
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19830026336 2020-03-21T01:01:35+00:00Z

PB83-176065

Survey of New Vector Computers: The CRAY
1S from CRAY Research; the CYBER 205 from
CDC and the Parallel Computer from ICL
Architecture and Programming

Deutsche Forschungs- and Versuchsanstalt fuer
Luft- and Raumfahrt e.V.
Goettingen (Germany, F.R.)

Prepared for

National Aeronautics and Space Administration
Washington, DC

Jan 82

PB83--176065

3

A SURVEY OF NEW VECTOR.COMPUTERS: THE CRAY 1S FROM CRAY RESEARCH;THE CYBER
205 FROM CDC AND THE PARALLEL COMPUTER FROM 1CL - ARCHITECTURE AND PROGRAMMING

by

Wolfgang Gentzsch

i

Translated from the German

9

REPRODUCED BY

x'	 NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

t I

TRANSLATION PREPARED FOR THE INTERNATIONAL TECHNOLOGY EXCHANGE DIVISION,
OFfice of International Affairs, NATIONAL TECHNICAL INFORMATION SERVICE.

1983

FT

REPORT DOCUMENTATION
I

1, REPORT No, 2, 3, Recipient's Accession No.

PAGE DFVLR-FB-82-02	 I paa 3	 1 76o6
a. Title and Subtitle	

A Survey of New Vector Computers: The CRAY 1S from
5. Report Date

Jan 82
CRAY Research, the CYBER 205 from CDC and the Parallel Computer
from ICL.	 The Architecture and Programming. 6'

7. Authorls) B. Performing Organization Rapt. No.

W. Gentzsch

9. Performing Organization Name and Addrv,s 10. Project/Task/Wofrk Unit No.

Deutsche Forschungs- and Versuchsanstalt fOr Luft- and
11, Contract(C) orGrent(G) No.Raumfahrt

G8tti ngen (C)
West Germany (G)

12. Sponsoring Organizat ion Na-ne and Address 13. Type of Report & Period Covered

National Aeronautics and Space Administration
Washington, D.C.

14United States of America

16. Suppkrtrntary Notes
Translation of "Ein Oberblick Ober die neuen Vektorrechner CRAY-1S von

CRAY Research, CYBER-205 von CDC and den Parallelrechner DAP von ICL - Architektur
urid Programmierung", plan 82, 50pp. 	 Original German available as N82-30961.

16 Abstract (Limit: 200 words)

Problems which can arise with vector and parallel computers are discussed here in
a user oriented context.	 Emphasis is placed on the algorithms used and the
programming techniques adopted.	 Three recently developed supercomputers are
examined and typical application examples are given in CRAY FORTRAN, CYBER 205
FORTRAN and DAP (distributed array processor) FORTRAN. 	 The systems performance
is compared.	 The addition of parts of two N x N arrays is considered.	 The
influence of the architecture on the algorithms and programming language is
demonstrated.	 Numerical analysis of magnetohydrodynamic differential equations
by an explicit difference method is illustrated, showing very good results for
all three systems.	 The prognosis for supercomputer development is assessed.

17. Document Aneiysis a. Descriptors

*Architecture(Computers); *Computer Programming; *Computer SystemsjPerformance;
*Parallel Computers; *Pipelining (Computers); *CRAY 1 Computers; *CYBER Computers;
Computation; Computational Fluid Dynamics; Fortran; Magnetohydrodynamics;
Technology Assessment

b. Identifiors/Open-Ended Terms

c COSATI Fieki/Group(sl	 9B	 NTIS Field/Group(s) 	 62A,	 62B, 62D, 62F
18. Availability Statement 19. Security Class (This Report) 21. No. of Pages

UNCLASSIFIED
20. Security Class (This Page) 22. PriceRelease unlimited
UNCLASSIFIED

,)ee instructions on iceverse

1

i

GERMAN RESEARCH AND TEST CENTRE FOR AIR AND SPACE TRAVEL

Research Report FB 82-02

A SURVEY OF NEW VECTOR COMPUTERS

The CRAY 1S from CRAY Research

The CYBER 205 from CDC and

The Parallel Computer from ICL

ARCHITECTURE AND PROGRAMMING

by
	

c

Wolfgang Gentzsch

i.

DFVLR
Y

Institute for Theoretical Fluid Mechanics

Goettingen
9

}

t:

M1

January 1982

s

B' i

Contents

1. Introduction

2. Vector and Parallel Computers

3. Adding Data Subsets on the Three Systems

4. The Numerical Solution of MHD Equations

5. Summary and Overview

6. Literature

3

f^

1. introduction

The importance of electronic computers in manifold branches of

science and technology has continued to grow :since the development

and induction of the first German electronic computer in the

Astrophysics Division of the Max Planck Institute for Physics in

Goettingen. Although most computers have been installed for

purely commercial reasons, the largest and fastest computers have

been and still are being used primarily in the solution of various

physical problems.

The rapid development of semiconductor and switching circuit

technologies and of signal communication techniques has resulted

in substantial improvements in computation times, mainframe sizes

and access times for central processing units (CPUs). In fact,

the performance of computers has been enhanced so much that for

some ten years now serially operating high performance mainframes

have been on the market. Such machines can easily perform one

million computations per second, vide the CDC 7600 in 1969, the

IBM 360 195 in 1971 and the AMDAHL 470/V:, in 1976.

During this same period, increasing numbers of physicists have

immersed themselves in a third branch of physics which came into

being with the advent of the computer. Thus, in addition to the

domains of experimental and theoretical physics, there is now a

discipline known as "computational physics". This field involves

the transformation of complex physical problems into equations -

often in idealised form - which are solved approximately on the

computer using numerical algorithms. Physicists are much interes-

ted to discover how the approximate solution of a problem will

change when a variety of different parameters are varied. By

such techniques it is possible nowadays to save the millions of

marks which extremely expensive test.units would entail. One

typical instance involves the numerical solution of magnetohydro-

dynamic differential equations used to determine stable plasma

equilibria at the Max Planck Institute for Plasma Physics in Garching

near Munich. These studies are providi.rg insights which will enable

fusion reactors to be built in the future. Another instance involves

4

"t	 5

the numerical solution of Navier-Stokes differential equations to

determine the physical properties of the flow around objects having

specific configurations, which is being carried out at the Institute

for Theoretical Fluid Mechanics within the DFVLR (German Research

and Test Centre for Air and Space Travel) at Goettingen. Computations

of this type make possible a reduction i.n the number of very costly

wind tunnel tests which need to be performed.

The other side of the coin is that the huge strides made in these

fields over the past two decades - which are due primarily to techno-

logical advances - have also substantially raised the demands now being

made as to what computers might be expected to accomplish.

Since little improvement in the performance of serially operating

computers, i.e. so-called von Neumann computers, has been achieved

over the past ten years, several computer companies in the seventies

started to interest themselves in new architectures. Machines known

as vector and pipeline computers have been on the market since 1976.

These include the CRAY 1/1S, the STAR 100 and the CYBER 203/205. Para-

llel computers represent another group and significant examples are

the ILLIAC IV from Burroughs, the DAP from ICL and the HEP from

Denelcor.

We shall concern ourselves here exclusively with the latest systems

from CDC, CRAY and ICL, namely with the mainframes CYBER 205, CRAY 1S

and DAP. After a brief= outline in Chapter 2 of the principal differ-

ences of the individual machines as compared to serial computers,

Chapter 3 will be devoted to the languages CRAY FORTRAN, CYBER 205

FORTRAN and DAP FORTRAN and reference will be made to a simple yet

typical problem for many applications, viz. the addition of two data

subsets. In Chapter 4 we consider the numerical solution of modified

magnerohydrodynamic differential equations in two dimensions using the

easily programmable single step procedure which works very well on all

three systems. This procedure may be adapted without any special

problems as a rapid super step procedure. Extracts of the computer

program are discussed for all three computers. Our concluding Chapter

5 presents a survey and, in the opinion of the author, a brief overview

of the development of computer systems and programming languages up to
	 x

the end of the eighties.

^r

6

At this point we should like to express our sincere thanks '9 those
companies and institutions involved in any way in the appearance of

this report. In particular, we should like to thank Dr. Sch8fer of

CDC; Mr. R. Obelmesser of CRAY, Mr. W. Erhard of the University of

Erlangen-Nuremburg and Mr. Sutherland of ICL. Thanks are also due

to Dr. Moller-Wichards of the DFVLR in Goettingen for his valuable

comments.

2. Vector and Parallel Computers

The most important arithmetical instructions, such as addition and

multiplication, are carried out in several steps by a conventional

computer. For instance, flouting point addition comprises the follow-

ing steps (see Figure 1):

The loading of two elements

Comparison of the exponents

Transfer of the mantissas

Addition of the mantissas

Normalisation to floating point normal format

Storage of the result.

For the serial processing of two vectors by a von Neumann computer, the

floating point addition in the above case would require four time

cycles for each pair of elements plus the time taken for the loading

and storing. For a machine having a processing cycle time of (say)

32.5 nsec (such as the AMDAHL 470) and a main store cycle time of 325

nsec, we obtain in very simplified terms

4*32.5 + 2*325 = 780 nsec.

This corresponds to a performance of 1.3 MFLOPS (Million FLOATING

POINT Operations per Second) in our example. If two vectors are

added, 83% of the time taken for a pair of elements is for loading

and storage operations and only 17% for the actual addition.

