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ABSTRACT

.This study considers the accuracy of the finite difference method

in the solution of linear elasticity problems that involve either a stress

discontinuity or a stress singularity. Solutions to three elasticity

problems are discussed in detail: a semi-infinite plane subjected to a

uniform load over a portion of its boundary; a bimetallic plate under

uniform tensile stress; and a long, midplane symmetric, ,fiber-reinforced

laminate subjected to uniform axial strain.

Finite difference solutions to the three problems are compared

with finite element solutions to corresponding problems. For the first

problem a comparison with the exact solution is also made.

The finite difference formulations for the three problems are based

on second order finite difference formulas that provide for variable

spacings in two perpendicular directic a . Forward and backward

difference formuW are used near boundaries where their use eliminates

the need for fictitious grid points. Moreover, forward and backward

finite difference formulas are used to enforce continuity of interlaminar

stress components for the third problem.

The study shows that the finite difference method employed

in this investigation provides solutions to the three elasticity problems

considered that are as accurate as the corresponding finite element

solutions. Furthermore, the finite difference method appears to give

a solution for the laminate problem that characterizes the stress

distributions near an interface corner in a more realistic manner than

the finite element method.
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X. INTRODUCTION

A serious failure mechanism for laminated composite materials is edge

delamination. Various numerical methods have I-e-en used in attempts to

calculate the interlaminar stress components that accompany delamination in

a finite-width [+ 451s angle-ply laminate under uniform axial strain

[1,2,3,41. These efforts have resulted in serious discrepancies in reported

behavior for the interlaminar normal stress distribution near an interface

corner [4]. For example, a finite-difference procedure [1) and a

perturbation procedure [21 predict tensile interlaminar normal stress near

an interface corner, while finite element methods [3,4) predict compressive

normal stress in this region. Furthermore, some uncertainty exists

regarding the character of the in-plane, interlaminar normal and shearing

stress distributions near an interface corner that are predicted by finite

element methods [3,4],

The primary purpose of this investigation is to determine if the finite

difference method is capable of providing accurate predictions for the

interlaminar stress components near an interface corner and, hence nea a
t

stress singularity.

A second purpose of this investigation is Uo ,determine if predictions,

by finite element methods, for in-plane, interlaminar stress components near

an interface corner accurately represent laminate behavior; and, if these

predictions are spurious, to cast light on the origin of the weakness in the

finite element method that results in the spurious behavior.

In this investigation the finite difference method has been used to

obtain numerical solutions for three different problems that involve

a point where a stress component becomes discontinuous or singular. These

-1-
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problems are: (a) uniform pressure on part of a semi-infinite plane.

(Figure la), (b) a bimetallic plate under uniform axial tension (Figure 5a),

and (c) a finite-width G± 451 a angle-ply laminate under uniform axial

strain (Figure 8a). Solutions to each of these problems via finite element

methods are reported in reference [41

The finite difference procedure used in this investigation providus for

variable grid spacings in two perpendicular directions. Consequently,

computational efficiency is effected by taking closely spaced grid lines in

regions where the stress components are expected to vary rapidly, and a

coarser grid in regions where the stress components do not vary rapidly.

The coefficient matrix corresponding to the system equations is

unsymmetrical; therefore, it is necessary to store the entire band of the

coefficient matrix, Moreover, an equation solver capable of handling un-

symmetrical systems of algebraic equations must be available. Nevertheless,

variable grid capability leads to more efficient computations than finite

difference procedures that use uniform spacing because substantially fewer

grid lines are needed to realize an accuracy comparable to the accuracy

associated with a specific uniform grid,

II. DISTRIBUTED LOAD ON A SEMI-INFINITE PLANE

Figure la depicts a semi-infinite plane that is sublicted to a uniform

pressure on part of the edge y=0, The exact solution for this problem is given

in reference [4] and indicates that axy (+ a,0) _ + p/7 when the points (+ a,0)

are approached along the lines x = +a. Consequently, a xy 6 
ayx 

at, these points.

It is of interest in this investigation to obtain a numerical solution for

this problem based on the finite difference method, and to compare the finite

difference, finite element, and exact solutions for the stress distributions

(ax , ay , axy ) along the lines x	 f a.

-2-



For discretization purposes it is assumed that the stress component are

nearly zero for x > ± 10a, and that vertical displacements are essentially zero

at a depth y? 10a. Moreover, for computational efficiency use is made of

symmetry with respect to the line x w 0,

Boundary Value Problem. The field equations associated with the distributed

load problem are listed below.

ORIGINAL PAW% 19

Stress-Strain Relations 	 OF P00R QUALITY

Crx _ E 2 (ex + Vey)
1-V

a -
	

(e + Ve)y	
1-V2 Y	

x

_	 E
axy ayx = 2(1 +V) Exy k

Strain-Displacement Relations:

1
e=u
x	 ,x

e	
v

y - 
'Y

exy eyx u )y + v,x

Equilibrium Equations (Plane Stress):

(u 'xx + VV Pxy ) + 2 (I-V) 
(uaYy + v}xy) = 0

(v)yy + Vu
'xy) + 2 ( 1-V) (v 'xx + Vu )xy) = 0

Boundary Conditions:

u (0,Y) = v x (O, y) = 0	 0 < y < 10a

CF 
(10a,y) = axy (3.0a,y) = 0

-p 0 < x < a

ayx (x,0) = 0, 0 < x < 10a; ay (x,0) _	 -p/2	 x = a

0 a<x<10a

ayx (x,10a) = v(x,10a) = 0 	 0 r x < 10a

-3
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Numerical Results. The finite-difference grid used to analyze this problem

is shown in Figure lb. 'V`t►rtical grid lines are more closely spaced on either

side of the line x = a, while the horizontal, grid lines are more closely

spaced near the line y - 0. Numerical values of ,grid spacings for the

x and y directions are listed in liable 1. The numerical results to be

discussed are based on these spacings which correspond to 2,146 degrees of

freedom.

In Figures 2 and 3 the open circles and dashed lines represent numerical

solutions obtained via the finite difference and finite element methods,

respectively, and the solid lines represent the exact solution, for the

stress components ax , ay and axy along the line x - a. The finite dif-

ference and finite element solutions for ax (a,y) and ay (a,y) exhibit excellent

agreement everywhere, The finite difference and finite element solutions

for axy (a,y) show excellent agreement with the exact solution except near

the point (a,0) where the finite difference solution appears to provide a

somewhat better agreement except for the first two nodes of the finite

difference grid. The finite difference solution for axy (a,y) is "drawn"

to zero by the enforced zero shearing stress at the boundary, while the

finite element solution is "drawn" down but not to a zero value at the

boundary.

It appears that requiring the stress tensor to be symmetrical at the

point (a,0) affects the finite difference solution for the shearing stress

axy (a,y) only in a small region that is confined to the first two finite

difference grid points. This region can be made as small as desired, con-

tingent on numerical limitations.



The finite difference solution for the stresses aX , ay , and axy shown

in Figure 2 is based on a boundary value ay w - p/2 at the point (a,0);

that is, on an average of the boundary load intensity to the left and right

of the point (a,0). A finite difference solution using ay (a,0) - - p diffrwrk

from this solution only in a small region near the point (a,0) as shown by

the open circles and solid curves in Figures 4a, 4b, and 4c. From these

figures it is seen that aXY (a,y) is essentially the same for either

ay (a ) 0) _ - p/2 or ay(a,0) - - p, while the solutions for a y and ax are

affected dramatically in the vicinity of y - 0. Otherwise, the finite

difference solutions using ay (a,0)	 - p/2 or ay (a,0)	 - p are essentially

identical.

Since the stress tensor is unsymmetrical at the point (a,O) it was of

interest to determine if a more accurate representation of the behavior of

a y(a,v) could be obtained near the point (a,0) by discarding thesymmetry
X

re.lq "'a axy = ayx at this point and replacing it with a finite moment

equation that would require a yx (a,0) = 0, but ayx (a,0) 0 aXy (a,0). In

addition to the finite moment equation, a finite force equilibrium was intro-

duced. The stress distributions for a y and ax are essentially identical to 	 ,.

the finite-difference solution for a y (a,O) _ - p/2 and ayx (a,0) = aXy (a,0) - 0

everywhere (solid lines in Figures 4b and 4c). The shearing stress distribu-

tion differs only in the neighborhood of the point (a,0). The shearing stress

Cr (a,y) for the case ayx (a,0) # aXy ;a ,O) is indicated by the dashed line in

Figure 4a.

0

-5-
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III- BIMETALLIC PLATE UNDER UNIFORM TENSION

Figure 5a depicts a bimetallic plate under uniform ',ensile stress along

the edges y - + 8a with stress-free boundaries at the edges x . 0, 8a. A

numerical solution for the stress components along the 'bond line, based on

the finite element method, is given in reference [4] for a rigid bottom plate.

It is of interest in this investigation to obtain a numerical solution

for the stress components along the bond line using the finite-difference

me,--hod, and to compare this solLx ion with the finite element solution obtained

in reference [4]. :t is of particular interest to observe whether the finite

difference method is capable of predicting the behavior of the shearing stress

compittent near the intersections of the bond line and the free edges.

Boundary Value Problem. The plane strain field equations for the bimetallic

plate with a rigid bottom plate are obtained from the plane stress field

equations given by Equations (1)-(3) by replacing E and v in these equations

^'^	 2
by E = E/(1-v ,) and v'` = v/(1-v) and affixing the boundary conditions

ax (0, y) = axy (0, y) = 0

u ( I,a , y ) = v 'x (4 a , y ) = 0
	 J	 0<y<8a

(5)

u(x,0) = v(x,0) = 0

0 <x<4a
avY (x,8a) = 0, ay (x,8a) = p

These boundary conditions make use of symmetry with respect to the plate

centerline x = 4a.

k
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Numerical Results. Figure 5b shows the finite-difference grid used to analyze

the bimetallic plate problem. Since the bond line stress components are

expected to change rapidly near the singular point 0, the finite difference

grid lines are more closely spaced in the region near point 0. Numerical

values of spacings for the x and y directions are listed in Table II.

Numerical results presented in this section are based on these grid spacings

which correspond to 2,340 degrees of freedom.

Corner points of a rectangular finite dLfference grid are usually

troublesome because a decision must be made as to which of two possible sets

of boundary conditions to employ there. In. the present investigation it was

physically appealing to require the displacement components (u,v) at the

corners of the bond line to be specified (as zero), since the two plates do

not separate there. Moreover, at the left corner of the loaded edge (0,8a)

boundary conditions associated with the stress free edge were imposed,

while at the right corner of the loaded edge (4a,8a) the conditions

a = p and u=0 were imposed. Boundary conditions and gr'.d points to which

they apply are shown in Figure 5b.

The open circles and dashed curves in Figure 6a represent the finite

difference and finite element predictions for the shearing stress

distribution along the bond line, respectively. This figure indicates that

the finite difference method has no more trouble predicting the stress

distribution along the bond line than the finite element method. indeed the

two numerical solutions are essentially the same.
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Figure 6b shows the shearing stress and normal stress distributions along

the free edge x = 0 based on the finite difference method. Both a xy and ax

are zero at every finite difference grid point at which these stresses were

required to be zero. They were nonzero only at the corner point of the bond

line. It is noted that values of oxy and ax at this corner point are calculated

from the stress-strain relations and represent limiting values of internal

stresses as the corner point is approached along the bond line. They are not

necessarily the boundary values on the edge x = 0 at y = 0. This observation

again suggests that the stress tensor is unsymmetrical at a stress singularity.

Figure 7 shows a comparison of the bond line shearing stress distribution

for two different finite difference grids. The solid curve with open circles

represents the finite difference prediction based on the grid spacings shown

in Table II. This curve is an exploded view of the behavior or the shearing

stress axy (x,0) near the point 0 that is exhlhited in Figure 6a. The dashed

curve with open squares represents the finite difference prediction based on

the grid spacings shown in Table III. This finite difference grid maintains

the same number of rows and columns as the grid of Table II, but the grid lines

parallel to both the x and y directions are redistributed so that they are more

dense near point 0.

^F
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IV. FOUR-PLY LAMINATE UNDER UNIFORM AXIAL STRAIN

Figure 8a depicts a long, midplane symmetric laminate of width 2b. The

laminate consists of four plies, each of thickness h, and is loaded by a

uniform axial strain e  . Various numerical methods have been used by

different investigators [1,2,3,4,] to predict the distributions of normal

and shearing stresses between adjacent lamina. Gi particular importance is

the reliability of a particular numerical method to provide a reasonably

accurate assessment of the behavior of tLe interlaminar stress components

near the intersection of an interface with a free edge. This point of

intersection is referred to as the interface corner [4] and is shown in

Figure 8a.

Computations based on the finite element method have yielded stress 	 `

distributions that appear to be reasonable for all interlaminar stress

components except very near the il :aerface corner. At the interface corner

the predicted distributions for the inplane, interlaminar stress components

(ax' ay ) an-4 axy) tend to digress from a logical extrapolation of the

stress distributions predicted for interior points along the interface. It 	 Y

is of interest in this investigation to determine whether this digressive

behavior exhibited by the finite element method represents actual laminate

behavior or, if the predictions are spurious, to illuminate the origin of

the weakness in the finite element method that results in this spurious

behavior.

A second objective of this investigation is to assess the viability of

the finite difference method as an eff ectivt, nat,crical method in the

computation of interlaminar stress distributions, particularly near an

interface corner.

^^.,	 v..	 .,^4.W	 t.s µ,rz, y,..e.,,,.^..,....,.....,.	 ,,.ir,.....r..e.-	 ^.. ..	 .. _._. a,M.-•.c.: ^..	 7. P.	 .... _.. __.. 'u. -.. ^. dL	 ._....A.e^sWle..



ORIGINAL PACE 6-
OF POOR QUALITY

It is customary when dealing with this problem to make use of geometric

and material symmetries, thereby making it necessary to consider only the

part of the laminate that lies in the first quadrant of the yz plane. This

part of the laminate is emphasized by the cross-hatched area in Ylgure 8a.

The heavy dot in this figure is at the interface corner.

Boundary Value Problem. The field equations [1] associated with the

four-ply, [+ 451 s laminate are listed below.

Stress-Strain Relations:

ax C11e0 + C12 V,y + C13 W,z ± C16 U^Y

ay	 C12C0 '+• C11 
V ,Y + C13 W,z + C16 U)Y

az - C13(E0 + Vry) 
+ C33 W,z + C36 U

gY

(6)
azy= C44 (W 'y + V'Z)

ozx C44 U,z

Q ,V ± C16 (e0 + V )y) ± C36 W,z + 
C66 U'Y

Equilibrium Equations:

0fi6 U ' YY + 055 U ,ZZ ± C26 V )YY ± C36 W,yz = 0

± C26 
U 'YY + C22 V ,YY + 044 V ,zz + (C23 + C44)W' yz 

= 0	 (7)

+ C36 U ,yz + (C23 + C44)V,yz 
+ C44 

W PYY + C33 W,zz = 0

Displacement distribution:

u(x,Y,Z) = e0 x + U(Y,Z)

v( ,--,Y, Z) = V (Y ' Z )	 (8)

s	 w(x,Y,Z) = W(YsZ)	

t^
hq

Y
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Boundary Conditions:

U(O,z) = V(O,z) = W )y (O,z) = 0	 0 < z < 2h	 (9a)

U(0 1 0) - V(0 1 0) = W0,O) = 0	 z = 0	 (9b)

ay,(b,z) = ayxQ (b,z) = ayzz (b,z) = 0	 0 < z < h	 (90

ayu (b,z) = ayxu (b,z) = ayzu (b,z) = 0	 h < z < 2h	 (9d)

U 'Z (y , 0 ) = V ,Z (y , 0 ) = W(y,0) = 0	 (9e)

0 <y <b

azu(y,2h) = azxu(y92h) = a zyu (y,2h) = 0	 (90

azu (y , h) = azk(y,h)

azxu(y,h) = azxk(y,h)	 0 < y < b	 (9g)

gzyu (y,h) = azyp'(y,h)

in Equations (6) and (7) the upper sign (plus sign) is associated with the

upper ply (+ 45 ply) and the lower sign (minus sign) is associated with the lower

ply (- 45 ply). Equations (8) are fundamental assumptions regarding the dis-

tribution of the displacement components u,v and w and are given in reference (1].

Equations (9a) are the conditions associated with laminate symmetry with

respect to the z axis, and Equations (9b) are required to exclude rigid body

motions. Equations (9c) and (9d) require that the edge at y = b be stress-free,

except at the interface corner. Equations (9e) result from symmetry conditions

with respect to the y axis, and Equations (9f) require that the edge at z = 2h

be stress-free. Finally, Equations (9g) require that the interlaminar stress

components be continuous across the interface.

-11-



It is particularly important to observe that along the stress-free boundary

(y = b) the formulas that express the stress components cr y and aYX in terms

of displacements (Equations 6) are different for the upper and Lower plies.

Consequently, the boundary conditions that should be applied at the point (b,h)

are not immediately obvious. This observation is a possible clue as regards the

behavior of the finite element method near the interface corner.

Numerical Results. The following strategy was used to formulate a finite dif-

ference model of the four-ply laminate,

Initially each ply is considered to occupy a separate, independent region.

Separate, independent finite difference grids are assigned to the regions

occupied by the two plies. Subsequently, the finite difference module cor-

responding to the equilibrium equations that are associated with a particular

ply is applied to each grid point that does not lie on the boundary of the

region occupied by that ply. The two regions are connected appropriately by

requiring the displacements (U,V,W) and the interlaminar stress components

(a Z , a , and o zX
) be continuous across the boundary common to the two plies.

This approach leads logically to the required boundary condition at the

interface corner. That is, the interlaminar stress components should be

required to be continuous across the interface at the interface corner. Thus,

the need to formulate a boundary condition at the interface corner that

accounts for the boundary stresses associated with the + 45 and - 45 plies in

an equitable manner is avoided.

It will be observed later that the preceding strategy results in predic-

tions for stress distributions that agree well with the finite element predic-

tions away from the interface corner, and also behave in a much more logical

manner near the interface corner. Furthermore, the affect that prescribing

boundary stresses at the interface corner, (instead of interlaminar stress

k
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continuity) has on the stress distributions will be demonstrated. These observa-

tions provide a clue as to the puzzling behavior of the finite element method

near the interface corner.

The finite difference grid used to analyze this problem is shown in Figure 9.

Since the displacement components (U ) V,W) are required to be continuous across

the interface, the grids associated with the two plys sre shown connected in

Figure 9. Vertical grid lines are more closely spaced near the interface corner

where the stress components are expected to change rapidly, and the horizontal

grid lines are more closed spaced about the interface. Numerical values of grid

spacings for the y and z directions are listed in Table IV. The numerical

result, to be discussed are based on these spacings which correspond to 1989

degrees of freedom.

Boundary conditions and the grid points to which they are applied, for what

is referred to here as the principal finite difference solution, are shown in

Figure 9.

Finite difference solutions for three other sets of boundary conditions

at the interface corner are also discussed. These solutions require either

ayu = ayxu = ayzu =0 or ayg = ayx2 - ayzZ = 0 or (ay) ave = (ayx) ave = (ayz ) ave = 0

at the interface corner. All other boundary conditions remain the same for

each of the four cases. Here 
(a) ave = (au + 

0t)/2 at the interface corner.

Because the interlaminar stress continuity requirements at the interface

corner must be relaxed when any of the described sets of conditions are employed,

discontinuities in the interlaminar stress components (a z , azX , and azy) are

expected at the interface corner.

