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INVESTIGATION OF ANALYTICAL METHODS FOR EFFICIENT
PARTITIONING OF ON~BOARD PROCESSING FUNCTIONS FOR
REMOTE SENSING APPLICATIONS

By
David Livingston! and John W. Stoughton?
INTRODUCTION
This ‘final report details the results developed to fulfill the require-
ments for Task NAS1-15648-43 [1]. It is divided into four sections:
Section I  Risk Decomposition
Section II Universal Algebras
Section III Unary Functions
Section IV Current Topics
Section I generalizes the results reported in the previous report and
presents some new examples based on ring theory. Section II further gener-
alizes the use of lattice techniques to any system with algebraic structure.
The third section deals with a specific algebra called unary functions.
Areas which are currently under consideration are briefly described in the
final section. It is recommended that the previous report be reviewed
since the functions for this report are described therein.
SECTION‘I. RING DECOQ}OSITION
The decomposition of multiplication and addition processes may be ob-
tained simultaneously if the algebraic structure under consideration has
the form of a ring. As in group decomposition, it is necessary to obtain
the lattice of substructures. The substructures of rings are called idggié
and are defined as follows:
Let {R, +, '} be a ring where R is a set which is élosed under addition

and multiplication. {1, +, ¢} is an ideal if and only if:

l Research Assistant, currently with I.B.M. Watson Research Center
Associate Professor, Department of Electrical Engineering, Old Dominion
University, Norfolk, Virginia.
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2) {1, + } is a subgroup of {R, * }, and

3) For all acI and all beR, a*b = ¢, where cel.

The set of all ideals belonging to a ring form a lattice under the par-
tial ordering of inclusion. As in the case of groups, equivalence classes
or partitions may be obtained by finding the additive cosets of each ideal.
A lattice of the resulting partitions may be constructed from which the
decomposition structure and element representations can be obtained.

Example 1, Integers Modulo Eight

The addition and multiplication tables are:

+10 1 2 3 4 5 6 7

o{o 1 2 3 4 5 6 7

and




From these tables the folloving ideals may be found:
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1) The ring itself OF POOR QUALITY
2) +| 0 2 4 6 ] 0 2 4 6
0|0 2 4 6 {0 0 0 O
21 2 4 6 0 210 4 04
414 6 0 2 410 0 0 0
6| 6 0 2 4 6] 0 4 0 4
3 +| 0 4 10 4 '
00 4 0fo0 6~—
41 4 O 41 0 0
“ +]10 219
0o 0] 0

The partitions associated with each ideal and its corresponding lattice

are:
1 {o, 1, 3 4 5, 6, 7} = I, )
2) {0, 2, & 6; 3, 5, 7} =1, I, Ty
3 {0, 4 1, 5; 2, 6; 3,7} =1 i T,
4) {03 T3 23 33 43 53 637} =1 g

Two partitions T, and 7T, may be created such that 1y,* T) *Ty 4+ l[3°7,

=T

1, = {0, 1,4,5;2,3,6, 7} and 7, = {0, 1,2,3;%, 5,6, 7}.
By choosing T, and T, as such, a pipeline or serial structure is obtained:

L b

H2 T ™ T,
A

4 A

This decomposition structure may be used for both the addition and multipli-

cation processes differing only in the realization of each block. Element
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representations may be chosen such that they are the equivalent binary re~
presentations, Given the decomposition and representations, the ring struc-
ture may be realized in hardware using standard procedures.
Polynomial arithmetic can also be decomposed, as in the proceeding ex~

ample, if a ring structure is evident.

Example 2. Ring of Polynomials Modulo x2 + 2 over

Ground Field Modulo 3

The addition and multiplication tables are:

