General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

DEPARTMENT OF ELECTRICAL ENGINEERING SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

SOF TWARE DEVELOPMENT FOR INFRASOUND MEASUREMENT SYSTEM

By

Camille Khalaf
and

John W. Stoughton, Principal Investigator

Final Report
For the period January 3 to May 15,1983

Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia

Under
NAS1-17099
Task Arithorization No. 10
Allan J. Zuckerwar, Technical Monitor Acoustics and Vibration Instruments Section

Submitted by the
Old Dominion University Research Foundation P.O. Box 6369
Norfolk, Virginia 23508

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
A. General Description. 1
B. System Description 2
a. System Block Diagram 2
b. Microphone System 2
c. A/D Converter 4
d. APPLE Monitor. 4
e. Disk Drives 4
f. Video Display 4
g. SILENTYPE Printer 4
II. SOFTWARE DESCRIPTION 4
A. DAISE Block Diagram 4
B. Start Up Procedure 5
a. Diskettes Needed 5
b. Step by Step Procedures 5
C. First Level Subroutines 7
a. SAMPLE 7
b. PREVIEW 9
c. ANALYSIS 11
d. CATALOG. 12
e. EXIT. 13
D. Second Level Subroutines 13
a. SET-UP 13
b. COMPUTE 15
c. DISPLAY. 16
d. EXIT 17
E. Third Level Subroutines 17
a. AMPLITUDE SPECTRUM 17
b. POWER SPECTRUM 21
c. CORRELATION 22
d. EXIT 24

TABLE OF CONTENTS - concluded

Page
F. Data Management 24
a. SAMPLE Data. 24
b. PREVIEW Data. 25
c. SET-UP Data. 25
III. COMPUTATION ALGORITHM. 25
A. First Reference. 26
B. Second Reference. 26
C. Algorithm Description 27
a. Amplitude Spectrum Computation 28
b. Power Spectrum Computation. 28
c. Algorithn Sumary 28
IV. REFERENCES 30
V. APPENDICES 31
A. Memory Map 32
B. Time-Frequency Relations 33
C. Error Messages 34
D. Flow Chart 35
E. Complete Listing 39
F. Demonstration Run. 47
LIST OF FIGURES
Figure Page
1 System Block Diagram. 3
2 Block Diagram Description of DAISE 6
3 Log Sample Frequency Versus Input Constant 8

SOFTWARE DEVELOPMENT FOR INFRASOUND
 MEASUREMENT SYSTEM

By
Camille Khalaf ${ }^{1}$ and John W. Stoughton ${ }^{2}$

I. INTRODUCTION

A. General Description

This manual is a brief description of mainly a software package developed for detection and analysis of infrasounds produced by air turbulence. The software package operates on the APPLE* computer with its peripherals, while infrasounds (.1 Hz to 10 Hz) are captured by a condenser microphone system deploying an array of 7 microphones developed by the NASA Acoustic and Vibration Instrumentation Section (AVIS).

The aim of this project is to identify and locate severe weather storms by infrasound as produced by air turbulence. Successful detection and location of severe weather storms will provide a positive basis for the detection and location of large scale clear air turbulence. The signal analysis techniques to be employed are based on the results provided by our software package DAISE (Digital Analysis of Infrasound Experiments). For more information about the microphone system and the auto-correlation technique, please refer to the NASA publication NASA TN D-8327 [1].

The following is a summary of what DAISE provides:

1. Samples raw data from the microphone system with a variable sampling frequency and stores it permanently on floppy disks.
2. Displays raw data, from any single microphone, on the video screen using the high resolution graphics (HGR) mode.
[^0]3．Analyzes the data through computing：
a．Amplitude spectrun of any channel as phase and magnitude．
b．Power or cross－power spectrum between any 2 channels as phase and magnitude．
c．Auto－correlation function of any channel or cross－correlation between any two．

4．Displays any of the above functions using $H G R$ mode．
5．Saves results by printing any of the above displays．
B．System Description
a．System Block Diagram
A block diagran of the hardware system is illustrated in Figure 1．All parts are essential for proper operation．However，the user can do without the SILENTYPE＊＊printer if he does not wish to print any displays generated by the software．A description of the individual parts follows below．

b．Microphone System

This systen provides the APPLE＊，through an A／D converter，with the raw data needed for analysis．The number of outputs（microphones）could be as many as 8，the maximum channels the A / D can handle at one time．

Note that as long as the rest of the APPLE system is concerned，this block could be any external source providing an output ranging from \emptyset to 5 volts．

c．A／D Converter

This block is the way of communication between the APPLE and the out－ side world．It is an 8 bit Analog to Digital converter，that takes as many as 8 analog inputs，ranging from \emptyset to 5 volts，and converts them to an 8 bit digital output（ σ to 25 volts）．When specified by the user，the APPLE ${ }^{*}$ scans the A / D and，the digital data is transferred into its internal menory．

Note，for proper operation，any channel that is not used on the AID when sampling has to be grounded，otherwise the data on the used channels will be distorted．The AID unit has to be inserted in slot $⿰ ⿰ 三 丨 ⿰ 丨 三 一$（ in the back of the APPLE monitor．
＊This trade name is used for descriptive purposes only and the authors do not intend any endorsement of the product．

ORIGINAL PAGEE 13 OF POOR QUALITY

Figure 1. System Block Diagram

d. APPLE Monitor

Obviously, this is the processing unit of the whole system and it communicates with all other blocks. It could be one of the following:

```
APPLE computer - 64 K
APPLE II computer - 64% K
APPLE II PLUS* computer - 64 K
```

If you remove the cover of your APPLE , you will see 6 peripheral slots in the back, that is where all the other system blocks have to be connected. Please see the appropriate block description for the slot number in which it should bs connected.

Note: Make sure to turn the power off before you try to insert or remove any of the peripheral cords.

e. Disk Drives

Two disk drives are required in order to run the software package. These 2 drives are connected through one peripheral card in one slot, typically slot \#6. They use sloppy disketies on which prograns and data are stored and retrieved by the APPLE ${ }^{\text {© }}$.

f. Video Display

This block is normally VIDEO 300 provided by APPLE Computer Inc., but it could be any comparable video system. It must be connected through slot \# Ø. The user interaction with the system takes place through the video screen as well as plotting results using the high resolution graphics capability of the APPLE ${ }^{\text {. }}$

g. SILENTYPE Printer

The SILENTYPE is the only type of printer that can be interfaced to the system and interact with our software, and must be connected through slot \#l. The printer is necessary in the sense that it is the only way of saving your results as printed displays for later use.
II. SOFTWARE DESCRIPTION
A. DAISE Block Diagram

The software structure is very straightforwara and can be easily understood by the aid of the diagram on Figure 2. As shown, DAISE consists of 3 levels of subroutines. The first level includes the preliminary work th. i has to be done before any analysis, the second levei is where all the computations take place, while displaying the results of the computations is directed through level 3. Any level is reached only from the previous one and whenever the command EX is entered the control is transferred to the previous level again. Upon execution of any subroutine DAISE will return to the same level from which the subroutine was called. In the next 3 sections the subroutines of all 3 levels are fully described.
B. Start-Up Procedure
a. Diskettes needed

In order to start up the system in addition to the hardware described in section I.B., at least three version 3.3 diskettes are required:

1. DAISE diskette containing the following binary files:

- PASS \emptyset
- PASS1 in addition to one text file:
- PASS2 -MASTER
- RUNTIME
- ADC. 0
- DAISE.OBJ

2. GPLE diskette, containing two binary files:

- PLE DOS MDVER
- PLE.DM

3. DATA diskette that may or may not contain any files, but it has to be at least initialized.
b. Step by Step Procedure

Step One

Insert DAISE diskette in disk drive 1 and GPLE diskette in disk drive 2 , and then boot the system.

Figure 2. Block Diagram Description of DAISE.

Step Two

Type the command: EXEC MASTER, DI (cr). This comand will execute an executive file that moves DOS to the additional 16 K memory card and then loads the compiler run time table for the APPLE monitor.

Step Three

When indicator lights on both disk drives go off, remove GPLE diskette from disk drive 2 and insert DATA diskette instesd.

Step Four

Type the command:
BRUN DAISE.OBJ, DI (cr)
The diskette in drive 1 will spin for a few seconds, and then the first three lines of DAISE will be printed on the video screen leaving you with the first level subroutines.
C. First Level Subroutines

a. SAMPLE command: SA

Description

This subroutine samples raw data from the microphone system through an A / D converter. The data is an 8 K byte block sampled at 8 channels (microphones), 1024 bytes per channel. The subroutine scans all 8 channels simultaneously and then stores the data on the disk (Drive 2) as 8 binary subfiles.

User Intervention

The user has to intervene twice. First, righc after he gives the commend SA, he will be asked to input the sampling frequency constant. At this point the APPLE will be waiting for a real number as input. (See log graph in Figure 3 for range and frequency correspondence). Second, right before storing data on the disks the user is asked to input or file name as a string variable. Thif variable will be comon to all 8 subfile names as: "File"-c"x" where "File" stands for file name specified by the user, x is an integer in the range $1-8$ and c designates a channel.

ORICREM $\vec{F}: \ldots$. OF POOR QUALIN'

Figure 3. Log Sample Frequency Versus Input Constant.