Case I: Principal Finite Difference Solution. As was stated previously the

boundary conditions and the grid points to which they are applied are depicted

in Figure 9. Especially important is that continuity of the interlaminar stress

-3-
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components (a Z' ozx, and azy) is required along the interface, including the

interface corner..

Figures 10 and 11 compare the finite element and the finite difference

predictions for stress distributions along the interface between the +45 and

-45 plies. The open circles connected by a solid curve represent the finite

difference predictions and the open squares connected by dashed curves re-

present the finite element solution.

It is convenient in discussing the behavior of the stresses along the

interface to segregate them into two groups: the in-plane components a x, ay,

and axy , and the interlaminar components 
a z , azx, and a

zy . The first group of

stresses must be identified with a particular ply, even at the interface, be-

cause they are calculates from stress-strain relations that are different for

each ply. The second group of stresses act between the plies and are truly

interlaminar stresses. They are equal in magnitude owing to the interlaminar

stress continuity requirements

Consider first the interlaminar stress components. Figure 10 indicates

that the finite difference and finite element predictions for the normal stress

a  are in excellent agreement. Most importantly both predict a large compressive

stress at the interface corner and a small tensile region just interior to the

interface corner. The lower most curve in Figure 11 depicts the finite dif-

ference distribution for 
azx 

along the interface. The finite element prediction

essentially coincides with the finite difference prediction except at the inter-

face corner and is not shown in the figure. The two numerical methods do, how-

ever, predict similar behavior at the interface corner; that is, the existence

of a stress singularity for the component azx.

The finite difference method predicts a zy ° 0 along the interface,

including the interface corner. This agrees with the finite element prediction

-14-



except near the interface corner where the finite element method predicts a

sudden increase in azy.

Now consider the distributions of the in-plane stress components (a x , cry , axy)

along the interface. Figure 11 compares these distributions with corresponding.

distributions predicted by the finite element method.

Figure 11 shows that the finite element and finite difference predictions

for each of the in-plane stress components are in excellent agreement except near

the interface corner. The finite difference method suggests that the in-plane

stress components become singular at the interface corner, while the finite

element method predicts a sudden attenuation in the stress components at the

interface corner.

Figure 12 shows a comparison of the finite difference and finite element

predictions for the distribution of a  along the free edge. Excellent agreement

is again observed.

Figures 13, 14 and 15 show the variation in free edge stress components

ay (b,z), ayz (b,z), and ayx (b,z) as reported in reference [4]. The present finite

difference predictions show that a y (b,z), ayx (b,z) are identically zero every-

where along the free edge except at the interface corner, and that a yz (b,z) is

zero everywhere, including the interface corner. It should be noted that

a y (b,z), ayx(b,z), and a yz (b,z) are required by the finite difference method to

be zero at all grid points along y = b except the grid point that coincides with

the interface corner. Thus, the values for these latter stress components that

are shown in the figures are calculated from the stress-strain relations and may

not represent boundary values. That is the stress tensor may not be symmetrical

at the interface corner.
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It is known that at a singular point all stress components are either zero

or are singular with the same power. The finite difference solution presented

here appears to satisfy this criterion.

Case II. 
ayu = a

yxu = ayzu = 0 at The Interface Corner, The Case II finite

difference solution differs from the principal finite difference solution

only in the boundary conditions applied at the grid point that coincides with

the interface corner. Accordingly, interlaminar stress continuity at the inter-

face corner is replaced by specifying that ayu (b,h) = c;,"Xu(b,h) = ayzu (b,h) = 0.

That is, the stress components on the free edge that are associated with the

upper ply are prescribed to be zero at the interface corner

Figure 16 shows the finite difference predictions for t o distributions

of the interlaminar stress components along the interface. This figure shows

that discontinuities in the normal stress a  and the shearing stress azx

occur at the interface corner. Otherwise, continuity of the interlaminar group

is maintained along the interface.

Figure 17 shows the finite difference predictions for the distributions

of the in-plane group of stress components along the interface for the upper

and lower plies. An important observatioal to make from the curves in Figure 17

is that each stress component associated with the lower ply (aXV aYV axyd

behaves as if a stress singularity existed at the interface corner, while each

stress component associated with the upper ply (axu' a
yu axyu) shows a sudden

and drastic digression from what appears to be a distribution that is trying to

follow the corresponding distribution of the lower ply.

The stress distributions associated with the in-plane stresses of the

upper ply exhibit behaviors near the interface corner similar to those exhibited

by the finite element method.
i 
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Figure 18 shows the distribution of the boundary stresses along the free

edge y - b. The finite difference method requires uyu (b ' z) R ayxu (b,z) .

ayzu(b'z) - 0 at all grid points in the upper ply, including the interface

corner. It requires that a y,(b,z) . ayxR (b,z) - cryzR (b,z) - 0 at all Frid

points in the lower ply ) except at the interface corner, Numevical values for

ayR (b,h), ayxR (b,h), and ayzR (b,h) calculated from the appropriate stress-

strain relations are shown on the figure.

Case III. ayR ayxR ayzR 0 at The Interface Corner. The Case III finite

difference solution differs from the principal finite difference solution only

in the boundary conditions applied at the grid point that coincides with the inter-

face corner. Accordingly, int;erlaminar stress continuity at the interface

corner is replaced by the conditions ayR (b,h) = ayxR (b,h) = ayzl (b,h) = 0.

That is, the stress components can the free edge that are associated with the

lower ply are prescribed to be zero at the interface corner.

Figure 19 shows the finite difference distributions For the interlaminar

stress components. The stress component a zy (y,h) is zero everywhere along the

interface. This figure shows that discontinuities in the normal stress a and
z

the shearing stress 
azx 

occur at the interface in exactly the same manner as

in Case II.

Figure 20 shows the finite difference predictions for the distributions of

the in-plane group of stress components along the interface. An important ob-

servation to make from the curves in Figure 20 is that each stress component

associated with the upper ply 
(axu' ayu' axyu) behaves as if a stress singularity

existed at the interface corner, while each stress component associated with the

lower ply 
(axR' CT oxyR) 

shows a sudden and drastic digression from what

appears to be a distribution that is trying to follow the corresponding distribu-

tion of the upper ply.

c
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Figure 21 shows the distributions of the boundary stresses along the free edge

y = b, The finite difference method requires ayk (b,z) . ayx,(b,z) * ayz^(b,z) .0 at

all grid points in the lower ply, including the interface corner. It requires

ayu(b,z)= vyxu(b,z) w a yzu (b,z) . 0 at all grid points in the upper, ply, except

at the interface corner. Numerical values for ayu (b ' h), ayxu (b,h), and ayzu(b'h)

calculated from the appropriate stress-strain relations are shown on the figure.

Case IV. Average Stress Boundary Condition. The Case IV finite difference

solution differs from the principal finite difference solution only in the boundary

conditions imposed at the grid point that coincides with the interface corner.

Accordingly, interlaminar stress continuity at the interface corner is replaced

by the conditions 
(ay)ave 

m 
(ayx) ave 0' (ayz) ave ' 0 at the interface corner.

Here (a) aVe denotes the average of corresponding stress components for the upper

and lower plies,

Figure 22 shows the finite difference distributions for the interlaminar

stress components along the interface. The finite difference predictions for the

interlaminar stress components (a z , ayx , and azy) exhibited in this figure are

in excellent agreement in every respect with the finite element predictions for

the corresponding stress components.

Figure 23 shows the finite difference predictions for the distributions of

the in-plane group of stress components along the interface for the upper and

lower plies. An important observation to make from the curves in Figure 23 is that

the stress components associated with both the upper ply (axu' axyu , ayu) and

the lower ply (axA , aXYAI (Yye
,' ) each show the curious digressive behavior at the

interface corner that characterizes the finite element predictions for these

stress components.

The foregoing observations provide a clue to the reason the finite
r.-.r a

f	 element method behaves in the curious manner described in reference [41 near the

V

F
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interface corner. The possible reason for the c.urioue behavior is discussed

in the conclusions section of this report.

Figure 24 shows the distributions of the boundary stresses along the

free edge y - b. The finite difference method requires o yu (b,z) - ayxu (b,z) +^

ayzu (b,z) . 0 at all points in the upper ply, except at the interface corner,

and ayk (b,z) . axyQ (b ) z) - ayzk (b,z) . 0 at all points in the lower ply,

Fcxcept at the interface corner. Numerical values for a yu (b,h), ayxu(b,h)

and cryzU (b,h1 , ayA(b,h) > ayxZ (b,h) , and ayzz (b,h) calculated from appropriate

stress-strain relations are shown on the figure. Again, it is noted that

these numerical values are not necessarily boundary values because the

stress tensor may not be symmetrical at the interface corner.

An interesting feature of the present case is that while continuity of

the interlaminar stress components was not enforced directly at the interface

corner, continuity of these stresses occurred there nevertheleus.

c
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V. CONCLUSIONS

Distributed Load Problem. Both the finite element and finite difference

methods predict, shearing stress distributions along the line x -a that are

in excellent agreement with each other and with the exact solution, except

near the point (a,O). The finite difference solution behaves somewhat

bcnter than the finite element solution in this region, deviating from the

exact solution only to satisfy the imposed boundary condition Q yx(a,O) = 0.

Since the exact solution shows that the stress tensor is not symmetrical

at the point (a,0), this deviation from the exact solution cannot be

attributed to an inherent weakness of the finite difference method. The

trouble arises because of the need t.o specify a limiting value for aXY(a,0)

at a point where axy # ayx

Bimetallic Plate Prob1cm. The finite difference and the finite element

methods predict essentially the same shearing stress distribution along the

bond line. It is interesting to observe that the displacement components

are prescribed along the bond line, including the singular point.

Consequently, no finite difference boundary conditions are prescribed for

6x and axy at the grid point that coincides with the singular point.

Numerical values for o x and oyx at the singular point are calculated from

the stress-strain relations and are not necessarily boundary values since

the stress tensor may not be symmetrical there.

Four-Ply Laminate. Based on the numerical evidence presented in the

principal finite difference solution for the four-ply laminate under

uniform axial strain it appears that there is no inherent weakness in the

finite difference method that prevents it from providing accurate

predictions for the distributions of the interlaminar stress group and for

-20-



the in-plane st,.ess group along the interface, except very near the interface

corner. And, even near the interface corner, the finite difference method

provides solutions that behave in a way that is characteristic of the behavior

of stresses near a singular point.

The four finite difference solutions for the stress distributions associated

with the interlaminar stress group (a Z$ azx' a zy) and the in-plane stress group

(ax , ay) axy) differ only near the interface corner. This is not unexpected,

since the finite difference models for the four solutions differ only in the

boundary conditions imposed at a single boundary point—boundary conditions

that are, moreover, very similar.

Of the four finite difference solutions the stress distributions predicted by

the Case I model (stress continuity along the interface) behave near the inter-

_face corner as one expects them to behave near a stress singularity. Therefore,

it is felt that the Case I predictions should be the definitive solution.

The Case II and III models exhibit behaviors t' -at are similar near the

interface corner. That is, discontinuities appear in the interlaminar stress

components a z and a
zX , and corresponding in-plane stress components for the	 t

s

+ 45 ply and the -45 ply show divergent behaviors near the interface corners.

Specifically, for the Case II model the in-plane stress components for the +45

ply are "drawn" down to satisfy the boundary conditions imposed at the inter-

face corner., while the in-plane stress components for the -45 ply appear to grow

unboundedly. Just the reverse is true for the Case III finite difference model.

Stress distributions predicted by the Case IV finite difference model agree

extremely well, in all respects, with the finite element predictions of the

same distributions. Consequently, one is led to examine the boundary conditions

imposed by the two models at the interface corner to explain the curious behavior

exhibited there by the finite element model.
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Consider two finite elements, located at the interface corner, which

Phare the interface corner as a common node. Let one side of each element lie

on the free edge. The finite element procedure replaces a distributed load on

an element bounda ry with concentrated forces acting at the nodes of the element.

Statical equivalency between the distributed boundary load and the concentrated

nodal forces is maintained by requiring the virtual work of the nodal forces on

the corresponding nodal displacements be equal to the virtual work of the actual

boundary load distribution on the displacements along the boundary to which

the load is applied. Therefore, the finite element node coincident with the

interface corner receives "average" contributions from the finite elements on

either side of the interface. In a finite element solution a stress-free boundary

condition translates into a nodal force-free boundary condition. Therefore,

g etting the nodal force at the interface corner equal to zero is, in some

sense, an averaging procedure similar to the boundary conditions used in the

Case IV model. It is this "averaging" process that apparently eliminates the

detal,l that an accurate solution near the interface- corner requires.

Mi
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Table IV. Finite-difference grid spacings for the
four-ply laminate. The grid contained 17 rows and
39 columns (1989 degrees of freedom)

Number First Next Next Next
of spaces

16 2 4 16

y-spacing 1.00 0.50 0.25 0.125

Number First Next Next
of spaces

4 8 4

z-spacing 0.20 0.05 0.20

V
i•

M'

G
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(a) Uniform load on part of a semi-infinite plate.
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(b) Variable spacing finite - difference grid

Figure 1. Problem involving stress discontinuity
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APPENDIX A. FINITE-DIFFERENCE CONSIDERATIONS

Because the stress components associated with each of the three

problems considered in this investigation change rapidly only in the

vicinity of a stress discontinuity or a stress singularity, it is

computationally effective to use a finite-difference grid with variable

spacing. Finite-difference formulas for first and second order derivatives

are easily derived using appropriate Taylor series. Forward, backward,

and central difference formulas for first order derivatives; as well as

central difference formulas for second order derivatives, are listed here

for convenience. Figure Al depicts essential parameters that appear in

these equations.

The finite-difference approximations for first order derivatives are:

f3=a 1 fi + a2 fi+1 
+ a3f1+2	

(Forward)	 (Al)

f i = b 1 f 1-2 + b 2f i-1 + b 3 f i	 (Backward)	 (A2)

fi' c1  1-1 + c2 f i + c3fi+1	 (Central)	 (A3)

where

A prime is used to denote a first order derivative. When h and k in these

formulas are replaced with e and m, respectively, first order derivatives

for a perpendicular direction are obtained.

The central finite-difference approximations for second order

derivatives are:
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(a) Two-dimensional central
differences.

F _ `^u —L _..--J

(c) Backward differences

fi-1 '	 'OF POOR QUALITY j "^
f j 0	 a 1 0	 0	 a 2 	0	 0	 a3 0 fi_1, j

f ij s	 0	 0 0	 a	 a	 a	 0	 0
4	 5	 6 0 f i-1,,j+1

I/ij a	 a7	 8 a	 a	 a	 a .	 a	 a9	 10	 11	 12	 13	 14 s15 f i ' j-1f

f1 , 1+1

fi+1, j-1

f i+1, j

fi+1, j+1

where

2 2 km_
a1 h(h+k)

_	 _
a4	 (Zhn)-	

a7 hg-(h+k) (r2+m)

2 -2 k(,2-m)__a2 - hk
a5_	

tm	
a8 hkm(h+k)

2 2 -k2
a3 k(h+k)

_	 _a6 ^m(.e+m)	
a9 hm(h+k) (&m)

m(h-k) -hm
a10 hkt(Z+m) a13 ^k e(h+k)(Z+m)

(h-k) (t --m) -h (.e m)
all

_
hktm x'14	 ktm(k+h)+h)

- (h-k) ,2 13.E
a12

_
hkm(Z+m)

_
a15	 km (h+k) (,e+m)

J-1 J	 j+1

(A5)

(A6)

it r 1

., - t

IL	 ^rf	 +z

L
(b) Forward differences

L -,P, _L -k J
K	 (d)  Central differences
x	 Figure Al. Fin.7.te difference grid	 ",1

a

	 notations.
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As an example of the derivation of these formulas consider the

central difference, finite difference formulas. The Taylor series

expansion of a function f(x) in the neighborhood of a point x  is

f(xo + AX) = f(xo) + f(xo ) Ox + ^f (x0)(Ax)
2 + 0{(Ax)

3 '1.	 (0)

Now using Figure Al-d write

f i+l = fi + £ik + 3jf" k2

and	 fi-1 - fi - f  + 'kf h2	
(A$)

Simultaneous solution of these algebraic equations for f and f yield the

appropriate formulas given in A3 and A5. Replacing h and k by t and m,

respectively, gives the corresponding finite difference formulas for the

perpendicular direction. Only the formula for the mixed derivative

remains to be determined.

To derive a mixed second order derivative write

fi , j clxfi-1,j + c2xfi,j + c3xfi+l,j
	

(A9)

for the line j of Figure Al-a. By differentiation

.1

fi , j	 cle f i-1, j + c2xfi, j + c3xf i+1, j .

Now

fi-1, j = cly f i-1, j-1 + c2y f i-1, j + c3yf i-1, j+l

(A10)

(All)

and similarly for £i
of 

and 
fi+l,j. 

Substituting these formulas into

Equation (A10) leads to a formula that expresses the mixed derivative

fib as a linear combination of the nine nodal points that surround point

i,j. The literal subscripts in the coefficients c ix and ciy indicate

these coefficients are to be evaluated using spacings in the x or y

directions as the subscript dictates.
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APPENDIX B

Special Material Element for Semi-Infinite Plane Problem.

The exact elasticity solution for the partially loaded, semi-infinite

plane reveals that the shearing stress axy( a , o) tends to + p/Tr as the

points (+ a,o) are approached along the lines x = + a(see Figure la).

However, the shearing stress, ayx ^'(+ a,o) applied to the external,

boundary is zero. Consequently, it appears that the stress tensor is not

symmetrical at these points.

The equilibrium equations on which the finite difference solution is

based incorporate symmetry of the stress tensor at all interior points.

Moreover, no special expressions exist that define the relationship between

shearing stress components at points where the stress tensor is not

symmetrical. Therefore, the classical finite difference procedure can not

be expected to detect such an anomaly.

Part of this investigation involves examining the effectiveness of

introducing a moment equation for a finite element of material near point

(a,o). The purpose of the moment equation is to establish a relationship

among the shearing stresses of an unsymmetrical stress tensor.

Supposedly, the moment equation associated with a finite element of

material near the boundary point (a,o) replaces a finite difference boundary

condition involving the shearing stress a (a,o) Problems arise, however,
yx

because once the finite element of material has been introduced it is

inappropriate to ignore force equilibrium of the element. Thus, three

equilibrium equations are obtained to replace two finite difference boundary

conditions at point (a,o). Since no new independent variables have been

introduced, the resulting system of equations is over specified.
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Even if it were possible to introduce an additional, appropriate,

independent stress variable at point (a,o) the system of equations, when

expressed in terms of displacements, would remain over specified unless

unsymmetrical stress-strain relations are introduced. This latter concept

represents a considerable complication and is ignored in the analyses made

in this investigation.

Not withstanding the analytical difficulties enumerated in the

preceding paragraphs, two separate finite elements of material near point

(a,o) were considered. These elements are shown in Figures B land B2.

The element shown in Figure B1 is based on first order Lagrange

interpolations of the stresses along its edges. Moment equilibrium for

the material element yields the equation

m	 m

J

(m-Y) ex ( a ,Y) dy- taxy(a,Y)dY

0	 0

	

m	 a
A

+ (m-y)ox(a-t, y)dy- (x-a+t)ay(x,m) dx = 0. 	 (Bl)

	

o	 a-,2

Using the first order Lagrange interpolations for stresses along the edge

of the element leads to the algebraic equation

2

	

6 (20x4 - 2ax2 +0x3 -axl) -	 (axy4 +axy3)

	

+ h6 (ayl+2ay3) + p22 = 0.	 (B2)

'Mere 
axi' a

yi' axyi are components of stress at the finite difference nodes

that coincide with the corners of the element.
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Equation B2 is expressed in terms of displacements (u,v) by means

of the symmetrical stress-strain relations (This is not a strictly

legitimate procedure since, if the stress tensor is assumed to be

unsymmetrical, the strain tensor must also be unsymmetrical). Equation B2

expressed in terms of displacements is not recorded here because nothing

of significant interest can be extracted from it.

Using only the moment equation for the material element and a finite

difference normal stress boundary condition, encouraging, but not exact,

agreement with the exact solution was observed for all three stress

components (a a 
X9 y^ 

a 
xy

Because two of the three equilibrium equations associated with the

material element were ignored it is quite possible that whatever agreement

that exists, is, probably, gratuitous.

The second material element is shown in Figure B2 and is based on

second order Lagrange interpolations of stresses along its edges, Thus,

approximations of stresses along the edges of the element are of the

same order of approximation as the finite difference formulas used to solve

the equilibrium equations. It was felt that this material element

represented a better meshing with the finite difference approximations of

the equilibrium equations than the first element and should, therefore,

lead to even better agreement with the exact solution, In some respects,

this was not to be the case.

Moment equilibrium and force equilibrium for the y direction yield the

formulas

h

m	 m	 2

y [ax (h y) dy

]fo

h [pxY (1 y) dy ] + .(x + 2)[ay(x,o)dx]

o 	 -h
R.	

2

M

-fo

Y[ax(Z,y)dy^++h
	

o,	 (B3)
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Z'nd

h2	 m	 m

oy (x,o) dx - Cr ( 2, y) dy +	 axy(2, y) dy - ph . 0.	 (BO
h2	 0	 jo

Using second order Lagrange interpolations for stresses along the edges of

the material element leads to two formulas that involve the stress

components (a 
XP

ayl axy) at the nine finite difference nodes that are

nearest to the element. Subsequent use of the symmetrical rocress-displacement

relations leads to two equations in the displacements (u,v). These equations

are not presented here because of their length, and because no new insights

can be derived from them.

Using only the moment equilibrium equation and the finite difference

normal stress boundary condition (Similar to the procedure used in the

analysis of the first material element) it was observed that the stress

components o
x	 y	 xy
and a agreed well with the exact solution, but o was grossly

over estimated.
4

Introducing the force equilibrium equation for the y direction,

together with the moment equilibrium equation, revealed that ax o	
and axs y r	 Y

were each in substantial disagreement with the exact solution for these

stress components near the boundary point (a,o).

The results of the numerical studies presented in this appendix

indicate that substantial analytical difficulties are encountered when, a

finite material element is introduced near the point (a,o) to account for a

lack of symmetry in the stress tensor.

To be analytically rigorous unsymmetrical stress-strain relations should

be used, and all three equilibrium equations associated with the element

should be used.
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APPENDIX C

USER INSTRUCTIONS FOR SEMI-INFINITE PLANE UNDER PARTIAL LOAD.

This appendix contains information describing the cards that must be
prepared by the program user and the output information to be expected.

INPUT INFORMATION

FIRST CARD (3F10.0 ) 415)

columns	 1-10 Poisson's ratio, v
11-20 Modules of elasticity, E(psi)
21-30 Uniform pressure, p (1b/in)
31-35 Column number of the grid line through

point A, (NDSCN).	 NDSCN s 3 in Figure
C2.

36-40 NROW, number of grid lines parallel, to
the x-axis.	 NROW = 7 in Figure C2.

41-45 NCOL, number of grid lines parallel to
the y-axis.	 NCOL = 9 in Figure C2.

46-50 NPAR, parameter used to select boundary
conditions. imposed at point A. 	 See
Boundary Conditions.

SECOND CARD (6F 10.0)

Grid line spacings (inches) in the
x-direction, dxi are shown in Figure C2.

THIRD CARD (6F 10.0)

Grid line spacings (inches) in the
y-direction, dyi are shown in Figure C2.

OUTPUT INFORMATION

Input data is printed, followed by the stress components ax(SIGX),

ay (SIGY), and axy(SIGXY) associated with the line x = a. Stresses

along the loaded boundary are also printed.

MINIMUM DIMENSIONS FOR ARRAYS

If program capacity needs to be enlarged the following arrays
require minimum dimensions as indicated.
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DIMENSION DX(NCOL--l) , DY (NROW-1) , ST (2, 18) , XST (MA),
SIGX(NROW), SIGY(NROW), SIGXY(NROW), R(NEQ),
ID(2 1 NUMNP), IDIAG(2) 0 ID1(18), IDD(NROW),
Y(NROW)

NCOL - Number of grid lines parallel to the y-axis.

NROW - Number of grid lines parallel to the x-axis.

NUMNP - Number of nodal points (NROW*NCOL).

NEQ - 2*NUMNP - NROW - NCOL + 1

MA - NEQ*(8*NROW-3)- (2*NROW-.l)*(4*NROW-1)

BOUNDARY CONDITIONS SPECIFIED AT FINITE DIFFERENCE GRID POINTS
(See Figure C2).

•	 Equilibrium equations

0	 u=v=0 (x and y displacements)

0	 u-0, axy 0

x	 axy=0, aya -p

(1) NPAR=l - ay= -p/2, oxy = 0

(2) NPAR=2 - ay= -p, finite moment equation.

(3) NPAR=3 - ay= -p/2, finite moment equation.

(4) NPAR=4 - Finite force and finite moment equations.

(5) NPAR=5 - ay= - p, axy=01

(6) NPAR=6 - ay= -p/2, modified moment equation.

(7) NPAR=7 - Modified finite force and finite moment
equations.

a =a =0
y xy

C3 a x xy=a =0

1 -v=0 , axy=0
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NOTES:

(1) H and V in Figure C2 should be large enough to validate the
assumption that the stresses on the bottom boundary and right
boundary ,rd negligibly small.

(2) A vertical grid Line through point A is required,

(3) The number of grid lines to the left of point A must be greater
than two.

(4) Numbering scheme for nodal points is shown in Figure 02.
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APPENDIX D

USER INSTRUCTIONS FOR BIMETALLIC PLATE IN TENSION

This appendix contains information describing the cards that must
be prepared by the program user and the output to be expected.

INPUT INFORMATION

FIRST CARD (3F10,0, 215)

Columns 1-10
11-20
21-30
31-35

36-40

Poissonts ratio, v
Modulus of elasticity, E(psi)
Uniform pressure, p (lb/in)
NROW - Number of grid lines parallel
to the x axis.
NCOL - Number of grid lines parallel
to the y axis

SECOND CARD (6F10.0)	 Finite difference spacings for the x
direction (dxi) (inches).

THIRD CARD (6F10.0)	 Finite difference spacings for the
y direction (dy i) (inches).

OUTPUT INFORMATION

Input data are printed followed by the stress components a (SIGY)

and axy (SIGXY) along the bond line. 	 Stress

components aX (SIGX) and axy (SIOXY) are printed for the stress free

edge. The net normal force and net shear force acting on the bond
line are also printed.

MINIMUM DIMENSIONS FOR ARRAYS

If program capacity needs to be enlarged the following arrays
require minimum :,imensions as indicated.

DIMENSION

	

	 DX(NCOL-1), DY(NROW-1), ST(2,18), XST(MA), X(NCOL),
Y(NROW), R(NEQ), ID(2, NUMNP), IDIAG(2), ID1(18),
SIGXYL(NROW), SIGXL(NROW), SIGXYT(NCOL), SIGYT(NCOL).

NCOL - Number of grid lines parallel to the y axis.

NROW - Number of grid lines parallel to the x axis.

NUMNP - Number of nodal points (NCOL*NROW).

NEQ - Number of equations = 2*(NUMNP--NROW)-NCOL + 1

MA - (8*NROW-3)*NEQ-(2^cNROW-1)*(4*NROW-1)
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BOUNDARY CONDITIONS SPECIFIED AT FINITE DIFFERENCE GRID POINTS
(See Figure D2)

0	 Equili rium equations.

x	 u=v=0 x and y displacements)

q 	 axy= a = 0

csxy=0 a,x=p

0	 v=0, a x= p/2

• V=0' a 
Y 

=0

Notes:

(1) Subr utine DCSPQU is a subroutine from PORT Mathematical
Subroutine Library and is not provided with. the main program.
This subroutine is used to integrate the stresses along a
boundary to determine the net normal force and net shear
fore on that boundary. If users do not have access to
PORT subroutines, delete program statements delimited by
comment statement C/////// in the main program

(2) Subroutine DCELB is a subroutine from the IBM Scientific
Subr utine Package and is included With the main program.

OF POOR QUALITY
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APPENDIX E

USERS INSTRUCTIONS FOR UNIFORM STRAIN OF LAYERED COMPOSITE

This appendix contains information describing the cards that muu t be
prepared by the program user and the output information to be expected.

INPUT INFORMATION

FIRST CARD (3F 20.0)

	

columns 1-20	 Poisson's ratio, 
(v12-v23 -v13)

	

21-40	 Shear modulus 
(G12=G13=G23' 

Pascal)

	

41-60	 Modulus of elasticity parallel to fiber
direction, (E11 , Pascal)

SECOND CARD (2F20.0, 3I10)

	

columns 1-20	 Moduli of elasticity perpendicular to the fiber
direction (E 22=E33' Pascal).

	

21-40	 Applied uniform strain eo

	

41-50	 NROW - Number of grid lines parallel to the y axis.

	

51-60	 NCOL - Number of grid lines parallel to the z axis.

61-70 INT - Row number for the grid line coincident with
the interface between the +45 and -45 plies. (INT=5
in Figure E2).

THIRD CARD (6F10.0)
Grid line spacings (meters) in the y direction, dyi
are shown in Figure E2.

FOURTH CARD 96F10.0)
Grid line spacings (meters) in the z direction, dzi
are shown in Figure E2.

OUTPUT INFORMATION

Input data are printed, followed by the stress components C (SIOZ),
azX(SIGZX), azy (SIGZY), ax (SIGX), ay (SIGY), and axy (SIGXY) along the

interface. Subsequently the stress components a y , ayx , and ayz along the

stress free edge are printed.

Subscripts u or Z are affixed to a stress component to indicate its
relation to either the +45 or the -45 ply, respectively.
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MINIMUM DIMENSIONS FOR ARRAYS

If program capacity needs to be enlarged the following arrays require
minimum dimensions as indicated.

DIMENSION	 ST(3,27), 01(-2 7), 01AG(3),
DY(NCOL-1), DZ(NROW-I), Z(NROW)r
SGY(NROW), SGXY(NROW), SIGX(NROW), XST(MA),
ID (3, NUMNP) 2 R(NEQ), Y(NCOL)

NCOL - Number of grid lines parallel to the z axis.

NROW - Number of grid lines parallel to the y axis.

NUMNP- Number of nodal points (NCOL*NROW)

NEQ - Number of equations (3*NUMNP-2*NROW - NCOL + 3)

MA - NEQ*(12*NROW+I)-(3*NROW)*(6*NROW + 1)

BOUNDARY CONDITIONS SPECIFIED AT FINITE DIFFERENCE GRID POINTS
(See Figure E2). Six different programs EDGSTRSI, EDGSTR2,..., EDGSTRS6
incorporate the following boundary conditions.

N	 U=V-W-o (x, y, and z displacements)

C1	 U-V -W =0
)Y

D	 a =a =a =0
z zx zy

ay=ayX=ayZ=o

W =U =V =0
,z	 ,z

X	 Equilibrium equations for the +45 ply.

•	 Equilibrium equations for the -45 ply.

O	 Stress continuity along the interface (azu=azz , azxu=azxt,
and ozyu =CF 

zy.2 )

A
U=V=W 

s Y 
=0 for EDGSTRSI through EDGSTR5

Stress continuity between plies for EDGSTRS6

r
i

W=U= V =0 for EDGSTRSI
0	 ,z ,z

a =a =a =0 for EDGSTRS2 through EDGSTR6
Y YX Yz

i

Interlaminar stress continuity for EDGSTRSI, EDGSTRS2, and EDGSTRS6
a =a =a =0 for EDGSTRS3

. {	 ®	 yu yXu yzu

y.Q yx.2a =a	
=ayz.^ 

=0 for.EDGSTRS4
E  

k	
ayu

+ayP-ayxu +syxe-oyzu +a
yz = 0 for EDGSTRS5

_	 -67-

r-

Z
F
F

P



NOTES:

(1) These progzams determine the distributions of the stress components
along the interface between the +45 and -45 plys of a 

C* 
45]s

laminate under uniform axial strain with laminate properties E11 ^ E22,

E22=E
33' G12 r Q13 ' G23' 

and v
12 =V23 "13

(2) Subroutine DGELB is a subroutine from the IBM Scientific Subroutine
Package and is provided with the main program.

(3) Subroutine DCSPQU is a subroutine from PORT Mathematical Subroutine
Library and is not provided with the main program. This subroutine is
used to integrate the stresses along a boundary to determine the net
normal force and net shear forces on that boundary. If users do
not have access to PORT subroutines, delete program statements
delimited by comment statement C///// in the main program.
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