General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MIILIMETER WAVE SATEILITE
COMMUNICATION SIUDIES

Results of the 1981 Propagation Modeling Effort

Report Number SATCOM-82-4
W. L. Stutaman
A. Tsolakis
W. K. Dishman

December 1982
JPL Contract 955954
Satellite Commications Group
Electrical Engineering Department
Virginia Polytecinic Institute and State University Blacksburg, Virginia 24061

This work was performed for the Jet Propulsion Laboratory, Califormia Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

1. Report Ho. 2. Governmiat Acceision No.	3. Recipient's Catalog No.
4. Title and Subtite MILLTMETER WAVE SATELLITE COMMUNICATION STUDIES - Results of the 1981 Propagation Modeling Effort	5. Repoil Dote December 1982
	6. Performing Organiration Code SATCOM-82-4
W. L. Stutzman, A. Tsolakis, W. K. Dishman	8. Periarming Oiganisatian Repari No.
9. Performing Organization Name and Addross VPI\&SU Department of EJectrical Engineering Blacksburg, VA. 24061	10. Work Unil Na.
	11. Contract or Giant Na. JPL Contract 955954 13. Type of Report und Period Coverad
12. Sponsoring Agency Name and Address Jet Propulsion Laboratory Attm: Dr. Ernest Smith Mail Stop 161-228 4800 Oak Grove Dr. Pasadena, CA 91109	
	14.5pansoring Ȧgency $\overline{\text { code }}$

16. Abitroet

This report is a supplement to the 1981 year final report under the same project. It presents the details of the theoretical modeling associated with rain effects on millimeter wave propagation. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain.

17. Kay Hords (Seiected by Author(s)) Mililimeter waves, Depolarization, Attenuation, Rain, Multiple scattering.		i8. Distribution Statement Unlimited		
19. Security Clasall. (of this repoti)	20. Security Classlf. (ol his pagal U		21. No. of Pages	22. Pric: ${ }^{\text {a }}$
U			160	

[^0]Page

1. INIRODUCITON 1
2. MODFLTNG CAPABIITTTES 4
3. THE SIMPIE ATTENLATION MODEL, 8
3.1 Introduction. 8
3.2 Fundmental Concepts in Attenuation Modeling. 11
3.2.1 Specific Attenuation 12
3.2.2 Point rainfall intensity distribution. 15
3.2.3 The path integral. 17
3.3 Spatial Rainfail Distribution 19
3.3.1 Vertical variation of rain 21
3.3.2 Horizontal variation of rain 24
3.3.3 Sumary of the proposed rain rate profile. 29
3.4 The Simple Attemation Model and its Performance, 31
3.5 Conclusions 41
3.6 References. 42
4. SINGIF PARTICLE SCATIERTNG COMPUTATIONS. 48
4.1 The Single-Scatterer Problem and Solution Methods 48
4.2 The Fredholm Integral Equation Method Applied to Raindrops 61
4.3 The Single-Particle Scattering Tensor 73
4.4 References. 75
5. MUITIPLE SCATTERING COMPUTATIONS 76
5.1 Introduction. 77
5.2 Lower Order Scattering. 78
5.3 Mintiple Scattering 84
5.4 Applications to Rain Media. 93
5.5 Conclusions 102

Page
5.6 References . 106
6. APPENDIX: COMPUIER PROGRAMS. 108
6.1 Simple Attenuation Model Program 109
6.2 Single Raindrop Scattering Program 112
6.3 Multiple Scattering Rain Propagation Program 129

Chapter 1
INTRODUCTION

This report augments the annual report for 1981 that describes the work performed by the Virginia Tech Satellite Communications Group under Jet Propulsion Laboratory Contract No. 955954. This report details the modeling phase of the overall effort. A separate report was necessary because of the already excessive length of the annual report.

This year's effort in modeling consisted of five tasks. These tasks and a brief report on the progress made in each follow.

1. Simple Attenuation Model. The development of the simple attenuation model is complete. It consists of an exponentially shaped spatial rain rate distribution. Many comparisons to measured data and to other models have been made. See Chapter 3 for a more complete discussion.
2. Attenuation Exceedance Testing. This effort is the prediction of rain attenuation exceedance statistics. The procedure is to couple a rain rate exceedance model (such as that recommended by CCIR) with the simple attenuation model which
predicts slant path attenuation for a given point rain rate. Results of this technique are also found in Chapter 3.
3. Isolation versus Attenuation. After the spatial rain rate distribution is established it can be used together with a complete depolarization computational model to calculate isolation (as a function of attenuation). This particular task is incomplete because of the extensive effort required on the development of the spatial rain rate distribution (Task A) and the development of the multiple scattering model (Task E), both of which must precede this task.
4. Single Particle Scattering Computations. In order to make complete depolarization calculations for rain media the single rain drop scattering coefficients must be evaluated at the frequency of interest. This task was completed by developing and testing a computer program for calculation of oblate spheroidal rain drops. It uses the Fredholm integral equation method. Unfortunately, the calculations are very complicated and involve considerable computer time. Complete details are presented in Chapter 4.
5. Multiple Scattering Model. The derivation and initial testing of a general rain depolarizacion model which includes multiple scattering effects has been completed under this task. Chapter 5 discusses this effort in detail. In Chapter 2 the multiple scattering model is placed into perspective relative to other computing capabilities.

Chapter 2

MODELING CAPABILITIES

In the past several years three levels of rain propagation computing capabilities have been developed. It may be helpful to sumarize this capability before proceeding into the details of the recent findings.

1. SAM - Simple Attenuation Model. This model is intended for use in predicting rain attenuation encountered on earth-space communication links. Given the earth terminal location, attenuation versus point rain rate is easily calculated. Further, input of the rain rate exceedance (such as the appropriate global rain rate region adopted by CCIR) permits prediction of attenuation exceedance (percent time during the year a given attenuation level is exceeded) on a worldwide basis. Although computing capability over the frequency range of 1 to 1000 GHz exists, only the 11 to 35 GHz band has been tested.
2. RPP - Rain Propagation Prediction Model. This is a first-order multiple scattering model developed for computation of isolation and phase as well as
attenuation as a function of point rain fall rate on an earth-space link. The program can be used for instantaneous or average computations by entering the appropriate spatial rain rate profile in a piecewise (ten level) uniform manner. The restriction on the capacity of the method is that computations are restricted to frequencies for Which single rain drop scattering coefficients are available. Currently the program operates at frequencies of $11,14,20$, and 30 GHz .
3. Multiple Scattering Model. This program operates in essentially the same manner as RPP with the same inputs and outputs. The algorithm is, however, more general in that all orders of multiple scattering are included. The recent computer program version of this technique has shown that numercial results are very similar to those of the RPP first-order multiple scattering program for frequencies of 30 GHz or under. Differences are expected to occur for higher frequencies. The multiple scattering computer program is not only more general than RPP but is also computationally more efficient.

The modeling capabilities are illustrated in the block diagram of Fig. I. Since the multiple scattering model is

Input: Link characteristics and location Rain rate exceedence (for \%T vs A Prediction)
Output: A vs $R, T \%$ vs A
Restrictions: 1 to 1000 GHz (Tested in $11-35 \mathrm{GHz}$ range)

RPP

First-order multiple scattering with cellular input
Input: Link characteristics Rain profile-piecewise uniform

Output: R, A, I, ϕ
Restrictions: 11, 14, 20, 30 GHz

Multiple Scattering Program
 Operates in essentially same manner as RPP, but is more efficient and includes multiple scattering effects.

| Single Drop Scattering Cocfficient Program |
| :---: | :---: |
| Run for several drop sizes at a given
 frequency, curve fit to give coefficient
 as function of drop size, |

Figure 1. Summary of rain propagation modeling capabilities at Virginia Tech.

I more general and is computationally more efficient than RPP, the multiple scattering model is recommended for future depolarization calculations.

Chapter 3

THE SIMPLE ATTENUATION MODEL

This chapter is similar to the paper in the Nov/Dec 1982 special issue of Radio Science on the NASA Propagation Program. More details can be found in the interim report "Estimation of Rain Attenuation on Earth-Space Millimeter Wave Communication Links," by W. K. Dishmin and W. L. Stutzman published May 1982.

3.1 INTRODUCTION

As earth-satellite communications increase, economic considerations become more important. One method of reducing system cost is to operate with lower signal power margin. Accurate calculation of predicted signal power budgets permit systems to operate with a narrower margin for fading. Central te such calculations for links operating above 10 GHz is the accurate modeling of rain fading [Crane, 1977; Ippolito, 1981]. Initial attenuation prediction attempts involved extrapolation of measurements to other locations, frequencies, and elevation angles. The complex nature and regional variability of rain make this approach highly inaccurate. Over the past several years rescarch activity has been very vigorous with many models being proposed in an
attempt to improve predictions. A wealth of literature exists and the reader is referred to several review papers [Rogers, 1976; Crane, 1977; Lane and Stutzman, 1980b; Brussaard, 1981: Ippolito et al., 1982].

There are some areas of attenuation modeling which are incomplete due to the lack of sufficient physical data. There is also some disagreement among researchers about how the problem should be attacke.z. These not withstanding, research investigations over the past several years have, indeed, moved closer together in approach. As pointed out by Brussard [1981], rain propagation research has the goal of providing information useful for communication system design. With this is mind the following have been identified by Fedi [198la] as being desirable features of a prediction method:

1. Simple. The model should be easy to apply to communication system calculations. The unnecessary introduction of new parameters and mathematical complexity is to be avoided.
2. Physically sound. As much as possible, the model should be checked against directly observed physical data, such as spatial rain behavior.
3. Data Tested. The model should be tested against measured data from many different regions. Emphasis should be given to the data at low percentages
of time that are of most interest to system designers.
4. Flexible. As more data becomes available and a deeper understanding is obtained, model refinements surely follow. The model should be structured to accept modifications.

