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HOMOGENEOUS NUCLEATION AND DROPLET GROWTH IN NITROGEN 

I NTRODUCTI ON 

Transonic cryogenic wind tunnels, such as the Langley O.3-Meter 

Transonic Cryogenic Tunnel (TCT) and the National Transonic Facility 

(NTF). are designed to increase Reynolds number, RC t by lowering the 

temperalture of the ni trogen tc~st gas to cryogeni c temperatures. Fi gure 

1 shows that for nitrogen there ;s a significant increase in Reynolds 

number when going to the lower temperatures. Onset of condensation due 

to either heterogeneous (pre-existing seed particles) or homogeneous 

(the gas forms its own seed particles) nucleation limits the minimum 

operating temperature and. consequently, the maximum Reynolds number 

capability.(l) This minimum operating temperature can be conservatively' 

limited to temperatures corresponding to saturation at the maximum local 

Mach number, ML-max ' over the airfoil. (Saturation occurs when the 

pressure and temperature of the gas are on the vapor-pressure curve.) 

However, as reported in reference 1, for the O.3-m TeT. heterogeneous 

nuclelltion has only been detected below temperatures corresponding to 

freestream saturation. Therefore, if condensation effects occur over an 

airfoil in the O.3-m TCT at temperatures above freestream saturat1on~ it 

is probably due to homogeneous nucleation. Because of an energy barrier 

to the onset of homogeneous nucleation, however, onset will not take 

place until tunnel temperatures are below those corresponding to 

satuY'ation at ML-max • 

As shown for the example in figure 1, if condensation effects do 

not occur until the temperature is reduced to that value corresponding 

to freestream saturation. the Reynolds number can be increased by 25 



percent over the Reynolds number at the temperature for saturation at 

ML- max • In the present work, a computer model or the hOmogeneous 

nucleation process and growth of nitrogen condensate for flows over 

airfoils is developed to predict the onset of homogeneous nucleation and 

thus to be able to take advantage of as much of the Reynolds number 

capability of cryogenic tunnels as possible. 

This computer model is restricted to the supersonic region over 

airfoil because this is where condensation due to homogeneous nuci 

wi" occur first and also because of difficulties in mak1 cul ons 

through sonic conditions. In order to further simplify the cl.l~ 

lations, a one~d1mensional analysis is used rather than a more 

complicated two-dimensional analysis. With regard to the appHtabiHty 

of the one-dimensional model, Wagner(2) determined that the differences 

between one- and two-dimensional calculations for his condensation 

calculations are smaller than the differences between condensed and 

uncondensed flow. Wagner. therefore D concluded that the one-dimensional 

simulation should account for the main condensation effects in a 

qualitatively correct manner. Therefore, it is assumed herein that a 

one-dimensional calculation is adequate in predicting condensation 

effects over a two-dimensional airfoil. 

Using a two-step procedure, the condensation over the supersonic 

section of an airfoil is predicted by first calculating the geometry of 

an equivalent one-dimensional nozzle from the condensation-free~ 

isentropic pressure distributions measured over the airfoi1~ as shown in 

fi gure 2. The nondimensi onal pressure coeff; dent, CP' is given by 

(1) 

2 



and ~v is the nondimensional area of the one-dimensional nozzle with 

A* be'tng the throat area at sonic speeds. By following an approach 

similar to earlier one-dimensional models of flow through a supersonic 

nozzle, as described in references 3, 4, and 5, the second step solves 

3 

for cOlndensation in the equivalent nozzle.. In the present study. this 

step involves integrating the continuity, energy, and momentum equations 

along with a condensation equation based on the classical liquid droplet 

theory (CLOT) of homogeneous nucleation and Gyarmathy's droplet growth 

equation, using a fourth order Runge-Kutta integration scheme. Also 

incorporated into this program is the Beattie-Bridgeman.(6) equation of 

state which can be reduced to the ideal gas equation of state, if 

desired, and a variety of suggested corrections to the CLOT - Tolman,(7) 

,nonisothermal. (8) Lothe and Pound, (9) and that due to either Reiss(10) 

or Kikuchi.(ll) 

[llata from ai rfoi 1 exper'l ments in the Langl ey O.3-m TCT and from 

'earliE!r nozzle experiments are used to evaluate the various corrections 

to thE! CLOT, the real gas effects, and the sensitivity of the model to 

certain parameters. 



EQUATIONS 

Flow Equations 

Since the flow over the supersonic section of an airfoil can be 

approximated by the flow through an equivalent nozzle, the condensing 

flow can bl:! described following an approach similar to earlier models in 

references 3, 4, and 12. For this study, the flow is assumed to be one­

dimensiona1, steady, frictionless at the boundary and adiabatic--no 

transfer across the boundary. Instead of assuming an ideal gas as; n 

earlier models, nitrogen is assumed to be a real gas which obeys the 

Beattie-Bridgeman(6) equation of state. The condensing droplets are 

assumed to occupy negligible volume with respect to the remaining vapor 

and have the sam/:! speed as surrounding gas. 

Continuity 

Since the flow is steady through the nozzle and the droplets are 

assumed to be at the sam/:! speed as the flow, the conti nui ty equati on can 

be written as 

Pr uA '" fu '" constant 

The total density, PT';s made up of two parts, such that 

P '" p" + P T c 

(2) 

(3) 

where P~ is the equivalent density of the condensate dispersed 

throughout the same volume as the vapor density p. By solVing for 

p, equation (3) can be expressed as 

4 



(4) 

Since P~ and Pr are over the same volume, P~ /Pr can be replaced by the 

mass fraction of the condensate, g, which is defined as the ratio of 

the condensate mass to the· total mass. Therefore, the total density 

Pr can be expressed as 

(5) 

By subs;tltuting equation (5) into equation (2), the continuity equation 

can be expressed as 

p uA:: 111 r:g (6 ) 

The differential form of the continuity equation is then written as 

Momentum 

1 dp + 1 dg + 1 du + 1 dA - 0 Pax r:gax uax 1tcrx- (7) 

From the assumptions that the droplets move at the same speed as 

the gas, and that the flow is frictionless at the boundary of the 

nozzle, the momentum equation takes the form 

or 

(8) 

5 



Energ.x 

From the assumptions of nO heat transfer across the nozzle boundary 

and steady one-dimensiona1 flow, the energy equation can be obtained 

from the first law of thermodynamics as 

(9) 

Because the first term in the brackets and the difference between latent 

heat evaluated at T and Tr are sma" compared to the rest of the 

equation, the energy equation can be simplified to the following form 

which is also used in references 2, 3, 4, and 12: 

u 2 r + h - gL ::: const no) 

where L is calculated at the gas static temperature. The different; 

form of the energy equation is then written as 

(11) 

Equation of state 

To complete the solution of equations (7), (8), and (11), the 

equation of state is added to the flow equations. Because pressure is a 

function of density and temperature, the derivative can be expressed as 

~x ::: (.2.£.) dp + (.2.£.) dT -ax ap T ax aT p dx (12) . 

6 



The der'ivative of specific enthalpy of the gas, h, can be expressed as 

from reference 13. By substituting 1 for v and using the 
p 

mathematical identity 

equati on (14) can be wri tten as 

~x :: C dT + (1 _ T (~~) /(!.p..) ) ~ 
UJ\ P ax p -:2" aT op T (1x 

p p . 

Solution of flow equations 

(13) 

(14) 

(15) 

7 

BE!CaUSe ¥X can be calculated from the nucleation and growth rate 

equations, to be discussed later, and A is already determined, these 

values are treated as known quantities. Therefore, the linear system of 

equations (7), (8), (11), (12), and (15) remain for the derivatives 
QJ:l_ dp dT du dh ax' dx" dx' dx' and ax· Because the latent heat, L, is primarily 

a functi on of temperature, the deri vati ve may be expressed as 

dL _ dL dT 
Tx-arcrx (16) 

By sub!;tituting equations {aL (15), and (16) into equation (11) and 

collecting terms, the energy equation can then be written as 

u ~u (1 - 1 + T ( 0 p) / (~) ) -i. dT (c - g ~) :: L ~x ( 17 ) 
x r:g p(l-gT aT p op T dx P UI (1x 



which can be expressed in the form 

(18) 

By solving equation (12) for dp ax' substituting this resu'lt. along with 

equation (8) into (7), and collecting terms, the continuity equation can 

be written as 

which can be expressed in the form 

Using Kramer's Rule, equations (18) and (20) can be. solved 

simultaneously for ~ and ~ in the following form 

du _ 1 C3 E2 - C2 E3 
ax - u · C1 £2 - C2 E1 

dT C1 [3 - C3 El 
ax = C1 E2 - C2 £1 

From the continuity equation (7), ~ is determined as 

dp _ _ p ( 1 ~[+! du + 1 dA) ax - r-g ax u ax JS: ax 

FinallY9 ~ is calculated from the momentum equation as 

) 

(20) 

(21) 

(22) 

(23) 

8 



iiI> p du ) ax :: - r:g U Ox (8 

dg 
Hence, from equations (8), (21), (22), (23), and dx calculated from 

the nucleation and growth rate equations to be discussed in the next 

section. the condensing flow over the airfoil can be solved. 

Homogeneous Nucleation 

The condensation over an airfoil is assumed to be the result of 

droplets formed by the homogeneous nucleation of the nitrogen gas 

although the following equations are for any pure vapor. In the 

homogeneous nucleation process there is a size-dependent energy barrier 

Iwhich must be overcome such that all droplets with radius. r, less 

than some critical droplet radius, r*, will tend to evaporate while 

,all droplets with radius larger than r* will be stable and grow. The 

critical radius is calculated from the Gibbs-Thomson(3) or Kelvin(14) 

itlith the result that 

(24) 

where ':I' is the surface tension of the droplet, PR, is the droplet 

density. and Psat is the saturated vapor pressure calculated at the 

temperature of the gas~ T. At saturation p/psat == 1 and r* == co; 

however, r* decreases as p/psat increases and the probability 

9 



increases that random collisions of gas molecules will result in a 

growing droplet with radius larger than r*. 

The formation rate of critical-sized droplets is represented by the 

classical liquid droplet theory, CLDT, which assumes that spherical, 

liquid droplets are formed which retain the bulk liquid properties and 

are in thermal equilibrium with the surrounding vapor. For real-gas 

behavior, the vapor molecular density is expressed as ~ rather than as 

the ideal gas value of Kf. Therefore, the present author modifi 

the pre-exponential term in the nucleation equation found in Wu(3) so 

that the CLDT can be expressed as 

2 2 (1 1/2 W 
JCL := L (~) exp (- n) 

PR, 'If m 

where m is the mass of one molecule and 

(25) 

(26) 

is the net work(12) required for the formation of the critical-sized 

droplet. This net work is the energy barrier which must be overcome to 

form a droplet. In terms of the critical droplet surface area, Ad' 

equation (26) can be rewritten as 

(27) 

As mentioned in reference 12, this result is also true for the formation 

of a solid cluster of molecules, or crystal of quite general shape 

where (1 is a "surface tension lf -l1ke term based on the free surface 

10 



energy of the crystal in contact with a vapor. Some assumptions must be 

made concerning the shape of the crystal.(12) For lack of another 

equation, the CLOT (eq. (25) is used in references 3, 4, 5, and 15 to 

dletermine the formation rate of crystals where the surface tension 0 

!has been rep' aced by the free' surface energy of the soH d. 

Substituting equation (24) into (25) gives the following 

expression: 

Because of the dependence of the dominant exponential term on the 
2 inverse of 1n p/psat t homogeneous nucleation does not occur until the 

flow is supersaturated (p/psat > 1). The exponential term is also 

proportional to 0
3; therefore, the nucleation rate is very sensitive , 

to error's in the surface tension. For conditions appropriate for. 

transoniic, cryogenic wind tunnels, a ten-percent error in 0 could 

r-esult in a nucleation rate change of 106 and an error of 3K in total 

temperature at which onset of condensation 1$ predicted to occur. 

!od1fications to Homogeneous Nucleation 

Since the introduction of CLOT, many researchers have attempted to 

'improve the theory by accounti ng for some of the physi cs that are 

disregarded by the basic CLOT. This section reviews some of the best­

Iknown efforts to improve the nucleation rate predicted by the classical 

theory. 

11 



Tolman 

Because of possible error in assuming the planar value for surface 

tension of a liquid droplet, the effect of droplet size on surface 

tension has been studied by several people.(16) One of the first to 

study the effect of droplet size on surface tension was Tolman(7) who 

developed a correction to surface tension of the form 

cr :: cr / (1 + ~ ) ( 29 ) 
go r 

where croo is the planar surface tension and ° is a constant based on 

the intermo1ecular distances of the liquid which is on the order 

10-10m for several fluids.(7) Tolman comments that less and less 

confidence can be placed in this expression as droplets get smaller and 

smaller.(7) Typical ,droplets for the present calculations contained 50 

molecules. Applying Tolman's correction to the 'surface tension, 

Sivier(5) calculated the critical radius in equation (29) to be 

r* :: r* (cr ) - 20 
co 

(30) 

where r*(cr) is calculated from equation (24) using cr. Therefore, 
00 00 

by using equation (29) and (30) and the appropriate Tolman constant,o, 

the surface tension can be corrected and thus the CLOT can be modified. 

Lothe and Pound 

Because they felt that the free energy of formation in the CLOT, 

represented by the net work in equation (26), was not complete, Lothe 

and Pound(9) proposed a correction to the CLOT which includes the free 

12 



translaltional and rotational energies. Using the macroscopic or planar 

surface~ tensi on, a , the Lathe and Pound correction factor can be 
00 

wri tten in the follow; ng form from reference 3: 

J :: <PLP • J CL 
(31) 

where 

where 

n* - 4 r*3 1m ( 33 ) - '! 1T Pc C 

and thE! moment of inertia, 1*, of critical spherical droplets is given 

by 

(34) 

13 

The replacement factor, Qrep' which compensates for the six degrees of 

freedom introduced from the translational and rotational energies. is 

based e>n. the free energi es of separati on. For water, Qrep has been 

approx'imated between 104 and 108 in reference 17. With Qrep :: 104, 

<PLP has been estimated at 1016• (17) Because of the added 

transl<itional and rotationa'! energies, the Kelvin equation should be 

modi fi ~~d to i ncl ude the correct; on term (14 ) 

(35) 



which increases the nucleation rate by an additional factor of 10-100 

for the present calculations. 

Reiss or Kikuchi 

Reiss(10) agrees with Lothe and Pound(9) that the CLOT should be 

corrected, but he suggests that the Lotheand Pound correction is only 

appropriate in connection withcrystal1ine particles. In an early work, 

Reiss and Katz(18) developed an expression similar to that of Lothe and 

Pound, but concluded that, for a liquid, the free rotational energy is 

a 1 ready contained in the bulk descri pti on of the free energy of 

formation. Kikuchi(19) extended the work of Reiss, et.al.(20) and also 

concluded that no rotational effects should be in.cluded fora liquid 

drop 1 et • In the appendum of Rei 5S, (10) Rei 55 compares hhand 

Kikuchi's(U) correction and concludes them to be essentially the same 

except that Kikuchi takes droplet curvature dependence into account. 

