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In 1975, a modification was formulated to Besseling's Subvolume Method to 

allow it to use multilinear stress-strain curves which are temperature 

dependent to perform cyclic thermoplasticity analyses. This method 

automotically reproduces certain aspects of real material behavior important 

in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These 

include the Bauschinger effect, cross-hardening, and memory. This 

constitutive equation has been implemented in a finite element computer 

program called CYANIDE which has been in production usage since 1977. 

Subsequently, classical time dependent plasticity (creep) was added to the 

program. Since its inception, this program has been assessed against 

laboratory and component testing and engine experience. The ability of this 

program to simulate AGTE material response characteristics has been verified 

by this experience and its utility in providing data for life analyses has 

been demonstrated. In this area of life analysis, the multiaxial 

thermoplasticity capabilities of the method have proved a match for the actual 

AGTE life experience. This paper will explore the multiaxial, 

vari?~le-temperature nature of the method and show examples demonstrating its 

utility. 
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BESSELING'S MATHEMATICAL MODEL 

The relation between the deviatoric stresses and the deviatoric 

strains is given by 

(1) 

where 

Sij is the deviatoric stress tensor 

eij is the total deviatoric strain tensor 

e" ij is the plastic strain tensor 

G is the shear modulus 

The yield strain, P, is given by the plastic potential function 

g ( II )( ") p2 0 • eij - eij eij - eij - • (2) 

The incremental plastic strains are given by 

(3) 

provided that 

(4) 

The incremental stress-strain relation is 
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(5) 

The new yield strain, eij + 6eij , is determined from 

(6) 

Besseling then introduced the concept of elastic-perfectly plastic 

subvolumes. The elastic potential, '1' of the subvolume of density p 

after prior plastic flow is given by 

where the eijl are the plastic strains due to ideal plastic yielding. 

If this subvolume constitutes the fraction '" of the volume element 

dV, its contribution to the total elastic potential of dV is 

(7) 

(8) 

If k subvolumes of the volume dV have exceeded their critical value of 

elastic potential and undergone plastic flow, the total elastic 

potential is given by 

(9) 

Now, the deviatoric stress tensor is given by 

(LO) 
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After yielding, the elasticity limit of 8ubvolume k is given by 

(11) 

The subvolume incremental plastic strains are given by 

(eij - eijk) (eaB - ea EDt) 
oe

ijk 
c: --..:=---....=..L..:.:...-p-=-2-=..:::...-~~~ oe

aBk 
k 

(12) 

provided that 

(13) 

The incremental stress-strain relations are 

(14) 

DEVELOPMENT OF NONISOTHERHAL CAPABILITY 

The equation relating the stresses and the subvolume strains, 

Equation (10), can be rewritten to give 

(15) 

Now these stresses must be the same as the stresses given by Equation (1) • 

Therefore, the two right-hand s ides can be equated. When this 

is done, we get 
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e" 
ij (16) 

which gives a relationship between the subvolume plastic strains and 

the total plastic strains. 

Squaring both sides of Equation (16) and multiplying by 2/3, we 

get 

Now 

e" ij 

Therefore 

This gives a relationship between the total effective plastic strain 

and the subvolume effective plastic strains. 

The following ratio can be formed between a subvolume effective 

plastic strain and the total effective plastic strain: 

or 

(
£P£pn)2 _ 1 eijn eijn 

2 e" e" 3" ij ij 
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(17) 

(J 8) 

(19) 

(20) 

(21) 



By taking the square root of both sides, we obtain 

£ 
• ...E.!!. e" eijn £ ij 

P 
(22) 

This gives a means of determining the subvolume plastic strains from 

the total plastic strains if the effective plastic strains are known. 

This then provides the tools to convert Besseling's Isothermal 

theory into a nonisothermal theory. We note that for variable 

temperature problems 9 and 9k will be functions of both strain and 

tempe rat ure. 

g c 9 (elj,T) 

gk Ie gk (elj ,T) 

These functions can be specified by defining temperature dependent 

stress-strain curves. 

For tncremental loading tncludrng temperature changes, the 

change In the plastic potential function Is given by 

There are three posslbJe conditions that can occur due to this 

(23) 

(24) 

(25) 

load Increment and these are determined by the value of this differential. 

For loading beyond the present yield surface 

dg > 0 

!a de +.2E. dT > 0 
aetj tj aT 
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For the loading to place the point on the new yield 

surface 

dg = 0 

fa de.. + ~Tg dT = 0 
Cle.. IJ CI 

IJ 

For the point to unload back into the elastic range 

dg <0 

~ de .. + ~ dT< 0 
IJ T ae. . a 

IJ 

These last two conditions are used to accomodate 

temperature variations. The solution to any load condition, 

(N-I), is arrived at when 

dg = ~ de.. ~ 0 
n-l ae ij IJ/T = Constant 

In proceeding to the next load step, (N), the temperature 

effects on the stress-strain curve are incorporated so as 

not to vialate this condition while holding the strains 

constant. 