However, if addition of two vectors from an addition pipe is performed

on a vector computer, there will be in each segment of the pipe a pair

of operands in a differing state of processing. After a certain

start-up time (in our example 325 nsec), a result is produced after

7

Scalar Coro 	̂ 4 Cycles per Result

X 1 'Y1	 X242	 X343

1 12 13 4 &12 '7,iDj 112 13 4 •••

Z 1 	Z2	 Z3

Veator-Com uitr^ 	 1 Cyole per Result

X 1 •Y 1	1	 2 3 4	 Z1

X 2-Y2	 1 2 3 4	 z2

	

X343 1 Z 3 4	 Z3

• • • • •

Parallel Com utor	 4 Cycles for N 'Results

X1 41 1 1 3 4 ^Z1

X2 42- 1 2 3 4	 22

r,N ,YN 	2 3 4	 ZN

ii

^J	 Figure 1. The addition of pairs of numbers z i = X + yi,

1	 i = 1,2,	 ,N on scalar, vector and parallel

computers

r,

8

each processing cycle. In the above case, for a vector length of 64

we obtain

325 + 4*32.5 + 63*32.5 + 325 = 2827.5 nsec

which is equivalent to

44.18 nsec = 22.6 MFLOPS

for a single addition. The percentage involving loading and storage

is now reduced to 23%.

The operating principle is analogous to the conveyer belt principle

used for filling beer bottles in a brewery. While empty bottles

enter the "pipe" at one end of the belt, full beer bottles emerge at

the other end ready for transportation. Between the starting and

finishing points there are at the same time numerous other bottles

in varying states of processing (in the segments).

Thus, in pipelining a strear! cf operand pairs flow through the pipe.

In this way, the CRAY 1S can attain up to 23 MFLOPS for vectors whose

length is a multiple of 64. The CYBER 205 has a performance of just

40 MFLOPS for addition of vectors of length 64, whereas for vectors

of length 1000 even 88 MFLOPS can be achieved on a two pipe version

using 64-bit arithmetic. The reasons for this disparity will be

investigated in the next chapter. Such performance data for special,

individual operations tell us nothing about the overall performance

of the particular computers during the operation of extensive produc-

tion programs found in practice.

Another feasible extension of serial von Neumann computers would be

the linking of many such computers to a giant mainframe, though the

problems arising therefrom are all too evident. In addition to the

high financial expenditure (the flow model processor developed for

NASA by Burroughs cost some 100 million dollars), difficult communica-

tion problems between the units would have to be solved. Moreover,

the interchange of data and control information would be expensive in

terms of the time and hardware involved.

A more sensible approach might be the linking of many smaller pro-

cessors operating under one single control unit. Each of these

processors would then carry out simultaneously the same computations.

9

The maximum performance of such parallel computers is proportional

to the number of processors; in the case of DAP from ICL this yields

a factor of 64 x 64 = 4096. Although a single processor in the DAP

requires 135 usec t3 perform an addition (-0.0074 MFLOPS), the DAP

performance for the addition of two 64 x 64 matrices is 30 MFLOPS.

A compromise was made for the mutual communication between the pro-

cessors. Each processor is directly linked to its four neighbouring

processors, in particular to their 4096-bit memories. If data are

required from the memory of a processor further away, they have to

be sent via so-called highways (see Figure 6).

3. Adding Data Subsets on the Three Systems

By means of a simple example we now propose to present a brief review

of the three programming languages CRAY FORTRAN, CDC FORTRAN and DAP

FORTRAN. This will automatically involve mention of the three archi-

tectures used.

Suppose that a scientific problem in the form of a set of differential

equations (as, for instance, in Chapter 4) cannot be solved in closed

form using the methods of analytical mathematics. It is often suffic-

ient for an approximate solution to be obtained which gives numerical
}	

values to certain points within the region of interest. This type of

approach is not uncommon in everyday life. If an oil deposit is to

be determined, for instance, the surveying engineers often manage with

(very costly) drillings made at intervals of 5 km.

The solution of many problems in nature are thus approximated by making

use of lattices. If possible, the probable error arising from such a

"discrete" solution is also given. We are interested here in the solu-

tion of a problem on an N*N lattice with N2 lattice or nodal points

(i J) with 1 s i _< N and 1 s j s N as follows:

N

J

s_

I

i	 ...	 i	 ...	 N

Figure 2. The region for the calculations

The solution is known along the edges of the lattice i = 1, i = N,

j = 1. and j = N, so that computations need be performed only for

points within the lattice. For instance, the deflection of a plate

firmly fastened along its edges is known. The addition of two test

series A and B would then be carried out for the subsets

A(2,2) - - - A(2,N-1)

1

A(N-1,2) - - A(N-1,N-1)

and

B(2,2) - - - B(2,N-1)

I	 I

B(N-1,2) - - B(N-1,N-1)

To solve this problem on a serially operating computer, it first has

to be translated into a programming language. In FORTRAN, the most

+.-,r 4,«;0y used language in the world for scientific and technical

problems, the program would assume the following form:

DIMENSION A (N,N) , A (N,N) , C (N,N)

N1 = N-1

READ (3,10) A,B

DO	 1	 J = 2,N1

DO	 1	 I = 2,N1

1	 C(I,J) T, A(I,J) + B(I,J)

WRITE (5,10) C

10 FORMAT (8.5)

STOP

END

Initially, therefore, space in the computer memory of dimension 3*N2

should be reserved for the fields A, B and C, where N is a fixed whole

number. After reading in A and B and assigning them to their reserved

fields, the addition is performed by columns starting from the lattice

point (2,2) and the result returned to memory as C. Finally, C is

expressed in a fixed format.

10

11

There are no special problems associated with the programming of

this for the user of the CRAY 1S. He need not translate his program

into some quite different language. Apart from a few extensions,

CRAY FORTRAN is virtually identical to normal FORTRAN. The CRAY

FORTRAN compiler can read any normal FORTRAN program and automati-

cally vectorises simple DO loops. For multiple DO loops, as in our

example, it vectorises in each case only the innermost loop. This

is primarily because the CRAY 1S is a computer which carries out

vector operations from register to register (see Figure 3). In

each of eight vector registers there is space for 64 words from

the memory (where they need not be stored as continuous strings).

The vector elements move out of the register directly through the

corresponding functional units such as addition, multiplication, etc.

When 64 elements have been worked through, the relevant register is

empty and it is then filled again with 64 elements. At this point

the vector operation starts from the beginning once mare. Even

though the automatic switching to and fro of the data between the

memory and the register is very convenient, it consumes a great deal

of time (up to 76%). Accordingly, the CRAY IS attains a maximal

performance of 23 MFLOPS for the addition in our problem. If data

fields are used for differing computations one after the other, the

intermediate results should not go back to the memory but can be

further processed directly. In this way the CRAY 1S achieves, for

instance, for the operation

(x - y) * (x + y), x,y are vectors

a performance of over 50 MFLOPS.

To solve the above problem with the greatest possible efficiency on

the CYBER 205, the program has to be written in CDC FORTRAN roughly

as follows:

DIMENSION A(N,N), B(N,N), C(N,N)

DESCRIPTOR AD, BD, CD, BITD

N12 = N * (N-2)

BIT, BITD, BIT(N12)

ASSIGN BITD, BIT(1;N12)

BITD = Q8VMKZ(2,N;BITD)

ASSIGN AD, A(N,1;N12)

ASSIGN BD, B(N,1;N12)

ASSIGN CD, C(N,1;N12)

,l

^a

a

12

{

a

r.

8
V	

Vector

log	 T*'
Functional

Units

Memory

64 T
Scalar

8 S	 Functional
cycle	 Units

50ns	 64 B
1	 —17 8 A	 Address

ADD, MOLT

4 Instr.	 Control
to all

Buffer	 sections

The syml

V=the

s
S=the

A=the

B=the

T=the

)ols have the following significance:

vector register

scalar register

address register

fast address register (as intermediate memory)

fast scalar register (as intermediate memory)

Figure 3. Simplified version of the CRAY 1 configuration

13

As the CYBER 205 is a computer which operates from memory store to

memory store (see Figure 4), it will reach its best performance for

long vectors (from , N > 200). The latter should be registered in

the memory store in the most continuous manner possible. The DES-

SCRIPTOR AD indicates a location in the memory where the field A(N,N)

is stored in columns as an N 2 vector. The information comes from

the associated ASSIGN instruction in line 7 of the program. Since

only the test values are required for the inner lattice points, the

construction of a control vector BIT becomes necessary. The elements

of this vector are 0 or 1 BIT depending respectively on whether the

lattice point in question is an edge point or an inner point. The

appropriate Assembler routine

Q8VMKZ (2,N;BITD)

constructs the following BIT vector

001...1001...10.....01....1

N	 N	 N-1

consisting in all of N*(N-2) elements. If the descriptor AD indi-

cates the element (N,1) of the last line in the first column (which

still beinngs to the edge), the addition will begin only two elements

further along because of BIT, i.e. addition begins with the element

(2,2). The addition can now be carried out under the control of

this BIT vector by means of the Assembler routine

CALL Q8ADDNV („AD „ BD,BITD,CD)

Without the BIT vector only vectors of length N could be added.

This would give in the case of N = 52, for instance, a performance

of around 33 MFLOPS for the CYBER 205 (2 pipe version; 64-bit arith-

metic). BIT controlled addition with vectors of length N12 = 48*50

= 2400 enables the CYBER 205 to attain around 95 MFLOPS. It is

thus the prime task of the CYBER 205 programmer to arrange his data

in continuous vectors. Assistance in the solution of this and

similar problems is provided by CDC FORTRAN which contains some

250 novel instructions.

Although the CRAY 1S operates only in parallel, when vectors are

subjected to various computer operations, i.e. are channelled

through various.functional units, just the basic operations of

addition and multiplication of vectors are carried out in parallel

in 2 or 4 pipes in the case of the CYBER 205. Thus it is that, for

14

instance, the vector elements with uneven location numbers in the

first pipe and those with uneven location numbers in the second

pipe are processed.

