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ABSTRACT 

The Kreiss Matrix Theorem asserts the uniform equivalence over all 

N x N matrices of power boundedness and a certain resolvent estimate. We 

show that the ratio of the constants in these two conditions grows linearly 

with N, and we obtain the optimal proportionality factor up to a factor of 

2. Analogous. results are also given for the related problem involving matrix 

exponentials eAt. The proofs make use of a lemma that may be of independent 

interest, which bounds the arc length of the image of a circle in the complex 

plane under a rational function. 
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1. Introduction 

Let A be an N x N matrix that satisfies the power boundedness 

condition 

p(A) ::: n sup IIA II < 00, (1) 
n ~ 0 

where II-II = 11-11 2 • By a power se.ries expansion it is readily verified that 

A then also satisfies the resolvent condition 

r(A) = sup (izl-1)II(zI-A)-1 11 <00, 
Izl>l 

(2) 

and moreover r(A)';; p(A). One of the assertions of the Kreiss Matrix Theorem 

[3,4,:7] is that the converse is also valid: if r(A) < 00, then p(A) < 00 

also, and p(A) can be bounded in terms of Nand r(A) but otherwise 

indeplandently of A. This resul t is useful in proofs of stability theorems 

for finite difference approximations to partial differential equations. 

In this note we resolve an old question that has been contributed to most 

recently by Tadmor [8]: given Nand r(A), how large can p(A) be? 

According to Tadmor, Kreiss's original proof in [4] unwinds to give a far from 

sharp bound 

N 
p(A) ~ [r(A)]N (VA) 

which subsequent improvements by Morton, Strang, and Miller lowered to 

2 
e9N r(A) (VA). 
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A few years ago Strang (private communication) observed that a paper of Laptev 

[5] implicitly derives a much more reasonable estimate [3] 

p(A) ~ 32eN2r (A) (VA). 
1f 

Finally Tadmor's proof, which makes use of an elegant Cauchy integral argument 

adapted}Jrom Laptev, yields a bound that is linear in N, 

p(A) ~ 32eNr(A) (VA) 
1f 

(3) 

Tadmor conjectures that a linear dependence as in (3) is the best possible. 

However, up to now the strongest growth of p(A) with r(A) attained by an 

example has been logarithmic, i.e., p(A) '" r(A)logN [6] • 

First we will show that Tadmor's conjecture is correct, by exhibiting a 

family of matrices {AN} for which p(~) ~ eNr(~) as ~oo. 'By refining 

the Cauchy integral argument, we will then show that for arbitrary matrices 

(3) can be sharpened to p(A) ~ 2eNr(A). (Our proof is essentially Tadmor'sf 

but gains the factor 16/1f over his by dealing with complex functions 

directly rather than taking real and imaginary parts.) Together these results 

establish that eN is the optimal constant of proportionality relating 

p(A) to r(A) except for a possible factor of 2. The final sectiort will 

prove analogous results for the continuous problem involving matrix 

exponentials eAt. 
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2. J!:xs.ple with p(~) '" eNr(AN)· 

Consider the N x N Jordan matrix 

A D ~ = [ 

y 

~] 0 y 

0 

with N ) 3, y ) N (these constraints could be relaxed considerably). For 

this matrix one has nAnn = yn for n ~ N-1 and nAnn = 0 otherwise, so 

A is power bounded with 

peA) = yN-1 (4) 

On the other hand the resolvent matrix is 

1 y/z (y/z)2 (y /z)N-1 

1 y/z (y/z)2 

• (zI-:A)-1 1 
= -z· 

1 

From the fact that nBIl <; IIBlil for any upper-triangular ToepUtz matrix B, 

we obtain with a little·calculation the estimates 

By (2), one therefore has 

I N-1( -1 -N N } rCA) <: max sup (p-1)y 1-p/y) p ,sup (p-1)2 /p • 
1<:p<;y /2 p)y /2 

This maximum is attained at a point p = 1+N-1+0( N-2) , where the estimate 

becom4~s 
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(5) 

since y ~ N. Comparing (4) and (5) shows that for this example one has 

p(~) ~ (eN-const)r(~), (6) 

as required. 

3. Proof of p(A) .. 2eNr(A) for all A. 

Theorem 1. Let A be an N x N matrix with r(A) < 00.. Then 

p(A) .;; 2eNr(A). (7) 

Remark. The factor of 2 is probably unnecessary; seethe remark after 

the Lemma in the Appendix. 

Proof. Suppose r(A) < 00. The matrix An can be written in terms of 

the resolvent by means of a Cauchy integral .(see[2] ,pp. 555--577) 

n 1 J n -1 A :: - Z (zI-A) dz 
2~i ' 

(8) 

where the contour of integration is any curve enclosing the eigenvalues of A, 

which must all'.l:ie in I z I .. 1 since r(A) < 00. Let u and vbe arbitrary 

unit N-vectors, i.e., lIuli = IIvll = 1. Then 

* n 1 n 
v A u = 2~iJz q(z)dz 
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where. q(z) =: v*(zI-A)-1u • Integrating by parts gives 

* n --1 J n+1 , 
v A u = 2~i(n+1) z . q (z)dz. 

Let the contour of integration be taken as 

has I zn+1 1 ,; e, and there follows the bound 

1 
Izl = 1 + n+1. On this path one 

Iv * A nu I ( e J 1 I qP (z) II dz I • 
2~(n+1) Iz 1=1+ _ 

n+1 

Now ai~ verifled on p. 155 in [8], q is a rational function of degree N. By 

the l,emma in the Appendix, the integral above is accordingly bounded by 4~N 

times the supremum of Iq(z)1 on Izl = 1 + 1/(n+1), and by (2) this supremum 

is at most (n+l)r(A). Hence we obtain 

* n Iv A \Jl1 ~ 2eNr(A). 

