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ABSTRACT

An improved theory for the prediction of the rotordynami¢ coefficients
of turbulent annular seals has been developed since the original, 15 February
1983, report [1] on this project. This supplentary report compares predictions
from the new theory to the experimental results of [1] and also introduces a
new approach for the direct calculation of empirical turbulent coefficients
from test, data.

An improved short-seal solution is shown to do a better job of calculating
etfective stiffness and damping coefficients than eithzr the original short-
seal solution or a finite-length solution. However, the original short-seal
solution does a much better job of predicting equivalent added-mass coefficient.
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INTRODUCTION

In the original report [1] on this contract, experimental results
were compared to a "short-seal" theoretical model [2] which employed
Colebrook's friction-factor formula [3] for predicting turbulent friction-
factors. Since reference [1] was completed, an improved finite-length
solution procedure [4]* has been developed, and the data have been reanalyzed
to directly calculate the Yamada-Hirs [5,6] empirical coefficents. This
supplementary report provides a comparison between the experimental data of
[17 and the new theory of [4] with empirical friction factor-coefficients
which have been directly obtained from the data.

*The analysis is included as Appendix A.



ORIGINAL PATE i
OF POOR QUALITY

IDENTIFICATION OF EMPIRICAL TURBULENCE COEFFICIENTS FROM TEST DATA

The finite-Tength-solution development [4] is provided in Appendix A.
The Teakage formula provided Eg. (15) of this reference is:

AP = {(1 +&) , [20-2¢8 (I+mo) g? + 4q] } p V? (1)
(1 +q)? (1 - q%)* 2

Where

p:  Fluid density.
£ = Entry Toss coefficient.

q= 88 T g; = Taper parameter.
Co, Cy: Seal entrance and exit clearances, respectively.
o= AL/C
1-++mo
A= o R™ (1+--) 2 yall friction factor.

4p*

Ryo = 2 V €/ v: Centered-position Reynolds number.
C= (Co+C,)/ 2: Average seal clearance.

L: Seal length.

vy = Fiuid Kinematic viscosity.

b= V/RW

V= Q/ 2mRC: Average axial fluid velocity.

Q = Volumetric flow rate.

R = Seal radius.

w = Shaft angular velocity.

B= 1/ (1 +4b?)

mo, no: Empirical coefficients for the friction-factor definition.



The data for each dynamic seal test includes the inlet and exit chamber
pressures and five pressure measurements within the seal. Two of the pressure
measurements within the seal are immediately interior to the inlet and exit.
The volumetric flowrate and inlet and exit temperatures are also measured.

Our objective is to take this data and de’usmine the entry-loss coefficient
£ and the empirical friction-factor coefficients_mo, no.

For the ith test case, the total entry-loss factor (1 + £i) is readily
calculated from the inlet pressure drop relationship

. (14 ki) . pVi?
AP . = 2)
01 (1 +q)? 2 (

Eq. (2) was solved directly for (1 + £j) for each test case.
The calculations of mo, no for a given test case is relatively straight-
forward provided A can be determined from experimental data, since

1., % 1, & mo
A (] + "4—5;) = 1o [RBO (] * "‘""‘) J

-3

1
,._1__ - {vipy o+ 'I R 'I + _.J.__. 2
I [A(1 + 4b2) 1 =1n {no) +mo In [R , ( 4b2) ]

Eq. (3) is linear in the parameters In (no) and mo. Hence, a least-square
curve fit of all cases for a given housing-rotor combination will yield the
desired data.

The determination of A from a given data set, i.e., a given rotor-housing
combination, represents the principal complication in executing this procedure.
The pressure drop within the seal, AP, is defined as the difference between

pressure measurements immediately interior to the inlet and exit of the seal.
for case i, Eq. (1) can be expressed;

2
(6; + 4q) iﬁ
(] - q2)2 2

APes =




Where
6; = 20y [1-8 (Itmo) g]

The quantity 61 may be readily determined from the experimental data.
Hence, one can solve for Xi as

Ay = TG/ 2L [1 -8 (T4mo) ¢?] (5)

where L' is the distance between the inlet and exit pressure tops. Direct
solution of Ai from tnis equation is complicated, because mo on the right-
hand side is unknown, This difficulty is resolved by an iterative procedure
wherein an initial value for mo js guessed, which permits an initial calculation
of the Ai's for all cases in a dats &et. After the least-square solution yields
an estimate for mo, no, the procedure is repeated using the updated estimate, mo.
Convergence is rapid since the product B (1 + mo) q* of Eq. (5) is generally
much smaller than unity.

Application of the above procedures yielded the results of Table 1,

Case Housing Rotor no mo___
1 1 1 0.20163 -,2796
2 1 2 0.07106 ~.1969]1
3 1 4 0.00213 . 15089
4 1 5 0.00985 .00980
5 2 1 0.07822 -.1182
6 2 4 0.03831 ~-.0162
7 2 5 0.04330 -, 0405
8 3 1 0.02300 ~-.0377
9 3 4 0.00394 . 1448

10 3 5 0.00513 L1118

Table 1. Empirical coefficients for the forced seal data of reference [1]
as determined from test data.




