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T. A. Zang
College of William and Mary

ABSTRACT

A spectral multi-grid scheme is described which can solve pseudospectral

discretizations of self-adjoint elliptic problems in 	 0(N log N)

operaticas. An iterative technique for efficiently implementing semi-implicit

time-stepping for pseudospectral discretizations of Navier-Stokes equations is

discussed. This approach can handle variable coefficient terms in an

effective manner. Pseudospectral solutions of compressible flow problems are

presented. These include one-dimensional problems and two-dimensional Eller

solutions. Results	 are given both	 for shock-capturing	 approaches	 and	 for

shock-fitting ones.
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INTRODUCTION

Spectral methods have clear advantages provided that the discrete spectral

equations can be solved efficiently and that the solution to the continuous

problem is well-behaved ([11, [21). Efficient direct st*=.,Acions of spectral

equations are generally possible only for simple geometries and with explicit

spectral equations, although a few constant coefficient cases can be solved

cheaply by direct methods. In other circumstances iterative methods are

necessary. The .key app ,oto h of approximating the full spectral operator with

a sparse finite difference one was developed by Orszag [3] and by Morchoisne

[4].	 The first half of this paper will describe some recent progress on

iterative schemes for elliptic problems and on iterative solutions of semi-

impli.^it, time-stepping procedures for Navier Stokej equations. The second

E

	

	 part of the paper will describe some recent progress that has been made on the

application of spectral methods to compressible flow problems Y-Ath shock

waves.

2. SPECTRAL MULTI-GRID METHODS

The self-adjoint elliptic equation

(2.1)	 -V•(aVu) = f,

where u(x) is the solution, f(r.) 	 the forcing and a(x) the variable

coeifficient, arises in many contexts. In two or more dimensions direct "fast

Poisson solvers" [5] are not applicable, even for the simplest discretizations

and geometries. Perhaps the most efficient iterative schemes for finite

difference and finite element discretizations of these problems employ multi-
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grid techniques (f6] - ($])• Theoretical estimates indicate that satisfactory

convergence can be achieved in 0(N) arithmetic operations, where N is the

total number of grid points. Zang ' Wong, and Hussaini [9] have recently

devised effective multi-grid procedures for the solution of pseudo-spectral

discretizations of equation. (2.1). A summary of that work follows along with

some new developments.

For simplicity and clarity, the one-dimensional version of equation (2.1)

with periodic boundary conditions [)n CO, 2 ,n] will be used to explain the

spectral multi-grid (SMG) approach. Write the Fourier pseudospectral

discretization using N collocation, or grid, points as

(2.2)	 LV = F

in obvious notation. Consider first a standard single-grid scheme euiploying

Richardson relaxation

(2.3)	 v f v + w(F - Lv),

where v is the latest approximation to V and w is a relaxation parame-

ter Label the real and positive eigenvalues of L as %1,%2,••`,%N in

order of increasing magnitude. The error at any stage, v - V, can be resolved

into an expansion in the eigenvectors of L. Each iteration reduces the error

component corresponding to Xj to v(% j ) times its previous value, where

(2.4)	 v(X) = 1 - A.

The optimal choice of w results from minimizing IV 	 I for X E (%j, %N ] •

n x.	 This produces an optimal single-grid ;spectral radius
Y	 .

rt; 
is
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The efficiency of this single-grid approach is evident in the constant coeffi-

cient case a(x) . 1. The eigenvalues k i . L(J/2)j 2	and thus

p 2r 1 - 8/N2 .	 (The fact that Xi . 0 is associated with the non-unlqueness

of this special problem. One should really use X2 in place of %I in

equation (2.5) for this case.)	 This implies that O (N 2 ) iterations are

required to achieve convergence. Combined with the 0 (N log N) cost per

iteration (due to the spectral evaluation of Lv) this produces a total cost

of 0(N3 log N).

The spectral multi-grid approach can obtain the solution in O(N log N)

operaticns since the number of iterations turns out to be independent of N.
r
i

This is explained in what follows. Define a series of grids (or levels) for

k = 2,3,---,K, each consisting of Nk uniformly spaced points, where

Nk 2k .	 The solution to equation (2.2) is obtained by combining Richardson

iterations on level K with Richardson iterations for related problems on the

coarser levels k < K. Denote the relevant discrete problem at any level k
n

by

(2.6)	 LkVk = Fk.