SCALAR
ARITHMETIC

 It UNIT
SCALAR
UNIT

^ MILLION
WOROS

1

N STREAM	 VECTOR
' EE UNIT	 ARI NMETIC PIPE

R
►
A ► 1 ►E 1

1 MILLION
E 1 r- ---) 1► IPE Z	 11

1 OPTION	 1 1	

r --J--- STRING
UNIT
0"IT1	 r-----^

i	 1Z MILLION I r ► IPE 3 i 1
1

OPTION I1	 1
1	 1
L.......J

1

I r ►IPE ^-i 1

MAINTENANCE
1/0 1151 CONTROLFORTS UNIT

Figure 4. Configuration of the CYBER 205

In contrast with the so-called vector computers from CRAY and CDC,

the DAP (Distributed Array Processor) from ICL is a parallel computer.

This performs operations for arrays, e.g. 64*64 fields, in parallel

on 64*64 identical processors (so-called processing elements) at the

BIT level. However, this necessitates a totally new approach which

is far removed from that for serial operations used especially in

FORTRAN programs. Since many efficient algorithms contain purely

serial structures (iterations, recursions, element comparisons,

intermediate enquiries, etc.), they need to be restructured or even

rejected and new ones developed. The above example assumes roughly

the following form in DAP FORTRAN for N - ,e,. 64:

COMMON/ADD1 /N,A(64 , 64),B(64•, 64),C(64,64)
r	 READ (3,10) A,B

CALL ADD

WRITE (6,10) C
'	 10 FORMAT (8.5)

{	 STOP

END

SUBROUTINE ADD

COMMON/ADD1 /N,A(,1,,BG),C(,)
LOGICAL INTERIOR (,)

COMM (A)
CONVFME (B)

CON"SI (N)

INTERIOR w ROWS(2,N-1).AND. COLS(2,N-1)

G(INTERIOR) - A+B

CONVMFE (C)

RETURN

END

A DAP program al ►-:ays consists of two parts: the host part, e.g. for

an ICL 2980, and the DAP part. In the host part endeavours should

be made to include all the scalar operations, the input/output arid

the overall controls for the program. Those parts of the program

requiring the longest computing times should be assigned to the

DAP part as sub-programs.

The link between the host and DAP parts is established by means of

a CALL instruction. Data need not be transferred since they are	 t

entered by level at the outset (see Figure 5). When required for

use in the DAP, they are first converted column-wise into the

individual 4096-bit memories. CONVFME(A) thus me;sns here: convert

A from the 2900 FORTRAN memory mode into the matrix mode of the

DAP as a REAL(=E) value.

Since we do not wish to carry out the addition over the whole 64*64

field, we construct a logical matrix INTERIOR composed of the

entries TRUE (= 1-BIT) for the points (i,j) of the logical inter-

15

section

12 5 1 5 N-1) r1 {2 5 j 5 N-1)

Whenever the conditions

i=1orj=1

N 5 i 564orN i <64

hold, the entry FALSE (= 0-BIT) is made. The addition is thereby

-; carried out everywhere, but transferred to C only for the chosen

inner elements. As the result is to be printed out in the host

part, C is finally converted from the DAP store mode to the 2900

mode.

I

a

In DAP FORTRAN too there are numerous extensions to the language

which make it possible for a programmer to write programs in a

very straightforww:°d manner. The approach adopted is very similar

to that for CDC FORTRAN, though in the case of the DAP problems

need to be formulated in a novel parallel structure. To balance

this, however, a performance of up to 30 MFLOPS is attained for

the above example of matrix addition when the 4096 processors are

fully employed, in spite of the fact that the individual processors

are relatively slow.

Figure 5. The DAP as part of the 2900 computer

Links to neighbours

i 1. 1_4 Row

arithmetical and
lagical vnifi

Column

Store
4 K Bits

16

Figure 6. Diagram of an individual processor in the DAP

0

4. The Numerical Solution of MHD Equat ons

In order that an even deeper insight may be afforded into the three

programming languages CRAY FORTRAN, CDC FORTRAN and DAP FORTRAN, we

shall discuss in some detail in this chapter the numerical solution

of non-linear, magnetohydrodynamic differential equations. These

equations are solved in a cylinder of square cross-section assuming

that the ideal gas law holds, that changes of state are isentropic

and that the heat conductivity, viscosity and electrical resistance

can be neglected. It is then possible to describe a plasma by means

of the dynamic equations below:

a_v
at + (v • grad)v - -grad p + .1 x B

as
(4.1)	 IF

n rot (v_ x B)

Et - -x-grad p - p •div v_Et

with j = rot B and div 3 = 0. Here j signifies the current density,

B the magnetic field, v the velocity and p the pressure of the plasma

at the point (x,y,z) at time t. The significance of the individual

equations is explained, for instance, in ' -{82). Static solutions,

i.e. those representing equilibria for the system, are of especial

interest.

It has been shown in {831 that for static solutions the left side of

the first equation, i.e. the so-called inertial terms

(4.2) 3 	 + (v - grad) v
at

can be replaced by the frictional term v.	 The improved stability of

the system then formed is balanced by the less tractable parabolic

equations which have to be solved numerically. The original hyper-

bolic equations are better behaved, though this disadvantage is

more or less overcome by the use of implicit procedures or of the

rapid, explicit super step procedure {84).

In what follows we shall restrict ourselves to two dimensions, i.e.

concentrate on the numerical solution of the problem in the square

17

cross-sectional area of the cylinder

The MHD equations (4.1) then assume the form:

Jz•
a

BY - Ty-

VX . -	 - BY iz

(4.3)	
vY ' -	 + Bx • Jz

At BX . L (VX • BY - VY•BX)
ay

at BY • - 2x (VY • BY - VY•Bx)

• - p . -(VX	 + VY •) - p(a VX + ay VY)

The initial and edge conditions are derived f.am the following flow

function (see{821):

*(x,y)	 1 sin 7r(x-1) • sin n(y-1)
4rr2

which also provides the exact solution to the problem in (4.1) or

(4.3). The specific initial conditions for t = 0 are:

P (x,Y) - ,r 2 . *2

BX(x,Y) n - a"
ay

BY(x,y) - ax

and the edge conditions for t > 0 are:

B (n) = 0 ,	 v(n) = 0 ,

where (n) indicates in each case the normal components of the

vectors B and v.

Discretising of the individual parameters is now carried out at the

following points of Cie cell (I,J):

18

BX(I-1,J) (I,J)

19

Vx(I+i,J)
	

Vx(I,J)
VY(I+1,J)	 BY(Ili)
	

VY(I,J)

VX(I-1,J-1)
	

BY(I,J-1)
	

VX(7,J-1)
VY(I-1,J-1)
	

VY(I,J-1)

Figure 7

Thus, even for the discrete case, the laws of conservation of flow

and mass still hold.

We shall now turn to the detailed discussion of the computer program

in the three different languages CRAY FORTRAN, CDC FORTRAN and DAP

FORTRAN. The main program has the same form on all three computers:

cc	 EXPLICIT SINGLE STEP PROCEDURE	 cc
cc	 cc
cc	 WITH CONSTANT STEP WIDTH	

cc
cc	 cc
cc
C
C	 PROGRAM EIN7EL
C RX.RY X-..OR Y-COMPONENTS OF B-FIELD
C VX.VY X-• OR Y-COMPONENTS OF VELOCITY FIELD
C P.PX.PY OReSSURE, X- UND Y-COMPONENT3 OF GRADIENT

0002	 REAL BX(62962)•BY(62962)9VX(62962)tVY462962)9
«	 P(62.62)

0003	 COMMON /HAIN/ BX.BYgVXrVYgP
0004	 COMMON /CnNI/ N9N1#N29L+N1i9NN*LL
0005	 COMMON /CONR/ SOT9OT9DX29DXgEPS9SV2

C MiAIDWG IN PARAMETERS:
c FIELD SIZE s S*M♦ 1JUMBEK OF ITERATIONS = LL.
C CUTOFF ERROR= EPS• TIME STEP ' = DT

0006	 READ(590) MrLL+EPS9DT
0007	 MRITE(6.33) M•LL•EPS.DT
0008 33	 FORMAT 0 H1 g 10X9 $ M s 9 .I69/911X9'LL 0 0 9I69/v11X9 1 FPS =I.

*E13.69/.11X9'OT z9gF8.4)
C

0009	 N=5*M
0010	 N1=N+1
0011	 N22N+2
0012	 NN=N*N
0013	 N11=NIONl
0014	 DX=1.1FLOAT(N)
0015	 DX2=DX•nX

C CALCULATION OF THE INITIAL VALUES:
0010, PT*3.1415Q?45359n
0017 P9in90.n?533
0018 P1=PIOPCTO
0014 P2=1.25+PSI9
0020 n2=n.5•nx+PT
0021 WA	 1	 J=19M2
0022 00	 1	 I=19N2
0023 WFLOAT (I-D *OX-10 *01
0024 Y=(FL0AT(J- 1)•DX-1.)*PI
OOPS XP=x-02
nOPh Y2=Y-DP
0027 AX(i.J) =-P1 •5IN M *COS(Y2)
O028 RY(19J)	 : P14COS(x2)•SIN(Y)
0024 P(19J)2PP*(STN(X2)•SIN(Y2))••2
0010 1 CONTINUF
0031 On	 2	 J*101?
On32 n0	 P	 Is1.N2
0073 VX(T•J)	 * 0.0
1074 VY(10J)	 s 00
0035 P CONTINUE
00104 Lan
0037 SnT=O.