Of these ten cases, only tht first two have the same directionally-homo-
geneous surface-roughness treatment for both the rotor and housing., In the
remaining cases, a circumferentiaily-grooved surface roughness treatment
was inscribed in either the rotor, the stator, or both rotor and stator.
Complete dimensions and surface-roughness measurements for the rotors and
stators are provided in reference {1]. For comparative purposes, Yamada's
test results for smooth rotor and stators were no = 0.079; mo = -0,25.




FORCE COEFFICIENT CALCULATION AND COMPARISON

The "finite-length" solution procedure of reference [4] can be run in
either a finite-length mode or in an improved short-seal mode, The data
of Table 1 were used with the (improved) short-seal and finite-length options
of reference [4] to calculate radial and tangential force components for
comparison to the tapered-seal test data of reference [1]. Figures 1 through
10 117lustrate the results for the finite-length splution, while figures 11
through 20 §1lustrate the results for the improved short-seal solutions,

The data from these figures were used to calculate effective stiffness,
damping, and added-mass coefficients. The results for the finite-length and
improved short-seal solution options are provided in tables 2 and 3 respectively.
The equivalent comparison between the original short seal theory and experimental
results are provided in tables 4 and 5.

A review of the results for all data sets shows no clear superiority for
any procedure. As expected, the finite-Tength solution consistently predicts
smaller valyes for the seal coefficients than eijther of the short-seal solutions.

As spted earlier, the analyses only strictly apply to the first two data
sets fur which the same directionally~homogeneous surface roughness holds
for both the stator and rotor. To compare the solution approaches for these
data sets, the following Jeast-square error calculations were made:

EK= 7 [1 - (KEX/KTH)S ] (Stiffness)
i=

= N [1 - (CEX/CTH)S 7 (Damping)
= ! ]
i=

EM = & [0 - (MEX/MTH)? ] (Mass)

PR
H
—

where KEX and KTH are the measured and theoretical equivalent direct stiffness
respectively, etc.

-10 -
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10. F./A and Fy/A versus w for rotor 5, housing 3. Measured [1] and
finite-length theoretical results [4].
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improved short-seal theoretical results [4].

F,./A and Fe/A versus w for rotor 1, housing 1. Measured [1] and
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12. Fr/A and FG/A versus w for rotor 2, housing 1. Measured [1] and
improved short-seal theoretical results [4].
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13. Fr/A and Fe/A versus w for rotor 4, housing 1. Measured [1] and
improved short-seal theoretical results [4].
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14, Fr/A and Fe/A versus w for rotor 5, housing 1. Measured [1] anc
improved short-seal theoretical results [4].
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15, Fr/A and Fe/A versus w for rotor 1, housing 2. Measured [1] and
improved short-seal theoretical results [4].
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16. F./A and Fe/A versus w for rotor 4, housing 2. Measured [1] and
improved short-seal theoretical result [4].
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.17. F,/A and Fo/A versus w for rotor 5, housing 2. Measured [1] and

improved

short-seal theoretical results [4].
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18. FP/A and Fe/A versus w for rotor 1, housing 3. Measured [1] and

improved short-sea’ theoretical results [4].
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19. Fr/A and Fe/A versus w for rotor 4, housing 3. Measured [1] and

improved short-seal theoretical results [4].
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TAPERED SEAL THEOQRY

UNITS ARE N/M

HOUSING 1
RA=435, 000
RA=325, 000
RA=150, 000
RA= 75, 000
RA= 50,000

HOUSING 1
RA= 05O, 000
RA= 75,000
RA=150, 000
RA=335, 000
RA=450, 000

HOUSING 1
RA= 50, 000
RA= 75, GO0
RA=150, 000
RA=325, 000
RA=345, 000

HOUSING 1
RA= 50, 000
RA= 75, 000
RA=150, 000
RA=325, 000
RA=380, 000

HOUSING 2
RA= 75, 000
RA=125, 000
RA=150, 000
RA=275, 000
RA=330, 000

HOUSING 2
RA= 75, 000
RA=150, 000
RA=270, 00D

HOUSING 2
RA= 75, 000
RA=125, 000
RA=275, 000
RA=290, 000

HOUSING 3
RA=106, 000
RA=163, 000
RA=303, 000
RA=353, 600

HOUSING 3
RA=1064, 000
RA=164, 00D
RA=288, 000

HOUSING &
RA=10&, COO
RA=18E, 000
RA=30%, OGO

Table 4.

KEF
(EXP)
ROTOR 1
0, 8264E
0. 3852E
0. S826E
~-0. 2B39E
~0. 1894€
ROTOR 2
0. 2082E
0. 3744E
0 1192E
. A745E
0. 8%73E
ROTOR 4
0. 5074E
0. 7992E
0. 1900E
0. B8013E
0. 9892E
ROTOR &
~0. 4863E
-0, 4094E
0. 8287E
0. 724 1E
0, R20LE
ROTOR 1
0, 1308E
0. 7659E
0. 1386E
0. 8912
0. BO4%E
ROTOR 4
0. 1017E
0. 208%E
0, S061E
ROTOR &
=0, 5772k
0. 2427E
0, 3842&
0, 4905
ROTOR 1
0, 4500E
0. 1447E
0. 7211k
0. 9857E
ROTOR 4
0. 1598E
0. A5G&E
0.7121E
ROTOR 5
0. 7214E
C. 1495E
0 g124E

ORIGINAL PAGE I3
OF POOR QUALITY

SEAL 2 (TAPERED)

o7

00O oO0o

KEF

( THEORY)