On the finest level	 K, LK = L, FK = F and the solution VK = V,	 the

solution to equation (2.2). At any stage in the iterative solution process

for equation (2.6), only an approximation v k to the exact answer Vk is

available. If this approximation is deemed adequate, then the approximation

on the next-finer level k+l is corrected via

(2.7)	
vk+1 

f 
vk+1 + Fk+lvk°

-3-
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The matrix Pk represents the coarse-to-fine interpolation of corrections

from level k-1 to level k. On the other hand, if the approximation vk is

deemed inadequate, either another relaxation is performed, via

(2. S)	 vk ' vk ' YFk - 'Lkvk ) r

or else control shifts to a problem on the next-coarser level k-1. The

relaxation parameter Wk on level k is chosen to damp preferentially those

error components which are not represented on coarser grids. The right-hand-

side of the coarser grid problem is obtained from

(2.9)	 Fk-1 - Rk(Fk - Lkvk).

The matrix Rk represents the fine-to-coarse residual transfer from level

k to level k-1.

The natural interpolation operators in the present context represent

trigonometric interpolation. They have the useful property that Rk is the

adjoint of Pk . Numerous multi-grid investigations have determined that it

is desirable for the coarse grid discretization operators to satisfy

(2.10)	
Lk-1 = RkLkPk.

This is easily implemented by modifying the usual pseudo-spectral computation

of (avx)x.	 On the finest level k b K the pointwise values of a(x) are

retained but on the coarser le-els a(x) is used instead, where a(x) is

obtained via trigonometric interpolation on the square roots of the finest

grid values of a(x). This filtering of the coefficients may be viewed as a

-4-
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Further details on the interpolation operators are

given in [51.

An essential pat  of any multi-grid algorithm is a specific control

structure that de'r ermines when attention is shifted from one grid to

another. See [7) for some flow charts and [101 for additional variations and

assessments.

To appreciate why the number of iterations is ,independent of N - NK,

consider the eigenvalues of the constant coefficient case. The objective of

the relaxation scheme on level K is to minimize (v(%)J only for

X E [(1/16)N2,(1/4)N 21.	 The upper bound on Jv(%)` for this minimax problem

is called the smoothing rate and is denoted by µ. 	 A simple calculation

reveals that µ - 3/5. 	 This is substantially less than 1 and, perhaps more

importantly, it is independent of N. A similar result obtains for the two-

dimensional version as Indicated in Table 1 for several nxn grids. Of

course, the work on the coarser levels k < K should also be counted. The

relaxations there are much cheaper and the same smoothing rate applies. A

more subtle issue is whether the various interpolations magnify some error

components.	 The numerical results in [9] suggest that this effect is

relatively insignificant.

Table 1. Convergence Rates for Fourier Richardson
iteration in Two-dimensions

n
Single-grid

Spectral Radius
Multi-grid

Smoothing Rate

4 0.333
-

0.333
8 0.895 0.636

16 0.980 0.719
32 0.996 0.751
64 0.999 0.765

1.000 0.778

-5-



When Dirichlet boundary conditions are applied to equation (2.s.),

Chebyshev polynomials are more appropriate than Fourier series. 	 The

additional complication here is that XN . O(N4 ) whereas %N/2 - O(N 2 ), The

ratio of these two numbers determines the smoothing rate. (This ratio may be

termed the multi-grid condition number.) Since this multi-grid condition

number grows dramatically with N, the straightforward use of Richardson

iteration leads to a smoothing rate which tends rapidly to I.

The cure is to pre-condition the iteration by applying

(2.11)	 v + v + wH-1 (F-L 0 ,

where H is some readily-invertible approximation to L. An obvious choice

for H is a finite difference approximation HFD to equation (2.1) as pro-

posed in [3) and [4] for single-grid iterations. However, in more than one-

dimension these finite difference approximations are themselves costly to in-

vert. A more desirable choice is an approximate LU-decomposition of HFD,

i.e., H is taken as the product of a lower triangular matrix L and an upper

triangular matrix U. In one such type of preconditioning, denoted by HLU,

L is identical to the lower triangular portion of HFD and U is chosen so

that the two super diagonals of LU agree with those of HFD • In [9] an

alternative pre-conditioning, denoted here by H RS , was proposed in which the

diagonal elements of L were altered from those of HFD to ensure that the

row sums of HRS and HFD were identical.