C BEGINNING OF THE ITERATION
C T=SECONn(T1)

0018 CALL TEvPL
r T*SErONn(T1)-T
C

0079 WRITE(6-201n) 	 L.5V2r50T9DT
1040 WRITF(h.200n)	 ((VX(T,J),I=1g419M)9J=19N19M)
0041 WRITF(692000)	 ((VY(I#J)9I=1.V19M)+J*19N19M)
0042 WPITE(6.200n)	 ((P(i9J),I=14N1941'9J=19N144)

0043 Penn FM0MAT(1x96F_1n.2)
0044 Poln FORMAT('//. 11X9'L m e 9169/91199 1 SV2 =09E10*49/911x•

*990T*99 r 10.4./911x. 9 ('s T	 =$+E10.4♦//)
C W0lTE(6.1n1)	 T
C	 111 F;lPMAT (1 X. @ CPl1-T•1Mib ' .F10.5.'	 SEC*)

0045 STOP	 1111
0046 F.Mn

Here are the details of the main program:

After an introductory statement of the variables and reservation of

memory space for the fields BX, BY, VX, VY and P, the constants,

such as the field size N WN = the number of inner points), the

local step width, DX = 1/N, and (modified) time step, DT = et/ox2,

are assigned fixed values. Calculation is then made of the initial

values from the flow function (lines 16 - 30). The explicit single

step procedure is formulated in the sub-routine TEXPL and called in

line 38. At the end of the main program there follow instructions

for the printout of the results in a given format (L = the number

of time steps, SVZ = the cutoff error and SDT = the sum of all L

time steps).

The sub- routine TEXPL listed below starts , at line 12 by editing

the x and y derivatives of the pressure in the right upper corner

20

of the square lattice (I,J) (see Figure 7). The `ZJ term in line 29

represents the first of the equations (4.3). After evaluation of

the velocity components VX and VY and VB = V x B, the last three

equations from (4.3) are edited numerically in lines 53 - 58 .

The edge conditions are taken into account in lines 59 - 68. In

the latter part of TEXPL the query is made as to whether a certain

mean cutoff error has been reached. If this is the case, there is

a return to the main program. Otherwise, the calculation in line

10 of TEXPL is continued.

0002	 SUSPOUTTNE TFXPL
C

0003	 COMMON rwAIN/ RX9RY9Vx9VY9P
0004	 COMMON ICON?/ N9N19NP9L9Nll9NN•LL
0005	 COMMON /CONR/ SDT9DT9DX29DX9EPS9SV2
0006	 REAL BX(62962)99Y167*6219VX(62962)9VY(62962)9

•	 P(62.62)9DPX(6?962)9nPY(62962)
0007 REAL VB(6?94?)9ZJ(62962).RXM(62962).RYM(62962)9

• VX1162*6219VYI(6?wA2)9nPXlt^2962)9DPY1(62962)9
• PX162962)9PY(62962)9P1(6296 ?1

C
OOOA	 nT1=0.5o1T
0009	 nT2=0.04PS8•DTl
0010	 13 L=L•1
0011	 SOT=SnT-f)T•nx2
0012	 DO	 1	 J=1.N1
0013	 DO	 1	 I=10N1
0014	 Pz(T0J)=P119J) #P(I.J*1)
0015	 PY(I.J)=P(I.J1•P(I14J)
0016	 1	 COVTTNUF

0017	 On	 2	 Jn 19N1
001A	 Dn	 2	 I814N1
n019	 DPX(19J)=PX(I•l9J)-PX(19J)
0020	 OPY(19J)sPY(19J *1)-PY(IVJ)
0021	 2	 CONTINUE
0022	 On	 3	 J=1•N1
0023	 DO	 3	 I n l9N1
0024	 8VM(19J)=RXlI9J1•8X(19J•1)
0025	 8VM(19J)=8Y(19J)•6Y(l *19J)
0026	 3	 CONTINUE
0027	 00	 4	 J=19NI
062A	 no	 4	 1s1.N1
0029	 ZJ(19J)= RY(T#19J)-RY(19J)-RX(19J#1)#BX(19J)
0030	 4 CONTINUE
0031	 no	 5	 Jul 941
0032	 no	 5	 'W29N
0033	 VX(19J)z(-DPX(19J)-RYM(19J)•ZJ(19J)1.095
0034	 4 CONTINUF
0035	 00	 6	 J:29N
0016	 DO	 F	 I=19Nt
00:37	 VY(I9J)=(-OPY(19J)*AXM(19J).2J(I.J))•O.S
0018	 F CONTINUE
0039	 DO	 •7	 Js19N1
0040	 on	 7	 Iu1.Nl
0041	 VA(I9J)=(VX(I•J)•RYM(19J)-VY(19J)*SXM(19J))•OT1
0042	 7 CONTINUV
0043	 On	 A	 JU29N1
0044	 On	 8	 1219N1
0045	 VV1(19J)SVX(19J)+VX(1.J-1)
0046	 DPX1(19J)sDPX(19J)•nPX(19J -1)

0047	 8	 CnNTINUE
0048	 on	 9	 J=19N1
0049	 DM	 9	 I=29N1
0050	 VV1(19J)2VY(19.)1+VY(I-19J)
0051	 DPY1(19J)=DPY(19J).DPY(I-19J)
0052	 a	 CnNTINUE

21

22

0053	 no	 In	 J=2.N1
0054	 Do	 in	 I=2iN1
0055	 P(19J)=0(I4J)•(1.-DTI•(VX1(1.J)- VX1(I-1.J)•

•	 VY1(T•J)-VY1(I.J-1)))
•	 -nT2*((VX1(19J)•Vx1(T-19J))
•	 •(DPX1(19J)•DPXI(I-19J))
•	 •(VY1(T9J)#VY1(I.J-1))
•	 •(DPY1(I.J)•0PY1lI9J-1)))

0056	 RX(I •J)mRX(19J)•(VR(I•J)-VP(19J-1))
0057	 RY(I•J)=AY(1•J)-(V9(I•J)•V9(I-19J))
0059	 10 Cn4TINUF
0059	 DO	 11	 I=1.N1
0060	 Hx(I.1) =9X(192)
n061	 9r(19N2)=8X(I.N1)
0062	 9Y(1•1)	 =FY(2911
n063	 8Y(N29T)=8Y(N19I)
0064	 P(TtN2) =P(19N1)
0065	 P(N2.1) sP(N191)
0066	 P(191)	 =P(192)
0067	 P,(191)	 =P(20I)
0068	 11	 cnNTINUE
0069	 SV2=0.
0070	 no	 17	 J=24111
0071	 DO	 1?	 T=?.^'1
0072	 SV2=SV2#A8s(VZ(I.J))
0073	 12 CONTINUE
0074	 SV2=SV2/NN
0075	 TF(SV2.GE.EPS) GOTO 13

C	 TF(L.LT.LL)GOTO 13
0077	 DT=2."DTI
0078	 RETURN
0079	 END

The program on a CRAY 1S is very similar to the above FORTRAN program.

Apart from the removal of the 'C' in the seventh comment line (which

is necessary even for certain serial machines), nothing at all changes

in the main program. The sub-routine TEXPL too is compiled as it

stands by the CRAY compiler and is automatically vectorised up to the

DO loop 11 which determines the edge conditions for BX, BY and P. As

there are no genuine recursions in this loop, vectorisation can be

brought about by means of the instruction

CDIR$ IVDEP.

If the sub-routine were to be written rather more elegantly, for

instance by splitting up loop 10 into several smaller DO loops, the

CPU time required would be increased by up to 30%. In fact, the

CRAY compiler optimises better the more complicated the vector ex-

pressions in the innermost loop are. In this way the possibility

of chainings, i.e. the linking together of several functional units

for (say) (A + B) • C with the vectors A, B and C, are more effectively

exploited. Finally, loop 12 is replaced by the CAL (CRAY Assembly

Language) functi.on SASUM.

As is to be expected, the program is rather more complicated for the

CYBER 205. The main reason for this is that the data fields have

to be made continuous to attain maximal performance from the vector

computer. Vectors of length 62, for instance, are thus made up into

vectors of length 3844. In this way, the performance for addition

and multiplication of vectors - in our case for the whole of TEXPL -

is improved by a factor of up to 2.5. In all essentials, the main

program remains in CDC FORTRAN and in ordinary FORTRAN.

SURROUTINF. TEXPL
COMMON /MAIN/ AX9RY9VX9VY9P9OPX90PY
COMMON /CONI/ N9N19N29Ni19N229L
COMMON /CONK/ SOT9SV29DT90X29OX
RED(. RX(62962)98Y(67962)9VX(6296219VY(62962)9

2	 P(62962)9OPX(6?962)9nPY(62962)
DIMENSION VXM(62962)9VYM(62962)rW(61)91I(61)9II1(61)9

1	 RXM(62962)98YM(629A2)9VR(6296?)97.J(62962) 9
2 VXI(62962)9VX2(62962)9VX3(62962)9VX4(62962)9I1(61)9I11(61)
DESCRIPTOR PITID99IT209PITN OIT40
SIT 9IT1D98IT1(4000)
SIT BIT2099IT2(4000)
SIT RIT3099IT3(4000)
RIT 81T4098IT4(4000)

r
N12sNl•N2
NM12=N2•(N-)1

N121s N12-1
N3sN•N2-?
N1X=N12-3
DT1s0.5*OT
nT2s0.062S•nT1
ASSTRN 9ITIO981T1(IIN12)
AIT1Dz08VMKO(N19N218IT1n)
ASSIGN 9IT20981T2(11N1X)
RTT2DzQ0VMKO(N-19N218IT?0)
ASSIGN 8IT309BIT3(1;N3)
RIT30sAAVMKO(N9N218IT30)
ASSIGN 9IT4098IU M N121)
AIT4O=Q8VMKO(N19N21SIT4n)
TI(11N1)s08VINTL(29N21I7(1;Nl))
III(IINI)sOHVINTL(19N2;T11(11N1))
I1(l;Nl)s08VTNTL(N19N21T1(l;Nl))
T11(1;41)208VINTL(N29N21I11(l;Nl))

13 LsL•1
SDT=SOT•DT•OX2

C
VX1(191;N121)sP(291;N121)-P(191;N121)