+ 0 1 2 X 2x  x+l x+2 2x+2 2x+1
0 0 1 2 X 2x  x+l x+2 2x+2 2xt+1
1 1 2 0 =x+l  2x+l  x+2 X 2x 2x+2
2 2 0 1 x+2 2x+2 x x+1 2x+1 2x
X x  xtl x+2 2x 0 2x+l  2x+2 2 1
2x 2x 2%+l 2242 O b3 1 2 X+ x+l
x+1 x+l x+2 x 2x+l 1 2x+2 2% 0 2
x+2 x+2 x x+tl 2x+2 2 2x 2x+1 1 0
2x+2 | 2x+2 2x 2x+l 2 x+2 0 1 x+1 X
2x+] | 2%+l 2x+2  2x 1 x+l 2 0 X x+2
and )
. 0 1 2 x  2x x+l  x+2 2x+2 2xt+1
0 0 0 0 0 0 0 0 | 0 0
1 0 1 2 X 2x x+l  x+2 2x+2 2x+1
2 0 2 1 2x x  2x+2 2%+l x+1 x+2
X 0 x  2x 1 2 X+l  2x+l 2x+2 x+2
2X 0 2x X 2 1 2x+2  x+2 x+1 2x+1
xtl 0 x+l 2x+2  x+l 2x%+2  2x+2 0 x+1 0
x+2 0 ®*+2  2x+l  2x+]l  x+2 0 x+2 0 2x+1
2x+2 0 2x+2  x+l 2x+2 x+l  x+l 0 2x+2 0
2x+1 0 2x+1  x+2  x+2 2x+l 0 2x+l 0 x+2
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The idzals are:

1) The ring itself

2) + 0 x+l  2x+2 . x+1 2x+2

0 0 x+l  2x+2 0 0 0

x+1 xkl 2x+2 0 x+l 2x+2 x+1

2x+2 | 2x+2 0 x+1 2x+2 x+1 2x+2

3) «+ 0 x+2 2x+1 . x+2 2x+1

0 0 xt2 2x+1 0 0 0

x+2 | x+2 2x+] 0 x+2 x+2 2x+1

2x+1 | 2x+l 0 x+2 2x+1 2x+] x+2
4) * | O . ’ 0
0 0 0 0

Note that the two non-trivial ideals are generated by the linear factors
© + 2,

of the modulus,

The partitions and associated lattice corresponding to the ideals are:

T

1 {o, 1, 2, x, 2x, =x+1, x+2, 2x+l, 2x+2}

2) {0, x+l, 2x+2; 1, 2x, x+2; 2, x, 2x+l} = I

3) {0, x+2, 2x+l; 1,x%, 2x+2; 2, 2x, x+l} I,

4) {0y 1T; 2; 2x; mi;xu;zxﬂ;me;Zwu;2m¢}=n¢
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This lattice indicates a parallel decomposition., 'The element representa-

tions may be made as follows:

0 1 2

M = {0, x+l, 2x+2; 1, 2x, x+2; 2, x, 2xtl}

0 1 2

I, = {0, x+2, 2x+1; 1, x, 2x%x+2; 2, 2x, x+1}

It is important to note the implication of this representation. Poly-
nomial arithmetic can be performed using simple integer arithmetic. As an
example, consider |(2x)* (2x+2) |x?+2“

[(2x) « (2x+2) | %2+ + 2x2x + 2x * 2| x2+2

[}

| 422+ 4x | x®+2

i

| 22 + x | %242

x + 1.

This result may also be obtained by using the representations
|(2x) . (2x+2) | x2+2) |+ (1,2)+(0,1) = (1+0,2°1) = (0,2)

(0,2) » =x+l.



In other terms, multiplication of polynomials modulo another polynomial can
be considered a cyclic convolution, Interpreting the results of the lattice
analysis, a cyclic convolution may be performed by a term-by-term multipli-
cation of two integer sequences representing the polynomials, This is
equivalent to performing a cyclic convolution of two sequences by transform-
ing, multiplying and inverse transform%ng the sequences using a method such
as the finite Fourier transform., It is interesting to note that this result
was obtained quite systematically using lattice analysis.

SECTION II. UNIVERSAL ALGEBRAS

It has been shown that Group [1] and 7ing decompositions may be obtain-
ed in a systematic fashion using lattice analysis, This method may be gen-
eralized to any algebra belonging to a class following the rules of univer-
sal algebra [2].

An algebra may be defined as a pair {S,F}, where § is a nonempty set of
elements and F is a set of operations which map a Cartesian power of S5 into
8, that is,
gn(a)

F_:

a + 8, for all FaeF.

Groups, rings, and lattices are all examples of algebras, A field is not an
algebra under this definition since the inverse function is not defined for
zero,

A subalgebra may be defined as a pair {T,F,}, where T<S and
Fa: ﬂ](al* T for all FacF. That is, the set T is closed under all
Fa and T is a subset of S. The importance of subalgebras to decomposi=
tion is evident by the following theorem and corollary from Birkhoff [2].

Theorem l: Any union of subalgebras of an algebra is a subalgebra, and an

algebra is a subalgebra of itself.