00000 pooOO

0O0O0DO 000 ODOOD OLOOD 00000

[oReRoNel

. 9511E
. 3255E

1241E
1589E
1651E

a9B1E
5617E
1133E
5640
P450E

2701E

. 4103E

1860E
BYBLE
9419E

1695E
3645E
1519E

. 77€8E

FIIGE

5072E
1412E
1952E
63235
884 5E

4449E
2618E
76408

, 6502E

16058
7853E

. B373E

. 7782E
. 1928E
. 6818E

?160E

. 1190E

2B77E

. 8448E

. 9918E
. 2142E
. B780E

07
07
07
06
06

06
09
07
07
07

06
06
o7
07
07

06
o
07
07
07

06
07
07
07
07

06
07
07

06
07
07
07

06
07
07
07

07
o7
o7

06
07
o7

KEF
(EXP/THE)

0. 86879
0.7330
0. 4695
~-1.818
=-1.147

~0, 7055
«7, 028

1,082
0.8413
Q. 79495

1.886
1. 948
1,022
0.8917
1. 050

-0, 2869
-0, 1123
0. 5456
0, 9370
0. 9266

0, 2579
0, 5424
0.7100
0, 2350
0. 9100

1,877
0.7979
0. &624

-0, 8877E~01
0. 1512
0. 4892
0, 5858

0, 8353
0, 7517
1,058
1,076

1.343
0. 8815
0. 8500

0.7374
0. 6979
0. 9253
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CEF
(EXP)

0. 2099E
0. 1624E
2863.
136%,

522, 1

1098.

1451,

4122,
0. 138RE
0. 2056E

837. &

1647.

4628,
0. 2081E
0. 20B%E

755. 3

1585,
4749,
0. 1627E
0. 1935E

3530,
6787,
2197.
0. 2187E
0O, 2343

5586,
0, 1152E
0, 2117E

2734,
6638,
0. 2044E
0, 1851E

a73z2.

6972,
0. 1827E
0, 2a243E

2746,
7136,
0. 1942E

3819,
7248
0. 1984k

05
Q5

05
05

05
05

Qs
05

05
05

05

05

05
)]

0%
05

05

05

CEF
{THEQRY)

0. 1919E
0. 1501E
6561,
4329
3617,

6076
6050,
6865,
0. 1609E
0, 2044E

1711,
2632,

5800
0. 1371E
0. 1472E

18185,
"B21.
5910,
0, 1500E
0, 1662E

3498.

5752,
6879,
0. 122%E
0. 1445€

3331,
7171,
0, 1287E

3896.
6318,
0. 1354E
0. 1384E

4030,
6152
0. 1238E
0. 1461E

4370.
6990,
0, 1325E

4687
6888
0. 1394E

05
05

05
05

05
05

05
05

05
05

05

05
au

05
Q5

05

CEF
(EXP/THE)

1,094
1,082
0. 4364
0, 31862
0. 1443

0. 1807
0, 2398
0, 6004
0. 8589

1,007

0, 4B93
0. 6258
0, 797%
1,518
1,419

0. 4161
0, 55619
0, BO36
1, 085
1,164

1, 009
1,180
1, 337
1,779
1, 621

1,677
1, 606
1, 645

0.7017
1 051
i, 510
1,337

0. 9261
1. 133
1,476
1, 535

0, 6284
1, 021
1. 468

0. 8148
1,002
1,423

Measured and original short-seal theoretical [2] predictions for
effecEiﬁi direct stiffness and damping coefficients (Table 34,
ref. {1]).



R

ORIGINAL PAGY [t}
OF POOR QUALITY

TAPERED SEAL THEDRY BEAL 2 (TAPERED)
UNITS ARE kg
MEF MEF MEF
(EXP) (THEORY)  (EXP/THE)
HOUSING 1 ROTOR 1
RA=435, 000 3.61% 4. 952 0. 7309
RA=325, 000 19. 20 7. 563 2. 539
RA=150, 000 4,778 b, 709 0, 7122
RA= 75, 000 7. 571 10.77 0. 7027
RA= 50, 000 6, 075 10.18 0. 5965
HOUSING 1 ROTOR @
RA= 50, 000 2. 412 25, 65 0. 9402E-01
RA= 75, 000 3. 071 17. 92 0.1714
RA=150, 000 9. 912 8. 489 0. 5903
RA=335, 00U 7. 460 7. 808 1. 211
RA=450,000 =2 615 6. 481 ~0. 4034
HOUSING 1 ROTOR 4
RA= 50, 000 ~3, 935 3. 528 -1.117
RA= 75,000 =4, 759 4,074 ~1, 168
RA=150, 000 2. 360 2,275 1. 098
RA=325, 000 12 .22 0. 4564 26. 74
RA=345, 000 =7, 406 3. 546 -2, 088
HOUSING 1 ROTOR 5
RA= 50, 000 6 240 4.852 1.286
RA= 75,000 9. a2 4,972 1,855
RA=150, 000 11, 84 5. 480 2, 160
RA=325,000 =1, 46b 4.107 ~0, 3569
RA=380, 000 -7, 613 3. 668 -2, 076
HOUSING 2 ROTOR 1
RA= 75,000 20. 86 3. 540 5. 892
RA=125, Q00 29. 98 2, 48 i2. 35
RA=150, 000 24.98 -0. 5142 ~48. 58
RA=2735, 000 24, 61 1.41% 17. 27
RA=330, 000 36. 44 1,332 27,34
HOUSING 2 ROTOR 4
RA= 75,000 =3, 496 1. 999 -1, 749
RA=150, 000 19,79 ~0. 7348 ~26, Bé
RA=270,000 =3, 745 1,129 ~3. 316
HOUSING 2 ROTOR 5
RA= 75,000 16, 21 2,098 7. 726
RA=125, 000 as, &0 2. 912 B. 788
RA=275, 000 7. 951 0. 2855 27.85
RA=290,000  ~5, 85 3. 145 -1, 860
HOUSING 3 ROTOR 1
RA=106, 000 16. 53 3 316 3,176
RA=1463, 000 12. 94 . 102 G, 425
RA=303, 000 11,01 2,147 5. 499
RA=355, 000 4. 248 2. 908 1.459
HOUSING 3 ROTOR 4
RA=104, 000  -0. 9733 1,198 -0, 8123
RA=164, OO 7. 962 0. 5082 15,76
R&=288, 000 ? 343 1,528 4, 122
HOUSING 2 ROTOR 5
RA=106, 000 13. 70 2. 238 &, 121
RA=155, GOU 17. 72 1,270 13. 95
RA=305, 000 16. 18 1, 262 8. 070