• •P(2921N121)-P•(1921N121)
DPX(191;N121)s09VCTRL(VXI(191$N121)98IT10;OPX(191;N121))

C
VX1(1911N121)sP(1921N121)-P(191;N121)
• •P(2921N121)-P(2911N1 ?1)
DPY(191iN121)=08VCTRL(VXI(Ivl$N121)99IT1DIDPY(1911N121))

C
VX1(IoIIN12)sRY(291;N12)-BY(lolIN12)-BX(192;N12)*8X(191/N12)
7.J.(191IN12)saBVCTRL(VX1(191;N12)9RITIDIZJ(191;N12))

C
VXl(191;N12)s(-DPY(1911k112)#BX(191$N12)•

• 9X(192;N12))•ZJ(191;N12)•0.5
VY(1921NM12)sOQVCTRL(VX1(1921NM12)98ITID;VY(1921NM12))

C
VX1(291 NIX)s(-OPX(291IN1X)-SY(2911N1X)-SY(391;NIX))*ZJ(291;N1

•X)*4.5
VX(29 1;N1X)s08VCTRL(VXl(291;N1X)98IT20;VX(291;N1X))

23

c
VX1(292$Nl)mVX(2*?IN3)

•	 + VX (2+1;N3)+VX(192IN3)+VX(1.1;N3)
VXM(P.PON3)eORVCTPL(VX1(Pa2;N3)94TTln$VXM(Po2=N3))
VX1(2g28N1)zVY(2g2;N3)
• •VY(2+1;N3)+VY(1.2;N3)+VY(1.1;N3)
VYM(29P1N3)sORVCTRL(VX1(P.2;N3)941T30;VYM(29P,;N3))

C
AXM(191;N121)zRX(lvl$NIPI)+RX(1.2IN121)
RYM(Ig1;N12I)mnY(1.IINIPI)+RY(P.1;NI21)
VX1(1.1=N121)s(VX(1.1;N)PI)•RYM(l.1;N121)
• -VY(I•ION121)•RXM(l.1tN121)1•nT1
VB(1+llNI?l)sORVCTRL(VX1(19!INl21)+RTT4D$VR(1r1;N121))

C
VX1(292;N3)snPX(2.2$ N3).t1PX(PolIN3)+nPX(1.21N3)+DPX(1+1;N3)
VX2(2.2;N3) unPY(2.2tN3)+nPY(2.11N3)+nPY(1+2IN3)+DPY(i•I;N3)
VX3(2.2;N3)sVX(29PIN3)+% rX (2.1;N3)-VX(192;N3)-VX(191;N3)
• +VY(2.2;N3)-VY(291IN3)+VY(192$Nl)-VY(1914N3)
VX4(2.?.IN3)sP(2.28N1)•(1.-DTI•Vxl(292;N3))-nT2•(VXM(2+2;N3)
••VXI(2.2;N3)+VYM(2.2;N3)•VX2(2+2tN3))
P(2.2; N3)sORVCTRL(VX4(2.2lN3)gBTTID;P(2921N3))
VX1(2.2; N3)sRX(2+21N3)+(VR(2+2;N3)-Vk(2.1;N3))
RX(292;N3)NOAVCTRL(VX1(PgPIN3)9BIT301OX(292;N3))
VX1(2.2;N3)sRY(797;N3)-(VR(2.2;N3)-VR(1.2;N3))
RY(2.2;M3) nGAVCTRL(VXl(PoPIN3)•RTT3D;BY(2+2;N3))

C
W(1;NI)sOAVrsATHR(RY(1+13N12).TI(1;N1);W(1;N1))
RY(1. 1; N12)s09VSCATR(W(1;NI),Tll(l1Nl);RY(1o1;412)1
W(I;N1)=ORVGATHR(P(1.1;N12)9II(I;N)1);W(11N1))
P(1.1;N12)sORVSCATRIW(ISNI)+lTl(IIN1)$P(191;N12))
W(11N1) sORVC•ATHP(BY(lolON12)•Il(11N1);W(1$N1))
RY(191$N12)=ONVSCATP(W(LIN1)•Tll(l$Nl)1RY(I.11412))
W(IINI)sORVGATHR(P(lol$Al1?)+I1tl$N11IW(IINI))
P(1+11N12)=OSVSCATR(W(IIN1)9111(IINl);P(Iol$N12))
AX(1.1;N1)=PX(1.P.1N1)
RX(1gN21N1)sAX(1.NI;N1)
P(1•N21N1)sP(1.N1;Nl)
P(1.1;N1)sP(1.21N1)

r.
VX111v1;N221sVABS(VX(19)$N22)1VXi(1911N22))
SV2sC sSUM(vX1(1.11N22))
SV2sSV2/Nil
IF(L•LT.1000)	 GOTO 13
RETURN
END

For this reason we shall concentrate here on the sub-routine TEXPL.

The BIT vectors mentioned in chap ier III are an essential feature of

this CDC FORTRAN program. They are generated by means of the function

Q8VMKO

if they begin with a 1 (One) and by means of the function

Q8VMKZ

if they begin with a O (Zero). Although so-called implicit descrip-

tors are used for the BIT vectors, all other vectors are formulated

explicitly. This means, for instance, that
r,

VX1(1,1;N121)

24

represents that part of the vector VXl which is stored in the reserved

field VX1 of the memory, begins with the element VX1(1,1) and contains

25

N121 elements (stored by columns). VX1, VX2, VX3 and VX4 are dummy

fields in which the results of vector operations are stored at the

outset in continuous fashion. Eventual rearrangement of the storage

under the control of a BIT vector with the aid of the function

Q8VCTRL (= Q8 vector control)

ensures that the relevant edge values are not overwritten with any

"false edge operation".

In this way DPX, DPY, ZJ (= j x B), VY, VX, VXM (the mean value of

VX), VYM and VB (= V x B) are calculated before the last three

equations of (4.3) are formulated in CDC FORTRAN.

One has certain problems associated with the determination of the

edge values on the upper and lower edges. Although in principle

the procedure outlined here with Q8VMKO and Q8VCTRL functions as

indicated, from each of the N1*N1 computer operations performed now

only N1 results (N1 = N + 1) are required to store the second line

of BY in the first line, using for instance

DO 11 I = 1,N1

11 BY (1,I) = BY (2,I)

It is better in such cases to collect the BY(2,I) terms together as

in the serial LOOP with the function

Q8VGATHR

and to distribute them in the first line of BY with the function

Q8VSCATR.

For this purpose an index list is needed which in our case will be

the vector

II(1;N1) ='{ 2,N2+2,2•N2+2,.,N*N2+2 I

having N1 elements (N2 = N + 2). This is produced by the function

Q8VINTL(2,N2;II(1,N1).

The GATHER functi.on collects together all the elements in the seconC

line of BY and stores them in the dummy field W. The index list for

the elements in the first line of BY is thus given by:

II1(1;N) _ { 1,N2+1,2•N2+1 N*N2+1 I

which has N1 elements and is constructed by means of

Q8VINTL(1,N2,II1(1;N1)) .

The elements of W are now stored in the first line of BY under the

control of the index vector II1 by QBVSCATR.

In an analogous way,

the second line of P is stored in the first line of P;

the Nlth line of BY is stored in the N2th line of BY; and

the N1th line of P is stored in the N2th line of P.

Finally, the absolute magnitudes of the components of VX are written

on VX1 and to carry out the precision query the sum of all N2*N2

elements of VX1 is formed by use of

QBSSUM .

A major problem confronting particularly those inexperienced with the

CYBER 205 is the rearrangement of a two or three dimensional data

field into a one dimensional field, i.e. a vector. It is suggested

that' the user of a DAP first familiarise himself with three dimen-

sional fields which can reasonably be stored in the 4096-bit memory

of the 64*64 processors. For this reason the two dimensional MHD

program here is more or less ideal for the DAP.

In this instance too, the main program is practically unaltered. Only

the "C" on the seventh comment card is removed. Since the ICL 2980

at Queen Mary College in London is a relatively slow host computer,

the calculation of the initial values is carried out in the DAP part

which is constructed in the following way:

1	 ENTRY SUBROUTINE TEXPL 3
2	 COMMON /BAIN/ VX,VY,P
3	 COMMON /CONI/ NX,NXI,NX2,L.NX11
4	 COMMON /CONiR/ SDT,SV2,DT,DX2,DX,1YTI,DT2
5	 COMMON /ANFA/ BX(,),BY(,),DPX(,),DPY(,),DPX1(,),DPY1(,),
6	 *	 VX1 (,) ,VY1(,),BXM(,),BYM(,1,VB(,),WG),
7	 *	 PX(,),PY(,)
8	 REAL VX(,),VY(,),P(.)
9	 REAL SDT,SV2,DT,DX2,DX,DTI,DT2

10	 LOGICAL Il+DTI (,) JMT2(,),IMAT3(,) rUW4(,),I1W5(.),ItâM1 ►)
11 C
12 C KONVERTIERUNG VON 2900 IN DAP

	

i	 13 C
14	 CALL CONVFS11NX,5)

	

j	 15	 CALL CONIVFSE (SDT, 5)
16	 CALL CONVENE M)

	

`a	 17	 CALL CONVENE (VY)

	

!
j	 18	 CALL CMVEWE(P)

	

