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ABSTRACT

"This study considers the accuracy of the finite difference method
in the solution of linear elasticity problems that involve either a stress
discontinuity or a stress singularity. Solutions to three elasticity
problems are discussed in detail: a semi-infinite plane subjected to a
uniform load over a portion of its boundary; a bimetallic plate under
uniform tensile strass; and a long, midplane symmetric, fiber-reinforced
laminate subjected to uniform axial strain.

Finite difference solutions to the three problems are compared
with finite element solutions to corresponding problems. For the first
problem a comparison with the exact solution is also made.

The finite difference formulations for the three problems are based
on second order finite difference formulas that provide for variable
spacings in two perpendicular directicns. Forward and backward
difference formulsas are used near boundaries where their use eliminates
the need for fictitious grid points. Moreover, forward and backward
finite difference formulas are used to enforce continuity of interlaminar
stress components for the third problem.

The study shows that the finite difference method employed
in this investigation provides solutions to the three elasticity problems
considered that are as accurate s the corresponding finite element
solutions, Furthermore, the finite difference method appears to give
a solution for the laminate problem that characterizes the stress
distributions near an interface corner in a more realistic manner than

the finite element method.
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I. INTRODUCTION

A serious failure mechanism for laminated composite materials is edge
delamination. Various numerical methods have bteen used in attempts tu
calculate the interlaminar stress components that accompany delamination in
a finite-width [+ 45]g angle-ply laminate under uniform axial strain
(1,2,3,4). These efforts have resuited in serious discrepancies in reported
behavior for the interlaminar normal stress distribution near an interface
corner [4]. For example, a finite~difference procedure [1] and a
perturbation procedure [2] predict tensile interlaminar normal stress near
an interface corner, while finite element methods [3,4] predict compressive
normal stress in this region. Furthermore, some uncertainty exists
regarding the character of the in-plane, interlaminar normal and shearing
stress distributions near an interface corner that are predicted by finite
element methods [3,4].

The primary purpose of this investigation is to determine if the finite
difference method i1s capable of providing accurate predictions for the
interlaminar stress components near an interface corner and, hence nea a
stress singularity.

A cecond purpose of this investigation is to determine if predictions,
by finite element methods, for in-plane, interlazminar stress components near
an interface cormner accurately represent laminate behavior; and, if these
predictions are spurious, to cast light on the origin of the weakness in the
finite element method that results in the spurious behavior.

In this investigation the finite difference method has been used to
obtain numerical solutions for three different problems that involve

a point where a stress component becomes discontinuous or singular. These




problems are: (a) uniform pressure on part of a semi~infinite plane

(Figure la), (b)j a bimetallic plate under uniform axial tension (Figure 5a),
and (c) a finite-width [+ 45]B angle~ply laminate under uniform axial
strain (Figure 8a). Solutions to each of these problems via finite element
methods are reported in reference [4].

The finite difference procedure used in this investigation providus for
variable grid spacings in two perpendicular directions., Consequently,
computational efficilency is effected by taking closely spaced grid lines in
regions where the stress components are expected to vary rapidly, and a
coarser grid in regions where the stress components do not vary rapidly.

The coefficient matrix corresponding to the system equations is
unsymmetrical; therefore, it 1s necessary to store the entire band of the
coefficient matrix, Moreover, an equation solver capable of handling un-
symmetrical systems of algebraic equations must be available. Nevertheless,
variable grid capability leads to more efficient computations than finite
diffcrence procedures that use uniform spacing because substantially fewer
grid lines are needed to realize an accuracy comparable to the accuracy

associated with a specific uniform grid,

II. DISTRIBUTED LOAD ON A SEMI-INFINITE PLANE

Figure la depilects a semi~infinite plane that 1s subjicted to a uniform
pressure on part of the edge y=0, The exact solution for this problem is given
in reference [4] and indicates that ny(i a,0) =+ p/m when the points (+ a,0)
are approached along the lines x = +a. Consequently, ny i ny at these points.

It is of interest in this investigation to obtain a numerical solution for
this problem based on the finite difference method, and to compare the finite
difference, finite element, and exact solutions for the stress distributions

(ox, cy, axy) along the lines x = t a.



For discretization purposes it is assumed that the stress component are
nearly zero for x > + l0a, and that vertical displacements are essentially zero
at a depth y > lUa. Moreover, for computational efficiency use is made of
symmetry with respect to the line x = 0,

Boundary Value Problem. The field equations associated with the distributed

load problem are listed below.
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Numerical Results, The finite-difference grid used to analyze this problem

is shown in Figure 1b, Vertical grid lines are more closely spaced on elther
side of the line x = a, while the horizontal grid lines are more closely
spaced near the line y = 0. Numerical values of grid spacings for the

x and y directions are listed in Table I, The numerical results to be
discusged are based on these spacings which correspond to 2,146 degrees of
freedom,

In Figures 2 and 3 the open circles and dashed lines represent numerical
solutions obtained via the finite difference and finite element methods,
regpectively, and the solid lines represent the exact solution, for the
stress components o, oy and cxy along the line x = a. The fiailte dif-
ference and finite element solutions for cx(a,y) and cy(a,y) exhibit excellent
agreement everywhere. The finite difference and finite element solutions
for oxyCa,y) show excellent agreement with the exact solution except near
the point (a,0) where the finite difference solution appears to provide a
someyhat better agreement - except for the first two nodes of the finite
difference grid. The finite difference solution for cxy(a,y) is "drawn"
to zero by the enforced zero shearing stress at the boundary, while the
finite element solution is "drawn" down but not to a zero value at the
boundary.

It appears that requiring the stregs tensor to be symmetrical at the
point (a,0) affects the finlte difference solution for the shearing stress
ny(a,y) only in a small region that is confined to the first two finite
difference grid points. This region can be made as small as desired, con-~

tingent on numerical limitations.




The finite difference solution for the stresses Uy ay, and dxy shown
in Figure 2 is based on a boundary value Qy = -~ p/2 at the point (a,0);
that is, on an average of the boundary load intensity to the left and right
of the point (a,0). A finite difference solution using oy(a,o) w - p diffets
from this solution only in a small region near the point (a,0) as shown by
the open circles and solid curves in Figures 4a, 4b, and 4c. From these
figures it is seen thLat oxy(a,y) is essentially the same for either
cy(a,o) = ~ p/2 or oy(a,o) = ~ p, while the solutions for oy and o, are
affected dramatically in the vicinity of y = 0. Otherwise, the finite
difference solutions using cy(a,O) = - p/2 o1 oy(a,o) = - p are essentially
identical.

Since the stress tensor is unsymmetrical at the point (a,0) it was of
interest to determine 1f a more accurate representation of the behavior of
ny(a,y) could be obtained near the point (a,0) by discarding the symmetry
relabiea ny = oyx at this point and replacing‘it with a finite moment
equation that would require oyx(a,o) = 0, but oyx(a,o) # cxy(a,O). In
addition to the finite moment equation, a finite force equilibrium was intro-
duced. The stress distributions for cy and o, are egsentially identical to
the finite-difference solution for ay(a,o) = - p/2 and oyx(a,O) = oxy(a,0)=()
everywhere (solid lines in Figures 4b and 4c). The shearing stress distribu-
tion differs only in the neighborhood of the point (a,0). The shearing stress

oxy(a,y) for the case cyx(a,O) # cxy(a,o) is indicated by the dashed line in

Figure 4a.
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III. BIMETALLIC PLATE UNDER UNIFORM TENSION

Figure 5a depicts a bimetallic plate under uniform iensile stress along
the edges y = + 8a with stress-free boundaries at the edges x = ¢, 8a. A
numerical solution for the stress components along the bond line, based on
the finite element method, is given in reference [4] for a rigid bottom plate.

It 1s of interest in this investigation to obtain a numerical solution
for the stress components along the bond line using the finite~difference
meZhod, and to compare this solirion with the finite element solution obtained
in reference [4]. ¥t is of particular interest to observe whether the finite
difference method is capable of predicting the behavior of the shearing stress
compJuent near the intersections of the bond line and the free edges.

Boundary Value Problem. The plane strain field equations for the bimetallic

plate with a rigid bottom plate are obtained from the plane stress field
equations given by Equations (1)-(3) by replacing E anl v in these equations

% 2 o
by E = E/(1l-v°) and v* = v/(l-v) and affixing the boundary conditions

0,0,y) = 0, (0,y) =0

u(la,y) v _(4a,y) =0
s X

[}

u(x,0) v(x,0) = 0

0 <x < 4a )
cyx(x,Sa) =0, oy(x,Sa) =p

These boundary conditions make use of symmetry with respect to the plate

centerline x = 4a.



Numerical Results., Figure 5b shows the finite~difference grid used to analyze

the bimetallic plate problem, Since the bond line styress components are
expected to change rapidly near the singular point 0, the finite difference
grid lines are more closely spaced in the region near point O, Numerical
values of spacings for the x and y directions are listed in Table II.
Numerical rasults presented in this section are based on these grid spacings
which correspond to 2,340 degrees of freedom.

Corner points of a rectangular finite difference grid are usually
troublescme because a decision must be made as to which of two possible sets
of boundary conditions to employ there. In the present investigation it was
physically appealing to require the displacement components (u,v) at the
corners of the bond line to be specified (as zero), since the two plates do
not separate there. Moreover, at the left corner of the lecaded edge (0,8a)
boundary conditions associated with the stress free edge were imposed,
while at the right corner of the loaded edge (4a,8a) the conditions
o'y = p and u=0 were imposed. Boundary conditions and gr’d points to which
they apply are shown in Figure 5b.

The open circles and dashed curves in Figure 6a represent the finite
difference and finite element predictions for the shearing stress
distribution along the bond line, respectively. This figure indicates that
the finite difference method has no more trouble predicting the stress
distribution along the bond line than the finite element method. Indeed the

two numerical solutions are essentially the same.



Figure 6b shows the shearing stress and normal stress distributions along

the free edge x = 0 based on the finite difference msthod. Both Oy and Oy

Y
are zero at every finite difference grid point at which these stresses were
required to be zero. They were nonzero only at the corner point of the bond
line. It is noted that values of cxy and Ty at this corner point are calculated
from the stress-strain relations and represent limiting values of internal
stresses as the corner point is approached along the bond line. They are not
necegsarily the boundary values on the edge x = 0 at y = 0., This observation
agaln suggests that the stress tensor is unsymmetrical at a stress singularity.
Figure 7 shows a comparison of the bond line shearing stress distribution
for two different finite difference grids. The solid curve with open circles
represents the finite difference prediction based on the grid spawcings shown
in Table II. This curve is an exploded view of the behavior or fhe shearing
stress oxy(x,Q) near the point 0 that is exhibited in Figure 6a. The dashed
curve with open squares represents the finite difference prediction based on
the grid spacings shown in Table III. This finite difference grid mailntains
the same number of rows and columns as the grid of Table II, but the grid lines

parallel to both the x and y directions are redistributed so that they are more

dense near point 0.



IV. FOUR-PLY LAMINATE UNDER UNITFORM AXIAL STRAIN

Figure 8a depicts a long, midplane symmetric laminate of width 2b. The
laminate consists of four plies, each of thickness h, and is loaded by a
uniform axial strain e, Various numerical methods have been used by
different investigators [1,2,3,4,] to predict the distributions of normal
and shearing stresses between adjacent lamina. Of particular importance is
the reliability of a particular numerical method to provide a reasonably
accurate assessment of the behavior of the interlaminar stress compnnents
near the intersection of an iInterface Qith a free edge. This point of
intersection is referred to as the interface corner [4] and is shown in
Figure 8a.

Computations based on the finite element method have yielded stress
distributions that appear to be reasonable for all interlaminar stress
components except very near the literface corner. At the interface corner
the predicted distributions for the inplane, interlaminar stress componengs
(Ux,oy, and oxy) tend to digress from a logical extrapolation of the
stress distributions predicted for interior points along the interface. It
is of interest in this investigation to determine whether this digressiVe
behavior exhibited by the finite element method represents actual laminate
behavior or, if the predictions are spurious, to illuminate the origin of
the weakness in the finite element method that results in this spurious
behavior.

A second objective of this investigation is to assess the viability of
the finite difference method as an effective¢ numerical method in the
computation of interlaminar stress distributions, particularly near an

interface corner.



ORIGINAL PAGE i3
OF POOR QUALITY
It is customary when dealing with this problem to make use of geometric
and material symmgtries, thereby making it necessary to consider only the
part of the laminate that lies in the first quadrant of the yz plane. This
part of the laminate is emphasized by the cross-hatched area in ¥igure 8a.
The heavy dot in this figure is at the interface corner.

Boundary Value Problem. The field equations [l] associated with the

four~ply, [i_45]s laminate are listed below.
Stress-Strain Relations:

U 3

eqF OV, * O W $0U

9% ¥ C118 * C12 V y

Oy = Cppeq + Cq V o+ Cg W £ G U

0, = Op3(eq*V ) # Cag W, +Cyg U
(6)

czy= 044(w’y + V,z)

Ox 044 U,z

36 V.2 7 Ce6 U,y )

Oy™ + Cpeleg + v,y) +C

Equilibrium Equations:

W =0

C 36 ",yz

U + 055 U

66 ~,yy + ¢

122 t 026 V,yy -

I+

C26 U,yy + 022 V,yy + C44 V,zz + (023 + 044)w,yz =0 (7)

|+

Cag U’yz + (023 + 044>v’yz + Chp w’yy + Cg, w’zz = 0

Displacement distribution:

%+ U(y,z)

u(x,y,2) €g

v(x,y,2) = V(y,z) (8)

]

w(x,y,2z) = W(y,z)

-10-



ORIGINAL PAGE 18
OF POOR QUALITY

Boundary Conditions:

U(0,2) = V(0,2) =W (0,2) =0 0<z<2 ) (9a)
U(0,0) = v(0,0) = W(0,0) =0 z=20 (9b)
oyz(b,z) &= cyxz(b,z) = cyzz(b,z) = 0 0<z<h (9e)
cyu(b,z) = oyxu(b,z) = oyzu(b,z) =0 h <z <2h (9d)
U0 =V (y,0) =W(y,0) =0 (9e)
02y=shb

0,,(y>2h) =0, (y,2h) = ozyu(y,Zh) =0 (9£)
0,,(ysh) =0, ,(y,h) A

pxu (Vo1 = T (y5h) 0<y=<hb (98)
gzyu(y’h> = czyﬂ(y’h) /

In Equations (6) and (7) the upper sign (plus sign) is associated with the
upper ply (+ 45 ply) and the lower sign (minus sign) is associated with the lower
ply (- 45 ply). Equations (8) are fundamental assumptivns regarding the dis-
tribution of the displacement components u,v and w and are given in reference [1].

Equations (9a) are the conditions associated with laminate symmetry with
respect to the z axis, and Equations (9b) are required to exclude rigid body
motions. Equations (9c) and (9d) require that the edge at y = b be stress-free,
except at the interface corner. Equations (9e) result from symmetry conditions
with respect to the y axis, and Equations (9f) require that the edge at z = 2h
be stress-free. Finally, Equations (9g) require that the interlaminar stress

components be continuous across the interface.

~11-



It is particularly important to observe that along the stress~free boundary
(y = b) the formulas that express the stress components oy and ny in terms
of displacements (Equations 6) are different for the upper and lower plies.
Consequently, the boundary conditions that should be applied at the point (b,h)
are not immediately obvious. This observation is a pessible clue as regards the
behavior of the finite element method near the interface corner.

Numerical Results. The following strategy was used to formulate a finite dif-

ference model of the four-ply laminate.

Initially each ply is considered to occupy a separate, independent region.
Separate, independent finite difference grids are assigned to the regions
occupled by the two plies, Subsequently, the finite difference module cor-
responding to the equillibrium equations that are associated with a particular
ply is applied to each grid point that does not lie on the boundary of the
region occupied by that ply. The two regions are connegted appropriately by
requiring the displacements (U,V,W) and the interlaminar siress components

(cz, o ., and sz) be continuous across the boundary common to the two plies,

2y

This approach leads logically to the required boundary condition at the
interface corner. That is, the interlaminar stress components should be
required to be continuous across the interface at the interface corner. Thus,
the need to formulate a boundary condition at the interface cormer that
accounts for the boundary stresses associated with the +45 and ~45 plies in
an equitable manner is avoided.

It will be observed later that the preceding strategy results in predic-
tions for stress distributions that agree well with the finite element predic-
tions away from the interface cormner, and also behave in a much more logical

manner near the interface corner. Furthermore, the affect that prescribing

boundary stresses at the interface corner, (instead of interlaminar stress

~12-



continuity) has on the stress distributions will be demonstrated, These observa-
tions provide a clue as to the puzzling behavior of the finite element method
near the interface corner.

The finite difference grid used to analyze this problem is shown in Figure 9,
Since the displacement components (U,V,W) are required to be continuous across
the interface, the grids assoclated with the two plys ere shown connected in
Figure 9. Vertical grid lines are more closely spaced near the interface corner
where the stress components are expected to change rapidly, and the horizontal
grid lines are more closed spaced about the interface. Numerical values of grid
spacings for the y and z directions are listed in Table IV. The numerical
results tn be discussed are based on these spacings which correspond to 1989
degrees of freedom,

Boundary conditions and the grid points to which they are applied, for what
is referred to here as the principél finite difference solution, are shown in
Figure 9.

Finite difference solutions for three other sets of boundary conditions
at the interface corner are also discussed. These solutions require either

) pve = (00 oo = (0 )

=g =g =0 or O ,=0 Pl =0 or (

Yyu yXu yzu y&  Tyx yz2 Gy ave - 0yx ave ~ ‘yz’ave”

at the interface corner. All other boundary conditions remain the same for

each of the four cases. Here (o)ave = (0u + cﬁ)/z at the interface corner.
Because the interlaminar stress continuity requirements at the interface

corner must be relaxed when any of the described sets of conditions are employgd,

discontinuities in the interlaminar stress components (GZ, o __, and Gzy) are

ZX

expected at the interface corner.

Case I: Principal Finite Difference Solution. As was stated previously the

boundary conditions and the grid points to which they are applied are depicted

in Figure 9. Especially important is that continuity of the interlaminar stress
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components (cz, e and ozy) is required along the interface, including the
interface corner.

Figures 10 and 11 compare the finite element and the finite difference
predictions for stress distributions along the interface between the +45 and
- 45 plies, The open circles connected by a solid curve represent the finite
difference predictions and the open squares comnected by dashed curves re-
present the finite element solution,

It is convenient in discussing the behavior of the stresses along the
interface to segregate them into two groups: the in~-plane components O oy,

and cxy’ and the interlaminar components Tyr O,u and czy' The first group of

X
stresses must be identified with a particular ply, even at the interface, be-
cause they are calculatel from stress-~strain relations that are different for
each ply. The second group of stresses act between the pllies and are truly
interlamindr stresses. They are equal in magnitude owing to the interlaminar
stress continuity requirements.

Consider first the interlaminar stress components. Figure 10 indicates
that the finite difference and finite element predictions for the normal stress
g, are in exXcellent agreement. Most importantly both predict a large compressive
stress at the interface corner and a small tensile region just interior to the
interface corner. The lower most curve in Figure 11 depicts the finite dif-
ference distribution for Yk along the interface. The finite element prediction
essentially coincides with the finite difference prediction except at the inter=-
face corner and is not shown in the figure. The two numerical methods do, how-
ever, predict similar behavior at the interface corner; that is, the existence
of a stress singularity for the component Ot

The finite difference method predicts Gzy £ 0 along the interface,

including the interface corner. This agrees with the finite element prediction

~14-



except near the interface corner where the finite element method predicts a
sudden increase in ozy.
Now consider the distributions of the in-plane stress components (ox, oy, ny)
along the interface, Figure 1l compares these distributions with corresponding
distributions predicted by the finite element muthod.

Figure 11 shows that the finite element and finite difference predictions
for each of the in-plane stress components are in excellent agreement except near
the interface corner. The finite difference method suggests that the in-plane
stress components become singular at the interface cornmer, while the finite
element method predicts a sudden attenuation in the stress components at the
interface corner.

Figure 12 shows a comparison of the finite difference and finite element
predictions for the distribution of Gz along the free edge., Excellent agreement
1s again observed.

Figures 13, 14 and 15 show the variation in free edge stress components
oy(b,z), cyz(b,z), and oyx(b,z) as reported in reference [4]. The present finite
difference predictions show that cy(b,z), cyx(b,z) are identically zero every-
where along the free edge except at the interface corner, and that oyz(b,z) is
zero everywhere, including the interface cormer. It should be noted that
cy(b,z), cyx(b,z), and Gyz(b,z) are required by the finite difference method to
be zero at all grid points along y = b except the grid point that coincides with
the interface corner. Thus, the values for these latter stress components that
are shown in the figures are calculated from the stress-strain relations and may

not represent boundary values. That is the stress tensor may not be symmetrical

at the interface corner.
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It 1s known that at a singular point all stress components are either zero

or are singular with the same power, The finite difference solution presented

here appears to satisfy this g¢riterion.

Case IIL. o = =

yu yxu Oyzu = ) at The Interface Corner. The Case II finite

difference solution differs from the principal finite difference solution
only in the boundary conditions applied at the grid point that coincides with
the interface corner. Accordingly, interlaminar stress continuity at the inter-
face corner is replaced by specifying that oyu(b,h) = oyxu(b,h) = cyzu(b,h) =0,
That is, the stress components on the free edge that are &ssociated with the
upper ply are prescribed to be zero at the interface corner.
Figure 16 shows the finite difference predictions for the distributions

of the interlaminar stress components along the interface. This figure shows
that discontinuities in the normal stress g, snd the shearing stress Oyt
occur at the interface corner. Otherwise, continuity of the interlaminar group
is maintained along the interface.

Figure 17 shows the finite difference predictions for the distributions
of the in-plane group of stress components along the interfaces for the upper
and lower plies, An important observaticu to make from the curves in Figure 17
is that each stress component associated with the lower ply (cxz, Uyz’ cxyz)
behaves as if a stress singularity existed at the interface corner, while each
stress component associated with the upper ply (Gxu’ Gyu cxyu) shows a sudden
and drastic digression from what appears to be a distribution that is trying to
follow the corresponding distribution of the lower ply.

The stress distributions associated with the in-plane stresses of the

upper ply exhibit behaviors near the interface corner similar to those exhibited

by the finite element method.
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Figure 18 shows the distribution of the boundary stresses along the free
edge y = b, The finite difference method requires oyu(b,z) - oyxu(b,z) =

oyzu(b,z) » 0 at all grid points in the upper ply, including the interface
corner, It requires that oyz(b,z) - cyxz(b,z) - oyz£(b,z) = 0 at all prid

points in the lower ply, except at the interface corner, Numevical values for

cyz(b,h), (b,h), and o __,(b,h) calculated from the appropriate stress-

cyxl?, vzl

strain relations are shown on the figure.

Case III, ¢ = (0 at The Interface Corner. The Case IIL finite

vy B °yx2 B 0szL

difference solution differs from the principal finite difference solution aonly

in the boundary conditions applied at the grid point that coincides with the inter-
face corner. Accordingly, interlaminar stress continivity at the interface

corner is replaced by the counditions Gysz,h) = nyx(b’h) = °yz2(b’h) = 0,

That 4s, the stress components on the free edge that are associated with the

lower ply are prescribed to be zero at the interface corner.

Figure 19 shows the finite difference distributions for the interlaminar
stress components. The stress component ozy(y,h) is zero everywhere along the
interface. This filgure shows that discontinuities in the normal stress 7, and
the shearing stress v,, Oceur at the interface in exactly the same manner as
in Case II.

Figure 20 shows the finite difference predictions for the distributions of
the in-plane group of stress components along the interface. An important ob-
servation to make from the curves in Figure 20 is that each stress component

associated with the upper ply (o yu) behaves as 1f a stress singularity

xu’ 0yu’ %
existed at the interface corner, while each stress component associated with the
lower ply (oxz, cyz, cxy2> shows a sudden and drastic digression from what
appears to be a distribution that is trying to follow the corresponding distribu-

tion of the upper ply.
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Figure 21 shows the distributions of the boundary stresses along the free edge
y=b, The finite difference method requires oyg(b,z) - o},xz(b,z) » oyzz(b,z) =( at
all grid points in the lower ply, including the interface corner. It requires

cyu(b,z) 'oyxu(b’z) - (b,z) =0 at all grid points in the upper ply, except

Uyzu
at the interface corner. Numerical values for oyu(b,h), oyxu(b,h), and dyzu(b,h)

calculated from the appropriate stress-straln relations are shown on the figure,

Case IV. Average Stress Boundary Condition. The Case IV finite difference

solution differs from the principal finite difference solution only in the boundary
conditions imposed at the grid point that coincides wlth the Interface corner,
Accordingly, interlaminar stress continuity at the interface corner is replaced

) = (

Here (cr)ave denotes the average of corresponding stress components for the upper

by the conditions (o ) = (

¥ ave ny ) = 0 at the Interface corner.

ave Uyz ave
and lower plies,

Figure 22 shows the finite difference distributions for the interlaminar
stress components along the interface. The finite difference predictions for the
interlaminar stress components (oz, O pxc? and ozy) exhibited in this figure are
in excellent agreement in every respect with the finite element predictions for
the corresponding stress components.

Figure 23 shows the finite difference predictions for the distributions of
the in-plane group of stress components along the interface for the upper and
lower plies., An important observation to make from the curves in Figure 23 is that
the stress components associated with both the upper ply (Gxu’ Ou

yu
each show the curious digressive behavior at the

s oyu) and
the lower ply (cxg, nyz’ cyz)
interface corner that characterizes the finite element predictions for these
stress components.,

The foregoing observations provide a clue to the reason the finite

element method behaves in the curious manner described in reference [4] near the
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interface corner. The possible reason for the curioue behavior is discussed
in the conclusions section of this report.

Figure 24 shows the distributions of the boundary stresses along the
free edge y = b, The finite difference method requires uyu(b,z) - oyxu(b,z) -
°yzu(b’z) = 0 at all points in the upper ply, except at the interface corner,
(b,z) =

and oyz(b,z) = (b,z) = 0 at all points in the lower ply,

Txy 4 a1,
execept at the interface corner. Numerical values for cyu(b,h), oyxu(b,h)

and oyzu(b,h); O'yg‘(b’h),

°yx2<b’h)’ and “yzg(b’h) caleulated from appropriate
stress-strain relations are shown on the figure. Again, it 1is noted that
these numerical values are not necessarily boundary values because the
gtress tensor may not be symmetrical at the interface rormner,

An interesting feature of the present case is that while continuity of

the interlaminar stress components was not enforced directly at the interface

corner, continuity of these stresses occurred there neverthelews.
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V. CONCLUSIONS

Distributed Load Problem. Both the finite element and finite difference

methods predict shearing stress distributions along the line X =a that are
in excellent agreement with each other and with the exact solution, except
near the point (a,0). The finite difference solution behaves somewhat
barter than the finite element solution in this reglion, deviating from the
exact solution only to satisfy the imposed boundary condition cyx(a,O) = 0,
Since the exact solution shows that the stress tensor is not symmetrical
at the point (a,0), this deviation from the exact solution cannot be
attributed to an inherent weakness of the finite difference method. The
trouble arises because of the need to specify a limiting value for cxy(a,O)
at a point where Oy # Oy *

X

Bimetallic Plate Problecm. The finite difference and the finlte element

methods predict essentially the same shearing stress distribution along the
bond line. It is interesting to observe that the displacement components
are prescribed along the bond line, including the singular point.
Consequently, no finite difference boundary conditions are prescribed for

o, and O at the grid point that coincides with the singular point.

x Y

Numerical values for O and ny at the singular point are calculated from
the stress=strain relations and are not necessarily boundary values since
the stress tensor may not be symmetrical there.

Four-Ply Laminate. Based on the numerical evidence presented in the

principal finite difference solution for the four-ply laminate under
uniform axial strain it appears that there is no inherent weakness in the
finite difference method that prevents it from providing accurate

predictions for the distributions of the interlaminar stress group and for
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the in-plane stvess group along the interface, except very near the interface
corner. And, even near the interface corner, the finite difference method
provides solutions that behave in a way that is characteristic of the behavior
of stresses near a singular point,

The four finite difference solutions for the stress distributions associated

with the iInterlaminar stress group (cz, O s ozy) and the in-plane stress group

X

(ox, (o S ny) differ only near the interface corner. This is not unexpected,

y
since the finite difference models for the four solutions differ only in the
boundary conditions imposed at a single boundary point=boundary conditions

that are, morszover, very similar.

0f the four finite difference solutions the stress distributions predicted by
the Case I model (stress continuity along the interface) behave near the inter-—
face corner as one expects them to behave near a strass singularity. Therefore,
it is felt that the Case I predictions should be the definitive solution.

The Case II and III models exhihit behaviors t.it are similar near the
interface corner. That is, discontinuities appear in the interlaminar stress
components s, and O s and corresponding in~plane stress components for the
+ 45 ply and the - 45 ply show divergent behaviors near the interface corners.
Specifically, for the Case ILmodel the in-plane stress components for the +45
ply are "drawn" down to satisfy the boundary conditions imposed at the inter-—
face corner, while the in-plane stress components for the -45 ply appear to grow
unboundedly. Just the reverse 1s true for the Case III finite difference model.

Stress distributions predicted by the Case IV finite difference model agree
extremely well, in all respects, with the finite element predictions of the
same distributions. Consequently, one is led to examine the boundary conditions
impesed by the two models at the interface corner to explain the curious behavior

exhibited there by the finite element model.
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Consider two finite elements, located at the interface corner, which
rshare the interface corner as a common node., Let one side of each element lie
on the free edge. The finite element procedure replaces a distributed load on
an element boundary with concentrated forces acting at the nodes of the element.
Statical equivalency between the distributed boundary load and the concentrated
nodal forces is maintained by reduiring the virtual work of the nodal forces on
the corresponding nodal displacements be equal to the virtual work cf the actual
boundary load distribution on the displacements along the boundary to which
the load is applied. Therefore, the finite element node coincident with the
interface corner recelves "average" contributions from the finite elements on
either side of the interface. In a finite element solution a stress-free boundary
condition translates into a nodal force~free boundary condition, Therefore,
getting the nodal force at the interface corner equal to zero is, in some
sense, an averaging procedure similar to the boundary conditions used in the
Case IV model. It is this "averaging' process that apparently eliminates the

detail that an accurate solution near the interface corner requires.

—22



4

REFERENCES

R. Byron Pipes and N. J. Pagano, Interlaminar stresses in comvosite
laminates under uniform axial extension. J. Compos. lnter. 4, 538-548,
(1970).

Peter W. Hsu and Carl T. Herakovich, Edge effects in angle-ply
composite laminates. J. Compos. llater. ll, 422-428, (1977).

$. S. Wang and R. J. Stango, Optimally discretized finite elements for
boundary layer stresses in composite laminates, 23rd Structures,
Structural Dynamics, and Materials Conference, Part I, 328~337,
(1982).

J+ D. Whitcomb, I. 8. Raju, and J. G. Goree, Reliability of the
finite—-element method for calculating free edge stresses in composite
laminates, International Journal of Computers and Structures, Vol. 4,

No. 1, 28-37, (1982).

23~



05°0 JOE'0 |0Z°0 |0I°0 {0S0°0]S20°0 | 010°0 | 100°0 | Sutosds—&
01 f / .y ) L 4 S saoeds jyo
IX9IN IXaN JIXON axay IXaN IXBN IXeN Ei-hy o Jaqunpy

8°0 10£°0 102°0 |0OTI°0 |0S0°0|620°0 | 010°0 | 100°0 | Svioeds—x
£ A [4 Z 9 € A I saoeds Jo
IXON | IXSN | IXON | IxoN | axeN | axen | axeyn ISITg Iaquny

*(op2313 Jo sezaBep ygy) sumwnyod g7 pue smox Ch pauTeluod prid PoUlISIITP
®3ITUE] °UOTISUI] wiojTun £q papeor w3erd STIT®IWTIq 943 I0F PTAZ S9OUBISIITP OITUTT pPouTIaI AfTEO0T *IIT °TqEl

07°0 |0€°0 | 0Z2°0 ]0T°G |S0°0 |Sz0°0 | Buroeds_&
24 m 1T 7 S 8 8 8 saooeds JoO
& 1 - IXSN | IXON | IXaN | IxoN | XN | asaTg Taqunay
23
e o
=1 pe
M m 07°0_J0€"0 J02°0 | 01'0 [S0°0 | Gz0°0 | Buroeds—x
g o € k4 Y s 9 Y sooeds jo
T IXSN IXON IXON IX3IN IX3N 1SITH Iaqunyy
O o

1

*(Wopaa1y jo s99189p (ygg) SULNTOD g7 puR SMOI Ch POUTRIUO0D PEIZ SOUDIDIIIP
93TUTd “-uoTsuel miojyrun £q pepeol a3eyd oIT[RISWIqQ 3ul 103 sBuroeds pra8 9OUSIADIITP 9ITUTH 11 °1qeL

00°1 SL°0 1060 |sz°o Joz'c |o1°n S0°0 620°0 | Buroeds-4
9 Z A Z I z b Q saooeds J0O
JXON [ 3IXON | 3IxeN | 3Ixen | axeN |axen [axen |13 SITH dsqunpy

0S°T 100°T 16/°0 _{0S°0 [SZ°0 |0z'0 |01°0_|S0°0 ]sz0°0 <00 |oi-o 0z°0 | Burdeds_x
z 4 z FA z z & 1 ZT 1 Y 4 sedrds jo
IXON IXIN AX3N ININ IXON IXON IXON aIX9Y IXIN IxXaN IXaN ASIT Jaquny

*(wope913 jJo s9wal9p 9yTz) suwnyTod L€ PUB SMOX g7 PauTejuod PTI8 SOUDISITIP
QITUTH +*27eTd I3TUTIUI-TEDIS B uo PBOT Pa3nqTilsip ayl 103 sFuroeds prtag SOUDIBIITP SITUTY °T S[qRL

"y



ORIGINAL PAGE 19
OF POOR QUALITY

Table IV. Finite~difference grid spacings for the
four-ply laminate. The grid contained 17 rows and
39 columns (1989 degrees of freedom)

Number First Next Next Next
of spaces

16 2 4 16
y-spacing 1.00 0.50 0.25 0.125
Number First Next Next
of spaces

4 8 4
z~-spacing 0.20 0.05 0.20
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(a) Uniform load on part of a semi-infinite plate.
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(b) Variable spacing finite - difference grid

Figure 1. Problem involving stress discontinuity
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Figure 4., Comparison between cx(a,y), dy(a,y), and cxy(a,y)

for various boundary conditions at the point (a,o0)
and the special moment equation procedure.
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Figure 4 (continued) Comparison between ox(a,y), Gy(a,y),

and aYyQa,y) for various boundary conditions at the point

(a,0) and the special moment equation procedure.
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(b) Variable spacing finite difference grid.

Figure 5.

Problem involving a stress singularity.
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bond line for two finite difference grids.
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Figure 8, Laminate configuration, loading, and stresses.
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Figure 9. Variable spacing finite-difference grid for the four-ply
laminate.
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Figure 10. o, along the interface, z=h.
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APPENDIX A, FINITE~DIFFERENCE CONSIDERATIONS

Because the gtress components assoclated with each of the three
problems considered in this investigation change rapidly only in the
vicinity of a stress discontinuity or a stress singularity, it is
computationally effective to use a finite-~difference grid with variable
spacing. Finite-difference formulas for f£irst and second order derivatives
are easily derived using appropriate Taylor series. Forward, backward,
and central difference formulas for first order derivatives} as well as
central difference formulas for second order derivatives, are listed here
for convenience, Figure Al depilcts essential parameters that appear in
these equations,

The finite-difference approximations for first order derivatives are:

’
fi=alfi + azfi+l + a3fi+2 (Forward) (AL
4 y
fi" blfi—Z + bzfi—l + b3fi (Backward) (A2)
fi clfi-l + c2fi + c3fi+l (Central) (A3)
where
- - e K i
a;= ~(2h+k) /h(h+k) b= ) c;= h(h+k)
| ) _ _=(a-k) (44
8 2 T hk €27 T hk
3 k(h+k) 3 k(h+k) 3 k(h+k)

A prime is used to denote a first order derivative, When h and k in these
formulas are replaced with £ and m, respectively, first order derivatives
for a perpendicular direction are obtained,

The central finite-diffzrence approximations for second order

derivatives are:

~51~
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a= =2 o k(L-m)
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As an example of the derivation of these formulas consider the
central difference, finite di fference formulas, The Taylor series

expansion of a function f£(x) in the neighborhood of a point x  is

/¢ "
B(x + bx) = £(x ) + £(x ) bx + £ (x ) () o{(ax)°;. (A7)
Now using Figure Al-d write
£ = f, 4 £k + b K2
141 T fy b Ryl oty
] hy g2
and £, = £ - £+ 4Eh (48)

Simultaneous solution of these algebraic equations for f; and f! yield the
appropriate formulas given in A3 and A5. Replacing h and k by £ and m,
respectively, gives the corresponding finite difference formulas for the
perpendicular direction., Only the formula for the mixed derivative
remains to be decermined.

To derive a mixed second order derivative write

! + ¢, &

£ 5" Cixfi-1,i T %2xfi,y T Caxfin, g (A9)

for the line j of Figure Al-a, By differentiation
7 . . .

i3 = C1wfio1,1 T Coxfi,g T Caxfivn,g. (A10)

Now

£i1,5 = S1yfi-1,5-1 T Coyfi-1,5 T Cayfio1,gn (ALD)

and similarly for fi i and f Substituting these formulas into
’

i+1l,3.

Equation (A10) leads to a formula that expresses the mixed derivative

fi} as a linear combination of the nine nodal points that surround point

i,j. The literal subscripts in the coefficients Cix and ciy indicate
these coefficients are to be evaluated using spacings in the x or y

directions as the subscript dictates.

=53~



APPENDIX B

Special Matexrial Element for Semi~Infinite Plane Problem.

The exact elasticity solution for the partially loaded, semi~infinite
plane reveals that the shearing stress cxy(a,o) tends to + p/mt as the
points (+ a,0) are approached along the lines x = + a(see Figure la).
However, the shearing stress, ny(iva’g), applied to the external
boundary is zero., Consequently, it appears that the stress tensor is not
symmetrical at these points.

The equilibrium equations on which the finite difference solution is
based incorporate symmetry of the stress tensor at all interior points.
Moreover, no special expressions exist that define the relationship between
shearing stress componenfts at points where the stress tensor is not
symmetrical, Therefore, the classical finite difference procedure can not
be expected to detect such an anomaly.

Part of this investigation in&olves examining the effectiveness of
introducing a moment equation for a finite element of material near point
(a,0). The purpose of the moment equation is to establish a relationship
among the shearing stresses of an unsymmetrical stress tensor.

Supposedly, the moment equation associated with a finite element of
material near the boundary point (a,o0) replaces a finite difference boundary
condition involving the shearing stress cyx(a,o)‘ Problems arise, however,
because once the finite element of material has been introduced it is
inappropriate to ignore force equilibrium of the element, Thus, three
equilibrium equations are obtained to replace two finite difference boundary
conditions at point (a,o). Since no new independent variables have been

introduced, the resulting system of equations is over specified.

-5~
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Even if it were possible to introdiice an additional, appropriate,
independent stress varilable at point (a,0) the system of equations, when
expressed in terms of displacements, would remain over specified unless
unsymmetrical stress~strain relations are introduced. This lattexr concept
represents a considerable complication and is ignored in the analyses made
in this investigation,

Not withstanding the analytical difficultiles enumerated in the
preceding paragraphs, two separate finite elements of material near point
(a,0) were considered. These elements are shown in Figures Bl and B2,

The element shown in Figure Bl is based on first order Lagrange
interpolations of the stresses along its edges. Moment equilibrium for

the material element yilelds the equation

m m
f(m~y)dx(a,y)dy- Iicxy(a,y) dy

(s} (¢}

+ (m—y)cx(a-ﬁ, y) dy- (x—a+£)cy(x,m) dx = 0. (B1)

o a~f

Using the first order Lagrange interpolations for stresses along the edge

of the element leads to the algebraic equation

2
m
3—.(20x4 - 20x2 +Gx3 -le) T2 (Oxy4 +0xy3>
2 2
h_ ph_ 9
+ 5 (oyl+20y3) + 5 0. (B2)
Here ¢ ,, U ., O©__. are components of stress at the finite difference nodes
xi’? “yi xyi

that coincide with the corners of the element,
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Equation B2 is expressed in terms of displacements (u,v) by means
of the symmetrical stress-strain relations (This i1s not a strictly
legitimate procedure since, if the stress tensor is assumed to be
unsymmetrical, the strain tensor must also be unsymmetrical). Equation B2
expressed in terms of displacements 18 not recorded here because nothing
of gignificant interest can be extracted from it.

Using only the moment equation for the material element and a finite
difference normal stress boundary condition, encouraging, but not exact,
agreement with the exact solution was observed for all three stress
components (cx’ cy,dxy>'

Because two of the three equilibrium equations assoclated with the
material element were ignored it is quite possible that whatever agreement
that exists,; 4is, probably, gratuiltous.

The seccnd material element is shown in Figure B2 and is based on
second order Lagrange interpolations of stresses along its edges, Thus,
approximations of stresses along the edges of the element are of the
same order of approximation as the finite difference formulas used to solve
the equilibrium equations, It was felt that this material element
represented a better meshing with the finite difference approximations of
the equilibrium equations than the first element and should, therefore,
lead to even better agreement with the exact solution, In some respects,
this was not to be the case.

Moment equilibrium and force equilibrium for the y direction yield the

formulas
h

—

m m 2
y[vx(g} ) dy]i[h[cxy(%;y) dy] fIﬁx +~%)[0y(x,0)dx]
(o}

o =-h

o

2
m 2
h h

-[ ylo () dy] + b = o, (B3)

)
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and
h
2 i h ! h h
- - JLL i - P
J‘ ay(x,o) dx ny( L y)dy + J cxy 5 y) dy 5 0. (B4)
g 0 o
2

Using second order Lagrange interpolatilons for stresses along the edges of

the material element leads to two formulas that involve the stress

components (ox’ oy’ oxy) at the nine finite difference nodes that are

nearest to the element, Subsequent use of the symmetrical srress-displacement
relations leads to two equations in the displacements (u,v). These equations
are not presented here because of theilr length, and because no new insights
can be derived from them,

Using only the moment equilibrium equation and the finite difference
normal stress boundary condition (Similar to the procedure used in the
analysis of the first material element) it was observed that the stress
components Gx and oy agreed well with the exact solution, but oxy was grossly
over estimated,

Introducing the force equilibrium equation for the y direction,
together with the moment equilibrium equation, revealed that Ox, Uy, and gxy
were each in substantial disagreement with the exact solutilon for these
stress components near the boundary point (a,o).

The results of the numerical studies presented in this appendix
indicate that substantial analytical difficulties are encountered when a
finite material element is introduced near the point (a,0) to account for a
lack of symmetry in the stress tensor.

To be analytically rigorous unsymmetrical stress-strain relations should

be used, and all three equilibrium equations associated with the element

should be used.
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stresses along its edges.
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APPENDIX C
USER INSTRUCTIONS FOR SEMI~INFINITE PLANE UNDER PARTIAL LOAD,

This appendix contains information describing the carxds that must be
prepared by the program user and the output information to be expected,

INPUT INFORMATION

FIRST CARD (3F10.0, 4I5)

columns 1~10 Poisson's ratio, v

11-20 Modules of elasticity, E(psi)

21-30 Uniform pressure, p (1lb/in)

31-35 Column number of the grid line through
point A, (NDSCN). NDSCN = 3 in Figure
c2.

36-40 NROW, number of grid lines parallel to
the x-axis. NROW = 7 in Figure C2,

41~45 NCOL, number of grid lines parallel to
the y-axis. NCOL = 9 in Figure C2,

46-50 NPAR, parameter used to select boundary

conditions imposed at point A, See
Boundary Conditdions.

SECOND CARD (6F 10.0)

Grid line spacings (inches) in the
x=direction, dx, are shown in Figure C2.

i
THIRD CARD (6F 10.0)
Grid line spacings (inches) in the
y=-direction, dyi are shown in Figure C2.
OUTPUT INFORMATION

Input data 1s printed, followed by the stress components cx(SIGX),
cy(SIGY), and cxy(SIGXY) associated with the line x = a. Stresses
along the loaded boundary are also printed.

MINIMUM DIMENSIONS FOR ARRAYS

If program capacity needs to be enlarged the following arrays
require minimum dimensions as indicated.

~50-



DIMENS

ION DX(NCOL~1) , DY(NROW-1), ST(2, 18), XST (MA),
SIGX(NROW), SIGY(NROW), SIGXY(NROW), R(NEQ),
ID(2, NUMNP), IDIAG(2), ID1(18), IDD(NROW),

Y (NROW)

NCOL

NROW

NUMNP

» NEQ

MA -

Number of grid lines parallel to the y-axis.,
Number of grid lines parallel to the x-axis,
Number of nodal points (NROW*NCOL).,

2%NUMNP -~ NROW - NCOL + 1

NEQ#* (8%NROW=3) = { 2%NROW~1) % (4*NROW~1)

BOUNDARY CONDITIONS SPECIFLED AT FINITE DIFFERENCE GRID POINTS

(See TFigure C2).
[ Equilibrium equations
® u=v=0 (x and y displacements)
0 u=0, o =0
Xy
x oxy=0, oy= -p
' = — TS e
(1) NPAR=1 cy p/2, oxy = 0
(2) NPAR=2 =~ 0y= ~-p, finite moment equation.
(3) NPAR=3 -~ ay= -p/2, finite moment equation.
(4) ©NPAR=4 - TFinite force and finite moment equations.
(5) NPAR=5 =~ o _= ~p, qu=0,
(6) NPAR=6 - oy= ~p/2, modified moment equation.
(7) NPAR=7 -~ Modified finite force and finite moment
equations.
A o =0 _ =0
y xy
] =q_ = )
* %y ORIGINAL PAGE (8
A V=0, cyxy==0 OF POOR QUALITY
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NOTES:

(1) H and V in Figure C2 should be large enough to validate the
assumption that the stresses on the bottom boundary and right
boundary ars negligibly small.

(2) A vertical grid line through point A is required,

(3) The number of grid lines to the left of point A must be greater
than two,

(4) Numbering scheme for nodal points is shown in Figure C2,
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APPENDIX D

USER INSTRUCTIONS FOR BIMETALLIC PLATE IN TENSION

This appendix contains information describing the cards that must
be prepared by the program user and the output to be expected.