The essential properties of all three typed of pre-conditioning are shown

in Table 2 for the constant coefficient problem. The total, number of grid

points N = n2 .	 The eigenvalues shown there were computed numerically. In

order to assess the effectiveness of these pre-conditionings in multi-grid

-6-
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OP QUA.4iryTable 2. Extreme Ii.genval.ues for Pre-conditioned
Chebyshev Operator in Two-dimensions

n
II-FDL

HL-U1 L IIRST,.

min max min Max min max
4 1.000 1.757 0.929 1.717 1.037 1.781
8 1.000 2.131 0.582 2.273 1.061 2.877

16 1.000 2.305 0.224 2.603 1.043 4.241
24 1	 1.000 1	 2.361 1	 0.111 1	 2.737 1.031 1	 5.379

calculations, one also needs to kn( °,t the smallest "high frequency"

eigenvalue. The numerical results indicate that this is 1.22 for IIFD and

HLU and 1.45 for HRS ,	 essentially independent of	 n:	 The relevant

condition numbers are given in Table 3. Both HL U and HRS require only

O(N)	 operations to invert.	 Thus, we reach the striking conclusion that

although	 HRS	 is more effective for single-grid iterations, HLU	 is

noticeably superior in the multi-grid context. Moreover, HFD offers little

improvement in smoothing rate over HLU .	 Since HFD is much costlier to

invert, HLU is the preferred multi-grid pre-conditioning. Table 4 indicates

the convergence rates which can be obtained with the approximate LU-

de:omposition.	 Numerical evidence suggests an upper bound of 0.4 for the

multi-grid smoothing rate.

The tables in this section indicate the theore l.Jeal performance of SMG on

constant coefficient problems. 	 The numerical calculations reported in [9)

confirm that these convergence rates are achieved in practice, even for

variable coefficient problems. Recent calculations for the H LU pre-

conditioning confirm that it, too, behaves as predicted. [11).

-7-
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Table 3. Condition Number for Pre-conditioned
Chebyshev Operator in Two-dimensions	 ORIGINAL

	
Q PAG 19

POOR QUALITY
n Single-grid Multi-grid

TIµLUL 11R-S1 L ftLUL
l;-RSL

4 1085 1.72
8 3.91 2.71 1.79 2.07
16 11.62 4.07 2.12 2.92
24 24.66 5.22 2.26 3.79

Table 4. Convergence Rates for Chebyshev Richardson
Iteration in Two-dimensions

n Single-grid Multi-grid
Spectral. radius Smoothing Rate

4 0.264 0.298
8 0.462 0.283

16 0.605 0.358
24 0.678 0.387

Spectral multi-grid methods can certainly be applied to a wider set of

problems than covered by equation (2.1) with periodic or Dirichlet boundary

conditions. Effective methods exist for other boundary conditions, such as

Dirichlet in one direction and periodic in the otheic. Non-self-adjoint and

nonlinear problems, including systems of equations, can also be handled.

Results for single grid calculations will be presented elsewhere ([12)).

3.. SEMI-IMPLICIT TIME-STEPPING METHODS FOR NAVIER-STOKES EQUATIONS

An important source of implicit variable coefficient spectral equations is

semi-implicit time-stepping algorithms for evolution equations with spectral

spatial discretizat ions. Efficient iterative schemes are especially needed

for Chebyshev spectral methods due to their severe explicit time-step

limitations and the expense of direct solutions of the implicit equations in

all but the simplest eases.

k^
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The incompressible Navier-Stokes equations are an important application.

The rotation form equations for two-dimensional, channel flow are

(3.1)	 ut - v(vx- u y ) + Px W (pux)x + (guy )y

(3.2)	 vt + u(vx- u y ) + Py "' (Avx)x + (µvy)y

(3.3)	 ux + vy .. U,

with periodic boundary conditions in x and no-slip boundary conditions at

y R *1. The variable P denotes the total pressure. The viscosity µ is

presumed to depend upon y.

A useful discretization employs F.)urier series in x and Chebyshev series

in y. The pressure gradient term and the incompressibility constraint are

best handled implicitly. So, too, are the vertical diffusion terms because of

the fine mesh-spacing near the wall. The variable viscosity prevents the

standard Poisson equation for the pressure from decoupling from the velocities

in the diffusion term. The algorithm described in [13] appears to be a good

starting point. A Crank-Nicolson approach is used for the implicit terms and

Adams-Bashforth for the remainder. After a Fourier transform in x, the

equations for each wavenumber k have the following implicit structure

(3.4)	 u - 1/2 At( µuy ) y + 1/2AtikP	 •••

(3.5)	 v - 1/2 At (µvy)y + 1/2AtPy	.•.

(3. 6 )
	

iku + v  .• 00

.,ate
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Fourier transformed variables are denoted by hats, the subscript y denotes a

Chebyshev paeudospectral de rivative, and At is the time increment.

The algorithm in [131 was devised For constant viscosity, in which case

the equations (3.4) - (3.6) can be reduced to essentially a block-tridiagonal

form. This cannot be done in the present, more general situation. We

advoca.e solving these equations iteratively after applying a finite

difference pre-conditioning.

The interesting physical problems have high Reynolds number, i.e., low

viscosity. Thus the first derivative terms in equations (3.4) - (3.6) predom-

inate. The effective pre-conditioning of them is crucial,. Four possibilities

have been considered. The eigenvalues of pre-conditioned iterations for the

model scalar problem u x - f with periodic boundary conditions on 	 [00 2,x1

"s

are given for each possibility in Table 5. The term aAx is the product of a
r:

wavenumoer a and the grid spacing Ax. It falls in the range

0 4 1aAx	 Tr. For the staggered grid case the discrete equations (3.4) -

(3.6) are modified so that the velocities and the momentum equations are de-
r

fined at the cell faces yj - c:os(nJ/N), J-0,1 1 — ,N, whereas the pressure and

the continuity equation are defined at the cell centers y j _1/2=  cos(n(J- 1/2 )/N),

J-1, 4 ­ ,N. Fast cosine transforms enable interpolation between cell faces and
t

cell centers to be implemented efficiently. 	 The staggered grid for the
r

Navier-Stokes equations has the advantage that no artificial boundary
k

i

P	 condition is required for the pressure at the walls.
s

The actual eigenvalues for pre-conditioned iterations of equations (3.4) -
f:

(3.6) are displayed in Figures 1 and 2.	 The model problem estimates the

eigenvalue trends surprisingly well considering that it is just a scalar

equation, has only first derivative terms and uses Fourier series rather than
F

Chebyshev polynomials.

-10-
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Table 5. Pre-conditioned rigenvaluee for One-dimensional
First Derivative Mode, Problem

Pre-conditioning Eigenvalues

Central Differences
aAx

sin (aAx)

One-sided Differences e-:1(aAx/2) ^..,
sin((aAx)

aAx 2
/2)

aAx 0 <	 (aAxl <	 (2n/3)
High Mode Cut-off

sin

0 (27c/3)	 <	 (aAxl	 < n

Staggered Grid
aAx2

sin (aAx)/2

The prece ing results indicate that the staggered grid leads to the most

effec , i.'v:r ?,ro,xtment of the first derivative terms. The condition number of

the prs- , ond.itioned system is reasonably small and no resolution is lost by a

high mode cut-off.	 (Although it is possible to devise a high-mode cut-off

which avoids the small eigenvalues shown in the figures, some of the spectral

resolution is thereby lost.) A simple and effective iterative scheme for this

system with its complex eigenvalues is a minimum residual method. At a

Reynolds number of 7500 each iteration reduces the residual by almost an order

of magnitude.

This semi-implicit technique has several obvious extensions. It is easily

applied to incompressible flow over a flat plate in the context of the

parallel flow assumption. Pre-conditioned eigenvalues for this situation are

shown in Figure 3. A substantial increase in the allowable time-steps can be

achieved by treating the mean streamwiso advection term in a semi-implicit

*. fashion. This is easily implemented. Adding a third dimension with periodic

r,

-11-
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jj&uLre 1. Eigenvalues of the pre-conditioned matrices for semi-implicit
channel flow when the strnamwise wave number k = 1. The grid
is 32X17, the Reynolds number is 7500 and the CFL number is
0.10. Note the different scale used for the central differences
pre-conditioning results.
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Figure 2. Eigenvalues of the pre-conditioned matrices for semi-implicit
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0.10. Note the different scale used for the central differences
pre-conditioning results.
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boundary conditions is trivial, 	 aside from storage and run-time

considerations. Treating no-slip boundary conditions in two directions and/or

including more of the advection terms in a semi-implicit manner is more

difficult. Here, howev;ar, one can employ the approximate LU-decomposition

described in section 2.

K = 1 FLAT PLATE EIGENVALUES	 K = 10 FLAT PLATE EIGENVALUES

2

r
ar
Cr
2 0
CD
Cr
E

-1

-2
»1	 0	 1	 2	 3	 -1	 0	 1	 2	 3

REAL	 REAL

Figure 3. Eigenvalues of the staggered grid pre-conditioned matrices for
semi-implicit flat plate flow. The grid is 32x17, the Reynolds
number is 7500 and the CFL number is 0.10.

Further details are discussed in [14]. 	 That report also contains

numerical examples using production codes for the channel and flat plate

problems in both constant viscosity and variable viscosity situations.

N
't	
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4.1 Quasi-One-Dimensional Flows

Recent investigations ([151, [16],[171) of one-dimensional problems

indicate that spectral methods may provide a promising approach to

compressible flows with shocks. 	 In these calculations the shock wave is

"captured" and a kind of filtering is applied to deal with the oscillations

resulting from the sharp discontinuity. 	 The goal of the filtering is to

suppress the oscillations without degrading the accuracy in the smooth but

structured regions of the flow. Simple flows such as those represented by

piecewise linear profiles are not very demanding tests since the series

representations of such functions forgive a number of filtering crimes.

Figures 4 and 5 reproduce the results presented in (151 for reasonably

demanding flows.	 The first of these figures refers to the standard test

problem of a quasi-one-dimensional nozzle flowi The second figure pertains to

a rather unusual, but highly structured, astrophysical flow problem.	 The

rapid decompression region behind the shock is especially challenging. Note

that the computed shock is quite sharp and that the complex flow structure is

preserved.

6	 00°
o°

o°„o

.0
o°	 o0	 0

' 5&0=000000 010ooa0000

0
90	 135
	

0
x	 rmmot

Figure 4.	 Chebyshev pseudo-
	

Figure 5. Fourier pseudo-
spectral solution of transonic	 spectral solution of a 1-D model
quasi-1-D nozzle flow.	 of a forced galactic shock wave.
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4.2 Two-Dimensional Flows

Interaction of a shock wave with an entropy snot and a vortex. The two-

dimensional compressible puler equations present a more challenging test for

the spectral methods The shock "capturing" techniques of the one-dimensional

flow problerai are not as successful in the two-dimensional case, and the

filtering methods presently used (to deal with the Gibbs phenomena) affect the

accuracy of the solution.	 It stands to reason that while applying

pseudospectral methods to complex shock interaction problems, the spectral

accuracy can be maintained by "tracking" or fitting the shock. In such cases

the relevant governing equations are not necessarily cast in cons,,rvation

form, and they are solved in the transformed or computational domain where the

shock becomes a coordinate line: The unsteady, two-dimensional., compressible,

Euler equations in the computational plane (X,Y) are written in the form,

(4.1)	 QT + AQX + BQY = 0

where Q a [P,u,v,S]	 and

U	 yXX yXy 0	 V

A	
a2Xx/y	 U	 0	 0	

B	
a2YX/Y

a2Xy/y	 0	 U	 0	 a2Yy/y

0	 0	 0	 U	 o

yYX yYy 0

V	 0	 0

0	 V	 0

0	 0	 v

The natural logarithm of the pressure, the speed of sound, and the entropy are

represented by P, a, and S, respectively, and y is the ratio of specific

heats. The velocity in the Cartesian x and y directions are u and v,

respectively.	 All variables are normalized with respect to reference

conditions at downstream infinity, as in [18]. The contravariant velocity

-16-
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U - X  + uXx + vXy and V - Yt + uYx + vYy.

Subscripts denote partial derivatives with respect to the independent

variables.

The coordinate transformation is defined as follows:

x ^- h(t)
X - 

x8 (y p t ) - h(t)

Y - tanh(ay) + 1
2

T - t,

where x = h(t) is some left boundary of Lae interaction region and

x = xs.(y,t) is the shock wave front.

The computational domain is thus	 (X,Y) E [0,11 X [0,11.	 Note the

stretching (with parameter a) that has been used to handle the infinite

extent of the lateral coordinate y. If the relative shock Mach number Ms

is sufficiently high (Ms > 2.03), the flow upstream of the shock remains

supersonic. In this case, the left boundary corresponds to a supersonic

inflow, and all dependent variables can be prescribed on it. However, if the

relative shock Mach number is low, then radiation-type boundary conditions are

used at the left boundary. On the right, the computational region is bounded

by the shock wave.	 Downstream of the shock the flow field is given

analytically. The flow field immediately upstream of the shock, as well as

the shape and velocity of the shock, are evaluated such that the Rankine-

Hugoniot jump conditions and the compatibility condition reaching the shock

wave from the upstream side are simultaneously satisfied.

-17-
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Let k denote the time level and let At be the time step increment.

The time discretization of eq. (4.1) is then as follows:

Q = [1 - AtLkIQk,

Qk^i-1 = 1/2 IQk + (1 - AtL)QJ,

where the spatial operator L represents an approximation to AD/8X + Ba/ M

In the pseudospectral method, the solution Q is first expanded as a double

Chebyshev series,

M N

	

Q(X,Y,T) = I	 E Q (T)T (9) T (71),
p=0 q=0 Pq 	P	 q

where

	

P, = 2X - 1	 and	 n = 2Y - 1,

and T  a1td T q are the Chebyshev polynomials of degrees p and q. The

derivatives appearing in the spatial operators are then evaluated as

	

QX = 2 1	 X Q (1 ' 0) T T
p=0 q=0 Pq 	P q'

where

	

4(1,0) = 2
	

^	 Q ,
Pq	 c	

m
p 

m=p+1 mq
and	 m+p odd

	

c0 = 2,	 cp = 1, p > 0.

The evaluation of the shock wave shape and velocity followed the same

procedure outlined above including spectral evaluation of the derivatives on

-18-
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the upstream side of the shock are expressed as Chebyshev expansions. At the

left boundary, all variables were specified for supersonic inflow. For the

case of subsonic inflow, the two velocity components and the entropy were

specifiers, while the pressure was computed from a quasi-one-dimensional

characteristic.

The pseudospectral method has a tendency to develop slowly growing

oscillations. Because of the global nature of this method they are spread

over the entire flow field rather than being confiner' to the vicinity of sharp

gradients. The underlying smooth solution can be recovered by a variety of

filtering techniques. The results presented here were obtained by applying a

von Hann window filter (see [15] for details) every 160 time steps.

Figure 6 shows a plane shock wave about to interact with a hot spot

(situated in a quiescent field) with the temperature distribution d given by

a = k exp{-[(x-x 0 ) 2 + (y-y0)21/2r21,

where k = 0.25, r = 1.25, x0 = 0.5 and yo =0.	 The initial shock position

is x = 0, and its initial Mach number is 3. Figure 7 displays vorticity

contours at time t = 0.2 when the shock wave has passed over the hot spot.

See [18] for more details on the physics and [19] for comparisons with finite

difference calculations.

Figure 8 shows the velocity field for a single vortex about to interact

with a shock wave traveling; initially with speed Ms = 3. The downstream

conditions here are obtained by assuming a constant density field, calculating

the velocity from the stream function,

°"	 ¢ = 2x log r,/ + (x-x0 ) 2 + (Y-YO)2

-19-
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Figure 6.	 Surface plot of
entropy for a hot spot and an
initial advancing Mach 3 shock
wave.
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Figurere S. Velocity vectors
for a vortex. Solid verti-
cal line denotes an advancing
Mach 3 shock wave.

0

I 0
Figure 7. Vorticity contours from Figure 9. Pressure contours
pseudospectral calculation for a 	 from pseudospectral calculation
hot spot after interaction with a 	 for a vortex after interaction
Mach 3 shock wave (solid line).	 with a Mach 3 shock wave.

the pressure from Bernoulli's relation, and the temperature from the equation

of state. For the case shown -in Figure S, the circulation K=2 and the

softening scale r=0.1. This model approaches an idealized incompressible

point vortex at large distances but is much smoother near the renter. Figure

-20-
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9 shows the resulting pressure field after the shock wave has passed over the

vortex. See [20) for more details on the physics and [19] for comparisons

with finite difference calculations.

p^ ,gip	 p
^D^^iUo ^s,o C 	 .	 a

of pOOV%1
Compressible Flow Past a Circular Cylinder

Blunt body problem. As pointed out in [211 the classical problem of a

blunt body in a supersonic stream has been an ideal test problem for numerical

methods as it provides a relatively simple well-posed transonic problem with

nontrivial initial and boundary conditions. The present pseudospectral method

like most common methods obtains the steady state solution as the time asymp-

totic solution of the unsteady Euler equations which are written in the cylin-

drical polar coordinate (r,9) system. The physical domain of interest con-

sists of the known body r - r b(®), the unknown shock location, r - rs(e,t),

the axis of symmetry (the front stagnation streamline 8 _ ff ) and the outflow

boundary 9	
- emax *

	For the purpose of shock fitting, the coordinate

transformation
r - rb(A)

X 
= rs ( S ,t) - rb(e)

Y=Tr-9

max

is introduced so that the shock wave and the body are coordinate lines in the

transformed domain. The transformed equations of motion, in the notation of

the previous problem, are

QT + AQx + BQy + R = 0,

where Q = [ P,u,v,S] T and



U YXr (Y/r)X0
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(a2 /Y)Xr U 0 0

A °

(a2 /Y) (1/r)X 0 0 U
f

0

0 0 0 U

V
YYr (Y/r)Y0 0

(a2/Y) r V 0 0

(a2 /Y)( 1 /r ) Y0 0 V
s

0

0 0 0 V

and

R -L
u v2 uv jT

Yr, - r , To 0

with	 U = X + uX + r Xr	 r	 e

and	 V = r Ye.

The flow field variables P, u, v, and S are expanded in double Chebyshev

series, and the solution technique is the same as for the previous problem.

The shock boundary r = rs(6,t) (i.e., X - 1) is computed using Rankine-

Hugoniot jump conditions and the compatibility equation along the incoming

characteristic from the high pressure side of the shock. At the symmetry

line 0 = x (Y = 0) the 0-component of velocity v is set equal to zero.

On the body r = rb(8) (i.e., X - 0), the normal component of velocity, u, is

zero. -Umax is chosen so that the outflow boundary Y = 1 is supersonic, and

hence no boundary conditions need be imposed.

Figure 10 shows the Mach number contours and the velocity vectors for a

circular cylinder in a uniform stream at M. = 4.	 The results are found to

-22-
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be in very good agreement with the tabulated values given in reference 1221.

The coarse 8 x 8 mesh and the Chebyshev grid point distribution are evident

in the velocity vector plot. Figure 11 displays the results for the linearly

sheared free stream. This may be compa.:ed with Figure 12 where the finite

difference results obtained on a 20 x 30 grid are shown.

Subsonic Flow Past a Circular Cylinder

In the case of a circular cylinder in the subsonic stream, it is expedient

to map the infinite exterior domain onto the interior of a unit circle by the

coordinate transformation

X -1/r	 0<R< 1.

The dependent variables are then represented in terms of Chebyshev polynomials

t
r	 in X; Fourier representation in 0 is appropriate as

VELOCITY VECTORS

r'

r r
r
r

rr	 r
r
r r

r	 r -`r
r
r 

^. r
P

rr r r>

^'`rr1

`p

f

Figure 10.	 Pseudospectral solution on an 8 x8 grid for a circular
cylinder in a Mach 4 uniform stream.
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Ma„ q 18	
LOCAL MACH NUMBER	 vrInciry WTAI)c

MOO = 10

Figure 11. Pseudospectral solution on an 84 grid for a circular
cylinder in a linearly sheared stream.

a^ Figure 12.	 Finite difference solution on a 20x30 grid for a
circular cylinder in a linearly sheared stream.
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the flow field is periodic with period 2n,: 	 However, ono needs to consider

only the interval 0 4 0 e. rr because of symmetry. 	 For this nemi-circle

problem, the dependent variables can be expanded in terms of sine and cosine

functions in 0; they may again be represented by Chebyshev polynomials in

0.	 These two different representations are found to yield practically

identical results.

Figure 13 shows the Mach number contours for the flow past a circular

cylinder at Mw • 0,4 computed by a finite difference technique

(I"'O O mesh) and the pseudospectral method (164). 	 At this free stream

Mach number the incipient critical flow is attained at the top of the

cylinder. The results show very good agreement between the two numerical

calculations. Further comparisons, other details and additional results for

various free stream Mach numbers are reported in reference (23).
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Moo = 0, 4

LOCAL MACH NUMBER CONTOURS

FINITE DIFFERENCE

SPECTRAL

Figure 13. Finite difference and pseudospectral solutions for a circular
cylinder in a Mach 0.4 uniform stream.
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