!	 19 C

26

27

20 C AUFM DER WGIISCH N MURIZEN
21 C .TRUE. TM :GERM.
22 C .FALSE. FUM .AXSSFNRAE]14 + RAND
23 C
24 LtNAT1 -RCM (1,NX1) .AN D .00SS 0 ,M)
25 LVO► -RMIS Q,NXI .AM.COLS (1,NX1)
26 UW3-R3WS (1,NX1) .AND.CO B (2,NX)
27 SHE1T4-ROWS (2,NX1) .AND.CMB (2,NX1)
28 UOT54CM (1,NX1) .AND.COLS (2,NX1) t
29 I1+g1T6406 (2,NXI) .AM.CMiS (1,NX1)
30 C
31 C ^-
32 CALL ANFB j
33 C
34 11 L-L+1
35 SDT-SDT+DT*DX2
36 C
37 PX(I14M) - P+P(,+)
38 PY (IMI) - P+P (+,)
39 DPX (IMT1)- PX(+,)-PX
40 DPY(uw1)- PY(,+)-PY
41 C
42 BXN! (I14AT1)- BX+BX(,+)
43 BM (I14	 I) - BY+BY (+,)
44 W (MAT7) = BY(+,)-BY+BX EM(,+)
45 C
46 VX64C2) - (DPS+B30' ZJ)*(-0.5)
47 VY (I1W3) - (DPY-RKM*ZJ) * (-0.5)
48 VB (I!`	 l) - (VX*'BN?4-VY*=) *DT1
49 C
50 VX1(IlWS)a VX+VX(,-)
51 VY7 (Il4M)- VY+VY(-,)
52 DPX1 (IMAT5) - DPX+DPX(,-)
53 DPY1 (Il4M) - DPY+DPY(-,)
54 C
55 P(I14AT4) - P*(1.-DT1*(VX1-VX1(-,) +VY1 VY1(,-)))
56 *	 -DT2*((VX1+VX1(-,))*(DPXI+DPX1(-,))
57 *	 +(VY1+VY1(,-))*(DPYI+DPY1(••-1)) '1
58 BX (I24AT4) - BX+ (VB--AM G)1
59 BY MMAT4) - BY- (VB-VB (-,))
60 C
61 BX(,1)	 - BXr,2)
62 BX(,NX2) - 13X(,NX1)
63 BY(1,)	 = BY (2d
64 BY(=,) - BY(NX1,)
65 PGM)	 - P(,NX1)

66 P(DDC2,)	 - P(NX1,)

67 P(,1)	 - P1,2) 1`

68 P(1,)	 - P(2,)'

69 C
70 Z,7	 - ABS (VX)

'71 SV2	 - SUR(W)
72 SVL	 - SV2/NX11
73 IF (L.LT.1)	 GO'IC) 11
74 C
75 CALL CONVFSI(NX,S)
76 CALL CM4VSF'E(SDT,5)
77 CALL CCNVM(VX)
78 CALL CCNVM E(VY)
79 CALL CCNVMFE(P)
80 C
81 RErm I
82 END I°;
83 C I

{

i ^.

84 SUBFt.XZINE ANFS
85 C
86 CM4"CN /HRIN/ VX,VY,P
87 CO14M /AMW 13X(,),BY(,) ,DPX(,),DPY(,),DPX1(1),DPY1(,),
88 *	 VX1(,),VY1(,),BXM(,),BYM(,),VB(,),ZJG),
89 *	 PX(,),PY(,)
90 CCMOJ /0MW SDT,SV2,DT,DX2,DX
91 INTEGER V O 'PLACE
92 FMAL'V1O,V2O,VXI,I,P(,),VY(,)
93 C
94 V=0
95 PI=3.1415927
96 PSIO.0.02533
97 PSI1=PSIO*PI
98 C
99 C	 M#ITRIX V MIT EiOMM' VCN 0 BIS 63

100 C
101 PLACE-1
102 DO	 1	 K=1,6
103 V(ALT(PLACE))=V+PIACE
104 1	 PLACE=PLACE"'2
105 C
106 VX=0.
107 VY=O.
108 PX=O.
109 PY=O.
110 DPX=O.
115 DPY=O.
112 VX1=0.
113 VY1=0.
114)PX1=0.
115 DPY1=O.
116 BM =0.
117' BYM =0.
118 VB	 =0.
119 ZJ	 CO.
120 C
12i V1-RI*(M-LM(V)*DX-1•)
122 V2=V1-0.5*DX*PI
123 BX=-PSI1*NPM (SIN(V1))*WiTR(COS(V2))
124 BY- PSI1*KM(COS(V2))*MATR(SIIJ(V1))
125 P -0.25*PSIO*MAgC (SIN (V2)**2) *MMR(SIN M) **2)
126 C
127 RET(M
126 END

Because the DAP memory is a part of the host memory, the calculated

or reserved words from the main program are already in the DAP though

in the incorrect memory mode for the DAP. 	 Accordingly, they are

converted at the outset as described in Chapter III. 	 Logical matrices

are then constructed in analogy to the BIT vectors on the CYBER 205.

This too has been discussed in some detail earlier on. 	 The initial

conditions are called up from the DAP sub-routine ANFB which serves

to construct a vector V having elements from 0 to 63 by means of the

built-in function ALT.	 Parallel processing is thus made possible in

lines 123 to 125 of the equations for BX, BY and P. 	 Here, for ins-

tance, the matrix

MATC(Z)

(C stands for column) signifies that the first element of the vector

lr
}

f

Z occupies the whole of the first line MATC(Z), the second element

the second line, and so on. (The same holds for MATR as far as the

columns are concerned.)

In lines 37 to 59 the equations are then evaluated, initially on the

right hand side of the equality sign over the whole 64*64 field.

Here, for instance, P(+,) indicates that the whole P field moves up

one line. The 'last line is filled with zeros and the first is dis-

carded. The results are stored only when a TRUE appears in the

logical matrix LMAT.

After insertion of the edge values for BX, BY and P, ABS and SUM

follow to determine the mean error. To conclude, those magnitudes

which are to be printed out in the main program are converted again.

5. Summary and'Oyeryiew

The investigations described in Chapters 3 and 4 have demonstrated

that mastery of even apparently straightforward problems with new

vector and parallel computers involves novel approaches. It is

often not cost-effective to use traditional FORTRAN programs without

any modification on these new computing systems. The inefficiency

which can arise by doing this is illustrated by a comparison of the

computation times required for ten very different programs in fluid

mechanics {44}. In such a test, CRAY 1 and CYBER 205 machines were

faster than the AMDAHL 470/V6 by the following factors:

CRAY 1	 CYBER 205

serial	 12.5	 5.7

vector	 25.9	 25.8

Serial means here that the programs used underwent scalar tests with

autovectorisers in operation. The extent to which individual programs

can deviate from these mean values is shown by the results for the

very readily vectorised and parallellsed MHD algori.thm discussed in

the previous chapter.

CRAY 1	 CYBER 205

serial	 44.7	 10.8

vector	 44.7

The rapid serial times for MHD on the CRAY 1 come about largely as a

29

result of the relatively good autovectoriser of the CRAY compiler

which has the function of recognising and vectorising inner DO loops

capable of vectorisation. This task is much easier than that of

the CYBER autovectoriser which is required to arrange given data

structures to produce continuous data fields which are then able

to flow through pipes as vector flows of maximum possible length.

There is no comparable analogy for the DAP since an ordinary FORTRAN

program cannot be run on a DAP without meshes. Moreover, there is

no "autoparalleliser" available yet. It is the opinion of the

author that the DAP occupies the position indicated in a list of

well-known von Neumann computers. An MHD run requiring one minute

of computing time on an AMDAHL 470/V6 would require on the following

computers:

ICL 2960 30 min

UNIVAC 1106 15 min

CDC 6400 10 min

IBM 370-158 8 min

ICL 2980 5 min

CYBER 173 4 min

AMDAHL 470/V6 1 min

CYBER 175 45 sac

CDC 7600 20 sac

STAR 100 10 sac

CYBER 203 6 sac
DAP 5 sac

CLAY-1S 2 sac

CYBER-205 2 sac

The starred times are based on the experiences and results of the

DFVLR group {44).

The performance curves for von Neumann, vector and parallel compu-

ters are also interesting in the case of our problem. Once again

the computers are the AMDAHL. 470/V6, CRAY 1S, CYBER 205 and the DAP,

the problem is the MHD one and N is the number of lattice points in

a dimension (the vector length on the CYBER 205 will then be equal

to (N-2)*N).

The time steps for the CRAY 1S and DAP curves arise because of the

restriction on the content of the vector register to 64 elements or

the restriction of the processors to 64*64. Similarly, for the

30

--•- AMDAHL 64Bits

0.03 /
j

/

-•- AMDAHL	 32Bits
DAP	 32Bits

--- CRAY-1	 64Bits
-••- CYBER 205 Wits

sec /

0.02 =.i

CYBER 205 vectors will need to be re-scheduled if they are longer

than 2 16 = 65536 elements, the content of a large page. This would

happen in our case for N = 256.

31

0.01

F-
0.00

0	 20	 40	 60	 80
N -01A

Figure 8

The following picture emerges when the results for individual mach-

ines operating the MHD program are compared:

N 10 20 30 40 50 60

CRAY : AMD. 18.7 25.2 30.9 34.6 36.8 38.2

CYBER CRAY 1.28 1.59 1.55 1.52 1.49 1.46

CRAY : DAP 46.8 18.0 9.4 6.0 4.0 3.0

CYBER AMD. 23.9 40.0 48.0 52.6 56.4 55.7

CYBER DAP 60.6 27.9 14.7 9.0 6.0 4.3

DAP : AMD. 0.4 1.4 3.3 5.8 9.1 12.9

It should be borne in mind here that the computations were carried

out on the DAP using 32-bit arithmetic and on all other machines

using 64-bit arithmetic.

To conclude we shall risk taking a view of the short-term future.

In addition to the implementation of 4K-bit chips and 16K-bit ECL

chips, CRAY Research, CDC and ICL are now concentrating on refine-

ments in their architectures. In 1981 CRAY extended its already

rapid I/O buffer memory up to a maximum of 8 million words. In

addition, the transfer rate from this memory to the main memory

has been increased by up to 2*850 million bits per second, an impor-

tant development for possible faster vector operations.

