deal of variety to the types of EBE strategies which may be developed.

Bas.tcal_y, three _ain ingred_en_s _re necessary for an EBE tterattve _nea_--

equation so_ve_.. They are an iter_ative driver strategy, an EBE approximate

i factorizatton scheme, and the definition of an array which approximates the

i global coefficient matrix an_ is amenable to EBE ap_te factori_a_ion.

_' These topics are explored 4.n Sections 2 to 4, respectively. In Section 5,

I_' s_aple problems are presented.

i_. For related developments in the area of structural analysis, the inter-
! ;

!i:i ested reader is urged to consult [H5 H10, Hll N1, O1] A pilot study of a

_l'ili transonic flow, involving an unsymmetrtc coefficient matrix, is presented in,
.i'_.., JEll]. By virtue of the fact that the present thrust to research in EBE tech-

!ff.. niques has been concerned with aspects of linear equation solving, a certain

):i: synthesis of concepts has ensued. This, as remarked above, is believed to be

_: a very temporary state of affairs. To further develop EBE algorithms which are

ii! truly effective for different problem classes, the physics and tdiosyncracies
:i!:
', of the individual classes will need to be accounted for in the structure of the
I.

i!
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3

alsorlthms. For exsmp_i__we may co,tra,t the transient heat CondUction _nd

structursl schuws presen.t_'ln [H4] and [O_]_e_pectively. The heat con-

duct/_n-scheate was formu.ta(:ed in-.terms of temperat:ure desrees-of-fr_eedom in a

very naturaL-way. No structural analo Ktn terms of kinem_atical-variables

could be developed which atcatned-uncond_ttona.l stability. Rather_ an entirely

new 81obal formuZation had to be created with stresses and velocities as pri-

mary unkno_ts: Needless to say, the developmental implications of such schemes

ere significant. A unique procedure of this kind requires considerable research

on all levels to be b_ousht to fruition. We _tt.tc_pa_e this beinK the case for

the various problem classes to which the EBE concept will undoubtedly be applied.

' ,i
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OF POOR QUALITY

" 2. Iceratlve A1RoriCl_s
| __ _

Two candiLdal;e l_el:Qtlve algorithms which can be u_ed i_ conjunction w1£h

approxlm_ely factorized arrays ._re described below.

- 2a, _arabolfc _egularizaclpn

The parabolic r.esular/2.atlon algorlChm is derived In [H5]. Table i pre-

sents a flowchart---of tile procedure for symmetric posit|ve-definlto. ;;y_tem._.

TaI_L_ I rlowcl_r&,o,f the pay.aholic r_,gularLzotton (PR) aljL,,31th,, with line •

ie_r.eh and BPCS up,laces

,' S&Op.1. ]4qdCJAlizatLon-

- 0 h
_ m = 0 , x O .. , ru ,.

t-k Ik 0 .FOS)_:.... = " (loop: k " I . 2 ,..., n

--%..

w Step 2. Ltne search:

..... ..

_: Step 3. Conversence check:
?.

-!:ii-_ II_.+zli <

_,; Yes: Keturn
t

. No : Continue

Seep 4. Relabel old BFGS vector.:

f " fk - (loop: k - 2 , 3 , n.vcs)k-I ' Ek-1 _k ' "" "
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Step 5. Calculate nov BFGS vector.:

- - (l - ._)r
_n_G s t-m+l _m

,Step 6,..._ldm_mL_,h direction:

a - [m.1

._E + ({_s.)_k (loop: k-n,F_S , n,FGS.-L ,..., 1)

s_8"l z

(s_.-")[k , "_- Z + (loop: k = _ ,..., nBFCS)

/_x ,* z

Step 7. m 4-m + I , go to Step 2.

The notation In Tsble I is given as follows: m is the Iter,_tton counter;

the fk'a and _k ts are the BFGS vectors; nBFGS £s the maxb, um number of

BFGS vectors allowed; B Is a nmcrlx which approxhnates A , buC Is more e_sl-

• ly fsctorLaed_ s is the search parameter; x m is the mth approxl_tton of

X ; Ir - b -' b x lu _he corre..H,,,.ding residual; ....llrmil l._ _ts F.uclSdun

!li. _nsth; mid 6 is e preauutg.cd t, rr,,r tul_:rmwe. The search parameter in

,_,,. step 2 is determined by minimizing the potential energy

?Is) - - (x + _ Ax) 't' 112 -_-A(Xm + u Axl) (2.1 I,

!