Exaple

After you load and run DAISE, the following is displayed on your video screen:

1 TYPE COMONND SA, PR, AM, CA, EX, FOR:
2 SAMPLE, PREVIEW, ARALYSIS, CATALOG, EXIT
3 ?
at this poinc type "sa" from the keyboard, then you'll see:
4 INPUT SANPLING FREQUENCY CONSTANT
5 ?
NOW TYPE "68". THE APPLE WILL SPEND 20 SECONDS SAMPLING (51.2 Hz)
BEFORE REQUESTING:
6 INPUT FILE NAME
7 ?
TYPE "TEST". NOW THE APPLE WILL STORE 8 SUBFILES UNDER THE FOLLOWING NAMES:

TEST-CI
TEST-C2
TEST-C3
TEST-C4
TEST-CS
TEST-C6
TEST-C7
TEST-C8
Linas 1,2 , and 3 are printed on the video screen again, then waits for a new command.

Notes

- If an invalid cormand is typed in line 3 above, DAISE will simply refuse it, fint the first 3 lines, and wait for a valid command.
b. PREVIEW, compand: PR

Description
The PREVIEN subroutine allow a preview of the raw data a ampled and stored on the disk at any earlier tims. It displays the data on the video screen using the high resolution graphics display of the APPLE. The
displayed data consists of only 256 samples out of 1024 belonging to une subfile (channel). To preview another quarter, the user: has to call PREVIEW another time. The vertical axis on the display is the voltage axis while the horizontal one is the time axis.

User intervention

At the very begianing of the subroutine the user is asked to input a subfile name. This name, as explained earlitr, is of the form "File-name"-c"x" in which the file and the channel are specified. Then the user is asked to input the desired quarter as an integer in the range 1 to 4, representing the first, second, third and fourth 256 sample blocks of the subfile. After these two inputs the axis will be drawn on the display and the APPLE will wait for a scaling factor for the data. The scaling factor could be any real number by which every data value will be divided before $1 t$ is printed as a dot on the display. An optimum value for the scale is 1 since this is the value that scales the vertical axis between and 5 volts.

Example

1 TYPE COMMAND SA, PR, AN, CA, EX, FOR:
2 SAMPLE.PREVIEW.ANALYSIS.CATALOG.EXIT
3 ?
PR (cr)
4 INPUT FILE AND CHANNEL
?
TEST-Cl (cr)
5 DESIRED QUARTER?
?
3 (cr)
(THE AXIS ARE DRAWN)
6 SCALING FACTOR?
?
1 (cr)

Now the data will be displayed and the APPLE goes back to lines 1,2 , and 3
above.

c. ANALYSIS, command: AN

Description

This subroutine includes most of the program since it is the route to all DAISE analysis features. It provides complete spectral as well as correlation analysis of the raw data. By selecting this subroutine you could compute and display the following:

- Ampl. spectrum of any channel as phase and MG.
- Power spectrum of any channel as phase and MG.
- Cross-power between any 2 channels as phase and MG.
- Printing real and imaginary values of any spectral comp. of ampl., power or x-power spectrum
- Auto-correlation function of any channel
- X-correlation between any 2 channels

In addition, you could print any of the above displays on the SILENTYPE ${ }^{\text {a }}$ printer.

ANALYSIS leads you to the second level of the block diagram in which you have the choice of executing four different subroutines: SET-UP, COMPUTE, DISPLAY, EXIT. Thesf subroutines will be studied later in this manual.

User intervention

There are many interventions that will not be listed here since they will be listed in second level subroutines. The major decision in ANALYSIS is choosing one out of the 4 subroutines listed above. You could chose any route at any time but for reasons that will be clear later the normal order of execution is:

SET-UP, COMPUTE, DISPLAY and then EXIT, please read about these subroutines before you try to execute any of them.

Example

1 TYPE COMMAND SA, PR, AN, CA, ER, FOR:
2 SAMPLE, PREVIEW, ANALYSIS, CATALOG, EXIT

4 TYPE COMMAND SE, CO, DI, EX, FOR:
5 SET-IJP, COMPUTE, DISPLAY, EXIT
6 ?
SE (cr)

Notes

An invalid command in line 6 above will be ignored, lines 4,5 and 6 will be printed again, and DAIS will be waiting for a valid command.
d. CATALOG, command: CA

Description

This command lets you look at the contente of the disk in Drive 2, where your data files are stored. The object of this subroutine is to review the file names so you can choose the right file to preview or analyze later. This is done by a normal catalog command of APPLE software.

User intervention

If the file names do not fit in one screen, just press RETURN to look at the rest of the files. This ean be repeated until DAISE returns the beginning of the program.

Example

```
1 TYPE COMMAND SA, PR, AN, CA, EX, FOR:
```

2 SAMPLE, PREVIEW, ANALYSIS, CATALOG, EXIT
3 ?
CA (cr)
4 DISK VOLUME 254
5 TEST-Cl
6 TEST-C2

- . . .
- • •

12 TEST-C8

13 TYPE COMMAND SA, PR, AN, CA, EX, FOR:
14 SAMPLE, PREVIEW, ANALYSIS, CATALOG, EXIT
15 ?
e. EXIT, Command: EX)

Description
This command will simply end the program, with no intervention from the user.

Notes

If DAISE is mistakenly exited, type:
BRUN DAISE.OBJ, Dl (cr)
to start the program again.
D. Second Level Subroutines

Description

SET-UP sets the analysis mode and loads the user specified data from disk into the APPLE monitor to be ready for computation and analysis. User decisions are very important in this subroutine, therefore, the user is advised to read the computation algorithm section in this manual, preview the data, have a clear idea of what channel(s) are desired, what the interesting part of the data is, and how many averages are needed before attempting to enter this subroutine.

User intervention

1 First, input a ref-channel (subfile) name. This is done whether you wish to have an auto or cross-correlation analysis.

2 Second, determine the option of AUTO-CORRELATION (AC) or CROSSCORRELATION (CC). An AUTO-CORRELATION option is the route to (AFTER COMPUTATION) AMPL, and POWER SPECTRUM and AUTO-CORRELATION function of your ref-channel you entered in 1.

While a CC option is the route to AMPL. spec of the ref-channel, x-power spec. between ref-channel and x-channel (that you will specify next and a CROSS-CORRELATION of the two with selection of the CC option.

3 You will be asked to input a x-channel (subfile) name.

4 The 1 K bytes of data is divided into 8 blocks 128 bytes each. At this point you have to determine the block at which you want the computation to start. Your answer should be in the range of to 7 .

5 Now you have to specify the number of blocks you want to be operated on by one pass through the ocmpute subroutine. Your answer should be in the range of 1 to 8. Note that this corresponds to the number of times you want your spectral results to be averaged. Also note that a second pass through the computer subroutine will double the number of averages (in 5). However this number is limited to 8 average in any case, i.e., if your answer in 4 is 2 if your answer in $\overline{5}$ is 3 you can compute twice only.

Please read the description of COMPUTE subroutine to help understand the procedure.

Example

1 TYPE COMMAND SE, CO, DI, EX, FOR:
2 SET-UP, COMPUTE, DISPLAY, EXIT
3 ?
SE (cr)
4 INPUT REF-CHANNEL
5 ?
TEST-Cl (cr)
6 TYPE COMMAND AC, CC FOR:
7 AUTO-CORRELATION OR CROSS-CORRELATION
8 ?
CC (cr)
9 INPUT CROSS CHANNEL
10 ?
TEST-C5 (cr)
11 STARTING BLOCK ($\varnothing-7$)?
12 ?
θ (cr)
13 HOW MANY BLOCKS ($1-8$)?
14 ?
2 (cr)
15 TYPE COMMAND SE, CO, DI, EX, FOR:
16 SET-UP, COMPUTE, DISPLAY, EXIT

Notes

In case of CC option, ref-channel should be the one that is expected to be delayed in time while the cross-channel is the advanced one.

Warnings

- Once you give the command SE all previous spectral and correlation results are lost and initialized to zero.
- If your answer in line $\frac{12}{12}$ is x
and your answer in line $\overline{14}$ is y
then $x+y$ has to be 68 , Otherwise DAISE will take you back to line 11 .
- If the number of passes through COMPUTE subroutine is 2 then:
(2 *y) $+\mathrm{x} \leqslant 8$, otherwise COMPUTE will not execute but rather takes you back to line $\underline{1}, \underline{2}$ and $\underline{3}$ above.
b. COMPUTE, commend: CO

Description

Most of the computations are done in COMPUTE deploying the FFT routine. After execution, the real and imaginary components of ampl. and power spectrum or ampl. and cross-power spectrum are computed. These components will be the basis for the phase and magnitude displays as well as the correlation function in the third level subroutines.

No results are obtained from COMPUTE unless you go through SET-UP once. Every pass through COMPUTE causes the number of data blocks specified in SET-UP to be operated on and the results are averaged with the previous ones obtained by an earlier pass. There is no user intervention in this subroutine.

Example
Specified by SET-UP: Starting block is 1 number of blocks is 3
Then, as shown below, the first pass in COMPUTE operates on blocks 1, 2, and 3 while the second operates on blocks 4,5 , and 6 .

Note that a third pass will cause the error message: ERROR:DATA BLOCKS ARE EXCEEDED to be printed and control will be cransferred to the beginning of the second level, since there is only 1 remaining block.

Notes
Due to the slow speed of APPLE software in computing arithmatic functions, one pass through COMPUTE, operating on one single block, takes 70 seconds. As a result, one pass operating on 8 blocks at once takes 9 minutes and 20 seconds!

> c. DISPLLAY, command: DI

Description

Assuming that COMPUTE has been executed and the spectral results are ready, DISPLAY provides viewing of these results on the video screen as well as on the SILENTYPE printer. The functions that could be displayed are listed in the description of ANALYSIS subroutine earlier.

DISPLAY takes DAISE into the third level of subroutine by grouping the displays of results into 3 categories as follows:

1 - Amplitude spectrum as phase and magnitude.
2 - Power or cross-power spectrum as phase and magnitude.
3 - Auto-correlation or cross-correlation function.
Description of these subroutines are provided in the subsequent sections.

User intervention

Only one decision has to be taken at this stage, that is choosing one out of 3 subroutines: AMPLITUDE SPECTRUM, POWER SPECTRUM, or CORRELATION. These subroutines are executed in any order, and as many times as desired.

Example

1 TYPE COMMAND SE, CO, DI, EX, FOR:
2 SET-UP, COMPUTE, DISPLAY, EXIT
3 ?
DI (cr)
4 TYPE COMMAND AS, PS, CR, EX, FOR:
5 AMPLITUDE SPECTRUM, POWER SPECTRUM, CORRELATION, EXIT
6 ?
PS (cr)
d. EXIT, command: EX

Description

This command exits you from the second level subroutines back to the first level.

Example

1 TYPE COMMAND SE, CO, DI, EX, FOR:
2 SET-UP, COMPUTE, DISPLAY, EXIT
3 ?
EX (cr)
4 TYPE COMMAND SA, PR, AN, CA, EX, FOR
5 SAMPLE, PREVIEW, ANALYSIS, CATALOG, EXIT
6 ?
E. Third Level Subroutines
a. AMPLITUDE SPECTRUM, command: AS

Description

AMPLITUDE SPECTRIM generates the phase and magnitude of the amplitude spectrum of the reference channel specified in SET-UP. The viewing options are:

1 - Phase display
2 - Magnitude display
3 - Printing real and imaginary values of spectral cormponents on the video screen.

These 3 options are, in turn, 3 subroutines that are called with commands as the previous ones. The order in which these routines are called is irrelevant and is left to the user's convenience.

1 - PHASE
Command: PH

In this case the first 128 components of the phase are drawn with an argument of $+180^{\prime}$ to -180°. Underneath the display, a line is printed containing the name of the reference-channel. Next the user is asked whether he wishes to print the display using the SILENTYPE printer or not. His answer must be Y (yes) or N (no). If it is a Y, then the SILENTYPE prints a heading followed by the display, and the control is transferred back to the 3 options above. If the answer is N, then control will be transferred directly to level 3.

Example

1 TYPE COMMAND AS, PS, CR, EX, FOR:
2 AMPLITUDE SPECTRUM, POWER SPECTRLM, CORRELATION, EXIT
3 ?
AS (cr)
4 TYPE COMMAND PH, MG, R \& I, EX, FOR:
5 PH-DSPLY, MG-DSPLY, REAL \& IM., EXIT
6 ?
PH (cr)
(NOW THE PHASE IS PLOTTED)
7 XXXXPHASE PLOT: TEST-C2 XXXX
8 WOULD YOU LIKE TO PRINT THE DISPLAY (Y/N)
9 ?
Y (cr)
THE SILENTYPE WILL PRINT:
PHASE PLOTXXX TEST-C2XXX 4 AVE
AND THEN THE DISPLAY IS PRINTED.
10 TYPE COMMAND PH, MG, $R \& I$, EX, FOR
11 PH-DSPLY, MG-DSPLY, REAL \& IM., EXIT

12 ?

Notes

An invalid command in line $\underline{6}$ or 9 will be refused and the question will be asked again.

Example

1 TYPE COMMAND PH, MG, R\&I, EX, FOR
2 PH-DSPLY, MG-DSPLY, REAL \& IM., EXIT
3 ?
MG (cr)
4 SUPPRESS SPECTRAL COMPONENTS (Y/N)?
5 ?
Y (cr)
6 WHICH COMPONENT ($0-127$) ?
7 ?
8 SUPPRESS SPECTRAL COMPONENTS (Y/N)?
9 ?
N (cr)
10 FULL, HALF, QUARTER DISPLAY (F/H/Q)?
11 ?
H (cr)
12 SCALING FACTOR?
13 ?
1 (cr)
14 SCALING FACTOR?
15 ?
10 (cr)
(NOW THE MAGNITUDE IS PLOTTED)
16 XXX MG.PLOT: TEST-C3 XXX
17 WOULD YOU LIKE TO PRINT THE DISPLAY (Y/N)?
18 ?
N (cr)
19 TYPE COMMAND PH, MG, R\& I, EX, FOR:
20 PH-DSPLY, MG-DSPLY, REAL \& IM., EXIT

21 ?
2 - MAGNITUDE
Cormand: MG

This option plots for you the first 128 components of the magnitude plot. The vertical axis represents a relative scale while the horizontal one is frequency.

Before plotting the magnitude, the user has to answer the following questions:
i - suppress spectral components (Y / N)?
This allows suppression of relatively large components
(i.e. DC comp.) in order to have a better view of the rest of the apectrum by changing the scaling factor. If your answer is yes, then the user will be asked to specify the number of the components which can only be suppressed, one at a time.
ii - Full, half or a quarter display ($\mathrm{F} / \mathrm{H} / \mathrm{Q}$) ?
This allows changing the increment value on the frequency axis by displaying 128,64 or 32 components.

F corresponds to 128 components
H corresponds to the first 64 components Q corresponds to the first 32 components
iii - Scaling factor?
This input could be any real number by which all components are divided before they are plotted.

If the scale factor is too small the question will be repeated until the scaling factor is large enough for the components to fit on the APPLE ${ }^{\bullet}$ screen.

After answering these questions the magnitude is plotted. As in the PHASE plot information is printed underneath followed by the option of printing the display.

REAL AND IMAGINARY
Command: R\&I
This option allows printing the real and imaginary value of any spectral
component on the video screen. This comand prints the values of one component at a time.

Example

1 TYPE COMMAND PH, MG, R\&I, EX, FOR:
2 PH-DSPLY, MG-DSICY, REAL \& IM., EXIT
3 ?
$R \& I(c r)$
4 WHICH COMPONENT (0-127)?
5 ?
2 (cr)
6 REAL PART: 2356.712
7 IM.PART: -175.689
8 TYPE COMMAND PH, MC, R \& I, EX, FOR:
9 PH-DSPLY, MG-DSPLY, REAL \& IM., EXIT
$10 ?$

Notes

- The frequency resolution on the horizontal axis, in both PHASE and MAGNITUDE, is determined by the smpling frequency specified in the SET-UP.
The relation is $\Delta f=\frac{\text { sampling frequency }}{256}$
- Along with PH, MG and R\&I you have the EX comand. This command takes DAISE back to level 3 subroutines.
- Suppressing spectral components in MAGNITUDE means setting their values to zero only on the display so that in subsequent passes through MAGNITUDE these components will still be suppressed while a second call of AMPLITUDE SPECTRUM will regenerate them.
b. POWER SPECTRUM, command: PS

Description

POWER SPECTRUM generates the phase and magnitude of the power spectrum of the reference-chaniel if the auto-correlation option was specified in the SET-UP, or it generates the phase and magnitude of the cross-power spectrum of the reference-channel and cross-channel if the cross-correlation option
was specified.

Next, it leaves the user with the ste options listed in the AMPLITUDE SPECTRUM descriptioa. From that point on, everything mentioned there is true in this case also and need not be repeated here.

Notes

The coments printed underneath the video displaje and above the printed displaya will refer in this case, to the power or croes-power spectrum rather than the AMPLITUDE SPECTRUM.
c. CORRELATION, command: CR

Description

This subroutins uses the results of the power, or cross-power, spectum to generate the ato-correlation, or crose-correlation function by one pass through the inverse FFT.

After generation, the correlation function is displayed and could be printed by the printer.

The vertical axis represents a relative scale of the function while the horizontal one represencs the delay time 1 .

The number of points plotted is 256 with a time resolution determined by the sampling frequency as:

$$
\Delta t=\frac{1}{r_{s}}
$$

User intervention

1 At the very beginning, the user has the option of suppressing spectral components in the power spectrum before generating the correlation-function.

This is included here to prevent undesirable components (i.e. noise components) from effecting the correlation resulta.

2 Once the function is generated, the axis will be drawn and the user is asked to input a saling factor for the display.

3 A coment is printed underneath the display secifying the kind of function and the involved channel(s). Next the question:

Diaplry CORR-FN again (Y / N)?
Is asked. This allows viewing the function on aifferent scale, and could be repeated as many times as desired.

4 Then the option of printing the display on the printer is offered.

Example

1 TYPE COMPAND AS, PS, CR, EX, FCR:
2 AMPLITUDE SPECTRUM, POWRE SPECTRUM, CORRELATION, EXIT
3 ?
CR (cr)
4 SUPPRESS ANY SPECTRAL COMPONENTS (Y/N)?
5 ?
Y (cr)
6 WHICH COMPONENT (1-238)?
7 ?
3 (cr)
8 SUPPRESS ANY SPECTRAL COMPONENTS (Y / N)?
9 ?
N (cr)
(after 70 seconds of computation the axis are drawn)
10 SCALING FACTOR?
11 ?
8 (cr)
(THE FUNCTION IS PLOTTED)
12 XXX CROSS-CORR: TEST-C2 CROSS TEST-C7 XXX
13 DSPLY CORR-FN AGAIN (Y / N)?
14 ?
Y (cr)
15 SCALING PACTOR?
16 ?
4 (cr)
(The old function is deleted and the new one is plotted)
17 DSPLY CORR-FN AGAIN (Y/N)?
18 ?
N (cr)

19 WOULD YOU LIKE TO PRINT THE DISPLAY (Y/N)?

20 ?
N (cr)
21 TYPE COXMAND AS, PS, CR, EX, FOR:
22 AMPLITUDE SPECTRUM, POWER SPECTRUM, CORRELATION, EXIT
23 ?

Notes

- In this subroutine, suppressing spectral components means setting them to zero everywhere in the program and they cannot be generated again.
i.e., A suppressed component in one pass through CORRELATION will still be suppressed in any subsequent passes, as well as in any power spectrum display.

Also note that the $D C$ component is suppressed automatically before computing the correlation-function.

- Once the user answers " N " to the question in line 17 of the example above, the CORRELATION subroutine is exited. Therefore, a second view of the correlation function will require a second pass through the subrouiine which in turn means waiting 70 seconds.
d. EXIT, command: EX

Description

This comand takes DAISE back to level 2 subroutines.
F. Data Management

Data is stored and cransferred between the APPLE monitor and disk drive 2 at three major subroutines: SAMPLE, PREVIEW and SET-UP.

a. SAMPLE Data

In this case data is sampled at the A / D converter and stored directly in the APPLE RAM as 8 blocks (channels), 1024 bytes each, stored at the following locations:

Channel 1 starts at 7600 HEX (30208 DEC)

Channel 2 starts at 7A00 HEX (31232 DEC)
Channel 3 starts at 7E00 HEX (3256 DEC)
Channel 4 starts at 8200 HEX (33280 DEC)
Channel 5 starts at 8600 HEX (34304 DEC)
Channel 6 starts at 8 A 00 HEX (34328 DEC)
Channel 7 starts at 8E00 HEX (36352 DEC)
Channel 8 starts at 9200 HEX (3 7376 DEC)

These blocks are transferred to disk drive 2 as 8 binary subfiles and the memory space (7600 to 9600 HEX) is freed.

b. PREVIEW Data

In the PREVIEW subroutine one subfile (1 k byte) is loaded from disk drive 2 into the RAM and occupies:

8E00 to 91FF HEX (36352 to 37375 DEC)
Once PREVIEW is exited this 1 K block of data is not accessed by any means.
c. SET-UP Data

In this case one subfile (reference-channel) is loaded from the diskette and stored in locations: 8E00 to 91FF EX (36352 to 37375 DEC) and in the case of cross-corselation the x-channel is stored in 9200 to $95 F F$ HEX (37376 to 38399 DEC)

These 2 blocks of data are accessed by COMPUTE subroutine only.

Notes

- Memory locations 7600 to $95 F F$ are used only for data management throughout DAISE.
- All spectral and correlation results are not stored permanenty anywhere and will be lost unless the displays are printed.
III. COMPUTATION ALGORITHM

The algorithm used in DAISE for the computation of AMPLITUDE SPECTRUM and POWER SPECTRUM is based on two algorithms as described by Cooley et al.
[2] and Rader [3]. The reader is advised to review the papers for clear understandis. For our purposes a sumary of the two algorithms is presented.

A. First Reference

From reference [2] we can compute the Fourier transform of 2 sets of real data in one pass through a DFT subroutine as follows:

Using the linearity property we see that if $x(n)$ and $y(n)$ are real sequences such that
$X(K)$ is the transform of $x(n)$ and
$Y(K)$ is the transform of $y(n)$
and if we form $s(n)=y(n)+i x(n)$
Then $g(n)$ has the transform

$$
\begin{equation*}
S(K)=Y(K)+i X(K) \tag{1}
\end{equation*}
$$

and $S *(N-K)=Y(K)-i \quad X(K)$
(2) $0<K<\frac{N}{2}$
where * designates complex conjugate and N is the total number of points. Now solving (1) and (2) for $Y(K)$ and $X(K)$ we get:

$$
\begin{aligned}
& Y(K)=1 / 2[S *(N-K)+S(K)] \\
& X(K)=1 / 2[S *(N-K)-S(K)]
\end{aligned}
$$

Thus, $Y(K)$ and $X(K)$ can be computed by one pass through the DFT with a few extra additions and subtractions.

B. Second Reference

With respect to perform correlation operations as described by Rader [3], let $Y(N)$ be an N points sequence and construct $X(N)$ such that:

$$
x(n)= \begin{cases}y(n) & \text { for } 0<n<\frac{N}{2} \\ 0 & \text { for } \frac{N}{2}<n<N \quad n \in[0, N)\end{cases}
$$

If we compute the DFTs of $Y(N)$ and $X(N)$:

$$
\begin{aligned}
& Y(K)=\operatorname{DFT}\{y(n)\} \\
& X(K)=\operatorname{DFT}\{X(n)\}
\end{aligned}
$$

and for the product $W(K)=Y *(K) X(K)$ we have the $D F T, W(K)$ of the sequence

$$
\begin{equation*}
w(m)=\sum_{n=0}^{N / 2-1} x(n) * y(n+m) \tag{2}
\end{equation*}
$$

where m is a lag index.

It is easily seen that $w(m)$ is nothing but the auto correlation function of $y(n)$ that, having $W(K)$ computed, c an be generated by on inverse DFT.

IF $y(n)$ was a continuous series the above procedure c an be repeated as many times as desired, considering N points at a time and averaging.

Note that Rader paper is more involved and does not stop at this point, but the above discussion is enough for our need.

C. Algorithm Description

Our algorithm is the merit of both papers. Let $y(n)$ and $x(n)$ be 2 real sequences of length N. The second $\frac{N}{2}$ points of $x(n)$ are padded with zeroes as follows:

1) If auto-correlation is desired,

$$
x(n)= \begin{cases}y(n) & \text { for } 0<n<n / 2 \\ 0 & \text { for } N / 2<n<N\end{cases}
$$

2) If cross-correlation is desired,

$$
x(n)=\quad \begin{cases}x(n) & \text { for } 0<n<N / 2 \\ 0 & \text { for } N / 2<n<N\end{cases}
$$

then $s(n)=y(n)+j x(n)$ is formed and its Fourier transform $S(K)=a(K)+$ $i b(K)$ is obtained by one pass through the FFT routine.

a. Amplitude spectrum computation

We have seen in the first procedure that

$$
Y(K)=1 / 2[S *(N-K)+S(K)]
$$

or using the results of the FFT routine,
Real part of $Y(K)=1 / 2[a(N-K)+a(K)]=$ Real part of $Y(N-K)$
and imaginary part of $Y(K)=1 / 2[-b(N-K)+b(K)]=-$ Imaginary part of $\mathrm{Y}(\mathrm{N}-\mathrm{K})$

The last two expressions are the ones used to evaluate the AMPLITUDE SPECTRUM.
b. Power or Cross-Power Spectrum Computation

We saw that $Y(K)=1 / 2[S *(N-K)+S(K)]$
and its complex conjugate would be

$$
Y *(K)=1 / 2[S *(N-K)+S *(K)]
$$

so that the POWER SPECTRUM $W(K)$, in the Rader paper can be written as:

$$
\begin{aligned}
& W(K)=Y *(K) X(K)= \\
& 1 / 2[S(N-K)+S *(K)] \cdot 1 / 2[S *(N-K)-S(K)]
\end{aligned}
$$

Evaluation of the above expression in terms of the output of the FFT routine, $S(K)=a(K)+i b(K)$ yields,

Real part of $W(K)=$ Real part of $W(N-K)=$
$1 / 2[a(K) b(N-K)+a(N-K) b(K)]$
and imaginary part of $W(K)=$ - Imaginary part of $W(N-K)$
$=1 / 4\left[a^{2}(N-K)-a^{2}(K)+b^{2}(N-K)-b^{2}(K)\right]$
where $0<K \leqslant \frac{N}{2}-1$
Again the last two expressions are the ones used for evaluation.
c. A^{\top} gorithm Summary

Step 1 Load data sequences $y(n)$ and $x(n)$, and then zero pad the second N/2 points of $x(n)$.

Step 2 Form $s(n)$ as $y(n)+i x(n)$ and pass it to the FFT routine to get

$$
S(K)=a(K)+i b(K)
$$

Step 3 Compute the AMPLITUDE SPECTRLM of $y(n)$ and the power (or cross power) spectrum as specified earlier.

Step 4 Repeat the above steps as many times as desired and average the results in Step 3. (In DAISE the number of averges is limited to 8).

Step 5 Pass the power (or cross power) spectrum results to the inverse FFT to obtain the auto (or cross) correlation function.

Notes for the User

1 - In DAISE $y(n)$ has been called the reference-channel while $x(n)$ is the cross-channel.

2 - Amplitude spectrum of $y(n)$ is computed whether the user specifies the auto-correlation or the cross-correlation option.

3 - Our sequences (subfiles) are 1024 points long, divided into 8 blocks, 128 points each. The value of N is 256 points and

$$
\frac{N}{2}=128=1 \text { block. }
$$

4 - DAISE deploys a 256 point FFT routine so that by one pass through the first 3 steps of the algorithm two blocks of $y(n)$ and 1 block of $x(n)$ (second block is padded with zeros) are operated on. This leaves us with 8 possible passes or averages.
i.e., First average $: y(n)=\{$ first and second block \}
$x(n)=\{$ first block and 128 zeros\}
Second average : $y(n)=$ second and 3rd block\}
$x(n)=\{$ second block and 128 zeros $\}$
and so on.
5 - In SET-UP subroutine, when the user answers the question "HOW MANY BLOCKS (1-8)?" He is specifying the number of averages desired in one pass through COMPLETE subroutine.
IV. REFERENCES

1. Holmes, H.K., and A. J. Zuckerwar, "A Unified Acquisition System for Acoustic Data," NASA TN D-8327, 1977.
2. Cooley, J.W., P. Lewis, and P. Welch, "The Fast Fourier Trans form Algorithm and its Application," IBM Research Paper RC-1743, 1967.
3. Rader, C.M., "An Improved Algorithm for High Speed Auto Correlation with Application to Spectral Estimation," IEEE Trans. Audio Electroacoustics, Vol. AU-18, pp. 439-441, December 1970.
V. APPENDICES

ORIGINAL PhLi: tis
OF POOR QUALITY
A. Memory Map

$0000 \text { (80000) }$	
	APPLE System Use
$2048(80800)$	Compiler Library
6063 (817AF)	
	Free for future expansion
$8192 \text { (82000) }$	High-resolution graphics, Page 1
16364 (84000)	
	DAISE
26666 (8682A)	
	Free for future expansion
30208 (87600)	
	Raw data buffer
38400 (89600)	
	DAISE variables
45056 (8B000)	
49151 (8BFFF)	Free for future expansion

Note

In the above configuration DOS, the disk operating system has been moved to the extra 16 K memory card.
B. Time-Frequency Relations
$F_{s}=s$ sampling frequency
$\Delta f=$ frequency resolution (spectral plots)
$\Delta t=t i m e ~ r e s o l u t i o n ~(c o r r e l a t i o n ~ p l o t s) ~$
$\Gamma=$ total sampling time (N points)
relations: $\quad \Delta t=\frac{l}{F_{s}}$

$$
\begin{aligned}
\Delta f & =\frac{F_{8}}{N} \\
\Gamma & =\frac{1}{\Delta f}
\end{aligned}
$$

Examples: a) $F_{s}=128 \mathrm{~Hz}, \mathrm{~N}=256$

$$
\Delta t=\frac{1}{128}=.0078 \text { seconds }
$$

$$
\Delta f=\frac{128}{256}=.5 \mathrm{~Hz}
$$

$$
\Gamma=\frac{1}{.5}=2 \text { seconds }
$$

b) $\quad \mathrm{F}_{\mathrm{s}}=51.2 \mathrm{~Hz}, \mathrm{~N}=256$

$$
\Delta t=\frac{1}{51.2}=.02 \text { seconds }
$$

$$
\Delta f=\frac{51.2}{256}=.2 \mathrm{~Hz}
$$

$$
\Gamma=\frac{1}{.2}=5 \mathrm{~seconds}
$$

C. DAISE Error Messages

a. "Out of Range" Errors

- Input in line 1080

Message: "ERROR:QUARTER RANGE IS 1 TO 4, INPUT AGAIN"

- Input in line 1870

Message: "ERROR: YOUR INPUT RANGE IS 0 TO 7, INPUT AGAIN"

- Input to line 1890

Message: "ERROR: YOUR INPUT RANGE IS 1 TO 8, INPUT AGAIN"

- If input in line 1870 plus input in line 1890 is greater than 8 Message: "ERROR: DATA RANGE IS EXCEEDED!"
- Input in line 5513 or line 5724

Message: "ERROR: COMPONENZ RANGE IS 0 TO 12, INPUT AGAIN"

- Input in line 5885

Message: "ERROR: COMPONENT RANGE IS 0 TO 128, input again"
b. DOS Related Errors

If a DOS error occurs while DAISE is storing data on disk after sampling or loading data from disk for PREVIEW or ANALYSIS the corresponding error message will be printed and control will be transferred to the firjt level subroutines.

Error Messages:

- "ERROR: DISKETTE IS WRITE PROTECTED"
- "ERROR: file not found"
- "ERROR: DISKETTE VOLUME MISMATCH"
- "ERROR: I/O ERROR"
- "ERROR: DISK IS fuLL"
- "ERROR: FILE IS LOCKED"
- "ERROR: bad file name"
- "ERROR: UNKNOWN", (if error is not one of the above)
D. Flow Chart

ORIGINAL PAGE IS

From EX in second level subroutines next page

To second level subroutines
next page

JLET
REM

36 ONEPR GOTO 4ENZ
100 UIM M（127）：DIH P（127）
103 ロIM ZR（128）：ロIM ZI（128）
105 DIM YRK 138）：DIM YI（128）
107 DIM AR（255）：DIM AI（255）
120 PRINT 05＂BLOAD ACC． 0.95300 .01 ＊
140 PRINT＂TYPE CLTMAND SA，PR，FN，CA，EX，FDR：＂
150 PRINT＂SAHFHESPREUIEH，ANPLYSIS，CATRLOG．EXIT＂
160 INPUT As
179 IF AF $=$＂SA＂THEN GOSU8 590

190 IF $A S=$＂AN＂THEN GOSUB 1500
22G IF A\＄$=$＂CA＂THEN TEXT ：PRINT DF＂CATALOG，02＂：EUTO 140
210 IF RS＝＂EX＂THEN GOTO 230
229 E070 149
235 ENO
40日̈ FEH OOS ERROR DETECTION
405 DEI $=$ PEEK（2E2）
415 DN DED SOTO $415,415,415,420,415,425,430,435,449,445,459,415,415,415,4$ 15
415 PRINT＂ERROR：UNKNDHN＂：EOTO 140
420 PRINT＂EPROR：DISKETTE 15 HRITE PROTECTEN＂：GOTL 140
425 PRINT＂EPRRR：FILE NOT FCUHD＂： $50 T 0$ 140
436 PRINT＂ERROR：DISKETTE IOLLME MISMATCH＂：GOTO 140
435 PRIINT＂ERROR：［ 10 ERROR＂：GOTO 140
440 PRINT＂ERROR：DISK IS FULL＂：GOTO 146
44.5 FRINT＂ERRDR：FILE IS LUCKED＂：GOTO 140

450 PRINT＂ERROR：BAD FILE NAME＂：GOTO 14A
560 PEH SAMPE
555 FRINT＂INFUT SAHPLING FREQUENCH CONSTANT＂
514 INPITT SFO
515 IF SFD＜ 1 THEN PFINT＂ERFOR：CONSTANTCAN NUT BE＜ 1 ，INFUT GGAIN＂：BOTO 510
SEM FIKE 7GT．SFI
53 CHLL 768
535 FRINT＂THPE FILE NHME：＂
549 INFIT FIF
550 E15＝FIF＋＂－゙ご＂
551 －2空＝Fis＋＂－C2＂

555 1．6s＝FIs＋＂－CE＂

70.5

715
715
729
804
319
820
839
335
840
845
859
855
857
379
890
960
910
915
924
925
939
935
940
94.5

95ด̆
355
959
965
975
971
972
973
974
975
16й
REEM PREUIEH
165И PGINT＂DESIRED FILE AND CHANNEL？＂
1655 INPUT FCCHS
1079 PRINT＂DESIFEU GUGRTEFK 1－4）
1 GEG INPUT ：
 HGHIN＂：BUTO 16E4
2085 GUSUE 4000
1090 GUSUE 4200
ige5 $4=0$
1150 GOSLE 1200
1115 PRINT＂\＃REHL UATR：＂FAUS＂，QR－＂R＂－
11EG EETLIFM
：ZĂ＇FEM USFL＇Y REAL GATE DF CDRF－FN
122G HEF：HCOLOF＝ 7
12,5 HPLOT 日， 0 TO 日，159
125 FOF $4=159$ TO 6 ETEF－ 32
：235 HFLUT G．Y TO З．Y：NEXT
1240 IF $\mu=$ G THEN GOTO $12 E 5$
1245 HFLDT 日， 79 TII 255.79
1250 FOF $x=0$ TO 255 STEP 4 A

CRimat ricusas
OF POOR QUALITY

PRINT OS；＂BSAUE＂；C5s；＂＂R88000，L1024，02＂

PRINT O\＄；＂ESPUE＂；C75；＂；A58E0日，L1624，02＂

INFUT POS
IF POF $=$＂Y＂THEN GOSUB BMA：RETURN
IF PDS＝＂N＂THEN RETURIN
60TO 709
REM PRINT OSPLY
PR ${ }^{*} 1$
L＝＂u：REM CTRL Q_{2}
PRINT
PIJKE－12529．255
PRINT
PIJKE－12524．0
PRINT
POKE－12528．7
$T A=T / 4$
IF K $5=$＂CR＂THEN GOTO 955
IF $K=$＂RS＂THEN SOTO 940
IF $E=99$ THEN EOTO 925
IF $\mathrm{F} \$=$＂PH＂THEN GOTO 920

PRINT＂X－POHER＊＊＂RCHE＂CROSS＂XCHF＂Y＂ي＂TR＂DUG＂：EOTO 97G
IF FS $=$＂PH＂THEN GOTO 935

IF FE＝＂PH＂THEN 60TO 950

IF E $=99$ THEN GOTO 955

FRINT
PRINTT
PRPINT
PRINT L $\$$
PR\＃\＃
RETUFN

```
1255 HPLOT x.7S TO x,7E
1260 NEXT X: GOTO 1302
1255 HFLOT 0.159 T0 255,155
1279 FOF X = 0 TO 255 STEF 40
1275 HPLOT X,I5S TO X,156
120U NEXT 
1כDG PRINT "SCRLING FRCTOR?"
13G44 INPUIT II
1310 FOR }x=0 TO 255
1320 4 = 159 - w - AR(X) * .023 / U
1322 IF Y>159 THEN EOTO 1302
1324 IF }Y<G\mathrm{ THEN EOTO 1302
13.30 HPLOT X + 1,Y
1340 NEXT
1350 RETURN
15GUN REM SPECTRUH PNPLYSIS
1550 PRINT "TYPE COMHAND SE, CO, DI, EX. FOR:"
1550̈ PRINT "SET-UP, COHPUTE DISPLAY, EXIT"
157E INPITT CS
1580 IF CS = "SE" THEN GOSUB 1650
1590 IF CS = "CO" THEN EOSUE 2180
1GEUS IF CS = "OI" THEN GOSUR 5000
1610 IF CS = "EX" THEN EOTO 1E30
1020 G0TO 1556
1630 RETLURN
1655 REM SET-UP
17GG FOR X = G TO 128
1710 2R(X)=0
1720 21(x)=0
1730 PR(x)=0
174GYICX)=0
1755 NEKT
17SQ PRINT "INPIJT FEFRENCE CHAMNEL"
1770 INPLIT RCHE
173G PRIINT "TYPE COMHMAND AC, CC, FDR:"
1799 PRINT "RUTO-CORFELITTIUN. CRCSSGCOFRELATION"
1840 IMPIIT BS
1810 IF E% = "AC" THEN E = 99: BOTO 185E
1&2A IF ES = "CC" THEN EOTO 184Q
1830 50TO 1730
184G PEINT "INPUT X:-CHANHEL"
1859 INPIJT XCHS
1860 PFINT "STARTINE BLOCKC口-7)?*
1870 INPLT E
1875 IF G< G OR G % F THEN FFINT "EPRGR:YO|JP INFIT RMNGE IS G TG F. INE
    IIT HEAIN": GOTO 18EO
:ESN FRINT "HOM MANT BLOOKSC 1-SYT"
1BGO INFIIT H
```



```
    E|T HGMIN": GOTO IESE
18:95 T = z - H
ISNH IF (S + H) = G THEN PRINT "EFROF: OHTA RGNGE IS ESEEDE[I!": FOTT
    1860
```



```
1920 IF E = GS THEN GOTG 1G4G
19.54 GMTG 1560
194M FETLFN
195D FEM LOECI CRIOSS EHMNNEL
```



```
197G B0TO 1940
21G0 R.EM CLHPUTE
2150 F = 256
```

```
2160 IF (G +H`> = G THEN PRINT "ERROR: OHTA RUNG IS EXEEDES!": GOTO !
    554
210.j=35352+(6-1)*128
218G FOF }\psi=1 TO 
2190 J = J + 128
2040 FOR I = G TO 255
2210 HRCI) = PEEK (l + I)
2230 NEXT
2240 IF E = 95 THEN K = J: F0TH 2250
2250k k = 1+1824
2260 FOR I = G TO 127
227GAI(I) = PEEK(K + I)
2230 AI(I + 128)=0
2285 HEXT
2230 FRD = 1
2304 Gasus 3000
2302 ZR(B)=2R(0) + AR(0) * AI(0)
2394 YR(0) = YP(0) + PR(0)
2310 FUP }X=1\mathrm{ TO 128
2F24 F: = (PFXX))* (AI(P - x)
2336 S = (AFRP - x) ) * (Al(x) )
```



```
2356R=(AR(P-x))^2-(AFR(X))人2
2364 S = (AI(P-X)`^2-{AI(X)) & 2
2Z7G ZI(X) = 2I(Y)-(F+S)/4
2385 F: = AR(P - X ) + AR(X)
239GS = GI( X) - GI(P - X)
240G MR(x) = MR(x) +R < 2
2410 \psiI(X) = YI(X)+S/2
2420 NEXT X
2430 NEXT Y
2435T = 2 # T
2440G=F + H
2454 RETIMPN
3004 PEH FFT ROJUTINE
310й M = E
3i10N=2~N
3120N1 = E:N没 = N-1
3130 FOR NE = 1 TO NE
3140 N+4 = N
3150 N4 = N4, 2
3150 IF N1 + N4 > NE THEN GOTO 215G
317GN1 = N1 - INT (N1/N4) -N4 + N4
3189 IF N1 &NE THEN BOTO Z25G
31SG T1 = GRCNE)
EZGNGF(NE)= HF(N1)
3215 HF(N+1) = T1
3206 TE = Fl(NJ)
3236 AI(NE) = HI(N1)
3240 HI(N1) = T2
3254 NEKT NS
3250 REM OD THE GOMPLE:X TFGMSFDRM
3275 +44=1
3034N5=2*N4
300N FOR NS = G TO N4 - 1
350G A = FRU*N3 * 3.1415927,N4
315t= C0E CO
3200 S = SIN (H)
Z2SG FGN NT = NE TON - 1 STEP NE
334GNE = NT + N4
375GT! = E* ARCNE) - S % HICNE)
3360 T2 = E* GI(NE) + S + MRCNS%.
```

```
3OTG GR(NE)= AFXNP) - T1
3360 HI(NS) = AI(NT) - T2
33S(1)(NT)= AF(NP) + T1
3400 HI(N7) = AI(NT) + TE
OF POOR QUALITY
3410 NEXT N7
3420 NEXT NS
34361 N4 = NE:
3440 IF N4<N THEN GUTG 3280
3442 FOR }x=0 TO 255
3444 HF(X) = AFKX) / 32
344E HI(X) = GI(X) / 32
3448 NEXT X
3450 RETLFN
4000 REM LOAD REF. CHONNEEL
485G PRINT D*;"BLOFD";FCH**;";AF8E00,D2"
4FWED RETURN
4ESO REMH LOAII REAL ARRAY HITH ONE RUAPTER
4245 x = 36352
4250 DN Q 50T0 42E3,4270,4280, 4250
4ES0 J = X: GOTO 43E0
4270 J = 'x' + 256: EOTD 43H0
4284.l= x + 512: 60T0 4340
4299 J=x + 768
430n FOF I = 0 T0 255
4310 ARKI) = PEEK (J + I)
4ESG NEKT I
43OS RETURN
4745 IF SOF = "G" THEN 50j = 5: 60TO 5748
5E4G FEMM DISPLAY
505G PRINT "TYPE CIMHMRND FS. RS. CR, EX:, FOR:"
5060 PRINT UPOHEF SPEC, PHPL. SPEC, DOPFEIRTION, EXIT"
507G INPIJT K$
50BG IF K$ = "PG" THEN BOTO 5155
5690 IF K$ = "RS" THEN GOTO 5280
5100 IF KS = "CR" THEN GOTO 5850
5110 IF K$ = "EN" THEN EOTO 5140
5120 GOTO 5950
514G RETLIRN
515Q REM POMER SPECTRUM
515E REM
515G FIDR }x=9 TO 127
```



```
5170 IF ABS (ZISX:) T THEN GOTO 51SM
5175 GOTO E194
5184 IF 工RNX)< = - T THEN Frx; = 3.1415927: 50TH 5230
518E F(X) = G: GOTG 52ST
5150 IF HES ERKXO% T THEN GOTG 52GE
5195 E0TO 521E
```



```
5205 F(x)= - .5* 3.1415927: EOTO 5こ36
```



```
    3%
```



```
    52J4
```



```
5ごज HENT:
```



```
525M EOTO 50,54
SESG FEM FEF~HH SFECTEIJH
5255 EEM
5257 FGR X = 0 TO 12T
```


52S5 IF YR(X)< = - T THEN F(X) = 3.1415927: EOT0 5345
5290 P(X) = 0: G0T0 5345
52G5 IF AES (YR(X) < T THEN GOTO 5305
5340 GOTO 5315
53n5 IF YI(X) > = T THEN f(x) = .5 * 2.1415027: G0TO 5345
5310 P((X) = - .5 % 3.1415927: 60T0 5340
5315 IF YR(X) > = T THEN P(X) = ATN(YI(X) < (YR(%) + .000001)): GOTO 5
346

```

```

 5.340
 5325 P(X) = - 3.1415S2 - GTN(YICX) (- YRXX)): GOTO 5345
5340 NEXT
5350 GüSUB 5490
5360 GOTO 5053
5409 REM PHASE \& MAGNITUDE OSPLY
5450 PRINT "TYPE COHMAN[I PH, H6, R\&I. EX"
5479 INPUT F\$
5480 IF FS = "PH" THEN GOTO 5550
5490 IF FS = "M6" THEN GOTO 5650
5500 IF F\$ = "EX" THEN EOTO 5520
5505 IF FS = "RMI" THEN GOTO 5511
5510 GOTO 5450
5511 PRINT "HHICH SPECTRRL COHPONENT(0-127)?"
5 5 1 3 ~ I N P U U T ~ H S ~
5514 IF HS <G OR WS> 127 THEN PRINT "ERROP: COMFONENT RINNE IS G TO 12
7. INPUT AGAIN": EOTO 5513
5515 IF KS = "RS" THEN PRINT "RERL PART: "YRCHE): PFIINT "IM. FHRT: "YICW
S
551T PRINT "RERL PHRT: "ZRCHS): PRINT "IM. PHFT: "ZI(HS)
5519 60TO 5450
5524 RETURN
5540 REM PHPSE
5558 HER : HCOLOR=7
5560 HPLOT G.0 TO E.159
5552 FOR % = 144 T0 5 STEP - 16
55%4 HPLOT Ü,Y TO E,Y
5555 NEXT Y
5568 HPLOT G,159 TO 272,159
5570 FOR }x=16\mathrm{ TO 2T2 STEP \&
5572 HFLUT X,159 TO K.155
5574 NEXT X
5575 GOS1JE 5815
557E HPLOT 16.7T TO 272.72
5578 FOFP x = G TO 255 STEP ?
557G %= % < 2
55%g 2 = 72-P(w) % 0.9
5582 HFLOT }x+15,T2TOX+15,
55%4 NEXT %

```

```

 1E
    ```

```

 E18
 SEIG PFINT "\#\# XOPOMER SPEC: "FROHF", "MOHE" \#-"
5618 EOSUE TGM
5020 B0T0 5450
564% REM MRGHIITLIEE
5659 HEN: HCOLIN= ?
5650 HPLOT 5.Ŭ TO 0,159
5652 FGR'H = 144 TO G STEP - 8
56E4 HPLOT И.t TO 3.4

```
NEXT Y
HPLOT 0.159 TO 272: 159
5e7g FOR \(X=16\) TO 272 STEP 8
5672 HFLOT X. 159 TO \(\mathrm{X}, 156\)
5674 NEXT X
5676 HFLOT 16.144 TO 272.144
5678 gasue 5815
5686 PRINT "SIPRESS SPECTROL COMPONEHTS \((\psi / N)\) ?"
5690
5794
5710
5729
572
5724
5725
IHPUT E:
IF E\$ \(=\) " THEN BOTO 5722
IF ES = "N" THEN GOTO 5741
GOTO 5580
PRINT "HHICH COMPONENT(
INPUT CP
IF CP < O OR CP > 127 THEN PRINT "ERFOR: COMPONENT RIGNEE IS 0 TI 12 7. INFUT AGAIN": GOTO 5724
\(5726 \mathrm{MCP})=0\)
5728 GOTO 5680
5741 PRINT "FULL, THALF, OR QUARTER DSPLY(F/H/Q)?"
5742 INPUT SOS
5743 IF SO\$ = "F" THEN SO \(=2\) GUTO 5748
5744 IF SOS \(=\) "H" THEN SO \(=4\) : GOTO 5748
5745 IF SOS = "Q" THEN \(50=8:\) GOTO 5748
5746 G0TO 5741
5748 PRINT "SCRLING FACTOR?"
5749 INPUT \(A\)
5759 FOR \(X=0\) TO 255 STEP SO
\(5755 Y=X / 50\)
57592
\(Z=144-H K Y) / A\)
5779 IF \(2>144\) OR \(2<\) THEN GOTO 5748
57.5 HFLOT \(X+16,144\) TO \(X+16,2\)
58910 NEXT
5805 IF EF \(=\) "Y" THEN MK0) \(=K\)
5857 IF K\$ = "RG" THEN PRINT " 4 MHG. PLOT: "ROHF" 561 8
5816 E0TO 5514
5815 FIR \(Y=158\) TO 156 STEP -1
5820 HPLOT 1.1 TO 1E.'T: NEXT
5825 FIR \(x=1\) TO 3
5830 HPLOT \(\mathrm{x}, 158\) TO \(\mathrm{K}, 143\)
58.35 NEXT
5840 RETURN
5850 REM CORRELATION
5859 PRINT "SIJPRESS ANY' SPECTRAL COMPDNENTS( \(\% /\) N)?"
\(585: 5\) INFUT SCS
5876 IF SCE = "Y" THEN EOTO 5899
SOT5 IF SCF = "N" THEN GOTO SO1世
5875 GOTO 5850
5850 PRINT "मH:CH COMPONENT(1-12S)?"
58:5 INPLT WC
```



``` 8. INPUT HGAIN": BOTO 5EES
\(589 \mathrm{GR}(\mathrm{HC})=\mathrm{B}: 2 \mathrm{I}(\mathrm{HC})=\mathrm{y}\)
5895 FOTO 5854
```



```
59:0 FOF \(: x=1\) TO \(1 \geq 8\)
\(55354=255-\%\)
\(5940 \mathrm{AR}(\%)=2 \%(x)\)
\(5959 \operatorname{RR}(Y)=\operatorname{ZR}(x)\)
\(5950 \mathrm{AI}(4)=-2 I(Y)\)
5979 HI ( \(x\) ) \(=\operatorname{ZI}(x)\)
SGEL NE:T
```

```
5990 FRO = - - 
6040 BOSUS 3006
5015 H=89
S0m6 GOSLE 1206
```



```
E010 DRINT "** X-CORR: "RCH5", "XCH5" ##*"
G012 PRINT "DSFLY CORR-FN FGAINK/N)?"
g014 INPLT PS
5016 IF FS = "Y" THEN BOTO 5006
6018 IF P5 = "N" THEN GOTO 6020
6019 60TO 6012
6E2a bosus 700
6030 G0T0 5050
```

F. Demonstration Run \quad ORIGINAL PAGE IS

This Appendix consists of a listing of an actual run of DAISE printed by the SILENTYPE printer. The user is urged to read and follow the execution carefully, since it demonstrates vertually all the capabilities of DAISE and the routes leading there as well as the effects of certain decisions taken during the execution. The raw data sampled is a 10 Hz burst sinesoidal signal with half duty cycle. It was picked up by all microphone systems using Globe microphones, hence the file name.

The sampling frequency constant was inputed as 15 , implying 128 Hz frequency, that leaves us with the following resolutions:

$$
\begin{array}{ll}
\text { Frequency resolution } & =\frac{128}{256}=.5 \mathrm{~Hz} \\
\text { Time resolution } & =\frac{1}{128}=.0078 \text { seconds. }
\end{array}
$$

Notes

1 DAISE can not print any raw data and what is presented on the next page was printed by a different program for demonstration purposes.

2 Whenever a scaling factor is inputed throughout the run, a HGR plot is displayed on the video screen and the message appearing after the scaling factor is what gets printed on the video screen underneath the display.

-

THEE GUMANE SA，FR，ER，SH，EK，FOR： SAHPLE，PREVIEW，ANGLYEIS．CATALOG，EXIT
75月
INFIIT SUMPLING FREGUENC＇T CINSTANT
？ 15
TYFE FILE NAME：
TBLOE2
TYFE CUMMAHNU SH，FR，HN，CA，EX，FOF：： SAMPLE，PREUIEN，RNRLYSIS，CRTALOG，EXIT CH

DISK VOLUME 254
A 002 HELLO
B ビゴヒ 6L032－Ci1
B 006 6LOE2－C2
B 606 flOB2－Ci
8 006 6LOE2－C4
B 006 GLOB2－C5
B EAE GLOB2－C6
5 Gジ GLOBえ－C7
B 0uc GLOB2－C8
TYPE COMTAMNE SA，PR，GN，DA，EX，FOR：
SAMPLE，PREUIEH，OMPLLYSIS，CRTRLOG，EXIT ？PF！
DESIREU FILE ANO DHANNEL？
76LOB2－C1
UESIRED QUARRTER（1－4）？
$? 1$
SCRLING FACTOR？
71
\because FEAL DRTA：BLOE2－C1，DF－1
TUPE COMHAND SA，PR，GN，CH，EX：FOR：
SAMPLE，PREUIEH，FNALYSIS，CATRLUG，EXIT
TPF：
OESIRED FILE GNU CHANNEL？
TELEER－2
OESIFES DUARTERC 1－4 3 ？
71
SOLIUG FACTOF？
\because

TUFE CTMMPNO SH，PFi，GN，CF．E\％，FOF： EOMFLE，PFEUIEH，ANALLTSIS，CATRLUG，EXIT
THN
Tupe ciommand se，GO，EIT，EX，FDF：
SET－1＿IF，LOMFIITE，DISPLHY，EXIT
TSE
IMFITT GEFFENEE CHAUNEL
$\%$ EEEC：
TYFE COMmAND AC，EO，FOF：
GUTGMORFELFEIOM，CEOSE－GOFRELHTIOW
0
1HFIT $X=$ CHENNHEL
TELOETE
STHFT：NG BLOKK（ローア）？
T
HGWN MḦHY ELOCKE（1－E T

TYFE GUMMINC SE, EO, DI, EX, FDF: SET-HIP, COMPIITE, OISFLLHY, EXIT

TYFE GUMMANE FH, MG. RIS: D. EX
TME
GUFAESS SPECTRAL SOMPONENTSCYNTT
?
WHIEH :OMPONENT(G-127)?
3
SUPRESS SPECTRRL COMPONENTS Y Y N)?
TN
FILL. HALLF, OR QUARTEP DSPLY(FAHAD)?
TF
SCHLING FAGTIR?
71
CHEG. FLUT: BLOB2-E1
WOHILIU YOIJ LIKE TO PRINT THE DISPLRY(YIN?? iv


```
THPE COHHANLD PH, MG; R&I. EX
?ME
SUPRESS SPECTRAL CIMPONENTS(Y/N)?
?N
FIJLL, HRLF, DR QUARTER OSPLKF/HNO)?
?H
SCALING FRCTOR?
?.5
SCHLING FACTDR?
72
#
WOULL YOU LIKE TO PFINT THE DISPLAYKY/NO?
TN
THFE COMMENDI PH, MG, F*%, EX:
MG
SIFPRESS SFECTRAL COMPONENTS(Y/N)?
7N
FIULL, HALF, DF QUARTEF DSPLY(F/H/Q)%
?H
SLALING FACTOR?
T
#-ma゙m. FLOT: GLOBZ-C1
WOULO HOU LIKE TO DRINT THE OISFLGYY'NNN?
```


TYPE COHHEND PH, MG, R\&I, EX 7E:
TYPE COMMAND PS, RE, CR, EX, FOR: POHER SPEC, MMPL. SPEC, CORRELATION, EXIT ?PS
TTPE CDMAFHO PH, MG, REI, EX
7 HG
SUPRESS SPECTRAL COMPRIENTS $Y /$ N $)$?
7
HHICH COMPTINENT(G-127)?
70
SIPRESS SPECTRAL COMPDNEHTS(TNS?
7
FIUL. HALF, OR LIJRRTEF OSPLYGFA/OT?
7 H
SCHLIME FACTOR?
715
gichling factur?
? 195
 HOULE LIKE TI PRINT THE DISPLAY Y/ND? $\%$

TYPE DOMHAND PH, HG, RKI. EX TMG
SUPRESS SPECTRAL COMPONENTS(Y/N)?

$$
?
$$

HHICH COMPONEHT(O-127)?
? 1
SUPPESS SPECTRAL COMPONENTS(Y/N)?
TN
FULL, HALF, OR QUARTER OSPLPKF/HAD?
70
SCRLING FACTOR?
710
SCALIHG FACTOF?
?24

WOIJLO YDU LIKE TO PRINT THE UISFLAY:
?
TYPE COMMAND PH, ME: FASI, EX
TME
GUPRESS SPECTRAL CTMMPIMENTS $\% / \mathrm{N}$)?
?
FULL, HALF, OR QUARTER DSFLYKFAMO?
? 0
BLHLING FACTOR?
T2

* X-PDHER SPEC: BLUEZ-C1, GLOEZ-C゙2 WOHLD WIUJ LIKE TO PFINT THE OISPLAYY Y,AT?

TYPE COMMFNE PH, MG, REI, EX
TREI
WHICH SPECTRRL COMPTHENT (G-127)?
71
FEAL PART: 5421.46912
IM. PART: 2591.65725
TYPE COMHANHD PH, MG, R\&I, EX
?R:I
WHICH SPECTFAL COMPONENT:G-127)?
? 29
REFL PRRT: -1292.45875
IM. FORT: -2ŬN1. 91232
TYPE COMMAND FH, MG, R\&I, EK
TE
TYPE COMHEND PS, RS, CR, EX, FIAR:
PIINEF SPEC, RMPL. SPEC, COPRELATIOH. EXIT
TCF
GUFRESS ANY SFECTFRL COMPDNENTSCYND?
7 H
GLALINS FACTGRT
$\because 1$
GCHLING FACTOR?
74
SCALING FACTOR?
? 14

OSPL'r CORR-FN HGAIN $\uparrow / N T$
7
GCALING FAGTORT
716

OSFL'T CORR-FN AGAINRYNT?
7 N
WIULD FRIJ LIKE TO FRINT THE OISPLAY(YNN?

OWhmer bres s OF POUR QUALITY

X-CORF: $\because 6 L O B E-L 1$ CRUSS GLOBZ-CE*** RU日:

TYPE COMMAND FS, AS, CR, EX, FOR:
PDMEF SPEC, RMPL. SPEC, COFPELATION, EXIT
?CR
SUPRESS ANY SPECTRIRL COMFINENTS(UN)?
74
WHICH COMPONENT:1-128)?
31
SIIPRESS ANH SPEETFIRL COMPITNENTS(TNN?
T.

ECRLING FAGTORT
-5
-
USFLY COFR-FN GGAINK YNST
74
WIIJLIU LIKE TO PEINT THE IISPLAY('NN? ?

TYPE COMHTAND PS, RS, CR, EX, FOR: POHER SPEC, HMPL. SPEC, CORRELATION. EXIT TCF:
SUPRESS RNY SPECTRAL COMFTOMENTS (Y / N) ? ?
WHICH COMPONENT(1-128)? 17
SUPRESS ANY SPECTRAL COMFONENTSCY/N)? 3
WHICH COMPDNENT(1-123)?
? 18
SUPRESS ANY SPECTRAL COMPOUNENTS(T / N)? 7
WHICH COMFOMENT(1-128)?
19
SUPRESS ANY SPECTRGL COMFONENTS($\Psi / N)$? \%
WHICH COMFINENT:1-128:?
21
SUFRESS ANY SPECTRRL COMPONENTS (ψ / N)?
7
WHICH GOMPONENT: 1-128)?
72
SUPRESS ANT SPECTRFLL COMFONENTS(Y/N)? ?
WHICH EOMPONENT (1-128)?
123
GUPRESS ANH SPECTRAL COMPONENTS $Y / N)$? TN

OSPLY CORR-FN AGAIHK Y / N)?
? N
WOUL YOU LIKE TO PRINT THE OISPLAY(Y/N)?
?Y
$X-C O R R *: 6 L O B 2-C 1$ CROSS GLOB2-C2**:4 RUG:x-SCALE $=5$

TYFE EOMMENCD PE, RE, ER, EX, FGR:
POMEF SPEC, AMPL. SPEC, COFRELATIDN, EXIT TPS
THPE COMMAND FH, HB, REI, EX
? H
SUPFES: SPECTRGL COMFITNENTSCY/N Y?
? N
FULL, HALF, IR GUARTER GSPLY(F/H/Q)T
? H

```
SCRLING FACTOR? ?20
SCALINE FACTOR? ? 34
SCALING FACTOR? ? 100
SCALING FACTDR? 710 AM
SCAL.ING FACTOR?
? 4090
SCALING FACTOR?
? 19940
\% \(\mathrm{x}-\mathrm{POWER}\) SPEC: GLOB2-C1, GLOB2-S2 \(2 *\) HOULD YOU LIKE TO PRINT THE DISPLAYKYAN?? ?
```


TYFE COMMAND PH, MG. R\&I, EX ?ME SUPRESS SPECTRAL COMPONENTS (Y, N) ? ? HHICH COMPONENT (0-127)?

?

SUPFESS SPECTRAL COHPONENTS $Y / N)$?
?N
FULL, HALF, OR SUARTER OSPLYF/H/Q)?
? H
SCALING FACTOR?
?20

* X POHER SPEC: GLOB2-C1, GLOB2-C2 $*$ HOULU YOU LIKE TO PRINT THE DISPLRYK YN)? ? 4
X FOHER***SLOB2-E1 CROSS GLOB2-C2**4 AUG**SCRLE $=38$

TIPE COMMFND FH, MG, F\&i, EX
TEX
THFE DOMMINTV FS, AS, CR, EX, FDR:
POWEF SPEC, AMFL. SPEC, CORFELATION, EXIT
TE:
TTPE COMMANO SE, CO, DI, EK, FOR:
SETHR, DUMFUITE, DISFLAY. EXIT
TEX
TYFE CJMMAND SH, PR, AN, CA, EX, FOF: SAMFLE, PREUIEH, ANALYSIS, CATALGE,EXIT 7E

[^0]: ${ }^{1}$ Graduate Research Assistant, Department of Electrical Engineering, Old Dominion Univp:sity, Norfolk, Virginia 23508.
 ${ }^{2}$ Associate Professor, Department of Electrical Engineering, Old Dominion University, Norfolk, Virginia 23508.
 *This trade name is used for descriptive purposes only and the authors do not intend any endorsement of the product.