Around 1984 a CRAY 2 machine is expected which should be some 5 times

faster than the CRAY 1S. This is to be accomplished by means of new

switching circuitry which has been developed in CRAY's laboratories.

Another conceivable improvement would be the attenuation of the so-

called "refill" which the CRAY 1S is subject to after each 64 ele-

ments when the registers are emptied and filled up again. The

underlying cause is not the small size of the vector registers, as

is often assumed, but the fact that only one current of vector

elements can flow from/to the registers from/to the memory. Enlar-

gement of the registers from 64 to 128 words for vector addition and

multiplication would result in an increase of around 10% to just 25

MFLOPS. If it were possible to have two vector flows between the

memory and vector registers, some 38 MFLOPS could be attained for

addition and multiplication. This, however, would make heavy

demands on the hardware.

One of the most interesting developments in the software sector is

certainly the production of a Pascal compiler at Manchester Univer-

sity for the CRAY mainframe. This compiler should be able to pro-

duce vectorised code.

The CYBER 2XX is expected on the market around 1986. With a station

time of 8 ns (CYBER 205 has 20 ns) and 8 vector pikes (CYBER 205 has

a maximum of 4), the scalar processor should be 2.5 times faster and

the vector processor 5 times faster. The use of 4K-bit chips and

16K-bit ECL chips should extend the memory capacity of the main

memory to 8 million 64-bit words.

It can also be assumed that the CYBER software will be considerably

enhanced in the next few years. Among other things, the autovecto-

riser will certainly become more efficient. A simplification of

the CDC vector FORTRAN would also be justified, e.g. abbreviation

of the Q8 instructions, simplification of the BIT vector construc-

tion, simplified statements (such as AD(BITD) = BD+CD), the intro-

"!	 duction of certain strictly implemented standard bit vectors, etc.

32

ICL is primarily concerned with increasing the DAP memory from 2 to

8 million bytes (= 2 million 32-bit words) by replacing the 4K chips

in the individual processors by 16K chips. 	 A 64-bit arithmetic

may then be feasible (roughly double the precision) as this is

urgently required for many scientific and technical problems. An

improved performance of the individual processors can also be expe-

cted (addition now 0.007 MFLOPS), especially after the beginning of

October 1981 when an announced joint venture between ICL and

Fujitsu will give ICL access to very advanced Japanese micropro-

cessor technology. We can also expect the relatively slow host

computer ICL 2980 to be replaced by a much faster machine.

The extension of the 64*64 DAP to a 128*128 DAP should present no

problem from the hardware standpoint, though for the end user more

complicated programs will mean that full exploitation of the

128*128 = 16384 processors will be even more difficult. The four-

fold increase in cost (at least) should be counterbalanced by a

performance improvement in the DAP part of around 2.5 times {45}.

According to Minsky's hypothesis {89}, which states that multipli-

cation of processors by a factor- of p results only in an increase

in performance of In p, the improvement in the performance of the

host and DAP parts together should be only 1.4 for the 128*128

configuration. Initially, at least, there will be little improve-

ment on the 64*64 configuration.

After our editorial deadline, the sub-routine TEXPL was revised

using the latest CDC FORTRAN. In particular, replacement of the

Q8VCTRL statements by so-called WHERE blocks resulted in a further

reduction of the computing time by about 20%. Thus, the factor

for the comparison of AMDAHL:CYBER 205 is now improved from 55.7

to 69.6. This corresponds to a speed of around 100 MFLOPS for the

processing of the production program TEXPL by CYBER 205.

6. Literature

The list below offers but a small selection of the vast number of

publications which have appeared to date in the area of vector and

parallel computers. Further references are cited in the individual

publications listed here.

33

CYBER 203/205 Software and Hardware

[1} STAR Operating System, Version 1.
Reference Manual Vol. 1 and 2.
CDC Minneapolis,	 1978.

[2) CDC CYBER 200 / Model 203 7jmputer System.
Hardware Reference Manual.
CDC Minneapolis, 1979.

(31 CDC CYBER 200 FORTRAN Language 1.4.
Reference Manual.
CDC Minneapolis, 1979.

(4) CDC CYBER 200 / Model 203.
Technical Description.
CDC Minneapolis, 1979.

151 Vector Processing on the CYBER 200.
CDC Minneapolis, 1979.

o
(61 CDC CYBER 200 / Model 205.

Technical Description.
CDC Minneapolis, 1980.

[71	 Kascic,	 M.J. Vector Processing on the CYBER 200.
Infotech Int. Ltd., Maidenhead, UK 1979.

(8)	 Kascic, M.J. Lecture Notes 2+3 of Vector Class.
Minneapolis 1978.

[91	 Dubois,	 P.F. Operator Splitting on Vector Processors.
u.a. Lawrence Liv. Lab., UCRL-79316, 	 1977.

(101	 Dubois,	 P.F. Approximating the Inverse of a Matrix for
u.a. Use in Iterative Algorithms on Vector

Processors.
Lawrence Liv. Lab., UCRL-80244, 	 1977.

(111	 Greenbaum, A. The Incomplete Cholesky Conjugate Gradi-
u.a. ent Method for the STAR.

Lawrence Liv. Lab., UCRL-17574, 	 1977.

(12] Madsen, N.K.	 A Comparison of Direct Methods for Tridi-
u.a.	 agonal Systems on the CDC-STAR-100.

Lawrence Liv. Lab., UCRL-76993, 1977.

(13] Rodrigue, G.H.	 Operator Splitting o;i the STAR without
Transposing.
Lawrence Liv. Lab., UCRL-17515, 1977.

(14] Nolen, J.S.	 Application of Vector Processors to the
u.a.	 Solution of Finite Difference Equations.

Soo. Petr. Eng. AIME 1979.

CRAY WS Software and Hardware

[151	 The CRAY-1S Series of Computers.
Pub. 2240008, CRAY Research, Minneapolis
1979.

1161	 CRAY-1 FORTRAN (CFT) Reference Manual.
Pub. 2240009, CRAY Research, Minneapolis
1979.

[171	 CRAY-1 Hardware Reference Manual.
Pub. 2240004, CRAY Research, Minneapolis
1979.

34

35

[181 Engeln-MUllges,G. Systemuntersuchung zur Vektormaschine
CRAY-1. Bericht des Rechenzentrums der
RWTH Aachen, August 1980.

[191 Hertweck, F.	 Benchmark-Versuche mit der CRAY-1.
u.a.	 IPP-Bericht R/31, Max-Planck-Institut fUr

Plasmaphysik, Garching 1979.

[20) Rudsinsky, L. 	 Evaluating Computer Program Performance
u.a.	 on the CRAY-1.

Argonne Nat. Lab., Illinois 1979.

[211	 Russel, R.M. The CRAY-1 Computer System.
Comm. of the ACM 1178.

[22] Johnson, P.M. An Introduction to Vector Processing.
Computer Design (1978), pp. 89-97.

[231 Higbie, L. Applications of Vector Processing.
Computer Design, April 1978.

[241 Higbie, L. Vectorization and Conversion of FORTRP.N
Programs for the CRAY-1 	 (CFT) Compiler.
Pub. 2240207, CRAY Research, Minneapolis
1979.

(251 Petersen, W.P. Basic Linear Algebraic Subprograms for
CPT Usage.
Pub. 2240208, CRAY Research, Minneapolis
1979.

(261 Buzbee, B.	 Vectorization for the CRAY-1 of some
Gcluf;, G.	 methods for solving elliptic difference
Howell, J.	 equations, High Speed Computer and

Algorithm Organization, Ed. D. Kuck,.
D. Lawrie and A. Sameh, pp. 255-272.
New York: Academic Press, 1977.

DAP Software and Hardware

(271 DAP: FORTRAN LANGUAGE.
ICL T^.hnical Publication 6918. 2. Ed.
1980.

[281 DAP: Introduction to FORTRAN Programming.
ICL, TP 6755.

(291 DAP: Developing DAP Programs.
ICL, TP 6920.

[301 DAP: APAL (Assembly) Language.
ICL, TP 6919.

(311	 Hunt,	 D.J. Numerical Solution of Poisson's Equation
on an Array Processor using Iterative
Techniques.
ICL, TR 1.

(321	 Hunt,	 D.J. Applicatio" Techniques for Parallel Hard-
ware.
ICL, Technical Report, 1979.

(331 Reddaway, S.F.	 The DAP Approach.
ICL, Technical Report, 1979.

(341 Gostrick, R.W.	 Software and Algorithms for the DAP.
ICL, Techn. J. Vol. 1 (1979), issue 2.

(351 Gostrick, R.W.	 Supercomputer Diagnostics. Supercomputer
Infotech State of the Art Report.
In£otech Intl. Ltd., Maidenhead Berks 1979

(361

(371 Erhard, W.

(38) Parkinson, D.

(39) Park .^nson, D.
Flanders, P.M.

[40) Parkinson, D.

[41] Hunt, D.J.

[42] Reddaway, S.F.
Hunt, D.J.

DAP Newsletter.
Queen Mary College, Computer Centre, DAP
Support Unit.

Einfuhrufig in die Programmierung des DAP.
Arbeitsmaterial.
Universit8t Erlangen -Nurnberg 1981.

An Introduction to Array Processors.
Systems Int., Nov. 1977.

Fourier Transformation on DAP.
ICL, TR 7, 1981.

The Solution of Sets of Equations.
ICL, TE 18, 1981.

A Study of Finite Element AnalyLis on DAP.
ICL, TR 2, 1981.

Study of a Finite Element Problem.
ICL, TR 10, 1981.

36

Vector and Parallel Computers and Algorithms (general)

[43] Bucher,	 I.Y. Comparative Performance Evaluation of two
u.a. Supercomputers: CDC CYBER -205 and CRI

CRAY-1.
Los Alamos Scientific Lab.,	 1981.