:i 2b. Preconditt.oned ccnJug,,t e(;r;td.i_,,j-; "

_*' Thie algortt_ is a general iz_lt ioi|Of the classical co.Jugate gradients

'_i: me, hod (see Hestanea-Stlefel [lilI) 1. vhich a "prucondtttonh;g" ts performed

#.

_983025954-TSA09



6

OF.po0_Qu;_U_'t

earn8 B , the matrLx _pprox_,_clnB A . The algorithm is _ummar£z_d In

Table 2.

Table 2 Flovchart of _reeond*_,_one_ conjugate 2tad£ent_ (CG)

Step 1. ln£tial£zat£('a:

m" 0 , x0- _0

r 0 - b.

P0" .z0" u-i r0

Sf.ep3. x._ l .,-xm+ % p:____

Step 4. rm+ 1 " rm - um A !_m

Step S. Convecsertce check:

Yes: Return

No : ContLnue

Step 6 zm+l . B-X• rm+1
T

step7. _. - rm+_ _.,l/_ _.

steps. e.+'. " za,x+ _. _n,

Step 9. in 4. m + I , lie to Step ;).

ltmark I. GlovLnJJkt et al. JG), (;2J (:.,,, _lsu roL'urc.ccu tht_,rc.l.) I,;lvu uucceu.-

fully ueed the precondLttoned conJuK;iLt, Rr_id|ent_ alKortthm In tJ|t'Jr f lntte ele-

| mt Mork. The utlrLx vhtch they ,.mp|oy u. prt._'ondlttoner [. dctt.mtned by way

r :,

1983025954-TSA10
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of various "incomplete Cho!eoky..f_ctor|zatlons" (ace c.8. Thoma._net [TIJ and

A. references therein).

Remark 7. A fixed number of vectors is all that is needed in the CG method.

Th/_mike_ /£-comput_r_tonally more attractive than the PR alsorlthm v_th BFGS

up_ates, because a considerable number of BFGS vector6 typlea]ly need to be

stor_.

The conver_er, ce rate of the algoritlu, s presented in the precedin8 sectio_

_,, depend heavily upon the approxLmatin8 matrix B . It may be noted that if

_:: B -A then both aIsortthms lmmedtat_eLy obtaln the exact solution x . Numer-

ottl ¢ho:l_ for B ate po_ss/b_e. To explore some of the possiblltttu_ we shall

_'
_,_, /ntroduee. the followtn8 notational scheme. Let

,!\. A- Lp(A)Dp(A)Up(A) (product decomposition) (3.1)

i :ii_i:_': A" LS(,)+ Do(A)+ U (A) (sum decomposition) (3.2)

; ' where the subscripts p and s indicate "product" and "sum", respectively.

_ _: Equation (3.1) represents the Crout faetortzation. Thus I, and O are

_- i_ lower and upper triangular matrices, respectively, with dlasonal entries equal

! 'il tO *..rid Dp(A, is a diasona] matrix. If A is symmetric, then Lp(A) -

' r' uT(A) , If the entries of D are nonnegative, then we can _rite

t ¢:

, A = L (A)O (A) (3.3)

! where

!!,
_ _:........ [, "' L (3.4)

i._: -.p _p_p

i

:.__'_ PRECEDINGPAGEBLANKNOT FILMED

1983025954-TSA11
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, . ,%, (_.s)
-p -p _p

_. " _s+ _ Ds (3.8)

If A Is symmetric, then Ls(A) - Us(A) T and _s(A) - 9s(A) T •

Remark 1. The decomposition (3.6)-(3.8) has figured in the transient analysts al-

Sorlttm8 developed by TruJillo ['r2. T3J and subsequently disc,seed by Park [PI}.

Remark 2. Note that the net Coral storage required for the sum decomposition

18 e_actly the same as for the original matrix. However, the product decom-

position entails increased storage due to "fiLL-In" of zeros wlthi, the skyline.

This Is perhaps the major drawback of direct solutlon schemes such as Croat

el 1miner ton.

Remer_ 3. If we 18nora the line search and quasi-Newton update ingredients of

the Pi aliorlthm, then classlcal tteratlve algorithms are obtained by choosing

1983025954-TSA12



To deecrlbe tM procedures th_t .re empim_fzed herein, w_. first conuLder

matrices. _ . wrlgton in the followi,,g forln:

:. vhere I £s the Identity matr/x. W Is a posJtlve*defIn/te diagonal matrix.

' c is a scalar, and A is a matrix which., ;s the some sparsity pattern as A .

T. _ £e to be thou&hi of as an approximation of A . Specific choices of W ,

_:. c and are considered later tn section 4. The second and fiilal stage Of

,' the approximation is to define

'- .__- I_= _"_C (3,12)

_I, where C £s an spproxLnmtlon of I + t A . Various choices are considered

ti belov:
v

_" 3a, N-component. Splitting._ :
i"

I_, Let A,, be decomposed as follows:

1 :

_'_,! Then a possible definition of C is
i'_- ~

::'* _ " (I + _:AI)(t_. + c A'_'2)= !._+ ,. A..+ r_2 A'LA2..~ - !.. + ,. A + o(, 2 ) (3,14)>?

_'t:._' The last part _uB_eets the nature of the approximation. Computational

_

?; ....

:_Y_-:-:'-:_oo- •o.............................--- "................."__'__-' " ":"_-'"_ ........ _ ..... ' " '_ -1983025954 -TSA 13
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s/mp!/c!ry is _a_ned tf A! and _2 _e very _p_r_e and more _aBl]y factor_

For example, let

_:t" i. (^) (:J.].s) ,_

Thus B has tha follovins sLmple form
Ill

..._(! +__s(A:))(! +_ :Usq)).:_ (3.17)

As Bay be seen. B is already factored and the factors xequl,e no more storasem.

than that for A . Only diagonal sca_.t_, ,iu,_ _'e._vard reductic,1_ and back sub-

stiCutione with sparse triangular arr_.ys ere needed to sotve equ_clons ,-i,.n B

at coefficient _attrix. This eliminates the cost of factnt_zatton _nd obviates

the etorese penalties due to "fill-in". F.quatton (3.17) rep'_esents a synene-

t¢t.zed Gauas-Seidel type approximate factorizatton.

3b. One-pass Multi-p. omponent Sp,litting

Consider a laulCl-component sum decomposlcton of A :

n

- x,, (3.1,,)
i=I

h

c - . (z+e_i)
i-1 "

. - (x.,.+ _:_z)(x + ,. _2) ... <z._+ _:A,)..

" I + c_+ olc2) (3.t91

" " " ......." 983025954 TsA14



c - (! + £ ;'.i) n ([ +3 Zi)
" i'l 2 t-n " "

_2) . (T + C_n) x

, - c _z),, c..+_._)(_ +_._,,_,)... (_+_

- z+¢_+o(¢ z)
-- "- (3.20)

If each 6i ts 83_nmetric end positive semi-definite, then C is s_metric

i, and ix)ett lye-definite.

_: 3d. El mnent-b_,-elem_.nt (LEBE) Approx./mate Faetortzations

i,,' The EBE 8pproxhnate factorlzatlon is s_ply a multi-component 8pltttln8
i l

_ 4. which the coaponent8 are the fintte element arrays themselves. That Is we

i;i ej..a.

, ne_

Ihe_l _ is the eth element contril)_tJo_ to • Then C may be defined by

,: either the one-piss or two-pass formulae, vie.

; ne_

eel

" ................ '................. 1983025954-TSB01
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c _e) F (°'l_rchuk _.lJE") (3.23)aeL.,(z, _c_) ,l (i +

p '

C " 1 2
, tJmTtej _

_Lmr_ 1. Mo _Loh to use the term element in the generic 8en.e of a "sub-

domain model", vhere an element could l)e an tndlvldusl finite element or

• _bgssmnbly of elements. Thus we alloy ILmited assembly. Variou. equivalent

termtnoloK£ee have been used t.o defLne thLs concept, such as "substructures"

and "supere].emente". Subdomatn finLce element; models lnherit the symmetry and

daftn£toness propertLes of the global array. Consequently, the remark made

after (3.20) appX/.e..

Rem._ k 2' The element arrays in (3.22) and (3.23) need to be factor£zed into

trLansular form. This can be done exactly using product decompositions or

approxiemtely using sum decomposition_ _ls in section 3a, equations (3.15)-(3.17):

one-pass

Corresponding Co (3.22) we have

net

C - n Lp(I + £ A--e)Dp(I + t: A-e)u (T + f. _e) (product) (3.24)" e=l " ~P ~ ~

or

• net

c - n (! + _ _s(_)) (t + _ _ (_)) (s_m) (3.25)
-, e" 1 ,_ _ s ~

i o:_i Not__._e (3.24) is £dentlcal to (3.22) whereas (3.25) Is an approximation of
I.('

,::!,! (3.2,).

. .., ,?

i,;/

,t., ........._ ...... o- ..............._°" ' " ° °° 19830259u_":'-TSB02
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nee

" ew I ........

1

x n L.pCZ.+ __ _;,. (z + -_2xe)"-p(!-+ _c_) (_rod.ct) (3.26)
oune_

or

he&

c . .n._(z+_c(_)) (z+_ .

': ].

. (z �_Cs(_e))(_+_%(?)) (...) (3.27)
e_ne9.

Note (3.26) is :Ldent_cal to (3.23) whereas (3.27) Is an approximation of

(3.23),
r

_: Whether to use product or sum factorizat£ons of the element arrays is a

question of efficiency. Belytschko and Llu [B1] have proposed a fast exact

£nverston prr_cedure for 4-node heat conduction elements. For subassemblies,

z the approx/_ate sum factorizatton_ may haw. advantages.

Remark 3. Note that storaKe demands are vastly less in the EBE case. Only one

:i_ element at a t_me need be stored and processed. Whether or not it is desirable

to save factorized element arrays depends upon the availability of high speed

RAM, and the trade-off between CPU and disk I/O costs.

'4

_- Remark 4. The ordering of the factors influences how well C approximates
4

'" I + _ A . The global product decompo_ltton,

z+c_ - Lp(!+_D0p(z. ....+ _Du._.-(_+ c_ , (3.28)

'° , 983025954-r:SB03



i net 1
c - n ¢x+c .( )) . (x+ c ))

'*I;i e-Z , ,.=,,,,,.., "

i; ("synun. (;auss-SeldeI leUl',''') (3.30)
-'i_:2

o,{. Note that in the case of symmetric A , symmetry Is preserved by (3.29) and

_ ?_.a 13.30). Thus I:here seems little muttvation for similarly reordering the two-
_q

pammversions.

In the case of positive D (I + t. _e)'s, the Crout factor/zations can be

reordered in terms o£ Cholesky factors. For example, a variant of (3.29) is

e=rtej _

(°'ChoteskY I_BE°') 13.31)

aot_._!e 13.31) and (3.29) are nut &t,,_L,rally identical.

--_i:-':i :.:..... :-:--"_:_-- _:- _ .........._ .... -___-............... 1983025954-TSBOZ



Re_lark 6. It has been our computational experience that if A Is symmetric

amd positive-definite, then qualitatively faithful approximate factorIzatIons,

vhich preserve these properties, perform much better than those that do not.

b.) In this case

__,,i_ ................. L...................... t:I_......... i ., _! _ ...... - ....................... - -_ "_.... _-_.........

..... _"_ ,"" " ' "_- ' ................ 1983025954-TSB05
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which leads to

A o ^ (4.61

This procedure was proposed in Nlnget |Nl.].

It! k--rk I.

• _tr£ces of the form _ = Ds(A) + ,: A were Introduced In Ill51. Nour-Onid
i+

and Parlett [NI] analytically investigated the effectiveness of matrices of

this type on a model problem and concluded that the optimal valve of g was

m . This l_ait is achieved by the definitions (4.4) and (6.5).
!,
} •

: Rmark 2
(

_, The /Jnpliclt-explictC f/nlce element concept 1112, H3, H6-H9I has a
'y,

!+, very simple and clean implementation within EBE approximate factorlzatlons.

i+. Recall that an explicit element contributes only its diagonal mass matrix to

i!Ii+ the eoeff£cIent matrix A . Thus W , according to any one of the preceding

i defimItIons, totally accounts for the explicit element contributions and the

i corresponding Ae's are identically zero. Nhat this means is that explicit

.qp

elements may be simply omitted from the formula for C . In nonlinear problems

thIs opens the way to time-adapt lye Impllcit-explicit element p_trtltions.

ii In calculatLn 8 the element contributions to the residual (i.e. *'b")
~ , a check

ii can be made vhethar or not the critical time step is exceeded for the element,

X| It Ie not exceeded, a flag Is set to indicate that element contributions

: to C may be simply Ignored. The potentlal savings In nonlinear transient

analysis procedures incorporating these tde_ns if clearly considerable.

r

i

+................+++++.......... +++++...... . 983025954 TSBOI+ +'_ " +-- " "'+ ' ' "" _.... ............ ++ .... _I+ ....... .e+-+.-___0
; + + +_, ............................



5. Saple Problems

The computed cesult8 were obtai,led on a VAX compuLer usLns sinsle precis/on

(32 b:lLtl pet floatlnll point word). Critical ttme .tep._ were computed from

Atcrit - 2/Xm_ x where lmax is th_ max_ltium el@_ent eiKenva]ue, Unless other-

wise noted, bllinear quadrilaterals were _mployed with 2 × 2 Gauss Integration.

NASA Insulated Structure Test Problem

The problem description is illustrated in Figure 2. A number of compari-

sons of the various techniques proposed were made for this problem. In Table

I the selectlon of _ = A [WI] is seen to converge faster than _ - Ds(A) + A •

In addition, the steady-state residual potential energy, measured by IOglo(- Pf),

;! attains a smaller value when _ " A . This and other calculations have Indicated

that A - A Is the superior choice. It is used in the comparisons shown in

Table 2. The first observation which may be made here is that the CC algorithm

is more effective than PR with line searches. The use of BFGS updates would

doubtlessly _nprove upon the performances of.PR, however, the increased data

pool required to store the BFGS vectors is a significant disadvantage. Thus

our current preference in symmetric positive-definite cases is the CG method.

The EBE faccorizations, ranked from best to worst, are: Crout, Cholesky,

_rchuk, and sy_netrized Causs-Seidel. Nevertheless, it must be kept in mind

that overall computational efficiency may alter this ordering. For example,

although synnetrized Gauss-Seidel was the slowest to converge, it does not re-

quire element factorization, an advantage. A final point to observe is that

convergence is typically slower during the larger time step sequences (i.e.

steps 21-50) than the smaller step sequences (i.e. steps 1-20). There appear

i:

I!i to be two reasons for this. Firstly, for the larger _teps the SO]litton closely

_S

" " - ..... " ........... T S'BO

.... :' ' ......... ..... 983025954 "
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approxiumCes the steady scare. Thus the initial resldual Ls fairly small,

resulting in a more stringent convergence criterion. (A more reasonabte con-

vergence criterion would no doubt result in faster termination for the larger

steps than for the smaller. In fact, even the "non-converged" solutions pos-

sessed adequate accuracy from a practical standpoint.) Secondly, the condition-

ing of element factors deteriorates for larger steps in that the element arrays

become nearly singular.
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Parallel/Sequential Test Probl_,m

TIw problm description Is given in Figure 3. The purpose of this prob-

1ms Ls to compare convergence characteristics for "natural" element orderlnss,

Which necessitate sequential proces_inK, with orderings that lend themselves

to parallel computations. The comparisons were all performed wlth the CG

al&orltl_, A = A and the Cholesky E_E approximate factorizatton.

Over the thirty time steps the sequential ordering averaged 2.53 iterat£ons

per step to attain convergence, whereas the parallel ordering averaged 3.47

iterations. Despite the fact that the _arallel ordering ts slower, which might

be anticipated, the fact that it is reasonably fast Is extremely encouraging.

For the 256 element mesh shown a b4-processor computer could attain speeds 64

t/ass faster than a single processor. This more than compensates for the some-

what slower convergence of the parallel ordering. The gains in larger problems

are potant_lXy even more spectacular.