Table 5. Measured and original short-seal theoretical [2]
predictions for effective added-mass coefficients
(Table 40, ref. [2]).
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The results of these error calculations are presented in Table 6 below,

| EK EC EM
Finite 1.618 2.14 1m.7
Improved Short .042 1.27 78.8
Original Short .049 2.96 4,45

Table 6. Least square error calculations for the
first two data sets of Tables 2 through 5.

Obviously, minimum values of error are desirable. For prediction of effective
stiffness and damping coefficients, the improved short-seal solution is seen
to be the best. However, the original short-seal solutions is much better

for calculating the eguivalent added-mass coefficient, More specifically,
measured added-mass coefficients are much larger than predicted by either

the finite-Tength or the improved short-seal solution.
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APPENDIX A

FINITE-LENGTH SOLUTIONS FOR THE ROTORDYNAMIC COEFFICIENTS
OF CONVERGENT-TAPERED ANNULAR SEALS

D. W. Childs
Mechanical Engineering Department
Texas A&M University
College Station, Texas 77843

ABSTRACT

A combined analytical-computational method is developed to calculate
the pressure field and dynamic coefficients for convergent-tapered high-pressure
annular seals which are typical of neck-ring and interstage seals employed iﬁ
multistage centrifugal pumps. Completely developed turbulent flow is assumed
in both the circumferential and axial directions, and is modeled by Hirs'
buTk-flow turbulent-Tubrication equations. Linear zeroth and first-order
perturbation equations are developed for the momentum equations and continuity
equation. The development of the circumferential velocity field is defined
from the zeroth-order circumferential-momentum equation, and the nominal
pressure-leakage relationship results from the zeroth-order axial-momentum
equation.

The first-order perturbation yields three partial differential equations
which are raduced to three ordinary, complex, differential equations in the
axial coordinate z. These linear equations are integrated to satisfy the
boundary conditions, and definevthe pressure distribution due to seal motion.
Integration of the pressure distribution defines the reaction force developed
by the seal and the corresponding rotordynamic coefficients. The solution
does not employ linearization with respect to the magnitude of the taper
angle or the degree of swirl. Finite-length solutions are compared to

"short-seal" solutions.



NOMENCLATURE

=
=

3 3
o -
1l =Xt

=
o
n

H

Uggs Yp1*

Uzp» Yz71°

= Z/L

-0.25
0.079

Uz/Rw )
= Ue/Rw

Dimensionless coefficients defined in Appendix C.
Dimensionless coefficient defined in Eq.(9).
Dimensionless damping coefficients defined by Eq.(34).

Seal discharge coefficient defined by Eq,(15),

Dimensionless clearance function defined by Eq.(2).
Dimensionless clearance function.

First~order perturbation clearance function defined
by Eq.(4) and (18).

Dim?ns;onless seal stiffness coefficients defined by
Eq.(34).

Dimensionless mass coefficients defined by Eq.(34).
Coefficients for Hirs' turbulent Tubrication equations.

Fluid pressure (F/L?).

Zergth~order perturbation pressure introduced in
Eq.(4), (F/L?).

First-order gerturbat1on pressure introduced in
Eq.(4), (F/L*)

Dimensionless perturbation pressure defined in Eq.(8).
Taper-angle parameter defined in Eq.(3).

Independent variable time (T).

Dimensionless axial and circumferential velocity components.

Zeroth and first-order perturbations in Ug-
Zeroth and first-order perturbations in Ug.

Dimensionless swirl variable introduced in Eq.(7),
and defined by Eq.(11).

Initial (z=0) swirl.

Dimensionless axial coordinate.



H(z,0,t):

=
H)
k=)
P ame
=
1=
-
x
~
=

=
n
ny
ke
<l
0
~.
=

Z, RO:

Nominal seal radial clearance, (L).

Entrance and exit clearances, respectively, (L).

Clearance function, introduced in Eq.(4), and defined
in Eq.(l7) » (L).

Centered-clearance function defined by Eq.(2), (L).

?lgst~order perturbation in H, introduced in Eq.(4),

Seal length (L).
Seal supply pressure (F/L?).

Nominal pressure-drop across seal (F/L%),
Seal radius (L).

Circumferential Reynolds number.

Axial Reynolds number,

Centered-position, circumferential Reynolds number.
Centered-position, axial Reynolds number,

Transit time for a fluid element to traverse the seal.
Seal tangential velocity.

Axial and tangential fluid velocity components (L/T).

Centered-position axial fluid velocity (L/T).
Centered-position average fluid velocity (L/T).
Radial seal displacements (L).

Spatial coordinates illustrated in Figure 2.
Seal taper angle illustrated in Figure 2.

Seal eccentricity ratio introduced in Eq.(4).

Inlet pressure-loss coefficient.



1

AL/C
t/T:

Dimensionless friction-factor defined in Eq.(9).

Dimensionless time,
Shaft angular velocity (T7?%).

Shaft precessional velocity (T '), introduced in
Eq.(23).



INTRODUCTION

In a series of publications, Black et al. [}1-3] have explained the consid-
erable influence of seal forces on the rotordynamic behavior of pumps. figure
1 illustrates the two seal types which have the potential for developing
significant rotor forces. The neck or wear-ring seals are provided to reduce
the back Teakage flow along the front surface of the impeller face, while the
interstage seal reduces the leakage from an impeller inlet back along the
shaft to the backside of the preceding impeller. Pump seals are geometrically
similar to plain journal bearings, but have clearance-to-radius ratios on
the order of 0.005, as compared to 0.001 for bearings. Because of the clearances,
and normally-experienced pressure differentials, fully-developed turbulent
flow normally exists in pump seals,

As related to rotordynamics, analysis of seals has the objective of defining
the reaction forces acting on the rotor as a consequence of shaft motion. For
small motion about a centered position, the relation between the reaccion-force
components and shaft motion may be expressed by

K k| (X X
_-kK’Y Y

FX f

Unlike hydrodynamic bearings, seals develop significant direct stiffness in the

C ¢ M m

(1)

+
-m MJ

+

-¢ C

centered, zero-eccentricity position due to the distribution of the axial pressure
drop between (a) inlet losses and (b) an axial pressure gradient due to friction
losses. Further, experiments [2] have shown that the above relationship holds

for fairly large eccentricities on the order of 0.5; i.e., the dynamic coefficients
(K.k,C,c,M,m) tend to be relatively insensitive to changes in static eccentricity
ratios.

P~ior analysis to define seal rotordynamic coefficients has involved the




following developments:

(a) Black and Jenssen [2], [3] used a bulk-flow analysis, with the
circumferential bulk-flow velocity assumed to be fully-developed shear flow
at %?‘. In these analyses, the axial-momentum equation incorporates Yamada's
[4] friction-factor results for flow through rotating concentric cylinders,
with the friction factor defined by average circumferential and axial Reynouids
numbers. In analogy to "short-bearing" solutions, a short-seal solution is
developed, which accounts for the circumferential flow due to shear, but
neglects that due to pressure. The short-seal solution provides a definition
for the dynamic coefficients of Eq. (1).

(b) In an appendix to [1], an approximate finite-length solution is developed,
and correction factors are developed as a function of L/D ratios for the short-
seal dynamic-coefficient solutions.

(c) In [3], Black and Jenssen define the friction factor as a function
of the loca] axial and radial Reynolds numbers, i.e., the local clearance.

(d) Allajre et al. [5] used Black's model to numerically calculate
dynamic coefficients at large eccentricity ratios. Further, while Black and
Jenssen define seal coefficients in a coordinate frame that rotates at half
the shaft angular velocity, and employ a coordinate transformation to achieve
stationary-reference results, Allaire et al. perform all calculations in a
stationary reference frame,

(e) Black et al. [6] combined prior seal-analysis governing equations
with equations previously derived for the analysis of "Journal-bearings with
high axial-flow in the turbulent regime," to examine the development of circum-
ferential flow in a centered seal as a function of axial seal position. They
demonstrate that the circumferential velocity starts from an arbitrary initial

velocity and asymptotically approaches-%g as it proceeds axially along the



seal, Stated differently, they account for the influence of inlet swirl.
Predictions of the stiffness cross-coupling coefficient are generally reduced
if the development of circumferential flow is accourited for in seal analysis.
This analysis does not include the dependence of the friction-factor on local
Reynolds numbers, i.e., local clearance introduced in [3].

(f) Childs [7] performed an analysis of straight turbulent seals for
small motion about a centered position based on Hirs' turbulent lubrication
equations [8]. The short-seal analysis was employed under less restrictive
assumptions than those previously employed to derive seal dynamic coefficients.
A single derivation, from one set of governing equations, yields results which
include all previous "short-seal" solution developments.

(g) Childs [9] completed a finite-length solution for straight turbulent
seals using the Hirs-based model of [7].

(h) Fleming [10] analyzed straight seals with one-step and convergent
tapered seals; concluding that optimally tapered seals can develop considerably
higher direct stiffnesses than straight seals. Fleming's analysis yields only
the direct stiffness term, and does .not include the effect of swirl; hence, |
his results are not adequate for a rotordynamic analysis of pump response or
stability. Childs [11] performed short-seal analysis of convergent-tapered seals
based on Hirs lubrication equations which defines all of the required dynamic
coefficients of Eq. (1).

The present analysis yields finite-length solutions for convergent-
tapered seal geometries. The model is analyzed using the method of reference

[9]; however, unlike preceding analyses, linearization assumptions are not

required with respect to the magnitude of either the taper angle or swirl.




Seal Geometry

Figure 2 illustrates the seal geometry. The clearance at the centered

position is defined by
Hy = (C+%5) - az = T[L+q(1 - 22)] = T (2)

where o is the seal taper angle, and

E:(C +C)/2 z =7/l q:.q_'l:.zg_q_:__(.:_!:
o+ Gl/2 ’ el (3)

The ratio of entrance to exit clearances is

Y0_.1+q
. ST

The clearance ratio CO/C1 is the following tabular function of q

VR 7 3 2 1.67 1.285
q 1 0.75 0.5 0.333 0.25 0.125

where q = 1 corresponds to a zero-clearance exit. Given that Fleming's optimum
stiffness choices for CO/‘C1 are between 1.8 and 2.2, maximum values for q to

be expected in practice would be Tess than 0.4.



Simplified Perturbation Equations

Hirs' governing equations are provided in Appendix A, and are thoroughly
discussed in reference(8]. These bulk-flow equations define the axial and
circumferential velocity components (uz,ue) and the pressure, p, as a function
of the spatial variables (Re,Z) and time, t. The equations are expanded in
the perturbation variables

Uy = Upg + Elyy 5 H = Hy + el (4)

Ug = Ugg * EUgy » P =Py *EPy

"

where € = ¢/C is the eccentricity ratio, to yield the perturbation equations
of Appendix B.
These prrturbation equations may be markedly simplified by carrying out
the following steps:
(a) Introduce the following nondimensional variables
z=1Z/L, T=t/T (5)

where T is the fluid transit time defined by

T =LV (6)
(b) Introduce the swirl variable v defined by
(c) Introduce the nondimensional perturbation pressure

By = py/oV* (8)

where V is the average fluid velocity.
(d) Identify the friction-factor coefficient
1+ mo
- AL - mo 1 1> V
o= A noRao [l + W] , b (9)

— 3 =m
The parameter A can be factored out of the terms noAi occurring in
Appendix B. This factoring step yields the a; coefficients of the

following equations, as defined in Appendix C.
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Following these steps, the governing equations become
Zeroth-Onden Equations

(a) Axial-Momentum Equation

dp 72
= - % (oa, + 29) (10)

(b) Circumferential-Momentum Equation

dv , @
dz T 2Fi =0 (11)
Fiuwit-Onden Equations
The first-order equations of Appendix B are additionally simplified by
substitution from Eqs(10) and (11) to yield

(a) Axial-Momentum Equation

3y hy 9z 2q7Y
- — e - Z1 é
> (1 mo)caofu + [§a0 + (1 + mo)—=+ = } e (1%)
u ou ou ou
o1 . 1[%z 21, 1%
HL # mojoag—+ § [a—r‘ tuTls + Vg * ¥ ]

(b) Circumferential-Momentum Equation

op h u

. (__ — = . - mo)o'a + [208,. + (1 + mo)ca ] (13)

R) 8 Lobse ° 4 v

(1 + mo)oa ca du ou du
2 1 1] "6l 6l 1 61]
{(c) Continuity Equation

ou du 2gh oh oh

Z1 . (L %Y1 2q _-b [ 1 11 (14)
52 T (R> 56 f Uz < “??[‘fz +uTls + V) 55—+ 5 ]

In contrast to earlier developments [7,9,11), g and v are not treated as

small parameters in obtaining these equations.



Zeroth-0rder Perturbation Solutions

The zeroth-order continuity equation has the solution HoUzo = constant,
and the centered-position axial-velocity distribution is accordingly defined

in terms of the volumetric flowrate Q and cross-sectional area by

V(z) = Q/2nRH = Q/2mRCf = V/f

where V is the average or mid-seal velocity. Hence,
Uzg = V(z)/Rw = b/f

Eq.(11), the circumferential-momentum equation which defines v, is non-
Tinear, but may be integrated numerically without difficulty. Alternately,
linearization of Eq.(11) in terms of q and v yields a reasonable approximation
of the nonlinear solution, [11]. The nonlinear numerical solution is used in
the present study.

Linearization of the zeroth-order axial-momentum Eq.(10) in q and v is
helpful in providing an initial estimate for leakage, and yields the following

steady-state relationship

114

pV? pV? 1+ ¢
1+q

4q + 20[1 - B(1 + mo)q?
AP = Cd 5 > ( q a E( )9%] (15)

7 * (1 - g°)*

where

B = 1/(1 + 4b?),

and & is the entry-loss coefficient. The term

0, = O At 2;2 (16)

accounts for the total pressure drop at the inlet, while the remaining terms
account for the pressure drop due to wall friction and Bernoulli effects. For
a specified AP, Eq.(15) may be solved iteratively for the average velocity V
and associated leakage. The exact solution is obtained by iteratively solving

the coupled differential Eqgs.(10) and (11).
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First-Order Equation Solutions

The preceding equations define pl(z,e,r), UZ](Z,G,T), and uel(z,e,m)
resulting from the seal clearance function hl( 8,7). The clearance H is
defined in terms of the components of the seal-journal displacement vector (X,Y) by
H=H - Xcosg - Y sing (17)

Hence, by comparison to Eq. (4)

1

eh, = =X cos® - y sing (18)
where

x=XTCT,y=Y/C
Note that h, is not a function of z, and its time dependency arises from the
displacement variables x(t), y(t). |

Solutions for the equations cited above must satisfy the circumferential
continuity conditions

uz](z,T,e) = UZ](Z,T,9+2W)

uel(z,r,e) = uel(z,r,e+2n)
51(2,'1',6) = El(z’Tse"‘Z'ﬂ') '
To satisfy these conditions, the following solution format is assumed

Uz1(2,7,8) = Uyyo(2,7) cost + usqc(z,1) sing

u,.(z,1,8) = ue]C(Z’T) cosp + UG]S(Z’T) sing (19)

01
Bl(z,r,e) = E]C(Z,T) cose + §1S(Z,T) sing

Substituting from Eqs. (18) and (19) into Eq. (12) eliminates 6 as an independent

variable, and yields two real equations. By introducing the complex variables
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Appendix C: Definition of a,

n

ZaOB G1 + G2

alB =

1
-
-
4
nR---
S
j<p}
j —
+
-
<
H
[ty
h
o
N

2
%B=@)“v+gm3+(v-gMﬂ
agB = Gy + Gy

2
38 =) v + 0% + (v - )%,

where

1+mo
6y = {1+ [7(v + /517
1+mo
6y = {1+ [f(v - 2)/61%) 2
mo-1
Gy = {L+ 070w + 1%} ©
mo-1
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mo~1 =

ot

o = oo (og® * z0®) ¥+ ugg - 1)lugy - 17 + ugg?)

mo=-1

where

mo~1
Ag = upg? {“‘eo2 Fuge®) T [lugg - 12+ ugg?) }

(b) Circumferential-Momentum Equation

~Hn? op H
0 1 1 _ no ,l+mo 1
W R w ° 7 Reo (1+mMAK79

no ,l+mo
t RCO [Ao + (1 + mo)A4Ju61

no 1+mo
Yo7 Reg o (14 mo)Aguygug,

au u u au
o1 , Yo 9Yg o1
* Reofo ) o t 56 T Uz 57
H1 au 0
¥ [2<H5> uzo * “21] 57
where mo-1 mo-1
Ay = Ugg®(ugg® + ugp?) + {ugg = 1)%[{ugg =~ 1)% + uy02]

(c) Continuity Equation

au
70 3 A1
M3zt Moup) + = 5 1 5 % 3
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Appendix B: Tapered Seal Perturbation Equations

Substitution of the perturbation variables of Eq.(2) into the equations
of Appendix A yields the following perturbation equations:

Zeroth-0rder Equations

(a) Axial-Momentum Equation

~Ha? dp du
0 0 _ no pl4mo 20
- a7 ° 7 Reo YzoPo * ReoMouzo —a7—
L4mo 1+mo

2 2

(ugo™* uz?) © [<”eo - 1)F “zoz]

I

Ao

(b)Y Circumferential-Momentum Equation

Holzo 'ciau’g‘g' + 13 Rgg Ay = 0
AL = Ugg [“602 + uzoz] Ty (ugg - 1){(“90 - 1)% + ”zoz]
(c) Continuity Equation
Uzg = b/ f

First-0Order Equations

(a) Axial-Momentum Equations

w0 %7 T Twu %2 Z "Co Hy

-HA? ap 2H~H, 9p H
0 1 0"'1 0 ., no pl+mo ; 1
: = + —= R (1 + mo)Anu ( )
0-Z0 HO

no ,l+mo
no ,l+mo
u u ou au
1 Z1 80 71 71
*HReo | 7 35 *® I8 T Y20 2

H
401 du
+ [2(-—)u + U ] Z0
HO 70 71 57
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Appendix A: Hirs' Turbulent Lubrication Equations OF POOR QUALITY

Hirs' turbulent Tubrication equations ([8] define a bulk-flow theory which
does not explicitly make any assumptions concerning either (a) local flow
velocity due to turbulence, or (b) the shape of average flow-velocity profiles.
Only the bulk-flow relative to a surface or wall and the corresponding shear
stress at that surface or wall are considered or correlated. Hirs' axial and

circumferential momentum equations can be stated, respectively, as

H2 3 1+ Limo L1mo
— = no mo 2 2 - 2 2
n '3_% = Re uz(ue +uf) 2t UZ[(Ue 1)% + uy*]
du Hu, du ou
H Z 0 JA JA
+RC"U“ & R % T Mzoar (A.1)
2 Limo 1+mo
-H® 1 3p _ ho p 14mo 2 2y 2 ) ey 21 2
W~ R 96 " 72 Re “e(”e Uy ) + (Ue 1)[(U9 1)+ u,?]
ou Hu, ou au
H %%, Mg °Y )
+Rc)u 5t TR e iz 3z (A.2)
with the bulk-flow continuity equation
Hu
(7)1 3 1 oM _
S5t R w0 Mug) g 5E= 0 (A.3)
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where Ry = Cry is the amplitude of seal motion, The components are expressed

as a function of QT, because for a given seal geometry-(L,R,C) and set of
operating conditions (AP,w), the excitation frequency QT is the only independent
variable, Stated-differently, Zgq. (33) provides a frequency-response solution
for the reaction force components.

To calculate seal coefficients, a comparable statement of reaction-force

components is developed from the following nondimensional statement of Eq. (1)

~ [T

v {Fx K K] (X t (X Mo
o770 W VR S B AU I 8 G o VR (34)
" Fy -k K[{Y -c Cl Y -n Mty
Substitution from Eq. (32) yields
A (9T) - - .
XL = 2 . _20 1
mRapR. - K+ elan) - Mlan)® = o7 fyplz)dz
(35)
AFL(QT) . . -
8 - 2 _ -20 1
PR " k- ClaT) - mlan)® = T o7 fagle)dz

N .

Hence, the dynamic seal coefficients (K,k,C,c,M,m) may be obtained by comparing
the solution obtained by Eq. (33) with Eq. (35). More specificaily, they are
obtained by a least-square curve-fit of the solutions stated on the right-hand

side of Eq. (35)
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Dynamic Coefficient Definitions

Having obtained the pressure-field solution of Eq. (30), solution for the
dynamic coefficients will now be undertaken. The reaction-force components

acting on the rotor due to shaft motion are defined by

2 1 2

n

-eRL S| S ™ B, cosededz

u
o/ Pjcos6dedz

il
><
—
ct
S~
1

-eRLpV? o o

1 2 1 2

]

/ " Elsinededz

T .
o p,sinddedz

s
—<
-
t
~
I

= 2
-eRL o/ -eRLpV of of

From the last of Eq. (18), these integrals further reduce to

]

Fx(t) = ~gRLmpV? of] Elcdz ; FY(t) = -gRLmpV?2 Pyedz (31)

cf

The motion defined by Eq. (22) is orbital at the precessional frequency & and
radius Ry This statement may be confirmed by comparing the last of Eq. (19)

with Eq. (22) to obtain

X = E}o cosQt , Y ='Ero sinQt (32)

Definition of the reaction forces is simplified by performing the integration
at a time when the rotating displacement vector is pointing along the X axis,
i.e., when 9t = 0. Eq. (24) shows that p; and Ei coincide for this time and
Tocation. Hence, Eq. (31) yields the following component force definitions

parallel and normal to the displacement vector

- 1o (TRLV2) Of] facl2)dz

F.(aT)

1
of f38

A useful nondimensional version of these equations is

1

Fe(QT) - ro(wRLdVZ) (z)dz

AF_(aT) -2
WRAPRO Cd 0

f3c(z)dz

AF . (0T)
a8 _ =20 1
TREPR T, o/ Fis(z)dz



¥

. ORIGINAL Prer pe
Y71 = Uz1c * 3 Upg OF POOR QUAB‘EEE

Yg1 = UYprc * J Yg15

By = Pyg t 3 Py (20)
h

i: 2<.+jl,

€ € €

these two equations may be combined to obtain

aggl - JfwT(s + v)ugy + f Eé%l'+ %'[ao + {1+ mo) f§'+ %%] Y71
+ g%; (1 +mo)ay ug, + bf ggl' - ~%% (1 - mojag (gl' (21)
A similar operation on Eqs.(13) and (14) yields
ngl - JuT(s + V)ug, + f aggl * %.[ao + (1 + mo) ;ﬂilgel (22)
+ 2%; [(1 + mo)a2 - fzg%] Uyq = jfb(%) By = é%;(l - mo)al <§l>
?‘gzy" ) j(%)‘-‘m P - %[ﬁ% @l) - el t V)(gl) ! iﬂ <2—1->]

The time-dependency in these equations is eliminated by assuming a harmonic

seal motion of the form

h, = —R—q ejQ‘t = p ejQTT (23)
-1 E' 0
where ro is a real constant, The associated harmonic solution can then be

stated

EZI(Z’T) = aél (z) eJQTT
!el(Z:T) = Uél (Z) ejQTT (24)

py(z,7) = B, (2) T
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Substitution from Eqs. (23) and (24) into Eqs. (19) and (20) yields

Y21 Uz1 - 93
4 oy * [AT (gt = () {9
- — (25)
where
(Al = | -2q -3 (k) o ]
7 R
bo 21 g ] . oL
pye [(1 + mo)a2 f bz] oF [Zao + a4(1 +mo)| + FFrT -Jfb<§)
a
O fa 4.3 ;IT ol + mo) swT
bf2[%°+ 5 (1+mo) + 4q] + ] 5 pye ay + - 0
N A
(26)
2 DT
9 b(f—S» + ‘F’) \
92131={ -(1 - mo)oal/Zf2 (

93

where

-[2 + (1 - mo)oa 1/f* + Jr1/f2 )

I =Q-w(l% + v)

The following three boundary conditions are specified for the solution of

Eq. (25):
(a)

(b)

The exit perturbation pressure is zero, i.e.,

P (L) =0 (27)
The entrance circumferential velocity perturbation is zero, i.e.,
“61(0) =0 (28)

The pressure Toss at the seal entrance is defined by

2
P - P0,6,7) = 5 U5 (0,8,7)(1 + €)

This equation yields the following perturbation-variable boundary conditior

5 (0) = - (1+8) Tp/b(1 + q) (29)
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Solution of the differential Eqs. (25) in terms of the boundary conditions
is relatively straightforward, yielding a solution for the velocity and pressure
fields of the form

Ué] f1c(z) + J f]s(z)
Ugy = () {foclz) + 3 fip5(z) (30)
) Faclz) *+ § Fagl2)
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