Corollary 1: The subalgebras of an algebra form a complete latcice.

Corollary 1 provides the vehicle by which arithmetic systems may be
decomposed in a systematic fashion. The structure of the system is first
examined to determine if it forms an algebrs, All subalgebras are then
found and a lattice of the subalgebras is constructed. By augmenting each
subalgebra with its cosets a lattice of partitions is formed from which the
possible decompositions are obtained.

SECTION III. UNARY FUNCTIONS

Unary function3 are of particular interest, especially with the avail-
ability of new memory technologies which ullow the implementation of unary
functions by look~up tables stored in read only memories, If the range of a
unary function is a subset of its domain, then the function forms an algebra
and readily lends itself to possible decompositions. The value of decompos-
ing a unary function, in terms of look-up tables, is a reduction of the to-

tal memory required to implement the table.

Example: x+l  Modulo 12
x | x+l x| x+rl
0 |1 61 7
112 71 8
2 |3 81 9
3 14 9 |10
4 15 10 |11
5 ]6 11 10

This table forms an algebra, but there are no apparent subalgebra, but there

are no apparent subalgebras for the function x+1, If the table is treated

as a3 sequential machine, the partitions may be readily obtained.
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nt ={0, 1, 2, 3, 4 5, 6, 7, 8, 9, 10, 11}

m =1{o, 2, 4 6, 8,10; 1, 3, 5, 7, 9, 11}

i, ={0, 4 & 1,5, 9 2,6 10; 3, 7, i1}

n, ={0, 3, 6, 9 1, &, 7, 10; 2, 5, 8, 11}

m =1{0, 6 1, 7; 2, 8 3, 9 4, 10; 35, 11}

The Lattice of Partitiona:

nI

I 3

g « 12 =H¢, suggesting a parallel decomposition.

The element representations may be made:

0 1 2 3

I, = {0, 4, 8 1, 5, 95 2, 6, 105 3, 7, li}
0 1 3

M, ={0, 3, 6, 9 1, 4 7, 105 2, 5, 8, ll}.
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Thus the original function (table) may be decomposed into two functions

(tables):
ENECINCR TS
0 1 0 1
1 2 1 2
2 3 2 0
3 0 '

Notice the total number of memory locations needed ig 4 + 3 = 7 as opposed
to 12. In this decomposition, the transformations are systematic:

Y=lx|,’and Z=|x |3.
If the transformations are not systematic the decomposition may be more dif-
ficult to implement than the original function, unless it is a part of a
larger system using the decomposed representations., 'This is the biggest
disadvantage to using this method for unary functions.

SECTION IV, CURRENT TOPICS

Polynomi al evaluations may be represented in various decompositions in-
cluding serial and parallel. A simple example of a parallel decomposition
is the representation of the polynomial as a product of its linear factors.
That is, a polynomial ;nay be factored:

1

n~
- ¥ v es 4 8p%X2 L ax +ta =
anlx + 2 + lx o

(onn(an-l X + an—Z) X +,., .az) X + .ao .

10
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The structures of the two decompositions may be represented in block form.

Parallel

x -~4h—-4J x-bg

F(x)
| oommumalfiipne
‘t—'—"'.‘ x-bl S ﬁ ‘
—“————mn:b-
[onesenmnen >
el
[ S———
e T
‘.—-__.-» .
> *bp
Serial
an- ?"*"‘Z‘
i L ) o1
e o« pmcornce | 4+ P . + f
I i I !
e 06 +
) , -1
. ) #

F(x)

+

As of yet, a correspondence between these decompositions and a lattice from

which they may be obtained has not been found, Such a correspondence will

help generalize the lattice method.

11



Decompositions of matrix products are very desirable from the stand-

point of decreasing computational complexity, There exist decompositions of
matrix products which reduce the number of element multiplications, For
example, the product of two 2 x 2 matrices can be performed using six
multiplications rather than the usual eight, Matrix operations are highly
algebraic in structure and should lend themselves to many possible decompo-
sitions.

Current vesearch involves using lattice analysis to obtain beneficial
decompositions. There is a major problem encountered using these tech-
niques, Match algebras are very large, For example, a 2 x 2 matrix over
a field of sixteen elements has 65536 representations, This size problem
may be overcome by generating the technique to large problems by examining
smaller problems in detail and using computer assistance in handling the

large information sets.

12
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