INPUT INFORMATION

FIRST CARD (3F10,0, 2I5)

Columns 1-10 Poisson's ratio, v
. 11-20 Modulus of elasticity, E(psi)
21-30 Uniform pressure, p (lb/in)
31~35 NROW - Number of grid lines parallel
, to the x axis,
36~40 NCOL - Number of grid lines parallel

to the y axis

SECOND CARD (6F10.0) Finite difference spacings for the x
direction (dxi) (inches).

THIRD CARD (6F10.0) Finite differernce spacings for the
y direction (dyi) (inches).

OUTPUT INFORMATION

Input data are printed followed by the stress components cy(SIGY)
and oxy(SIGXY) along the bond line, ' Stress
components cx(SIGX) and cxy(SIGXY) are printed for the stress free

edge. The net normal force and net shear force acting on the bond
line are also printed,

MINIMUM DIMENSIONS FOR ARRAYS

If program capacity needs to be enlarged the following arrays
require minimum “imensions as indicated.

DIMENSTON DX(NCOL~1) , DY(NROW-1), ST(2,18), XST(MA), X(NCOL),
Y(NROW), R(NEQ), ID(2, NUMNP), IDIAG(2), ID1(18),
SIGXYL(NROW) , SIGXL(NROW), SIGXYT(NCOL), SIGYT(NCOL).

NCOL - Number of grid lines parallel to the y axis.

NROW = Number of grid lines parallel to the x axis,
NUMNP -~ Number of nodal points (NCOL*NROW).
NEQ - Number of equations = 2%(NUMNP-NROW)-NCOL + 1
MA - (8*NROW-3) *NEQ-( 2#NROW-1) * (4*NROW-1)

-6



BOUNDARY CONDITIONS SPECIFIED AT FINITE DIFFERENCE GRID POILNTS
(See Figure D2)

] Equilibrium equations.
x u=v=0 (% and y displacements)
. =0 =0
O Xy y
A oxy=0 o.=p
0 v=0, o = p/2
] v=0, o_ =0
Xy

Noteas:

(1) Subroutine DCSPQU is a subroutine from PORT Mathematical
Subroutine Library and is not provided with the main program,
This subroutine is used to integrate the stresses along a
boundary to determine the net normal force and net shear
force on that boundary., ILf users do not have access to
PORT subroutines, delete program statements delimited by
comment statement C/////// in the main program.

(2) Subroutine DGELB is a subroutine from the IBM Scientific
Subroutine Package and is included with the main program.

ORICIHAL PACE
OF POOR QUALITY
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APPENDIX E

USERSE INSTRUCTIONS FOR UNIFORM STRAIN OF LAYERED COMPOSITE

This appendix contains information describing the cards that must be
prepared by the program user and the output information to be expected.

INPUT INFORMATION

FIRST CARD (3F 20.0)

- ! : = =
columns 1-20 Poisson's ratio, (vlz Vog vls)
21-40 Shear modulus (G12=G13=G23, Pascal)
41-60 Modulus of elasticity parallel to fiber

direction, (Ell’ Pascal)

SECOND CARD (2F20.0, 3I10)

columns 1~20 Modull of elasticity perpendicular to the fiber
direction (E22=E33, Pascal) .
21-40 Applied uniform strain €
, 41-50 NROW -~ Number of grid lines parallel to the y axis.
51-60 NCOL ~ Number of grid lines parallel to the z axis.
61~70 INT ~ Row number for the grid line coincident with

the interface between the +45 and -45 plies. (INT=5
in Figure E2).

THIRD CARD (6F10.0)
Grid line spacings (meters) in the y direction, dy
are shown in Figure E2,

FOURTH CARD 96F10.0)

Grid line spacings (meters) in the z direction, dz
are shown in Figure E2.

OUTPUT INFORMATION

Input data are printed, followed by the stress components<5;(SIGZ),
T
GZX(SIGZX), Gzy(SIGZY), cx(SLGX), cy(SIGY), and ny(SIGXY) along the

interface, Subsequently the stress components oy, ny’ and cyz along the

stress free edge are printed,

Subscripts u or £ are affixed to a stress component to indicate its
relation to either the +45 or the -~45 ply, respectively.
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MINIMUM DIMENSIONS FOR ARRAYS

If program capacity needs to be enlarged the following arrays require
minimum dimensions as indicated.

DIMENSION

ST(3,27), ID1(Z7/), IDLAG(3),
DY(NCOL~1), DZ(NROW-1), Z(NROW),
SGY(NROW) , SGXY(NROW), SIGX(NROW), XST(MA),
ID(3, NUMNP), R(NEQ), Y(NCOL)
NCOL ~ Number of grid lines parallel to the z axis.
NROW -~ Number of grid lines parallel to the y axis,
NUMNP- Number of nodal points (NCOL*NROW)
NEQ - Number of equations (3#NUMNP-2#NROW - NCOL + 3)

MA - NEQ*(12#NROW+1)-(3%NROW)*(6%NROW + 1)

BOUNDARY CONDITIONS SPECIFIED AT FINITE DIFFERENCE GRID POINTS
(See Figure E2), Six different programs EDGSTRSL, EDGSTR2,..., EDGSTRS6
incorporate the following boundary conditions.

x b 0O b 3

Xl

U=V=W=o (%, ¥, and z displacements)

U=Vl =0

t]

g =0 =0 __=0
zZ ZX 2y

0. =0__=g =0
y YX vz
W=Uu =V =0
’2 42

Equilibrium equations for the +45 ply.

Equilibrium equations for the ~45 ply.

Stress continuity along the interface (ozu=cz£z Ot Caxl?
and czyu =czy£ )

U=V=W y=0 for EDGSTRS1 through EUGSTR5
H
Stress continuity between plies for EDGSTRSE

W=U z= Vz=0 for EDGSTRS1
1 b
o =g __=¢_ =0 for EDGSTRSZ2 through EDGSTR6
y yx yz

Interlaminar stress continuity for EDGSTRS1l, EDGSTRS2, and EDGSTRS6

g =g =g =0 for EDGSTRS3
yu yxu yzu

°y£=cyx£=°yz£=o for EDGSTRS4%

cyu+cy&=°yxu +0yx£= yzu +Gyz£ = 0 for EDGSTRS5
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NOTES :

(L

(2)

(3)

These programs determine the distributions of the stress components
along the interface between the +45 and -45 plys of a Ei.4S]s

laminate under uniform axial strain with laminate properties Ell # E22,

G =

Egp=Eqqr Gpp = Gjq =V

= G23, and v =y

12 723 713

Subroutine DGELB is a subroutine from the IBM Scientific Subroutine
Package and is provided with the main program.

Subroutine DCSPQU is a subroutine from PORT Mathematical Subroutine
Library and is not provided with the main program. This subroutine is
used to integrate the stresses along a boundary to determine the net
normal force and net shear forces on that boundary. If users do

not have access to PORT subroutines, delete program statements
delimited by comment statement C///// in the main program,
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