Disregarding curvature dependence. this correction will be labelled cJ>RK 

for either Reiss or Kikuchi andean be written as 

(36) 

so that the nucl eat; on rate can be expressed as 

(37) 

Nonisothermal 

In contradiction to the assumption that the forming droplets are in 

thermal equilibrium with the condensing vapor which, as discussed by 

14 



IIlu (3), is val i d only when a 1 arge quanti ty of carri er gas is present to 

dissipate the heat of condensation, Wu, following Feder, et.al, (8) 

ii ncorpm'ated a correcti on factor to account for the temperature 

di fferences between the droplets and the vapor that resul t from the 

l1ecessal"Y heat transfer between the formi ng dropl ets and the surround; ng 

I~as. When simplified for a pure vapor, this nonisothermal correction 

'factor (:3) can be wri tten as 

(38) 

so that the nucl eat; on rate Cctn be expressed as 

J :: ~NI • J CL (39) 

This nonisothermal multiplier reduces the nucleation rate by factors as 

large als 22 for the conditions analyzed herein. With regard to the 

growth equation proposed by Gyarmathy(21) discussed in the next section, 

a nonisothermal correct; on factor would not be proper because he assumes 

that the droplets and vapor are ; n thermal equil ; bri urn at cri ti cal 

conditions. 

15 



Gyarmathy Droplet Growth Equation 

A parameter known as Knudsen number, Kn, is used to define 

different regimes of droplet growth and is given as(22) 

Kn = ~ (40) 

where I is the mean free path of a gas molecule and r is the droplet 

radius. For free-molecular flow, Kn» 1, and for continuum flow, Kn 

«1. Most of the earlier programs in references 3, 4, and 5 used a 

free mol ecul ar growth equati on, but because of the rel atively hi gh 

densities which exist in transonic cryogenic tunnels, a growth equation 

that describes droplet growth in free-molecular, transition and 

continuum regimes is needed.(22) As described in reference 22, 

Gyarmathy developed a continuum equation which closely approximates 

droplet growth in the free-molecular regime as well. For a pure vapor, 

Gyarmathy's equation takes the form of 

dr _ A 1 T r - T ( 
CIt - Po 11 h 09 • --------- .. --r- 41) 

N N 1 + (2ifg~ Y) K 
1.5 Pr ~ (y+l) n 

where Pr is the Prandtl number of the gas, ; is the thermal 

accommodation coefficient, which is assumed to be 1, and Tr is the 

temperature at the surface of the droplet expressed as(21) 

( ) ( _ r*) Tr = T + Tsat - T 1 r (42) 

where Tsat is the saturation temperature calculated at the pressure of 

the gas. The change in enthalpy, I1hJl,g' from the gas at T to the 

16 



liquid at Tr is expressed as 

(43) 

Ely neg1 E!cti ng cp (T - T r) and eva 1 uati ng the 1 atent heat L at the 

temperature of the gas rathe,- than Tr in the energy equation (9) and 

~in equa1:ion (43) t the total temperature of condensation onset is 

typically reduced by less than O.2SK. Therefore, by approximating 

bhR,g a!; L(T), equation (41) can be rewritten as 

( 2,fS;" y ) 
1 + r.;-~ y+I Kn 

T - T r 
r (44) 

This droplet growth equation assumes no coagulation of droplets. When 

droplet radius is close to r*. the droplet growth rate is slow 

because Tr ~ T. Evaporation of droplets is approximated by equation 

(44). 

Calculation of Condensate 

The condensate formed in the two-phase flow is determined from the 

integral of the condensate mass fraction g(x)(3), which is written as 

(45) 

17 

where g, the nucleation rat.~ J, and the effective nozzle area A are 

functions of position along the nozzle, x. The quantity r(o.x) is the 

rad1us at x of a droplet formed at 09 which can be written as 



reo, x} (46) 

where reo, 0) is the critical radius at 0 and where 

(47) 

where *" is determined from equation (44). Differentiation of equation 

(45) with respect to x gives 

~ 1 4'IT 3 JX 2 ( )1 dr ) arx- = - (;r Pc J(x) A(x) r (x,x) + 4'IT Pc J(o) A(o) r a,X u(x) at do 
If1 -

(48) 

ar 1 dr where ax is rep laced by u( x) at from equati on (47). Equati,on (48) 

shows that the increase in mass fraction consists of the droplet mass 

fraction being created in dx and of the growth of particles created 

before the current x location. 

Using a fourth order Runge-Kutta integration scheme. equations 

(48), (47), (21), (22), (23), and (8) are solved for the flow 

variables 9. r, u, T. p. and p. The properties of gaseous and 

condensed nitrogen which are necessary in solving these flow equations 

are discussed in the next section. 
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PROPERTIES OF NITROGEN 

The properties of gaseous, liquid. and solid nitrogen are needed in 

predicting the formation of liquid or solid nitrogen droplets from 

nitrogen vapor. 

Gas Properties 

The' properties of gaseous nitrogen are known relatively well down 

to the triple point (temperature, 63.148K, and pressure, .1237 atm, at 

which sCllid, liquid, and gaseous states of nitrogen coexist)J23) The 

E!xtrapolated equations for the nitrogen gas properties can only be 

clssumed to be val i d for describi ng the nitrogen gas below the triple 

point and the metastable gas which exists in the l1quid regime before 

the gas condenses. 

J~9uati on of state 

The Beattie-Bridgeman (B-B) equation of state for nitrogen is used 

herein to introduce real gas effects. This equation of state is 

:surprisingly accurate and is represented by(6) 

where the values of the constants for nitrogen are listed in table 1. 

By setting these constants to zero, the ideal gas equation of state is 

obtained 

p ... pRT (50) 

Us;ing the B-B or ideal gas equation of state, the following 

expressions are used for calculating the specific enthalpy, h, 

specific entropy, s, heat capacities, Cv and cp' and sound speed, 
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a, for nitrogen gas:(6) 

h :: h* + I PEL - T (~) ]dp + P - pRT + J T CO dT 
To T 0 ~ ~ ar p P P T P 

o 

(51) 

c 0 

S :: s* + ITT ~ dT - R tn 
To POl 

( pRT) + / [.8. _ 1 (~)]d 
Po Top -;1 aT p p 

(52) 

o PT ~2~ 
c'" :: Cv -TIo I (-;rz}p dp (53) 

2 
cp :: Cv + T (if)p /[p2(~~)TJ 

(55) 

where h*T :: 309500 J/kg and 5*T :: 6836.09 J/kg-k are reference 
o 0 

values of specific enthalpy and entropy, the reference pressure, Po' 

is 101325 N/m2, and the reference temperature , To t is 298 .15K. (24) The 

zero pressure val ues of specific heats, 

the following ideal expressions 

c 0 and c 0 are represented by p v 

co:: Y R (56) . p y:r 

_ cn 
where the ratio of specific heats, y - -t-, for lIideal ll nitrogen or any 

v 
ideal dtatamic gas, is 1.4. Therefore 

cpo:: 3.5R 

and 

(56a) 

(57) 
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In figure 3, the results of calculating cp using the 8-B equation 

of state (eq. (50» are compar'ed with the constant ideal gas value. 

Although not shown, similar rE~sults would be calculated for Cv and 

y. A.s in the following figure the gas properties are calculated along 

the vapor pressure, V-P, curve (saturation boundary) and constant 

pressuY'e 1 i nes of 0.1 and 2 atms. The constant pressure 1 i neSt whi ch 

are the range of local static pressures typically encountered during 

ai rfoil tests, extend from the gas regime across the V-P curve and into 

the metastable gas regime by about 15K, which would be below the 

temperatures at whi ch the onset of condensati on was Observed duri ng the 

airfoil experiments to be discussed in a later section. 

Mean fl"ee path 

The mean free path, R" is the average di stance travel ed by a 

molecu'le between collisions. The ideal expression assuming a rigid 

spheri cal mol el cul e (25) , (26) 1 s used for i as shown 

(58) 

where ~ is the molecular volume and d is the rigid sphere diameter. 

By substituting d:: 3.75 x lO-lOm for n1trogen,(26) the mean free path 

for gaseous nitrogen can be written as 

-8 i :: 7.44 x 10 
p 

(59) 
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Thermal conductivity 

The thermal conductivity of nitrogen, A, can be calculated using 

equation from Jacobsen(23)which is made up of two terms 

(60) 

where the dil ute gas contri but; on, A
O

' and the excess, or dense, fl ui d 

contribution, A"E' which is basically a function of density only, are 

listed in table 2. 

In Jacobsen,(23} there is an additional term which is the 

enhancement due to the influence of the critical point. For the present 

study, this term is deleted because it is generally small and because 

the high pressures (- 30 atms) in the neighborhood of the critical 

poi nt are not typi cal of corydensati on onset in transoni c cryogen; c wi nd 

tunnels. Equation (60) is compared over the temperature range of 

interest with a Sutherland-type expression used by Wagner(2) which is 

given as 

2 067 10-3 Ii 
A =. x 1 + 111/T (61 ) 

As shown in figure 4, the results of both equations are similar but the 

A calculated with equation (60) is slightly pressure dependent. For 

the present studies, the Sutherland-type expression is used. 

Viscosity 

The Viscosity, n, of nitrogen is calculated from an equation in 

Jacobsen,(23) which contains two terms and is written as 
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(62) 

,,(here the di 1 ute gas contri buti on, no' and the excess, or dense, fl ui d 
• 

contribution, np which is primarily dependent on density, are listed 

11n tablE~ 3. In Jacobsen, (23) there is another expression for ilnE for 

when thE~ gas density p;s greater than 800 kg/m3
» but this term is not 

'included because gas densities of this magnitude are not typical of 

condensiition onset in transonic cryogenic wind tunnels. Equation (62) 

'is compared over the temperature range of interest with a Sutherland ... 

type expression used by Wagner, (3) which is given as 

-6 'i 
n :: 1.378 x 10 T+ 1037i (63) 

For the range of local pressures during the airfoil tests, the results 

of both equati ons are simil ar for the temperatures above 70 K as shown 

'in figure 5, but the n calculated from equation (62) is slightly 

IPressur~~ dependent. At the lower temperatures, the results of equation 

(62) ar~~ quest; onable and, in fact, the Sutherl and-type expressi on for 

viscosity is recommended in place of the Jacobsen expression. 

l'randtl number 

Thle Prandtl number, Pr, is defi ned as 

=~ Pr A (64) 

For constant pressures and the -Jacobsen express; on for thermal 

conductivity, A {eq. (60}), and viscosity, n (eq. (62», and the 



ideal value of cp = 3.5R, the Prandtl number approaches 0.73 for 

temperatures above 70K. This value agrees with the constant value for 

PI" of 0.72 (see fig. 6a) calculated using the Sutherland-type 

expressions for A (eq. (61)) and n (eq. (63») from Wagner(2) and 

assuming the ideal value for cp of 3.SR. However, at the lower 

temperatures. PI" increases significantly from the Sutherland value 

of 0.72, because of the increase in Jacobsen's expression for viscosity 

at the lower temperatures (see fig. 5). 

Using the B-B equation of state and thus the real-gas value of 

cp• the Prandtl numbers calculated using the Jacobsen and Sutherland 

expressions for A and n are in good agreement with each other at 

temperatures above 70K, where both calculations are greater than the 

ideal gas value of PI" (see figs. 6b and 6cl because of the real gas 

value of cp which is shown in figure 3. Even though~ at the lower 

temperatures, the real gas values of cp approach the ideal gas cp of 

3.5R, the Prandtl numbers calculated from the Jacobsen and Sutherland­

type expressions for A and n again do not agree because of the low­

temperature differences in n (see fig. 6b and 6c). The Prandtl number 

calculated from the Sutherland-type equations for A and n might be 

appropriate for both above and below the triple point because of (1) the 

good agreement between the Jacobsen and Sutherland-type expressions for 

n above 70K and A over the full temperature range for constant 

pressures and (2) the more reasonable n values calculated from 

Sutherland-type expression at temperatures below 70K although there is 

no direct experimental evidence at temperatures below the triple point. 
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For e -phase solid nitrogen, the V-P curve is represented by a 

similar expression from Frels, Smith, and Ashworth(29) where the values 

for the constants are also listed in table 4. The expressions used for 

the V-P curve of nitrogen in the earlier programs(3),(4),(S) are similar 

to these expressions but with slight variations 'in the constants. 

Densit~ of condensate 

The liquid nitrogen density is well known and is evaluated by a 

curve fit to data in Jacobsen.(23) The curve fit shown in figure 8 is 

p~ = 28.0134 (34.65+.01381 Tt - .001145 T~2) 

The expressions for liquid nitrogen density used in earlier programs 

give similar results; for example, from Sivier(5) 

(67) 

However, the value of 808.4 kg/m3 used by Duker and Koppenwa11ner(15) is 

considered the best value if the temperature dependence is disregarded. 

The e -phase so1id nitrogen density is evaluated by this author 

with a curve fit to data in Scott.(27) a1though his data point for the 

density at T = 44 K has been excluded. The resulting curve fit is 

Ps = 1068.49 - 1.97830 Ts (68) 

Griffin(4} and Sivier(5) extrapolated their expressions for liquid 

density below the triple point in order to estimate the solid nitrogen 

density; however, this extrapolation could lead to serious errors in 
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By equating equations (70) and (71), solving for L, and replacing v 

with l the latent heat of sublimation can be expressed as p , 

b Psat 1 1 
L:: T (- - -) J1.n 10 

p Ps 
(72) 

where Psat and b are from reference 29. As can be seen in figure 99 

a relatively constant value of 2.43xl05 J/kg for the nitrogen 1 

heat of sublimation is calculated from equation (72) for both ideal 

real gas equation for p. This value agrees well with Wu's(3) ue 

2.42xl05 J/kg for the nitrogen latent heat of sublimation. Gri n(4) 

and S1v1er (5) extended the latent heat of vaporization below the tri e 

pOint. Extension of equation (69), the curve fit to Jacobsen1s values 

of latent heat for the liquid, below the triple point in figure 9 shows 

that a markedly different value of nitrogen latent heat of sublimation 

could result. Therefore, the current program uses a constant value of 

2.43x105 J/kg for the nitrogen latent heat of sublimation. 

Surface tensi on 

Surface tension is a familiar concept for liquids and can be 

readily measured. For liquid nitrogen, the surface tension can be 

expressed as(23) 

C1 ::: 0.0297074 (1 - T /126.2)1.27135 J1. 

while earlier expressions such as the one by Sivier(S) 

C1 = .02394 - .0001933 TJ1. 

(73) 

(74) 
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Since the structure of 1d nitrogen is hexagonal close 

packed, (hcp)~ the present author modi Taborls expression (see 

Appendix A). Assuming that the drop1 form along the lowest energy 

surface! which is the [0001] face of a hcp solid g the result of the 

modification to equation (75) is 



(j ::: 
Ls jJ NA 2/3 

.229 -rr-- (- P ) 
''iA jJ s 

(76) 

where the constant is smaller than the value of .267 estimated by 

Tabor. Because the latent heat of sublimation is 2.43x105 J/kg, 

equation (76) can be simplified to the following expression 

(77 ) 

where Ps is calculated from equation (68). 

1 n figure 10 9 the free surface energy or surface tens; on Cil 1 cul 

from equation (77) is within 10 percent of Duker and Koppenwallner's( 

empirically determined value of 0.0185 N/m. WI.I(3) set the surface 

tension of solid nitrogen at 0.0124 N/mwhich is significantly lower 

than the values calculated from equation (77"). Griffin(4} and Sivier(5) 

extrapolated their respective expressions for the liquid nitrogen 

surface tension below the triple pOint, which results in very different 

values for surface tension. As mentioned in the section discussing the 

CLOT, CLOT can be particularly sensitive to surface tension and so these 

differences can be very important. 

In fact, by examining equation (28), it can be seen that the ratio 

of (j3/ pt2 is an important quantity to predicting the nucleation rate. 

Consequently, knowing the values of the surface tension and density used 

ina part; cul ar paper is necessary to properly compare the different 

theoretical expressions different researchers have used for predicting 

the onset of homogeneous nucleation. In other words, many differences 

in theore~ical expressions may be overshadowed by variations in 
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0
31p / from one paper to another. For example, in figure 11, the ratio 

3 2 of (1 IPs calculated from Ps (eq. (68)) and (1 (modified Tabor 

theory eq. (77) is 8.00xlO-l2 _N
3 
__ which is 33 percent 

than the ratio value of cul from Duker and 

Koppenwal1ner's(15) expressions for Ps and a. If Duker and 

Koppenwallner's value of solid nitrogen on is comM with 

the dens; ty cul from equation (68)9 ng modi ed o 

would 8- to than r original value. Also 

included in figure 11 are values a3/ ps
2 calculated from Wu's(3) 

and S1vier ' s(5) expressions for a and 
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RESULTS AND DISCUSSION 

Comparisons between theoretical predictions and experimental data 

are next used to evaluate the performance of CLOT and the various 

corrections to CLOT, the sensititity of the calculations to certain 

parameters, and the sensitivities of the nucleation expressions to the 

slight differences in pressure and temperature that arise when the 

expansion isentrope is calculated using the more precise Beattie­

Bridgeman equation of state for nitrogen instead of the approximate 

ideal equation of state for an ideal diatomic gas. The 

comparisons will be from experiments in Langley O.3-m TeT us; 

0.152 m DFVLR-constructed CAST-10 airfoil and from earlier e 

experiments by Dankert(31) and Nagamatsu and Wil1marth(32). 

CAST-10 Airfoil 

The 0.152m OFVLR CAST-10 airfoil was tested in the Langley 0.3-m 

TCT in order to observe possible condensation effects due to homogeneous 

nucleation in the supersonic flow region over an airfoil. The 

freestream Mach number was held constant at 0.65 and the angle of 

attacK, a, was set at 6 degrees. With these conditions, the maximum 

local Mach number, ML-max ' over the airfoil was approximately 1.4 

for the total pressure range tested. 

Comparison of the CAST-10 airfoil data with the one-dimensional 

computer model discussed in the previous sections is restricted to the 

supersonic region over the airfoil, because this is where condensation 

due to homogeneous nucleation will occur first (see fig. 12) and because 

of difficulties in mathematically calculating through the sonic 

condition. Furthermore, the experimental scatter in the condensation­

free data near the recompression shock is large while the scatter in the 
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data in the supersonic region is 1. which again suggests comparisons 

i11 the supersonic region. Because the computer model cannot calculate 

through cl sonic condition, the calculations must start at an xlc 

location of 0.007, where the flow is already past M := 1. Because only 

small de\l1ations in pressure 9 area distribution are be 

studied, the one-dimensional model should a good approximation. 

Assuming an ideal gas equation 

theory 9 CLOT, (eq. 25) gal ong wi ttl 

9 the classical liquid droplet 

modifications, are compared 

w'ith the experimental condensation data. These modifications include 

c'lassica'l theory as modified by Tolman with <$ "" O.25xlO-10m in 

equations 29 and 30, labelled CLDT-T; cal theory as modified by 

U)the and Pound (eq. 31). labelled CLDT-LP; classical theory as modifi 

by Reiss or Kikuchi (eqs. 37), laben CLDT··RK. 

3 

Data for the CAST -10 test were taken dud experiments whose total 

conditions are represented by the three lines in figure 13 identified as 

Pt "" 5 atm, Rc =: 15x106 and Rc "" 34x106• The total temperatures were 

lowered along ther a constant value of pressure or along 

of varying total pressure total temperature which constant 

values of Re. The upper temperature limits of the experiments were 

chosen so that no due to condensation could occur in the 

supersonic region and the minimum temperatures were chosen be below 

those corresponding to freestream saturation .. 

The two higher pressure cases (the 5 atm and the 34x106 Rc lines) 

d1 sp 1 ayed the onset of condensclti on effects due to the formati on of 

liquid nitrogen because the total temperatures remained above 88K which 

is the t.otal temperature at which the local temperature at ML-max == 

1.4 is 63.148K~ the triple point temperature. These two total 



temperatures at which onset occurred for the higher pressure cases are 

14K below the total temperature at which saturation occurs for ML-max == 

1.4 at the same total pressure as at onset. However, they are above 

the total temperature for which freestream saturation occurs. 

The lower pressure case (15 million Rc> displayed no condensation 

effects even down below freestream saturation. If condensation had 

occurred, solid nitrogen would have been formed because 

temperature was below SSK. The predictions of the computer s are 

compared wth the CAST-I0 airfoil data for liquid ni on 

in the next section. 

L1guid nitro~en 

As mentioned, for the 34x106 Rc and 5 atm CAST-IOexperiments, 

condensed phase is liquid nitrogen. The data showing the liquid 

nitrogen condensation effects on t~e local pressure for the 34xl06 Rc 

experiment are shown in figure 14 as the pressure coefficient 

deviation, bCp = Cp - Cp,no cond.' plotted against the x/c location 

over the airfoil. For Pt = 3.7 atm and Tt = 96K, the CAST-10 data 

exhibit little or no condensation effects. However, at Pt = 3.6 atm 

and Tt == 94K, the CAST-10 data show definite condensation effects on 

pressure. Using the unmodified CLOT, the computer model underpredicts 

condensation effects at 94K (the prediction did not rise above the zero 

line). Use of <'5::: O.25x10- lOm (a value of <'5 arbitrarily chos.en ) in 

CLDT-T results in good agreement with the CAST-10 data at Tt = 94K. 

computer model with CLOT-RK gives the same order of magnitude of 

condensation effects as the CAST-IO data at Tt = 94K. Use of CLOT-LP 

with Qrep == 108, which is the largest proposed value of Qrep 

according to reference 17, and which would result in the smallest value 
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of nucleation. greatly overpred1cts condensation effects at 94K as well 

as 96K where no effects are shown experimentally. This poor prediction 

is consistent with the statement in an earliElr section, namely, that the 

Lathe and Pound correction may only be appropriate to describe the 

formation of solid particles. The nonisothermal correction is not shown 

because it reduces the CLOT prediction even further. Therefore, the 

predicted condensation effects are less than with the CLOT. 

The rapid formation corldensation effects shown in figure 14 is 

3 

due to the reduction of total temperature and pressure wMch is 

characteristic of homogeneous rlucleat1on. The sensitivity of 

condensation effects to small Tt changes is shown in figure 1S where 

results for the CLOT-RK condensation model f()r 94.0K and 93.7K are 

compared. The O.3K reduction in Tt , which is well within the 

experimental error of O.SK at these conditions, results in a doubling of 

the bCp and brings the results into better agreement with the CAST-10 

diata at 94.0K. (Reducing Tt by O.3K typically doubles the predicted 

l\C p for' CLOT and the other corrections as well.) Thus, it is difficult 

to tel' whether using CLOT ... RK is more accurate than CLDT ... T because of 

the uncertai nty in the measured temperatures. 

In figure 16, comparisons of various theoretical predictions are 

made with the 5 atm CAST-10 data. At Tt == 101K, there are possible 

c:ondensC!lti on effects, but effects are uncerta1 n because the experimental 

error in 6Cp is of the same magnitude as the deviations observed.. At 

919K, thE~ computer model with CLOT underpred1cts condensation effects on 

preSSUrE!, but with either CLOT·~T ( IS ::: O.25xlO .. 10m) or CLDT-RK it gives 

the samE! order of magnitude deviations as the data before significant 

c:ondenselt1on growth occurs. I f a sma 11 er va 1 ue of IS 15 used wi th 

, 
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CLDT-T, better agreement would result. but this would then lead to 

poorer agreement in figure 14. This discrepancy at x/c greater than 

0.15 could be due to limitations of using the one-dimensional model in 

describing the two-dimensional flow over the airfoil. Use of CLOT-LP is 

not shown because it is not appropriate for the homogeneous nucleation 

of liquid nitrogen droplets. The nonisothermal correction lowers the 

predicted condensation effects below the CLOT line and is again not 

shown. 

The pressure distribution from the 5 atm CAST-10 airfoil experiment 

is now used to examine the predicted condensation onset of liquid 

nitrogen for each modification to the CLOT. Als0 9 the sensitivity of 

CLOT to a lO-percent reduction in surface tension and to utilization 

the B-B equation of state to describe the pressures and temperatures 

along the expansion isentrope rather than the less accurate ideal 

equation of state are examined. In table 5, Pt is held constant 

5 atm and Tt is varied in each version of the computer model until the 

6C p at x/c = 0.25 matches the baseline value of 6Cp = 0.0266, which 

is calculated using CLOT at Tt = 99K. The ratio J/J CL is the 

increase in the nucleation rate over the CLOT where both are calculated 

for the new Tt at ML-max = 1.4. As seen in table 59 the unmodifi 

CLDT can predict the condensation onset Tt of nitrogen flow over the 

CAST-IO airfoil within 2K of the Tt assuming CLDT-T or CLDT-RK is 

correct. Use of the CLDT-LP, which is not expected to apply above the 

triple pOint for nitrogen, with Qrep :: lOS increases the condensation 

onset· Tt by 4.SK. A lO-percent reduction in surface tension could 

result in a 3K increase in condensation onset Tt and a 106 increase in 

the nucleation rate at ML-max :: 1.4; therefore, the calculations are 



very sensitive to the surface tension. Using the B .. B equation of state 

(eq. 50) with the CLOT shows that the rea' gas behavior of the expanding 

9!S resu:l ts in smaller di fferences in onset T t than those found when 

using the CLOT-T or CLOT-RK in the computer model. For further 

predictions of the liquid nitrogen conden!;ation onset Tt , CLOT ... RK will 

be used in the computer model because (1) it agrees within the 

E!xperimEmta' err~r of the data, and (2) the Tolman constant, cS, in the 

CLDT-T is arbitrary and does not do a better job than CLDT-RK when both 

figures 14 and 16 are considered. In the next section, the appropriate 

correction to the CLOT for the formation of solid nitrogen is studied by 

comparil,g w'lth the Rc:: 15x106 CAST-10 airfoil data. 

J;o 1 i d N '!!rogep 

Formation of solid nitrogen is assumed to occur when local 

temperature during the condensation ,Process is below the triple point 

'temperature of nitrogen. Because of the uncertainty in the values of 

density and surface tension, the various expressions discussed in the 

section on nitrogen properties are evaluated by comparison between the 

Rc :: 15x106 CAST -10 ai rfoil data and the computer model. The surface 

tension and density are calculated from equations 77 and 68. 

respectively, while the CLDT~ CLOT-T, or CLOT-LP are used in the the 

computer model. CLDT-RK is not used for describing the solid nitrogen 

formation because it was derived for liquid formation. Additional 

versions to be examined are Cl.OT with DUker and Koppenwallner l s 

expressions for a and Ps' labelled CLOT-DK; CLOT-T with Sivier's 

express,'fons for a, Ps' and 0 :: O.325xl0··10m, labelled CLDT-SIV; and 

CLOT with Wu's expressions for a and Ps' labelled CLOT-WU. 

31 



The CAST-I0 airfoil experiment in which solid nitrogen condensation 

could have been formed is the Rc = 15xl06 experiment. But~ as shown in 

figure 17, no measurable condensation effects were found down to Pt = 
1.3 atm and Tt = 83K which are below the total conditions for 

freestream saturation at Mm = 0.65. Similarly, using CLOT, CLDT-T 

with 0 = O.25x10-10m , CLOT-LP with Qrep = 104 (this value of Qrep 1s 

the lest of the range given in ref. 17 and would 1 to 1 

predicted value of nucleation rate), or CLOT-OK, the computer model 

predicted no condensation on the measure stati c 

However, as shown in figure 17, condensation effects are 

overpredicted using CLOT-SlY or CLDT-WU. Therefore, from data, 

the conclusion can be drawn that the expressions of Wu and Sivier for 

solid nitrogen density and surface tension are not appropriate for the 

prediction of solid nitrogen condensation for these conditions. Further 

analysis of solid nitrogen formation is covered in the next section by 

studying nozzle data. 

Nozzles 

Because of the limited CAST-I0 airfoil data below the triple point 

temperature of nitrogen, previous nozzle experiments by Oankert(31) and 

Nagamatsu and Willmarth(32) are studied in order to evaluate possible 

corrections to the CLOT in this regime. Nozzle area is calculated from 

the isentropic or no-condensation pressure distribution where the 

pressure coefficients are calculated by using the qynamic pressure at an 

arbitrary Mach number. The first comparison will be made to the data of 

Dankert published in reference 31. 
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Dankert 

The~ most useful data of Ocmkert(3U for the present comparisons are 

his freE!-jet nozzle data from his figure 34 in which Pt :: 3.0 atro and 

the throat diameter is O.OOSm. For Tt ::: 125K, 160K, and 175K, the 

computer' model dramatically underpredicts condensation effects using 

CLOT, Cl.OT ... T, or Cl.OT-O'K which are not shown in figure lS. In figure 

19, the computer model using CLOT-LP with Qrep ::: 104 agrees well with 

data fOl~ T t :: 12SK and reasonably well with data for T t iii: 160 K 'and 

175K be1fore a significant amount of condensation occurs, which causes 

the assumptions used in the model to become invalid. In figure 1Sb p 

l)nset of condensation effects are Qverpredicted for all three cases 

Illsi ng CLOT -WU except when large amounts of condensate are present, where 

the assumptions used in the model are,inaccurate. In the next section~ 

further comparisons are made with wedge nozzle data • 

. Nagamatsu and Willmarth 

Because Sivier's computer' model in reference 5 agrees with the 

wedge nozzle data from figure 14 of Nagamatsu and Willmarth(32) for run 

9-5 with Pt:: S.21 atm and Tt :: 295K, the present computer model is 

compared with these data. No condensation effects are predicted usi 

CLOT, C.LOT-T, CLOT-LP, CLOT-OK, or CLOT-SIVa Condensation effects are 

also unlderpredicted using CLOT-WU as shown in figure 19. This disagree­

ment bE!tween the computer model and the Nagamatsu and Willmarth data 

could be due to either impurities in the nitrogen used by Nagamatsu and 

Wilmarth or in the assumptions in the computer model. In particular. 

since Sivier's properties for the solid nitrogen density and surface 

tension are used in CLOT-SIV, the primary difference between Sivier 8s 

model cmd CLOT;..SIV developed herein is that Sivier assumes the droplets 
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are at saturation temperature regardless of size. The present model 

uses a radius-dependent droplet temperature based on reference 21, which 

assumes the critical-sized droplets are at the gas static temperature. 

Sivier's assumption results in a larger nucleation rate and, thus, an 

increase in condensation effects, which results in agreement for the 

Nagamatsu and Willmarth data, but it also would result in dramatic over­

prediction for the Rc = 15x106 CAST-10 data and in the Dankert data. 

The present computer model using CLDT-LP with Qrep = 104 will 

used to predict the onset of solid nitrogen condensation over the CAST-

10 airfoil in the next section because (1) it agrees with the Dankert 

data(46) and (2) does not overpredict condensation effects for the 

Rc = 15x106 CAST -10 airfoil experiment. 

Predicted Onset of Homogeneous Nucleation 

The total conditions at which onset of condensatin due to the 

homogeneous nucleation will occur over the 0.152m DFYLR CAST-IO airfoil 

at M = 0.65 and a = 60 can be predicted using the present computer ... 
model. Homogeneous nucleation is represented by the CLDT-RK for liquid 

nitrogen and the CLDT-LP with Qrep = 104 for solid nitrogen, although 

more experimental comparison data are needed to verify these choices. 

Growth of the droplets is represented by GyarmathY ' s(21l radius­

dependent droplet growth equation. In figure 20, the predicted onset of 

condensation effects is said to occur when the pressure deviates from 

the no-condensation pressure by 0.25 percent at x/c = 0.25. This is an 

arbitrary location ahead of the recompression shock for the CAST-10 

experiment, which is the pressure distribution used in predicting this 

onset curve. For other pressure distributions, a different location may 

be appropriate, depending on the shock location. The predicted onset of 
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'liquid nitrogen condensation agrees well with the experimental onset 

II/hi ch was measured from the CAST -10 data. Below Pt;: 3 atm, exact 

predict'ion of homogeneous nucleation may be unimportant for the 0.152m 

GAST-10 airfoil because the predicted onset of condensation fa1ls below 

freestrt:!am saturati on, where condensati on on pre-exi sti ng seed partiel es 

(heter0geneOu.s nucl eat; on) can occur upstream of the ai rfoil and 

'j nfl uenee the aerodynami c data at temperatures above wM ch homogeneous 

l'1ucleat'!on could occur. The inflection of the predicted onset curve 

4:tt Pt:: 2.5 atm is due to part of the flow being above and part of the 

flow be'fng below the triple point during the calculation. 
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CONCLUDING REMARKS 

A computer model of the homogeneous nucleation and growth of 

nitrogen condensate is developed for flows over airfoils which is 

capable of predicting the onset of condensation effects and, thus, the 

minimum operating temperatures without condensation effects for 

cryogenic wind tunnels. And from these temperatures, the maximum 

Reynolds number capability of a cryogenic wind tunnel can be predicted 

for a given configuration. For predicting liquid nitrogen condensation 

. effects, the results of comparing the computer model and the 

experimental data for the O.152m CAST-10 airfoil with 

a = 60 are summarized as follows: 

1. The computer model using the classical liquid droplet theory 

underpredicts condensation effects over the CAST-l0 airfoil. 

2. In order to get good agreement with the CAST-10 airfoil, the 

classical theory needs to be increased by a small factor such as 

the arbitrary Tolman constant of O.25xlO-10 , or the Reiss or 

Kikuchi correction. 

3. Using the Lothe and Pound correction, condensation effects are 

greatly overpredicted for the case of liquid nitrogen condensation. 

4. The nonisothermal correction to the classical theory further 

underpredicts condensation effects. 

5. With the Beattie-Bridgeman equation of state used in calculating 

the expansion 1sentrope~ the change in condensation effects is 

relatively small. 

6. The calculations are very sensitive to the value of surface 

tension. 
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7. With the Reiss or Kikuchi correction to the classical theory, the 

computer model indicates that below Pt :: 3 atm for the 0.152m 

CAST-IO airfoil with M:: 0.65 and a:: 60, exact prediction of 
~ . 

homogeneous nucleation of nitrogen may be unimportant because the 

prj~dicted onset of condensation falls below freestream saturation, 

whj~re heterogeneous nucleation can occur upstream of the airfoil 

and i nfl uence the aerodynami c data at temperatures above wh1 ch 

homogeneous nucleation could occur. 

8. To further validate the onset curve, more data need to be taken. 

Thj~se data must be taken very acurately because of the h1 gh 

sensitJ.vity of the onset of condensation to total temperature. 

In predicting the conditions which would give rise to effects due 

to the condensation of solid nitrogen, the results of comparing the 

computj~r model with experimental data are summarized in the following: 

1. Thl~ surface tension and density are both important when comparing 

thf~ nucleation rates of solid nitrogen because of the dependence of 

the nucleation equation on a3/ pc
2• 

2. Using Wu's and Sivier's expressions for solid nitrogen surface 

tension and density, the classical theory dramatically overpredicts 

condensation effects for the CAST-IO airfoil data. 

3. A theoretical expression for the surface tension of solid nitrogen 

is calculated from a modified version of Taborls expression for 

su,"face tension. 
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4. Use of the classical theory with the Lothe and Pound correction 

Qrep = 104 
p density from the Scott data and the expression for 

surface tension mentioned above~ agrees with the Dankert free-jet 

data while use ·of the classical theory with Wuls surface tension 

and density overpredicts the onset of condensation effects. 

5. Comparison of the present computer model with the Nagamatsu and 

Wil1marth nozzle data and S1vier's computer model indicates that 

assuming droplet temperatures equal to satuation temperature rather 

than initially at gas temperature could greatly increase nucleation 

rate p although this assumption would be controversial. 

6 Before any definitive conclusions can be made concerning onset of 

solid nitrogen formation p further studies on the properties of 

solid nitrogen and more experimental data are needed. 
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APPENDIX 

MODIFIED TABOR THEORY FOR SURFACE ENERGY OF SOLID NITROGEN 

Tabor(30) outlined an approach which related the latent heat of 

sublimation to the free surface energy.(6) Basing his expression on the 

[100] face of a face-centered cubic (fcc) SOlid, he derived the 

following equation for surfacE~ energy 

A-l 

where the constant .267 changes by small amounts for other faces and 

structures. (30) Therefore, because e - phase solid nitrogen is a 

hexagonal closed-packed (hcp) solid, equation A-l must be modified. 

Assuming that the droplets form along the lowest energy surface which is 

the [0001] face for a hcp sol'l d, the surface energy is recalcul ated 

following the basic approach ()utlined in Tabor. (30) 

On the [0001] face of a hcp solid, each surface molecule has 9 

"nearest neighbors", whereas inside each crystal structure, each 

molecule has 12 nearest neighbors. If each crystal contains a total 

of N atoms with Ns surface atoms, the total bond energy 

crystal, counting only nearest-neighbor 'Interaction is 

A-2 

where be is the potential energy between each molecule and its 

neighbor, and where the factor of t is introduced to avoid counting 

each bond twice. 



1 If there were no surface atoms, the energy would be ~ 6£ 12N. 
3 Therefore, the energy is reduced by ~ 6£ Ns • Because 6£ is 

negative, this is a positive increase in energy which can be associated 

with the surface energy. If the surface area of the crystal is A, the 

surface energy can be identified as 

A-3 

Therefore, equation A-3 can be solved for a 

A-4 

where z is the surface molecules per m2. 

The latent heat of sublimation can be expressed in terms of Ae . 

for a closed pack structure, such as a hcp structure, by the expression 

or 

L ::: 6 " Ae 
S 

A-5 

50 

(Note: In Tabor's method L is in J/mole, but for equation A-5, NA 

is divided by the molecular weight, ~,because L has units of J/kg.) 

Equation A-5 can be solved for Ae as 

L \l 
Ae ::: ~ A-6 

A 
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and then b. E can be replaced in equati on A-4 so that 

A-7 

For a hcp lattice, the volume occupied by each molecule is -l a3, 
12 

where a is the distance between the center of one molecule and the 

center of its nearest neighbor. If ~ is the molecular weight and Ps 

the denls i ty, the vo' ume of each mo 1 ecu 1 e is also represented by 

A-a 

For the' [0001] face of a hcp sol id. the area occupied by each molecule 

is I! a2 The number of molecules 2 
2 2 per m p Zt is 2 · 

Il'a 
Therefore, from A-a, 

Z ::::: A-9 

Subs ti tut i on of A-9 into A-7 yi e 1 ds the equati on 

L 2/3 _ s ~ 2 Ps 
-~ nil) 

L 11 N p 
::: .229 s (A s) !fA 11 

2/3 
A-10 

Compar1 son of equat10n A,·lO and A-l shows that the constant .229 1 n 

A-l0 is, approximately 1S-percent lower than the constant in A-l. 

Therefore, equation A-lO would predict a 10wer surface energy than 

Tabor's expression. 



TABLE 1. - BEATTIE-BRIDGEMAN EQUATI.oN .oF STATE C.oNSTANTS F.oR NITR.oGEN, 
REF. 6 

AO ::: 173.6.0 N_m4/kg2 

a = . .0.0.09342 m3/kg 

Bo = . .0.018.01 m3/kg 

b= - • .0.0.0247 m3/kg 

C :: 1499. m3k3/kg 
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J 
TABLE 2.- THERMAL CONDUCTIVITY FOR NITROGEN t m-R-sec , 

JACOBSEN REF. 24 

a 
~ = I Ai T(1-3) 
o 1=1 

~~E = .00002195902219 p + .006387370699 (eo0036 p - 1.0) 

A1 = -6.8939127475 

A2 = 3.5226118983x10·1 

A3 = -6.8357539823 x 10-3 

A4 = 1.5832717315 x 10-4 

A5 = -2.6418423047 x 10-7 

A6 = 3.6093309138 x 10-10 

A7 = -2.5555598476 x 10-13 

A8 = 8.5635041641 x 10-17 

Ag = -1.0717599406 x 10-20 . 

53 



TABLE 3.- VISCOSITY FOR NITROGEN, 

JACOBSEN REF. 24 

n = no(T) + AnE (p) 

n = I9 C T (;-3) 
o 1=1 1 

C1 = 7.4165322904 x 10-3 

C2 = -1 .• 5834400475 x 10-4 

C3 = 3~8530771011 x 10-7 

C4 = 8.0133713668 x 10-8 

Cs = -8.9203123846 x 10-11 

C6 = 8.90S9711315 x 10-14 

C7 = -5.3779372664 x 10-17 

C8 = 1.7398277309 x 10-20 

C9 = -2.3084044942 x 10-24 

7 . 
AnE = ~ 0; (O.OOlp)' 

1=1 

01 = 2.3083514362 x 10-5 

02 = -9.3636207171 x 10-5 

03 = 9.0339186452 x 10-4 

04 = -4.1832067163 x 10-3 

Os = 1.0897627893 x 10-2 

06 = -1.2913856376 x 10-2 

07 = 5.9782049913 x 10-3 



Reference 

Range 

a 

b 

c 
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TABLE 4.,· VAPOR PRESSURE CURVE 

::: celQ (a-bIT) Psat 

Dodge and Davis Ref. 29 

63.148<T<126.20 K 

3.93352 

304.494 sec 

101325 N/m2 

Frels. et. al. Ref. 30 

35.5<T<63.148 K 

7.614676 

356.281 sec 

133.32 N/m2 



TABLE 5.- COMPARISON OF PREDICTED CONOENSATION ONSET TOTAL TEMPERATURE 

CAST-10 AIRFOIL. Moo = 0.65, Pt = 5.0 atm 

BASELINE-CLOT, Tt = 99K, 6Cp = 0.0266, x/c = 0.25 

Modification Onset T t'. K Tt - 99K J/JCl 

CLOT 99 0 1 

CLOT ... T, 6 = 0.25x10-10m 100.7 1.7 500 

CLOT-RK 100.3 1.3 110 

ClOT-LP, Qrep = 108 103.8 4.8 1011 

Noni sothermal 98 -1.0 .046 

CLDT, C5 reduced 10% 102 3 106 

CLDT, B-B equation of state , 99.8 .8 18 
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Figure 2.- Approximating airfoil pressure distribution by 
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Figure 3.- Comparison of specific heat at constant pressure as a function of temperature 
plotted for constant pressures of 0.1 and 2 atm and for the pressures associated with the 
vapor-pressure curve the Beattie-Bridgeman equation of state with the ideal gas value. 
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Figure 4.- Thermal conductivity of nitrogen gas. 
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Figure 5.- Viscosity of nitrogen gas. 
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Figure 8.- Condensate density for nitrogen. 
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Figure 9.- Latent heat values for nitrogen. Line labelled IDEAL CALC. 
uses ideal gas equation of state values for gas density while line 
labelled REAL CALC. uses Beattie-Bridgeman equation of state values of 
gas density. 
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Figure 10.- Surface tension for nitrogen. 
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Figure 13.- Saturation lines as well as -lines shOtJing total conditions 
for CAST-IO airfoil at a=60 . () -Experimental onset of condensation 
effects. 
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a) Compari son wi th CLDT- LP, Qrep = 104. 

Figure 18.- Comparison of Dankert data and theory. Pressure ratio 
as a function of orifice diameters downstream of orifice. 
Pt= 3.0 atm, D= O.OOSm. 
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b) Comparison with CLDT-WU. 

Figure 18.- Continued. 
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--- CLDT-WU 

Figure 19.- Compari son of Nagamatsu and Hi llmarth data and 
CLDT-WU. Pressure ratio as a function of position. 
Pt= 8.21 atm, Tt = 295 K, and 1= O.0254m. 
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Figure 20.- Predicted onset curve for 0.152m CAST-10 airfoil. Moo:::: 0.65, 
and cx,= 6°. () -Experimental onset of condensation effects. 
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