_ ' ..........._ ......... " _...................._° ' ..... _ _ ,'983025954-TSB10
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6. Concluslon___=_._==_±a

The numerical comparisons between the PR und CO algorittuns _ndicate that

the CG algorithm is superior to PR. It is likely that BFGS updates would havo

improved the performance of PR, however, the need to store the BFCS vectors is

considered a serious drawback when compared with the small, f lxed-storage re-

quirements of the CG algorithm.

Among the EBE approximate factorizations, the trout variant seemed best,

however, the Cholesky, Marchuk, and symmetrized Causs-Seidel versions were also

effective and thus a preference for one over another may need to be based on

other computational considerations.

The calculations comparing parallel and sequential orderlngs are very
L

" exciting. The prel_ninary indications are that parallel processing with EBE

_i,_ factorizations may be a very efficient computational strategy.

_-!ii! Although a number of possible Improvements may still be envisioned, we
i

i:_: believe that the methodology developed is at a stage where it may be incorpo-

i" rated as an option in production heat conduction codes. Future hardware devel-
! ,

opments, such as parallel multi-processor computers, promise to further enhance

i:
_. the performance of EBE techniques on large problems.

2,,.;
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^ppendlX.I _ ,perlvat !on of Linear Algobra_c S Atems In t h_ FinJ_e _El?men_

i'

J,

Con_tder the following semi-discrete system:
i

!i M a + C v = F (I.l)
!.

i,
i where M is the capacity matrix, C is the conductivity matrix, P is the

_. heat-supply vector, v is the temperature vector and a = v is the time-

: rate-of-temperature vector. Ne assume tha_ H and C are sym_etric and

positive definite, and they may depend upon v and t (time). We employ a
i

]. predictor-multtcorrector method to ttme-discretlze the system. To this end

t. we define the temperature "predictor" by

_n+l = ?n + At(1 - y)_n (I.2)

where subscripts refer to the step number; At is the time step; _n and _n

are the approximations to V(tn) and a(t n) , respectively; and y is a

parameter governing stability and accuracy characteristics of the algorithm

[H3]. Calculations begin with the initial data _0 and _0 ; _0 may be

calculated from

In each time step a nonlinear algebraic problem arises which may be

solved by Newton-type tterative procedures:

i = 0 (i is the Iteratton counter) (I.4)

OF POOR QUALITY
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ORIGINALPAGE|E'
OF POORQUALITY

v(l)
".n+l " _n+l (I. 5)

(predictor phase)

a (i) 0 (1.6)
~n+l m ~

.(1) (1). M(i) (1) (residual) (I.7)" [.+I" -_n+lv-n+1 -.+la-n+l

M*~" M(i)~n+l+ VAt _n+l'(i) (effective capacity) (I.8)

_(i+t) _(1)+ Aa / (I Io)"-n+l " -an+l ~

I (corrector phase)
' v(i+l) (i)

~n+l " Vn+l + TAt Aa (I.Ii)

iii,
i If additional Iterations are to be performed, t is replaced by t+1 ,

J: and calculations resume wlth (1.7). Either a fixed number of iterations may

be performed, or iterating may be terminated when Aa and/or R satisfy

preassigned convergence conditions. Uhen the iterative phase is completed, the

. v (i+l)solution at step n+l is defined by the last iterates (vtz. Vn+1 ~n+l and

.. a(i+l)_an+l ~n+l "" At this point, n is replaced by n+l and calculations for

the next tlme step may begin.

So-called Implicit-expllclt element partitions JR2, H3, H6-H9] may be

encompassed by the above formulatlon slmply be excludlng expliclt element contrl-
.... i

butions from C . A totally explicit formulation is attained by ignoring C .

In these cases it is necessary to employ a diagonal capacity matrix in explicit

regions to attain full computational efficiency.

To simplify the writing in the body of this paper we adopt the following



notations In place of (I.9):

• Ax'b
~ ~ (I.12)

Thus durin 8 each step, at each iteration, we wish to solve (1.12) in which A

is assembled from element arrays, that ls

_,. 16 ,11

f
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OF POORQUALITY

Fii_re 1. Deeompostion of three-dimensional domain into eight
groups of brick elements for parallel proeessing.
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Fi&ure 2, Problem deoeripti_,l fl,r N A..qA in.qul._tedstructure test prohl,:m.
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