Since II Ann is the supremum of I v*Anu I over all unit vectors u and v, 

this proves the theorem. I 

4. k!alogouB Results for eAt 

l~or prolblems that are continuous in time rather than discrete, stability 

depends on the boundedness of a family of matrix exponentials eAt (t)O) 

rathelr than of powers Correspondingly, the resolvent of A is of 

inten~st for z in the right half plane rather than outside the unit 

circlc~. FoHowing (1) and (2), def:f.ne 
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and 

peA) At 
= suplle II 

R(A) = 

t)O 

-1 sup Rezll(zI-A) II. 
Rez)O 

(9.) 

(10) 

As before, one has R(A)" peA) readily, this time as a consequence of the 

-1 00 -zt At 
Laplace transform formula (d-A) = J e edt. The continuous form of the 

o 
Kreiss matrix theorem asserts that conversely, peA) can be bounded in terms 

of R(A) and N, independently of A. We make this sharp by essentially the 

same argument used before: 

Theorem 2. Let A be an N x N matrix with R(A) < 00. Then 

peA) " 2eNR(A). (11) 

Remark. Again the factor of 2 is probably unnecessary. The 

!,.aptev/Tadmor estimate has a constant 32e/Tf, as in (3). 

Proof. In analogy to (8), one has now 

At 1 J zt -1 
e = 2Tfi e (zI-A) dz, 

where the contour of integration can be taken as any line Rez = ~>o. 
Integration by parts gives 

with q(z) = v*(zI-A)-lu • Taking the contour ~ =.! . now leads to the desired 
t 



bound (11), again by the use of the lemma in the Appendix. I 

Constructing an example to prove that (11) is sharp, on the other hand, 

is trickier than it was in the power-boundedness case. The following example 

achieves growth proportional to IN, not N. Omitting details, define 

Then one has 

A = ~ = 

At 
e 

-t 
e 

1 

-1 Y 

-1 

yt 

1 

y 

yt 

-1 Y 

-1 

N-l 
(yt) 

(N-l)! 

1 

• 

• 

For large y, this matrix achieves; maximum norm near t = N, where it is 

dominated by the upper-right entry, with magnitude approximately 

e-NNN-1yN-l N-l 
p( A __ ) '" '" L_ · (12) 
-~ (N-l) ! 12'1rN 

For the second estimate we have used Stirling's formula. On the other hand 

the rlesolvent: matrix is 

1 -1 
(zI-A) =---

z + 1 

1 
y 

z + 1 

1 
y 

z + 1 
• 

1 

7 
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For large y, Rez times the norm of this is maximized near z= lIN ,where 

again the upper-right entry dominates and one has 

N-I 
'" -y--. 

eN 

Comparing (12) and (13) shows that in this example one has 

P(AN)/R(AN) '" ~ e. 

Appendix - LeJlllla on arc length of a rational function ,on aclrcle. 

Let S be any circle or line in the complex plane, and define the 

L 
"" 

norms over S by Hill = J If(z)lldzl, 1If1l"" =suplf(z)l. 
S s 

(13) 

The 

following lemma provided the key argument in proving Theorems 1 and 2. For 

the case of a polynomial the result is a corollary of Bernstein's inequality 

[1], IIq'lI .. Nllqll 
"" "" 

for S {z:lzl=l}, but the extension to rational 

functions appears to be new. Since II q'1I
1 

represents the arc length of the 

image of S under q, the lemma has a simple geometric meaning. The 

example q(z) = b(z-s), where b(z) is any finite Blaschke .productofdegree 

N (such as z -N) and s is the center of S, shows that it is sharp except 

for a factor of 2. 

Lemma. Let q be a rational function of degree Nwith no poles on 

S. Then 

Remark. We believe that the bound is valid with a factor 21T instead of 

41T, but have been unable to prove this. 



F'roof. Since the composition of q with a Mobius transformation is 

again a rational function of type N, we can assume without loss of generality 

that S is the unit circle. Define g(z) to be the angle of the tangent 

to q(S) at q(z), i.e. 

g(z) = arg[zq'(z)J. 

Let TV[gJ be the total variation of g over S. The lemma is a consequence 

of the! following two facts: 

(a) IIq'1I 1 <; TV[gJllqlloo' 

(b) TV[gJ ~ 41TN. 

The proof of (a) is a matter of integration by parts: 

~ IIqll P Ig'(z) Ildzl = IIqll TV[gJ. 
00 00 

1'0 prove (b), note that q' iel of rational type (2N-l,2N), so zq'(z) 

is of rational type (2N,2N) and can be written as a product 

This implies 

9 
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and therefore 
2N ~z+bk 

TV[g] " L TV[ arg( +d)]" 41fN. I 
k=1 ckz k 

Acknowledgments and remark. We are grateful to Paul Garabedian and Eitan 

Tadmor for valuable discussions. Tadmor has pointed out that if A is an 

arbitrary but fixed bounded operator on t2 (infinite matrix) with 

r(A) < co, then the· arguments of [6] can be adapted to show that nAnn may 

grow as n + co in proportion to log n,but it is not known if it can grow 

faster. Our example of §2 apparently sheds no light on this question, for 

if one seeks a family {~} with r(~) uniformly bounded in N, the numbers 

Y
N 

have to satisfy Y
N 

<: 1 + O(l/N), which implies that p( AN) is also 

uniformly bounded. 
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