- ~ dT dg(n-l),(N) - aT = 0 

Thus, we are requiring that the change of temperature alone 

not effect the inelastic condition of the material. We 

accomplish this by realizing that 

~dT = 2G e p at - T de ij de ij 

Therefore, by requiring that 

de~j = 0 

We force 

it dT = 0 
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(29) 

(33) 

(35) 

(36) 



This then gives us the mechanism for positioning our new yield 

surfaces In step, N. The step, N, solution then proceeds by applying 

the loads and boundary conditions and iterating to obtain 

d 2L d ~O g .. e
iJ

• 
elj 

within your specified convergence tolerance. 

CREEP ANALYSIS 

(37) 

The creep analysis utilizes one of two possible creep representations. 

When tertiary creep is not considered to be of importance, the equation used 

is 

(38) 

where 

- /100000 = effective stress (Te - CI e ' O'e 

k, m, n, q, r = material-dependent and temperature-dependent creep coef

tic-! ents. 

1~len the material exhibits a significant amount of tertiary creep capa

bility, an alternate representation is used. Primary creep is represented by 

the 83i ley-Not-ton law. 

p - A2 A3 
e ::a Al O'e t c 

Sr.conJary creep is modeled with the expression proposed by Marin, Pao, and 

Cuff (Reference 19) 

E S 
c 
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Tertiary creep is represented with an equation of the form 

(41) 

= 
AI, A2, ••• AIO c material-dependent and temperature dependent cr~1 ," 

coefficients. 

CYANIDE also contains an orthotropic creep formulation. The creep s~"l"ain 

rate is assumed to be given by 

where 

~ •• a strain rate tensor 
1J 

0kl - stress tensor 

(42) 

gijkl = Tensor whose components are functions of temperature, de, and 

hardening rule and are derivable from input creep curves. 

The user can select from time hardening, strain hardening, or life frac

tion creep rule, depending upon the actual material characteristics. Strain 

hardening is ordinarily adequate for describing hardening behavior, providing 

that stress reversals do not occ~r. A stress reversal 1s considered to occur 

when 

c . 
e .. 0 •• < 0 

1J 1J 

Where eijc is creep strain measured from its current origin. When a ~ev~rsal 

occurs, the origin is changed and the analysis proceeds (Reference20) . 

The combination of general creep equations and creep rule makes the pro

gram very general In Its application to structures which undergo time-dependent 

plastic flow In which transient effects are not significant. 
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CYANIDE COMPUTER PROGRAM 

Many of the steps In the CYANIDE nonlinear finite element 

computer program are the same as those for a linear finite element 

analysis. The nonlinear effects are Introduced Into the system of 

finite element equations by adding vectors of pseudoforces to the 

right hand side. 

I KI {oJ = {F} + {F } + {F } 
p c 

where 

IKI is the clastic stiffness matrix. 

{oJ Is the vector of nodal displacements. 
{F} is the force vector including thermal terms. 

{F } 
p Is the plastic pseudoforce vector. 

{F } Is the creep pseudoforce vector. c 

(44) 

For each Increment of loading, the nonlinear pseudoforces are Iterated 

upon until the requirements of equilibrium, compatabillty, and the 

constitutive equations are met within user specified tolerances. Since 

this method does not require modification of the stiffness matrix during 

iterations it Is very economical. This economy is magnified during 

cyclic analysis. The stiffness matrix need only be regenerated If the 

material properties are revised by thermal variation or if elements have 

been added or removed. 

MULTIAXIAL, VARIABLE TEMPERATURE EXAMPLE 

In a previous NASA contract, we investigated one of the common thermal 

stress problems In AGTE' s : turbine blade tip cracking. In that case, the 

critical region was shown by analysis and confirmatory testing tb have the 

cyclic stress-strain behavior noted In Figure 1. High temperature, time 

dependent flow rapidly relaxes the compressive stress such that on 0001-

down high tensile stresses are genrated. This process shakes down very 

rapidly to an almost elastic hysteresis loop based on modulus changes. 

In that case the problem was almost totally uniaxial In nature. 
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A second type of thermal stress problem prevalent in AGTE's is the hot 

spot. In this case, the stress strain response is definitely multiaxial. We 

will investigate a hot spot on a combustor shingle as being typical of these 

problems. Figure 2 shows a shingle segment. Taking advantage of its large 

radius of curvature and thinness, it was modeled as a flat plate in a 

condition of plane stress. The model is shown in Figure 3. Figures 4, 5 and 

6 show the nature of the hot spot at peak temperature and Figure 7 shows the 

heat-up cool-down temperature cycle at the center of the hot spot. This cycle 

was analyzed assuming no time dependent effects occcurred during heat-up and 

cool-down but that a one hour hold time was associated with the peak of the 

hot spot. 

The stress-strain results of the first cycle are shown in Figures 8, 9 

and 10 for the center of the hot spot. Figure 8 shows effective stress versus 

effective strain and Figures 9 and 10 show the biaxial stresses versus 

strains. Once again the effect of plasticity and creep is to generate tensile 

stresses during the cool-down portion of the cycle. The next series of 

figures shows the shakedown stress-strain results for the center of the hot 

spot. Figure 11 shows the effective stress versus effective strain shakedown 

values and Figures 12 and 13 show the shakedown biaxial stress cycle at the 

center of the hot spot. Thus this multiaxial thermal stress case, just as the 

uniaxial case, shakes down to almost elastic cycling with a high tensile mean 

stress. In addition, the stresses are almost proportional. These types of 

analyses are important in indicating the types of response and life tests 

needed. 
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