[44] Gentzsch, W. Mbglichkeiten and Probleme bei der Anwen-
Muller- dung von Vektorrechnern, dargestellt an
Wichards, D. der numerischen Behandlung einiger strb-
Weiland, C. mungsphysikalischer Fragestellungen. Er-

fahrungen and Testrechnungen mit den Vek-
torrechnern von CDC and CRAY.
DFVLR-IB 221 81 A 05, Gbttingen 1981.

[451 Hossfeld, F. Parallelprozessoren and Algorithmenstruk-
tur.
Bericht Nr. 87, KFA Jalich 1980.

[46] Madsen, N.K. Matrix Multiplication by Diagonals on a
u.a. Vector/Parallel Processor.

Inf. Proc. Letters 2, Vol.	 5,	 1976.

(47] Ramamoorthy, C.V. Pipeline Architecture.
u.a. ACM Computing Surveys (1977), pp. 61-102.

(48] Heller, D. Accelerated Iterative Methods for the
u.a. Solution of Tridiagonal Systems on Paral-

lel Computers.
JACM Vol. 23	 (1976)	 No.	 4, pp. 30-41.

1491 Banerjee, U. Array Machine Control Units for Loops
Gajski, D. Containing IFs, Proc. of the 1980
Kuck, D. Int'l. Conf. on Parallel Processing,

Harbor Springs, MI., Aug.	 1980, pp. 28-36.

[50) Baudet, G.M. Parallel execution of a sequence of tasks
Brent, R.P. on an asynchronous multiprocessor.
Kung, H . T. The Australian Computer Journal Vol. 12

(1980),	 pp.	 105-112.

(511 Newman, I.A. The use of parallel processing systems,
CREST Course, Prallel Processing Systems,
Loughborough 1980.

37

i

c•

[521	 Parrott, R.H. A Language for Array and Vector Proces-
sors, ACM Trans. on Programming Langs.
and Systs. Vol. 	 1	 (1979)	 No.	 2, pp.	 177-
195.

(531	 Robinson, J.T. Some Analysis Techniques for Asynchronous
Multiprocessor Algorithms,
IEEE Transactions on Software Engineering
SE-5(1):	 24-31, January 1979.

[541	 Chen,	 S. Time and parallel processor bounds for
Kuck, D. linear recurrence systems,

IEEE Trans. Comp. C-24, 	 701-717,	 1975.

[551	 Dixon,	 L.C.W. Solution of Navier Stokes equations using
finite elements, an optimisation approach
using parallel computation, presented at
EEC/CNR School,	 'Design of Numerical Al-
gorithms for Parallel Processing',
Bergamo University,	 1981.

[56]	 Dixon,	 L.C.W. The place of parallel computation in
Patel, K. Numerical Optimisation II, The global

problem, Proceedings of the E.E.C./C.N.R.
Summer School "Design of Numerical Algo-
rithms for Parallel Processing",
Bergamo University, 1981.

(571	 Dunbar, J. Analysis and Design of Parallel Algo-
rithms,
Ph. D. Thesis, Loughborough University of
Technology,	 1978.

(581	 Enslow,	 P.H.	 ed. Multiprocessors and Parallel Processing,
Wiley-Interscience, NY,	 1974.	 ,

[591	 Evans,	 D.J. The Parallel Solution of Banded Linear
Hadjidimos, A. Equations by the New Quadrant Inter-
Noutsos, D. locking Factorisation (Q.I.r^.) 	 Method,

Int.	 Jour.	 Comp. Math.	 9,	 (1981),	 151-162.

(601	 Flynn, M.J. Very high-speed computing systems,
Proceedings of the IEEE, Vol. 54, No. 12,
December 1956, pp.	 1901-1909.

(611	 Heller,	 D. A survey of parallel algorithms in numeri-
cal linear algebra,
SIAM Review 20,	 740-777,	 1978.

(621	 Handler,	 W. Conpar 81, Conf. on Analysing Problem
Classes and Programming for Parallel Com-
puting.
Berlin: Springer Verlag,	 1981.

1631 The Vectran Language: An Experimental
Language For Vector/Matrix Array Process-
ing, G. haul; M.W. Wilson 	 (ads.).
IBM Palo Alto Scientific Center, Report
G320-3334, Aug.	 1975,	 343 pp.

1641	 Kuck,	 D.J. The Structure o` Computers and Computa-
tions, Vol.	 1.
New York: John Wiley & Sons,	 1978.

[65]	 Kuck,	 D.J. The Structure of an Advanced Vectorizer
Kuhn, R.H. for Pipelined Processors.
Leasure, B. Proc. of COMPSAC 80, The 4th Int'l.
Wolfe, M. Computer Software & Applications Conf.,

Chicago,' IL, pp.	 709-715, Oct.	 1980.

[66]	 Kuck, D.J. Automatic Program Restructuring for High-
Speed Computation.
Proc. of CONPAR 81, Conf. on Analysing
Problem-Classes and Programming for
Parallel Computing, Nurnberg, F.R. Ger-
many, Invited paper, June 1981,

38

(67)	 Kung, H.T. The structure of parallel algoriihms.
In advances in Computers, Vol. 19.
New York, Academic-Press, 1979.

[68] Miranker, W.L. A Survey of Parallelism in Numerical
Analysis.
SIAM Review 13	 0971), pp. 524-547.

[69] Miranker, W.L. Parallel Methods for Solving Equations.
Technical' Report RC 6545, IBM T.J. Watson
Research Center, May 1977.

(70] Kozdrowicki, E.W. Second Generation of Vector Supercompu-
u.a. tars.

Computer 7	 (1980), pp. 71-83.

(71) Brandt, K. Parallelrechner, Strukturen and Erfahrun-
u.a. gen.

RWTH Aachen 1978.

(72] Lambiotte, J. The Solution of linear Systems of Equa-
tions on a Vector Computer.
Ph. D. Dies. Univ. Virginia 1975.

[73] Jordan, T.L. A new Parallel Algorithm for Diagonally
Dominant Tridiagonai Matrices.
Los Alamos Scientific Lab. Report 1974.

(74) Kuck, D.J. A Survey of Parallel Machine Organization
and Programming.	 '
ACM Computing Surveys, pp. 29-60, 1977.

(75) Feilmeier, M. Parallele Datenverarbeitung and Parallels
Algorithmen..
TU Berlin 1979.

(76]	 South, J.C. vector Processor Algorithms for Transonic
Keller, J.D. Flow Calculations.

AIAA Journal 18 	 (1980), Pp. 786-792.

[77]	 Giloi, K. Rechnerarchitekturen.
Vorlesungsskript der TU Berlin, WS 1979/
00.

(78] Sameh, A. Numerical parallel algorithms - A survey,
in High Speed Computer and Algorithm
organization, 207-228.
D. Kuck, D. Lawrie and A. Sameh (eds.).-
New York: Academic Press, 1977.

(79]	 Sameh, A. On stable parallel linear system solvers.
Kuck, D. J. ACM 25	 (1978),	 pp.	 81-91.

[80] , Smith, B.J. A Pipelined, Shared Resource MIMD Compu-
ter.
Proc. of the 1978 Int'1 Con£. on Parallel
Processing, pp. 6 -8, Aug. 1978.

(81]	 Stone,	 H.S. Parallel computers.
In: Introduction to Computer Architecture,'
pp.	 318-374.
Chicago: Science Research Associated,
1975.

Literature on the MHD Problem

[82] Bateman, G.	 Ideal MHD-Instabilities as an initial
Schneider, W.	 boundary-value problem.
Grossmann, W.	 IPP-Bericht 1/145, Garching 1974.

(83] Schluter, A.	 Verfahren zur Behandlung stabiler Magneto-
hydrodynamischer Gleichgewichte.
Sitzungsberichte der Bayerischen Akademie
der Wissenschaften 1975.

(84] Geritzsch, W.	 Numerical Solution of Linear and Non-
Linear Parabolic Differential Equations
by a Time-Discretisation of Third Order
Accuracy.
Notes on Numerical Fluid Mechanics Vol. 2
(1980), pp. 109-117.

Reports of the Hanover Regional Computer Centre on this Topic

[85] Materialsammlung zum 2. Kolloquium "Neue
Rechnerarchitekturen: Anwendungsgebiete
und Realisierungen"	 (CDC),	 Nr.	 18,	 1981.

[86] VortrBge zur Parallelverarbeitung, August,
Nr.	 19,	 1981.

[87] Materialsammlung zum 3. Kolloquium "Neue
Rechnerarchitekturen: Anwendungsgebiete
und Realisierungen"	 (CRAY), Nr.	 22,	 1981.

[88] Materialsammlung zum 4. Kolloquium "Neue
Rechnerarchitekturen: Anwendungsgebiete
und Realisierungen" 	 (ICL), Nr. 23,	 1981.

Very Recent Publications

39

[89] HSndler, W.

[90] Engeln-
Mullges, G.
Sommer, A.

(91] Hossfeld,•F.

[92] Book, D.L.

[93] Hockney, R.W.
Jesshope, C.R.

Thesen und Anmerkungen zur kUnftigen Rech -
ner-Entwicklung.
In: GMD-Rechnerstruktur-Workshop. Bericht
der GMD Nr. 128. Regenspurg, G. (edit.).
Munchen, Wien: R. Oldenbourg, 1980.

Parallel-Rechner, Parallele Algorithmen,
Parallele Programmierung. Bibliographie.
Bericht des Rechenzentrums der RWTH
Aachen, 1980.

Parallele Algorithmen.
Bericht der KFA Juiich, 1981.

Finite-Difference Techniques for Vector-
ized Fluid Dynamics Calculations.
New York: Springer Verlag, 1981.

Parallel Computers.
Bristol: Adam Hilger Ltd., 1981.

s

n.
Y I

?y

	GeneralDisclaimer.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf

