NASA Technical Memorandum 85651

Development of a Nuclear Technique for Monitoring Water Levels in Pressurized Vessels

Jag J. Singh, William T. Davis, and Gerald H. Mall

25th Anniversary 1958-1983

NASA Technical Memorandum 85651

Development of a Nuclear Technique for Monitoring Water Levels in Pressurized Vessels

Jag J. Singh and William T. Davis
Langley Research Center
Hampton, Virginia
Gerald H. Mall
Computer Sciences Corporation
Hampton, Virginia

National Aeronautics
and Space Administration
Scientific and Technical
Information Branch

SUMMARY

A new technique for monitoring water levels in pressurized stainless steel cylinders has been developed. It is based on the differences in gamma ray attenuation coefficients in water and air. For an open-face, full-scale-model steel cylinder and a $10-\mu \mathrm{Ci} \mathrm{Cs}{ }^{137}$ gamma ray source, the counting rates for air and water differ by a factor of 15.60 ± 0.60 for cutoff energy of 200 keV and by a factor of 17.24 ± 1.40 for cutoff energy of 511 keV . These results are in reasonable agreement with the respective calculated values of 15.98 ± 1.50 and 17.68 ± 1.95. The respective values when the air is pressurized to 408.2 atm are calculated to be 4.75 ± 0.51 and 5.01 ± 0.64. This large difference in counting rates ensures a clear capability for detecting the presence or absence of water in the gamma ray path in pressurized vessels. Computer programs for calculating nuclear radiation transmission are included in the appendix.

INTRODUCTION

Thermal probes in the Langley $8-$ Foot High-Temperature Tunnel have to be watercooled in order to protect them from burnup during tunnel runs. The cooling water is stored in $30-f t-h i g h, 16-i n-d i a m e t e r ~ s t e e l ~ c y l i n d e r s . ~ F i g u r e ~ 1 ~ s h o w s ~ a ~ g e n e r a l ~ v i e w ~$ of the cylinder assembly for storage of cooling water. The water level in the cylinder is initially monitored using a simple U-tube manometer. Before the start of a tunnel run, high-pressure (about 408 atm) air is introduced into the cylinder above the water level and forces the cooling water through the multijacketed thermal probes. Currently, there are no means available for directly monitoring the water level in the reservoir cylinders once the cylinders are pressurized. It is presumed that the initial manometer reading in the "nonpressurized" state gives correct indication of the initial water level in the reservoir cylinder. This, of course, is true only if there was no residual pressurized air above the water level during the water pressure reading. It is therefore necessary to develop an independent technique that monitors the presence of water at a critical height in the pressurized water reservoir cylinder and thus ensures an adequate supply of cooling water for the duration of the test. One technique that promises to meet this objective is based on differences in gamma ray attenuation coefficients in water and air. The principle of this technique as well as experimental results obtained with a full-scale mock-up model are described in the following sections.

SYMBOLS

C	velocity of light
D	internal diameter of the steel reservoir cylinder
$E_{\text {dis }}$	cutoff energy
h	Planck's constant
I_{t}	transmitted intensity

I_{0}	incident intensity
m_{0}	rest mass of the electron
ro	classical radius of the electron
w_{i}	fraction by weight of the ith element
x	path length through a medium
Z	atomic number
θ	scattering angle
μ	total linear attenuation coefficient of the medium for the incident photons
μ_{c}	attenuation coefficient for the Compton process, given by the product of atomic density and Compton scattering cross section per atom
μ_{i}	linear attenuation coefficient for the ith element
$\mu_{\text {pe }}$	attenuation coefficient for the photoelectric effect, given by the product of atomic density and the photoelectric cross section per atom
$\mu_{p p}$	attenuation coefficient for the pair production process, given by the product of atomic density and pair production cross section per atom
ν_{0}	incident photon frequency
v^{\prime}	scattered photon frequency
ρ	density
ρ_{i}	density of the ith element
Ω	solid angle

Subscripts:

a	air
s	steel
w	water

When a collimated beam of photons traverses a medium, it can interact with the atoms of the medium in a number of ways, depending upon its energy. These interactions result in the removal of the photon from the incident beam. The transmitted
intensity I_{t} of a collimated beam of photons of incident intensity I_{o} after traversing through a thin absorber of thickness x may be written as follows (ref. 1):

$$
\begin{equation*}
I_{t}=I_{o} e^{-\mu x} \tag{1}
\end{equation*}
$$

where μ is the total linear attenuation coefficient of the medium for the incident photons. μ includes the effects of all types of interactions that the incident photons suffer in the absorber. For photons in the energy range 0.1 to 10.0 MeV , the dominant mechanisms are the photoelectric effect, the Compton effect, and the pair production effect; i.e.,

$$
\begin{equation*}
\mu=\mu_{\mathrm{pe}}+\mu_{\mathrm{c}}+\mu_{\mathrm{pp}} \tag{2}
\end{equation*}
$$

where
$\mu_{p e}=$ Attenuation coefficient for the photoelectric effect, given by the product of atomic density and photoelectric cross section per atom
$\mu_{c}=$ Attenuation coefficient for the Compton process, given by the product of atomic density and Compton scattering cross section per atom
$\mu_{p p}=$ Attenuation coefficient for the pair production process, given by the product of atomic density and pair production cross section per atom

Figure 2 shows the relative importance of these effects for various elements and for various photon energies (ref. 1). It is apparent that for $z \leqslant 40$, the dominant mechanism for gamma ray energies of 0.2 to 7.0 MeV is the Compton scattering effect.

The values of μ for different absorbers for photons in the energy range 0.01 to 100.00 MeV have been reported by several authors (refs. 2 and 3). If the absorber is made up of a compound or a mixture of several elements, the overall attenuation coefficient is given by the following relation:

$$
\begin{equation*}
\frac{\mu}{\rho}=\frac{\mu_{1}}{\rho_{1}} w_{1}+\frac{\mu_{2}}{\rho_{2}} w_{2}+\frac{\mu_{3}}{\rho_{3}} w_{3}+\ldots \tag{3}
\end{equation*}
$$

where
$\rho_{i}=$ Density of the ith element
$\mu_{i}=$ Linear attenuation coefficient for the ith element
$w_{i}=$ Fraction by weight of the ith element

If the absorber, on the other hand, is made up of a series of physically separated materials, the transmission process through each material should be treated separately. Equation (1) in that case will take the following form:

$$
\begin{equation*}
I_{t}=I_{o} e^{-\sum \mu_{i} x_{i}} \tag{4}
\end{equation*}
$$

where
$\mu_{i}=\begin{gathered}\text { Linear attenuation coefficient for the gamma rays in the ith component of } \\ \text { distributed absorber }\end{gathered}$
$x_{i}=$ Path length in the i th component of the distributed absorber
In the specialized case of a pressurized water vessel, equation (4) can be rewritten as follows:

$$
\begin{align*}
& I_{t}(\text { water })=I_{o} e^{-\left(2 \mu_{s} x_{s}+\mu_{w} x_{w}\right)} \tag{5}\\
& I_{t}(\text { air })=I_{o} e^{-\left(2 \mu_{s} x_{s}+\mu_{a} x_{a}\right)} \tag{6}
\end{align*}
$$

where
$\mu_{s}=$ Linear attenuation coefficient for the gamma rays in steel
$\mu_{w}=$ Linear attenuation coefficient for the gamma rays in water
$\mu_{a}=$ Linear attenuation coefficient for the gamma rays in air
$2 x_{s}=$ Gamma ray path length in steel (twice the steel cylinder wall thickness)
$x_{w}=$ Gamma ray path length in water (internal diameter of steel cylinder)
$x_{a}=$ Gamma ray path length in air (internal diameter of steel cylinder)
Combining equations (5) and (6), one obtains

$$
\begin{align*}
& \frac{I_{t}(\text { air })}{I_{t}(\text { water })}=e^{-\left(\mu_{a} x_{a}-\mu_{w} x_{w}\right)} \\
& \frac{I_{t}(\text { air })}{I_{t}(\text { water })}=e^{D\left(\mu_{w}-\mu_{a}\right)} \tag{7}
\end{align*}
$$

where D is the internal diameter of the steel reservoir cylinder. The proposed technique is based on the fact that μ_{w} and μ_{a} are very different for photons in the energy range 0.2 to 7.0 MeV . As indicated earlier, the linear attenuation coefficient of a medium is a very strong function of the photon energy. In order to obtain a reasonably high value of $I_{t}($ air $) / I_{t}$ (water) consistent with the reliability of operation of the monitor, $C s^{137}$ was selected as the gamma ray source. Cs^{137} has a half-life of 30 years and emits a single gamma ray of energy 662 keV . As seen from figure 2, the dominant mode of interaction at this energy in all components of the pressurized stainless steel water vessel would be Compton effect.

A theoretical discussion for the specific case of transmission of cs ${ }^{137}$ (662 keV) gamma rays through the pressurized, stainless steel, cooling water cylinder is given below. Figure 3 shows the essential geometry of the problem.

Figure 4 illustrates the Compton scattering process for the case when the incident photon energy far exceeds the binding energy of the struck electron. The differential Compton collision cross section per electron for incident unpolarized radiation of energy $h \nu{ }_{o}$ is given by the following equation (refs. 1, 4, and 5)

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\mathrm{c}}}{\mathrm{~d} \Omega}=\frac{r_{0}^{2}}{2}\left(\frac{\nu^{\prime}}{v_{0}}\right)^{2}\left(\frac{\nu_{0}}{v^{\prime}}+\frac{\nu^{\prime}}{\nu_{0}}-\sin ^{2} \theta\right) \quad \mathrm{cm}^{2} / \text { electron } \tag{8}
\end{equation*}
$$

where the scattered photon $h \nu^{\prime}$ goes into the solid angle $d \Omega=2 \pi \sin \theta d \theta$, and r_{0} is the classical electron radius $\left(2.818 \times 10^{-13} \mathrm{~cm}\right)$.

Because of the finite degree of collimation of the incident beam, finite thicknesses of various components of the absorber medium in the path of the beam, and finite size of the radiation detector, multiple scattering effects must be taken into account (ref. 6). Because of the complexity of the secondary radiation produced in each collision, accurate theoretical calculation of broad beam attenuation is very difficult. Several different procedures have been used to calculate gamma ray transport through thick absorbers. Among the prominent methods reported (ref. 6) are (1) the method of successive scatterings, (2) the method of moments, and (3) the method of random sampling (Monte Carlo). A Monte Carlo approach (refs. 6 and 7) was utilized in the present study in order to determine the number of photons, starting from a collimated Cs^{137} source, that arrive at the uncollimated detector with an Energy $\geqslant E_{\text {dis. }}$. The theoretical details of the computational procedure are summarized in the appendix. The inclusion of multiple scattering effects reduces the difference in the counting rates between air and water media in the pressure vessel. For example, for air at a pressure of 1 atm , the ratio I_{t} (air)/I I_{t} (water) falls from 20.17 to 17.68 ± 1.95 when only scattered photons of Energy $\geqslant 511 \mathrm{kev}$ are counted and further falls to 15.98 ± 1.50 when the scattered photon energy discriminator level is reduced to 200 keV . For air at 408.2 atm , the corresponding values are 5.26 , 5.01 ± 0.64, and 4.75 ± 0.51, respectively.

EXPERIMENTAL RESULTS

A full-scale laboratory prototype system was constructed in order to test the concept of a nuclear technique for monitoring water levels. Figure 5 shows a schematic diagram of the experimental system for monitoring the presence or absence of
water medium in the path of the test gamma rays. A 10 -microcurie (nominal) Cs^{137} source provided the test gamma rays. The gamma rays transmitted through the pressure vessel were counted with a 2-in-diameter, 2-in-high NaI(Tl) crystal mounted on a high-gain photomultiplier. The photomultiplier output, after suitable amplification, was passed through a single-channel analyzer. Counts were recorded for predetermined intervals for two discriminator settings with and without water in the steel cylinder. The first discriminator setting of 200 keV was selected to provide for counting of all photons, having energies above the photoelectric energy limit, that arrived at the radiation detector. The counts registered will reflect considerable impact of multiple scattering effects in the absorbers between the source and the detector. The second discriminator setting of 511 keV was selected to restrict the counts to those photons that had suffered minimal scattering and, consequently, had lost minimal energy. The average values of I_{t} (air)/I (water) for the two discriminator settings are summarized in table I. These values are in reasonable agreement with the corresponding calculated values listed in table II.

Main reasons for the rather large errors in the experimental values lie in the weakness of the $C s{ }^{137}$ test source. For example, for $E_{\text {dis }}=511 \mathrm{keV}$, the counting rates with an empty cylinder with and without the source were approximately 740 and 418 counts per minute (cpm), respectively, whereas the counting rate with the source and with water in the cylinder was only 437 cpm . This poor signal-tobackground ratio with water in the cylinder produces a large error in the I_{t} (air)/ I_{t} (water) value. A stronger test source should provide much better counting statistics and hence smaller error. This conclusion was verified by constructing a half-scale model and repeating all the aforementioned tests with it. The comparison between the experimental results and the calculated values is summarized in table III. The errors in the experimental results this time are considerably lower, as expected.

Despite the large error in the I_{t} (air)/ I_{t} (water) value with $E_{\text {dis }}=511 \mathrm{keV}$ in the full-scale model results, this discriminator setting would be preferable with a stronger radiation source because it makes the monitor more sensitive to the presence or absence of water in the test radiation beam path.

The prototype system, of course, could not be pressurized to 408 atm for reasons of safety. It was therefore not possible to determine experimentally the value of I_{t} (air-pressurized)/ I_{t} (water). However, there is no reason to doubt the theoretically calculated value, since the theory of gamma ray transmission through absorbers of various thicknesses is well understood.

Figure 6 shows the experimentally observed counting rate for $E_{\text {dis }}=511 \mathrm{keV}$ as the water was allowed to escape from the test cylinder. It is noted that the counting rate rises from an average value of 437 cpm to 740 cpm as the water is replaced by the air in the path of the test gamma rays. Allowing for a background counting rate of 418 cpm , these measurements give a value of approximately 17 for I_{t} (air)/I I_{t} (water) in reasonable agreement with the average value of 17.24 ± 1.40 obtained under static conditions.

In order to ensure that the tunnel could not be operated without adequate water supply in the pressurized water cylinders, a safety circuit based on the Cs^{137} counting rate change has been designed, and a breadboard prototype has been built and successfully tested. The electronic safety circuit diagram is shown in figure 7. The circuit, besides providing a visible flashing light signal, will also provide an audio alarm signal if the water level is inadequate to start the tunnel operation. The pulses from the single-channel analyzer are shaped by the one-shot logic circuit
which increases the pulse width from $1 \mu \mathrm{~s}$ to 1.3 ms . This pulse width will permit handling counting rates as high as 769 counts per second (cps). Higher counting rates will require shorter pulse width. The integration of these pulses produces a dc voltage proportional to the counting rate. The comparator circuit will turn on the alarm as this dc voltage matches or exceeds a preset reference level.

CONCLUDING REMARKS

The full-scale prototype system results under a pressure of 1 atm clearly demonstrate that the nuclear technique for monitoring water levels should easily distinguish between water and air paths inside the water reservoir cylinders. Since the pressurized water cylinder tests could not be conducted with a laboratory prototype system, full-scale tests on actual cooling water cylinders were not performed. However, reasonably good agreement between theoretical calculations and the experimental results for an open-faced prototype system indicates that equally good agreement should be obtained for a pressurized system, since the theory of electromagnetic radiation interaction with matter is well understood.

The technique should, of course, be usable with other fluids, since the linear attenuation coefficients for intermediate energy gamma rays in air are considerably lower than in the fluids. It should also be adaptable to monitor continuously the fluid level in the reservoir systems and underground storage tanks.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
July 28, 1983

APPENDIX

COMPUTER PROGRAMS FOR CALCULATING NUCLEAR RADIATION TRANSMISSION

Symbols Used in Appendix

c	velocity of light
D	internal diameter of the steel reservoir cylinder
d	distance between the source and the detector
ds	path length between sampling planes
$E_{\text {dis }}$	input cutoff energy
E_{f}	energy of the scattered photon
E_{i}	initial energy of the photon prior to scattering
E_{0}	incident photon energy
m_{0}	rest mass of the electron
n_{e}	product of the number of test atoms per cubic centimeter and the atomic number of the test atoms
P_{C}	cumulative normalized probability
P_{T}	total transmission probability
P_{t}	transmission probability per photon
R_{T}	detector radius
ro	classical radius of the electron
$\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}, \mathrm{z}_{\mathrm{f}}$	x-, $\mathrm{y}-\mathrm{l}, \mathrm{z-coordinates} \mathrm{following} \mathrm{scattering}$
$x^{\prime}, y^{\prime}, z^{\prime}$	final coordinates in the photon coordinate system
α	$=E_{0} / m_{0} c^{2}$
θ	scattering angle
$\theta_{\text {f }}$	spherical coordinate defining gamma ray direction after scattering
θ_{i}	spherical coordinate defining gamma ray direction before scattering
θ_{s}	scattering angle in the photon coordinate system
$\sigma_{c}(T)$	total scattering cross section

APPENDIX

ϕ_{f}	spherical coordinate defining gamma ray direction after scattering
ϕ_{i}	spherical coordinate defining gamma ray direction before scattering
ϕ_{S}	scattering angle in the photon coordinate system
Ω	solid angle

Program for Calculating Energy and Transmission

Program Description

The computer program RTRACK is written in FORTRAN IV language for the Control Data CYBER 170 series digital computer system with network operating system (NOS) 1.4. The program requires 31600 octal locations of core storage. A typical case in which 5000 trajectories are computed requires approximately 350 CPU seconds on CYBER 173.

The program models the stochastic process in which a gamma ray traverses a medium subject to multiple Compton scattering. When the detector location and size, initial gamma ray energy, dimensions and electron density of the intervening medium, and desired number of trajectories and path length for sampling are specified, the program uses a random number generator and an input probability distribution table to track the progress of each gamma ray. A separate program, described subsequently in this appendix, was developed to generate this table giving probability versus scattering angle (θ).

Once the medium is defined, the z-axis is defined from the point source to the center of the detector with the origin at the source. Equally spaced planes are constructed perpendicular to this axis between the source and the detector with the spacing defined by the input sampling frequency parameter. The initial direction of the gamma ray is determined by a random value of ϕ_{i} between 0 and 2π, and a random value of θ_{i} subject to collimation restrictions (where ϕ_{i} and θ_{i} are standard spherical coordinates). An example of such a restriction is to limit the initial gamma ray to the forward hemisphere or to the cone defined by the source and detector. A collimator with a diameter of $7 / 16 \mathrm{in}$. and a length of $127 / 32$ in. was used.

The gamma ray is allowed to travel along the initial trajectory until this trajectory intersects the first sampling plane. The transmission probability is computed using equation (A1)

$$
\begin{equation*}
P_{t}=1-\sigma_{c}(T) n_{e} d s \tag{A1}
\end{equation*}
$$

where n_{e} (given by the product of the number of test atoms per cubic centimeter and the atomic number of the test atoms, i.e., $n_{e}=n z$) is the electron density for the appropriate material (air, water, or the steel wall), ds is the path length

APPENDIX

between sampling planes, and $\sigma_{c}(T)$ is the total scattering cross section defined by equation (A2)

$$
\begin{equation*}
\sigma_{C}(T)=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \frac{d \sigma}{d \Omega} \sin \theta d \theta \tag{A2}
\end{equation*}
$$

This transmission probability is compared with a uniformly distributed random number between 0 and 1 to determine if a collision occurs. If the random number is smaller, no collision occurs, and the gamma ray continues along the same path until it intersects the next sampling plane. Otherwise, a collision occurs, and a new path is determined.

The scattering direction is determined by assigning a random value between 0 and 2π to ϕ_{S} and by defining θ_{S} with a uniformly distributed random number and linear interpolation within the input probability distribution table. The z^{\prime}-axis is defined as the direction of motion prior to the collision, and the new direction in the primed coordinate system is computed using the rotation matrices in equation (A3).

$$
\left\{\begin{array}{c}
x^{\prime} \tag{A3}\\
y^{\prime} \\
z^{\prime}
\end{array}\right\}=\left\{\begin{array}{ccc}
\cos \phi_{S} & \sin \phi_{S} & 0 \\
-\sin \phi_{S} & \cos \phi_{s} & 0 \\
0 & 0 & 0
\end{array}\right\}\left\{\begin{array}{ccc}
1 & 0 \\
0 & \cos \theta_{s} & \sin \theta_{s} \\
0 & -\sin \theta_{s} & \cos \theta_{s} \\
0 & & 0 \\
0 \\
1
\end{array}\right\}
$$

These coordinates are then transformed back to the laboratory coordinate system using the rotation matrices in equation (A4).

$$
\left\{\begin{array}{l}
x_{f} \tag{A4}\\
y_{f} \\
z_{f}
\end{array}\right\}=\left\{\begin{array}{ccc}
\cos \phi_{i} & \sin \phi_{i} & 0 \\
-\sin \phi_{i} & \cos \phi_{i} & 0 \\
0 & 0 & 0
\end{array}\right\}\left\{\begin{array}{ccc}
1 & 0 \\
0 & \cos \theta_{i} & \sin \theta_{i} \\
0 & -\sin \theta_{i} & \cos \theta_{i}
\end{array}\right\}\left\{\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right\}
$$

where θ_{i} and ϕ_{i} define the gamma ray direction before scattering. The final direction in the laboratory coordinate system following the collision is then given by equations (A5)

$$
\left.\begin{array}{l}
\phi_{f}=\tan ^{-1}\left(\frac{x_{f}}{y_{f}}\right) \\
\theta_{f}=\tan ^{-1}\left(\frac{\left(\frac{x_{f}^{2}+y_{f}^{2}}{z_{f}}\right.}{}\right) \tag{A5}
\end{array}\right\}
$$

The gamma ray then travels along this trajectory until it intersects the next sampling plane. Following the scattering, the energy is reduced according to equation (A6)

$$
\begin{equation*}
E_{f}=\frac{E_{i}}{1+\alpha\left(1-\cos \theta_{s}\right)} \tag{A6}
\end{equation*}
$$

where E_{i} is the initial energy and $\alpha=\frac{E_{o}}{m_{o} c^{2}}=\frac{E_{o}}{511}$
This process is repeated for each sampling plane, and the gamma ray is said to reach the detector if, for the final plane, $X_{f}{ }^{2}+y_{f}{ }^{2} \leqslant R_{T}{ }^{2}$, where R_{T} is the detector radius. The gamma ray is dropped from further consideration if, for any sampling plane, one of the following inequalities is satisfied: $x_{f} \geqslant \frac{1}{2} d, \quad y_{f} \geqslant \frac{1}{2} d$, $z_{f} \leqslant 0$, or $E_{f} \leqslant E_{\text {dis }}$ where d is the distance between the source and the detector, and $E_{\text {dis }}$ is an input cutoff energy.

After a gamma ray has reached the detector or has been dropped from further consideration, a new trajectory is initiated. This process is repeated until the desired number of trajectories has been completed. The total transmission probability is then defined by equation (A7)

$$
\begin{equation*}
\mathrm{P}_{\mathrm{T}}=\frac{\text { Gamma rays reaching the detector }}{\text { Total number of trajectories }} \tag{A7}
\end{equation*}
$$

Description of FORTRAN Variables

The following list contains a description of the significant FORTRAN variables appearing in the program. The dimension of each array is in parentheses beside the variable. Each variable is also identified as I, input variable; P, program variable; or 0 , output variable.

FORTRAN Variable	Type	Description
DIAM	P	Diameter of detector, cm
DS	I	Spacing between sampling planes, cm
EFINAL	I	Cutoff energy, kev
ENER	P	Instantaneous gamma ray energy, kev
EZERO	I	Initial energy, kev
NHIT	0	Number of gamma rays counted by the detector
NNE	0	Number of gamma rays with energy less than cutoff value
NNX	0	Number of gamma rays exiting in x-direction
NNY	0	Number of gamma rays exiting in y-direction
NNZ	0	Number of gamma rays exiting in z-direction
NTRY	I	Total number of trajectories
NZ	I	Electron density of the interior medium, electrons/cm ${ }^{3}$
PHI	P	ϕ_{i} of path before scattering
PHIF	P	ϕ_{f} of path after scattering
PHIS	P	$\phi_{s^{\prime}}, \text { scattering angle }$
PTM	P	Transmission probability for the interior medium
PTS	P	Transmission probability for the steel wall
R	P	Random number uniformly distributed between 0 and 1
SEP	I	Distance between source and detector, in.
TDIAM	I	Diameter of detector, in.
THETA	P	θ_{i} of path before scattering
THETAF	P	θ_{f} of path after scattering
THETAL	P	Limiting value of θ_{i} due to collimation
THETAS	P	$\theta_{s^{\prime}} \text { scattering angle }$
THIK	I	Thickness of steel wall, in.
TRANS	0	Total transmission probability

APPENDIX

TSCAT	P	Total scattering cross section
XFINAL	P	z-coordinate of the detector
XWALL1	P	z-coordinate of first steel/medium interface
XWALL2	P	z-coordinate of second steel/medium interface
XX(180)	I	Probability distribution table, θ values
$Y Y(180)$	I	Probabililty distribution table, P_{C} values

Program RTRACK. - RTRACK, the main program, performs all input and output operations, controls the flow through the sampling planes, and calls the routines which perform the scattering transformations. A listing of RTRACK follows.

1

5

PROGRAM RTRACKIOUTPUT,INPUT,TAPE6=DUTPUT,TAPE5=INPUT,TAPE1, 1 TAPE2)
COMMON PI,RO, ALPHA
REAL NZDX,NZ
DIMENSION XX(180),YY(180)
DIMENSION ENN(5),CON(5),PHN(5)
EXTERNAL FUN
DATA ENN/200.,300.,400.,500.,600.1
DATA CON/10.57,9.19,8.23,7.52.6.96/
DATA PHN/2.23,0.66,0.29,0.16,0.101
1 FORMAT (1H1,10X,5HRZERO,10X,5HALPHA,9X,6HWALL $1,9 X, 6 H W A L L ~ 2$,
1 7X,8HDISTANCE,
$14 \mathrm{X}, 11 \mathrm{HTARGET}$ DIAM, $2 \mathrm{X}, 27 \mathrm{HTOT}$ SCAT CROSS SECTION (PTI///)
2 FORMAT(1H1,5X,16HELECTRON DENSITY,5X,15H PATH LENGTH,
1 15X,1HP///)
3 FORMAT(1H0,1PE15.4,1PE15.4,1PE15.4,1PE15.4,1PE15.4,
1 1PE15.4.1PE29.4)
4 FORMAT(//IHO,10X,*NZ $=*, 1 P E 16.4)$
5 FORMAT (//1HO,14X,2HDS, $8 x, 6 H N Z D S I$
6 FORMAT(1HO,1PE16.4,1PE14.4)
7 FORMAT(*O HITS,MISSES,X-DUT,Y-OUT,E-OUT,Z-DUT*,6I5)
8 FORMAT(1HO,1PE21.4,1PE20.4,1PE16.4)
PI = ACOS (-1.1
THETAS $=0$.
PHIS $=0$.
THETAF $=0$.
PHIF $=0$.
READ PROBABILITY TABLE AND GENERATE NORMALIZED
CUMULATIVE DISTRIBUTION
$0010 \quad \mathrm{I}=1,180$
READ(2) XX(I),YY(I)
10 CONTINUE
SUM $=0$.
DO $20 \mathrm{I}=1,180$
SUM = SUM + YY(I)
$Y Y(I)=S U M$
$X X(I)=X X(I)+P I / 360$.
20 CONTINUE
DO 30 I=1,180
YY(I) $=Y Y(I) / S U M$

```
    30 CONTINUE
    RO = 2.818E-13
    40 READ(5,*) EZERO,EFINAL
    IF(EOF(5).NE.O) GO TO 999
    ALPHA = EZERO/511.
    READ(5,*) THIK,SEP
    XINIT = 0.
    XWALL1 = 2.54*THIK
    XWALL1 = 2.*XWALL1
    XWALL2 = 2.54*(SEP - THIK)
    XWALL2 = 2.*XWALL2
    XFINAL = 2.54#SEP
    XFINAL = 2.*XFINAL
    READ(5,#) TDIAM
    DIAM = 2.54*TDIAM
    TSCAT = GLEGI5(O.,PI,FUN)
    WRITE (6,1)
    HRITE(1,2)
    WRITE(6,3) RO,ALPHA,XHALL1,XHALL2,XFINAL,DIAM,TSCAT
    READ(5,*) NZ,NTRY
    URITE(6,6) NZ
    READ(5,*) DS
    NZDX = NZ*DS
    WRITE (6,5)
    WRITE (6,6) DS,NZDX
    PTM = EXP(-TSCAT*NZDX)
    STELNZ = 22.07E+23
    PTS = EXP(-TSCAT*STELNZ*DS)
    NMISS = O
    NHIT=0
    NNX =0
    NNY =0
    NNE = 0
    NNZ = O
    THETAL= PI/2.
    THETAL = ATAN(7.159.)
    NSCAT = O
```

DO $150 \mathrm{I}=1$, NTRY
ENER = EZERO
ZA $=$ XINIT
$X A=0$.
$Y A=0$.
THETAI = RANF(T)*THETAL
PHII $=\operatorname{RANF}(T) \neq 2 . * P I$
THETA $=$ THETAI
PHI = PHII
50 CONTINUE
$R=$ RANF (T)
$P T=P T M$
IF(ZA.LT.XWALLI) PT $=P T S$
IF(ZA.GT.XWALLZ.AND.ZA.LT.XFINAL) PT $=P T S$
TEST TO SEE IF A SCATTER OCCURS
IF(R.LT.PT) GO TO 100
YES, THERE IS A SCATTER
NSCAT $=$ NSCAT +1
DO $60 \mathrm{~K}=1,4$
IF(ENER.GE.ENN(K).AND.ENER.LE.ENN(K+1)) GO TO 70
c
C
C
60 CONTINUE
$K=4$
70 CONTINUE
$\operatorname{CONX}=\operatorname{CON}(K)+(C O N(K+1)-\operatorname{CON}(K)) *(E N E R-E N N(K))$
1 /(ENN(K+1) - ENN(K))
PHNX = PHN(K) + (PHN(K+1) - PHN(K))*(ENER - ENN(K))
1 /(ENN(K+1)-ENN(K))
FRACN $=$ PHNX ($(P H N X+$ CONX)
FRACN = 1. - FRACN
$R=0$.
IF(ZA.LT.XWALLI) R = RANF(T)
IF(ZA.GT.XWALLZ) R $=$ RANF(T)
IF (FRACN.LT.R) GO TO 130
$R=$ RANF(T)
$0080 \mathrm{~K}=1,179$
IF(YY(K).LE.R.AND.YY(K+1).GE.R) GO TO 90
80 CONTINUE
$K=179$
90 CONTINUE
THFTAS $=X X(K)+(X X(K+1)-X X(K)) \neq(R-Y Y(K)) /$
1 (YY(K+1) - YY(K))
PHIS $=$ RANF $(T) * 2 . * P I$
THETA $=$ THETA*180./PI
CONVERT ALL ANGLES TO DEGREES
PHI = PHI*18C./PI
THETAS $=$ THETAS*180./PI
PHIS = PHIS*180.1PI
GET NEW DIRECTION
CALL POST(THETA,PHI,THETAS,PHIS,THETAF,PHIF)
CHANGE ANGLES BACK TO RADIANS
THETA $=$ THETAF*PI/180.
PHI = PHIF末PI/180.
THETAS $=$ THETAS*PI/180.
DECREMENT ENERGY
ENER = ENER/(1. + ALPHA*(1. - COS(THETAS)))
100 CONTINUE
INCREMENT PATH
$Z A=2 A+D S * C D S(T H E T A)$
$X A=X A+D S * S I N(T H E T A) * C O S(P H I)$
$Y A=Y A+D S * S I N(T H E T A) * S I N(P H I)$
TEST FOR DUTSIDE X-BOUNOS
IF(ABS(XA).GT.XFINAL/2.) GO TO 110
TEST FOR OUTSIDE Y-BOUNDS

```
    C
```

```
IF(ABS(YA).GT.XFINAL/2.) GO TO 120
\(\stackrel{C}{C}\) TEST FOR ENERGY LESS THAN CUTOFF
        IF(ENER.LT.EFINAL) GO TO 130
    DZ = ABS(XFINAL - ZA)
    C TEST FOR OUTSIDE Z-BOUNDS
        IF(ZA.LT.O.) GO TO 140
    C TEST FOR PROXIMITY TO DETECTOR
    IF(DZ.GT.4.*DS) GO TO 50
    DHIT = SORT(YA**2 + XA**2)
        IF(DHIT.LT.(DIAM/2.1) NHIT = NHIT + 1
    IF(DHIT.GE.(DIAM/2.)I NMISS = NMISS + 1
    GO TO 150
    110 CONTINUE
    NNX = NNX + 1
    NMISS = NMISS + 1
    GO TO 150
    120 CONTINUE
    NNY - NNY + 1
    NMISS = NMISS + 1
    GO TO 150
    130 CONTINUE
    NNE : NNE + 1
        NMISS = NMISS + 1
    GO TO 150
    140 CONTINUE
    NNZ - NNZ + 1
    NMISS = NMISS + 1
    150 CONTINUE
    WRITE (6,7) NHIT,NMISS,NNX,NNY,NNE,NNZ
    TRANS = FLDAT(NTRY - NMISS)/FLOAT(NTRY)
    WRITE(1,8) NZ,OS,TRANS
    GO TO 40
STOP
    END
```

Function GLEG15.- Function GLEG15 determines the value of a definite integral using a 15-point Gauss-Legendre quadrature scheme. It is used in determining the value of TSCAT.

1
FUNCTION GLEG15(A,B,FUNCT)
C FUNCTION GLEG15 EVALUATES INTEGRALS OF THE FORM C C C C
C c C WHERE A AND B ARE FINITE USING 15 POINT GAUSS-LEGENDRE OUADRATURE.

B
INTEGRAL [G(X)] DX
A

USE
VALUE=GLEG15(A,R,FUNCT)
A...... THE LOWER LIMIT OF INTEGRATION. MUST BE FINITE.
B......THE UPPER LIMIT OF INTEGRATION. MUST BE FINITE.

FUNCT..the name of an external subroutine to calculate the VALUE OF G(X) AT SPECIFIED POINTS. SUBRQUTINE FUNCT(F,N)
F..CN INPUT THE N VALUES OF X
on dutput the N Values gix)
THAT IS, $F(I)=G[F(I)] I=1, \ldots, N$
N.. THE NUMBER OF FUNCTION EVALUATIONS.
the name given funct must appear in an external STATEMENT IN THE CALLING PROGRAM
DIMENSION $W(8), R(8), F(15)$
DATA R/O. ,.201194093997434,.394151347077563,

* . 570972172608538 .. 724417731360170 ,.848206583410427,
* . $937273392400705, .9879925180204851$

NATA W/. 202578241925561,.198431485327111,.186161000015562,

* . $166269205816993, .139570677926154, .107159220467171$, $.703660474881081 \mathrm{E}-01, .307532419961172 \mathrm{E}-01$ /
$C=(B-A) * .5$
$D=(R+A) * .5$
$F(1)=0$
DO $10 \quad I=2,8$
$S=R(I) \neq C$
$F(I)=D+S$
$10 \mathrm{~F}(\mathrm{I}+7)=0-\mathrm{S}$
CALL FUNCT(F,15)
D=W(1)*F(1)
DC $20 \mathrm{I}=2,8$
$20 \mathrm{D}=0+\mathrm{H}(\mathrm{I}) *(F(I)+F(I+7))$
GLEG15=C $=$ D
RETURN
END

Subroutine FUN.- Subroutine FUN is required by GLEG15 to compute the integrand of the definite integral, in this case the Klein-Nishina formula.

1

5

10

15

```
SLIBROUTINE FUN(F,N)
DIMENSION F(1)
COMMON PI,RO,ALPHA
DO 10 I=1,N
THETA = F(I)
ANS = 2.*PI*RO**2*SIN(THETA)
TMP1 = 1. + ALPHA*(1. - COS(THFTA))
TMP2 = 1. + COS(THETA)**2
TMP3 = (1. - COS(THETA))**2
ANS = ANS*(1./TMP1)**2*(TMP2/2.)
1 *(1. + ALPHA##2#TMP3/(TMP2#TMP1))
F(I) = ANS
10 CONTINUE
RETURN
END
```

Subroutine POST.- Subroutine POST computes the new direction of a trajectory following a scatter by defining and multiplying the appropriate rotation matrices.

1

5

```
SUBROUTINF POST(T1,P1,T2,P2,T3,P3)
DIMENSION A(4,4)
CALL URDTOC(1,T2,A)
CALL UAPPLY(O.,0.,1.,A,X,Y,Z)
CALL UROTOC (3,P2,A)
CALL UAPPLY(X,Y,Z,A,X,Y,Z)
CALL UROTOC(1,T1,A)
CALL UAPPLY(X,Y,Z,A,X,Y,Z)
CALL UROTOC(3,P1,A)
CALL UAPPLY(X,Y,Z,A,X,Y,Z)
P3=ATAN(X/Y)*180.13.14159265
IF (X.LT.O..AND.Y.lT.O.) P3=360.-P3
IF (X.LT.O..AND.Y.GE.O.) P3=180.-P3
IF (X,GE.O..AND.Y.GE.O.) P3=90.+P3
IF (X.GE.O..AND.Y.LT.O.) P3=-P3
R=SORT (X*X+Y*Y)
IF (Y.LT.O.) R=-R
T3=ATAN(R/Z)*180./3.14159265
IF (R.LT.O..AND.Z.LT.O.) T3=180.-T3
IF (R.LT.O..AND.Z.GT.O.) T3=-T3
IF (R.GE.O..AND.Z.GE.O.) T3=T3
IF (R.GE.O..AND.Z.LT.O.) T3=180.+T3
RETURN
END
```

Subroutines UAPPLY, UROTOC, UCLR, and UIDENT.- Subroutines UAPPLY, UROTOC, UCLR, and UIDENT are utility routines required by subroutine POST.

1

```
    SUBROUTINE UAPPLY (X,Y,Z, A, U,V,W)
    C
    C POST-MULTIPLIES A POINT VECTOR (X Y Z) BY 4*4
    C TRANSFORMATION MATRIX A TO GIVE (U V W).
    C
            REAL A (4,4)
    C H IS THE HOMOGENEOUS CD-ORDINATE, WHICH IS USED
    C TO EFFECT VARIOUS PROJECTIDNS. IN THIS ROUTINE,
    C MATRIX A IS ASSUMED TO PRODUCE ONLY AFFINE
    C TRANSFORMATIONS, WHICH MEANS THE LAST COLUMN OF
    C MATRIX A IS (O O 0 1), SO H IS UNITY. BUT IT,S
    C HERE IN CASE DNE WISHES TO CHANGE IT....
    C (UNCOMMENT NEXT LINE AND DIVIDE X, Y, AND Z BY H.)
    C H}=X*A(1,4)+Y*A(2,4)+Z*A(3,4) + A(4,4
        U=(X*A(1,1) +Y*A(2,1) + Z*A(3,1) + A(4,1))
        V=(X*A(1,2) + Y*A(2,2) + Z*A(3,2) + A(4,2))
        W=(X*A(1,3)+Y*A(2,3)+Z*A(3,3)+A(4,3))
        RETURN
            END
```

 SUBROUTINE UROTOC (IAXIS, ANGLE, A)
 C CONSTRUCTS A \(4 * 4\) MATRIX THAT PERFORMS A ROTATION
 C ABOUT \(X-Y\), \(Y\), \(O R\) Z-AXIS OF ANY ANGLE.
 C
 C INPUTS --
 IAXIS \(\quad 1=x \quad 2=Y \quad 3=2\)
 C ANGLE AMCUNT OF ROTATION, IN CURRENT UNITS. MEASURED
 POSITIVE BY RIGHT-HAND RULE.
 REAL A \((4,4)\)
 COMMON /TORADS/ ANGFAC
 OATA ANGFAC 1.017453292521
 C
 IF (IAXIS.LE. O OR. IAXIS.GE. 4) GO TO 40
 CALL UCLR (A)
 \(A(4,4)=1\).
 RAD - ANGFAC * ANGLE
 COSANG \(=\operatorname{COS}\) (RAD)
 SINANG = SIN (RAD)
 GO TO \((10,20,30)\), IAXIS
 \(10 \mathrm{~A}(1,1)=1\).
 \(A(2,2)=\) COSANG
 \(A(3,2)=-\) SINANG
 \(A(2,3)=\) SINANG
 \(A(3,3)=\) COSANG
 RETURN
 \(20 \Delta(2,2)=1\).
 \(A(1,1)=\) COSANG
 $A(3,1)=$ SINANG
$A(1,3)=-$ SINANG $A(3,3)=\operatorname{COSANG}$ RETURN
$30 \mathrm{~A}(3,3)=1$. A(1,1) = CDSANG $A(2,1)=-$ SINANG $A(1,2)=$ SINANG $A(2,2)=$ COSANG RETURN
40 CALL UIDENT (A) RETURN
END

```
C C
C CLEARS 4*4 MATRIX A TO ZEROS.
C
```

(A)
REAL A(4,4)
OO $10 \quad I=1,4$
DO $10 \mathrm{~J}=1,4$
$10 \quad A(I, J)=0$.
RETURN
END

1

10

SUBRDUTINE UIDENT (A)

```
    C MAKES 4*4 IDENTITY MATRIX A.
```

 REAL \(A(4,4)\)
 CALL UCLR (A)
 DO \(10 \mathrm{I}=1,4\)
 \(10 \mathrm{~A}(\mathrm{I}, \mathrm{I})=1\).
 RETURN
 END

Program Usage

All program input is accomplished using FORTRAN list directed reads. The data may appear anywhere in the field, and when more than one item is specified, the data items are separated by commas. The first items in a data set are the initial gamma ray energy and the cutoff energy in kev. If, as a result of scattering, the gamma ray energy drops below the value of the cutoff energy, it is not counted by the detector. The next data items are the thickness of the container walls and the total distance between the source and the detector, in inches. These data are followed by the diameter of the detector in inches. These data items are illustrated in the sketch below:

The next data items include the electron density of the interior region (electrons/ cm^{3}) and the total number of gamma rays to be included in the run. The final data item is the path length to be used between sampling planes, in centimeters. If additional cases are desired in a single program execution, the entire data set must be repeated for each case. Sample data for a single program execution to analyze two cases where the interior region contains air and water are illustrated below:

```
662.0, 200.0 (EZERO, EFINAL)
0.566, 8.0 (THIK, SEP)
2.0
3.818E + 20,5000
0.25
662.0, 200.0 (Repeat for second case)
0.566, 8.0
2.0
3.346E + 23,5000
0.25
```

In addition to the data described above, the program also requires a table containing probability versus scattering angle (θ). These data should exist as an unformatted file on unit TAPE2.

APPENDIX

The program generates formatted output on two files. File TAPE6 contains a record of the program input as well as the number of gamma rays counted by the detector. For those gamma rays not counted, TAPE6 provides information as to whether they were lost because they exceeded the limiting dimensions in the $x-y$, or $z-$ directions or they fell below the cutoff energy. File TAPE1 provides a brief summary of total transmission probabilities for each case considered.

Program for Generating Scattering Angle Distribution

Program TDIST2 was written to generate the probability distribution table required by program RTRACK. A listing of program TDIST2 is included in this section of the appendix. Note that function GLEG15 and subrsutine FUN, described with program RTRACK, are also required by this program.

Program TDIST2 calculates the probavility spectrum given by the following expression at intervals of 1° :
$\frac{d \sigma}{d \Omega}=r_{0}^{2}\left[\frac{1}{1+\alpha(1-\cos \theta)}\right]^{2}\left(\frac{1+\cos ^{2} \theta}{2}\right)\left\{1+\frac{\alpha^{2}(1-\cos \theta)^{2}}{\left(1+\cos ^{2} \theta\right)[1+\alpha(1-\cos \theta)]}\right\}$
where $r_{0}=2.818 \times 10^{-13} \mathrm{~cm}$, and $\alpha=\mathrm{E}_{o} / \mathrm{m}_{0} \mathrm{c}^{2}$. This equation follows from equation (8). Output from the program is written as an unformatted file to TAPE2 and is displayed in figure (A1). The normalized cumulative probability distribution versus θ corresponding to this spectrum is shown in figure (A2). Figure (A3) illustrates the results of using the distribution in figure (A2) to generate the frequency spectrum for 10000 scattering events. As shown, both figures (A1) and (A3) are normalized to 10000 events.

1

5

PROGRAM TDIST2 OUTPUT,INPUT,TAPEG=OUTPUT,TAPE5=INPUT, 1 TAPE2)
COMMON PI,RO, ALPHA
EXTERNAL FUN
$P I=\operatorname{ACOS}(-1$.
$R O=2.818 E-13$
ALPHA $=662.1511$.
TSCAT = GLEG15(0.,PI,FUN)
WRITE 6,1)
1 FORMATIIH1, $10 X$, 5HRZERO, $10 X, 5$ HALPHA,
$12 X, 27 H T O T$ SCAT CROSS SECTION (PT)///) URITE (6,2) RO, ALPHA,TSCAT
2 FORMAT(1HO,1PE15.4,1PE22.4.1PE29.4) NUM $=180$. OO $100 \mathrm{I}=1$, NUM THETA = PI*FLOAT(I-1)/180. THETAP = THETA + PI/180. PSCAT = GLEG15(THETA,THETAP,FUN) WRITE(2) THETA,PSCAT URITE (6,3) THETA,PSCAT
FORMAT(2E16.8)
100 CONTINUE CONTINUE STOP END

Figure A1.- Probability distribution from program TDIST2.

Figure A2.- Normalized cumulative probability distribution as a function of θ.

Figure A3.- Angular distribution of the scattered photons.

1. Evans, Robley D.: The Atomic Nucleus. McGraw-Hill Book Co., Inc., C. 1955.
2. Davisson, Charlotte Meaker; and Evans, Robley D.: Gamma-Ray Absorption Coefficients. Rev. Mod. Phys., vol. 24, no. 2, Apr. 1952, pp. 79-107.
3. Grodstein, Gladys White: X-ray Attenuation Coefficients From 10 kev to 100 Mev. NBS Circ. 583, U.S. Dep. Com., Apr. 30, 1957.
4. Klein, O.; and Nishina, Y.: Uber die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys., Bd. 52, 1929, pp. 853-868.
5. Heitler, W.: The Quantum Theory of Radiation, Third ed. Clarendon Press (Oxford), 1954.
6. Goldstein, Herbert: Fundamental Aspects of Reactor Shielding. Addison-Wesley Pub. Co., Inc., c. 1959.
7. Alder, Berni; Fernbach, Sidney; and Rotenberg, Manuel, eds.: Methods in Computational Physics. Volume 1. Academic Press, Inc., 1963.

> TABLE I. - SUMMARY OF EXPERIMENTAL VALUES FOR $I_{t}($ air $) / I_{t}$ (water) FOR FULI-SCALE MODEL

$E_{\text {dis, }}, \mathrm{keV}$	Air pressure, atm	$\frac{I_{t} \text { (air) }}{I_{t} \text { (water) }}$
200	1	15.60 ± 0.60
511	1	17.24 ± 1.40

TABLE II.- SUMMARY OF CALCULATED VALUES ${ }^{a}$ FOR I_{t} (air)/ I_{t} (water) UNDER VARIOUS OPERATING CONDITIONS FOR FULL-SCALE MODEL
(a) "Ideal" narrow beam geometry (no multiple scattering)

Edis' kev	Air pressure, atm	$\frac{I_{t}(\text { air })}{I_{t}(\text { water })}$ 662
662	1	

(b) "Poor" broad beam geometry (multiple scattering allowed)

$\mathrm{E}_{\text {dis }}{ }^{\prime} \mathrm{keV}$	Air pressure, atm	$\frac{I_{t}(\text { air })}{I_{t}(\text { water })}$
$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{gathered} 1 \\ 408.2 \end{gathered}$	$\begin{aligned} 15.98 & \pm 1.50 \\ 4.75 & \pm 0.51 \end{aligned}$
$\begin{aligned} & 511 \\ & 511 \end{aligned}$	$\begin{gathered} 1 \\ 408.2 \end{gathered}$	$\begin{aligned} 17.68 & \pm 1.95 \\ 5.01 & \pm 0.64 \end{aligned}$

$a_{\text {These }}$ values were calculated for the following geometrical conditions:

Collimator hole diameter $=0.438$ in. Collimator depth $=1.844$ in. Outer diameter of steel vessel $=16.000 \mathrm{in}$. Inner diameter of steel vessel $=13.736 \mathrm{in}$. NaI crystal dimensions $=2$-in. diameter $\times 2$-in. height

TABLE III.- COMPARISON BETWEEN EXPERIMENTAL RESULTS AND CALCULATED VALUES FOR I_{t} (air)/ I_{t} (water) FOR HALF-SCALE MODEL

$\mathrm{E}_{\text {dis }}$, keV	Air pressure, atm	$\frac{I_{t}(\text { air })}{I_{t}(\text { water })}$	
		Experimental value	Calculated value
200	1	3.60 ± 0.02	3.38 ± 0.23
511	1	3.99 ± 0.02	3.84 ± 0.28

L-83-1290
Figure 1.- Photograph of cylinder assembly for storage of cooling water.

Figure 2.- Relative importance of three major types of gamma ray interactions as a function of photon energy and absorber atomic number (ref. 1).

Figure 3.- Geometrical details of the gamma ray transmission computation problem. Linear dimensions in inches.

Figure 4.- Compton scattering effect. Paths of incident and scattered photons define scattering plane. Path of recoiling electron also lies in same plane.

Figure 5.- Schematic diagram of experimental system for monitoring presence or absence of water in test cylinder.

Figure 6.- Variation in counting rate as water is discharged from full-scale prototype water cylinder. ($\left.\mathrm{E}_{\mathrm{dis}}=511 \mathrm{keV}.\right)$

Figure 7.- Electronic circuit for the water level alarm system.

National Aeronautics and Space Administration NASA-451
Washington, D.C. 20546

Official Business

Penalty for Private Use, $\$ \mathbf{3 0 0}$