Herein a prediction method that incorporates all of the features mentioned above is presented. In spite of converging thought, it would be presumptuous to report that this work represents the prevailing trends of all researchers. However, even though differences are present in current models, the opportunity is taken to include many commonly accepted elements into a single model. Complete details on this investigation are given by Dishman and Stutzman [1982].

In Section 3.2 of this report fundamental concepts of attenuation modeling are discussed. In Section 3.3 we deal with the difficult problem of describing the spatial distribution of rain and we propose an exponential rain rate profile. The complete attenuation model is presented in Section 3.4 and it is evaluated by comparison to measured data from many experiments around the world and to predictions from other models.

3.2 FUNDAMENTAL CONCEPTS IN ATTENUATION MODELING

All attenuation models are "semi-empirical" in nature in that they employ attenuation data in the development of the nodel. This is done, however, to various degrees and we shall classify attenuation models as using either an empirical approach, a rain-cell approach, or a rain profile approach. The empirical approach develops an expression for attenuation directly from measured attenuation. Models based on a completely empirical approach are usually easy to apply, but do not relate directly to rain parameters. The methods of Lin [1979] and the CCIR [1981b] are examples of empirical models. Models based on a rain cell approach include the physically realistic idea of a randomly located "cell". The rain-cell models of Misme and Waldteufel [1980] and Lane and Stutzman [1980a, 1980b] require computer programs for evaluation. Models based on a rain profile employ an effective rain rate spatial distribution and are generally easy to use.

The decision of which approach to select for attenuation prediction is guided by the desirable features of a model discussed in Section 3.1. In particular, the model must be simple and physically sound. Empirical models are usually easy to use, but lack the necessary physical foundations, which in turn, leads to questions concerning the range of applicability. On the other hand, rain-cell models are more physically acceptable, but are generally more complex. It
has been found [Lane and stutzman, 1980a, 1980b] that a rain-cell model which is stochastic in nature, allowing for the rain cell position to be random, is unnecessary and that a space-fixed rain profile is sufficient for prodiction of average attenuation. Thus, we select the rain profile model approach, which contains both the elements of being physically sound and simple.

Now, the rain at.tenuation modeling problem using the rain profile approach can be divided into three different areas [Fedi, 198la]: (1) The relationship between specific attenuation and rain rate; (2) The statistics of point rainfall intensity; and (3) The spatial distribution of rainfall. The first two areas are relatively well understood and have received much attentica in the literature. A brief discussion of these topics will be presented in this section along with a discussion of the path integral concept. The spatial distribution of rainfall will be treated separately in the next section.

3.2.1 Specific Attenuation

The relationship between specific attenuation and rain rate is approximated by the familiar power law relationship

$$
\begin{equation*}
\alpha(R)=a R^{b} \quad[d B / \mathrm{km}] \tag{1}
\end{equation*}
$$

where a and b depend upon frequency and the microstructure of rain. The theoretical basis for this relationship has
been given by Olsen et al.[1978]. The main parameters associated with the microstructure of rain are the shape, size distribution, and temperature of the raindrops.

Raindrops are usually assumed to be either spherical, oblate spheroidal, or of the shape described by Pruppacher and Pitter [1971]. Use of the latter two shapes allows one to include the effects of wave polarization, drop canting angle, and slant-path elevation angle in the calculation of specific attenuation. Attanuation values computed assuming spherical drops generally lie between the extremes of values computed for vertical and horizontal linear polarization assuming distorted drop shapes. Because the errors between attenuation values computed using spherical drops and those computed using distorted drop shapes are typically 10% or less in the frequency range of interest [Crane, 1977; Olsen et al., 1978], specific attenuation values calculated for spherical drops will produce adequate results.

Various drop size distributions have been considered in the calculation of specific attenuation. These include the distributions of Laws and Parsons [1943], Marshal and Palmer [1948], and Joss et al.[1968]. While there is little difference in the values of actenuation computed using these distributions for frequencies below 30 GHz , the Laws and Parsons distribution is preferred because of the tendency of the other distributions to overestimate attenuation at the higher frequencies [Crane, 1977; Olsen et al.. 1978; Upton et al.. 1980; Ippolito, 1981].

The temperature of the raindrops is perhaps the most critical parameter. The assumed temperature has little effect above 15 GHz , but specific attenuation values are very sensitive to temperature variations in the $11-14 \mathrm{GHz}$ band [Olsen et al.. 1978; Upton et al.. 1980; Thompson et ai.. 1980]. Values of a and b are generally available for temperatures of $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. While $20^{\circ} \mathrm{C}$ is a reasonable assumption for terrestrial link attenuation prediction [Damosso et a]., 1980], it is probably not representative of the temperature for earth-space paths [Thompson et al.. 1980]. Attempts have been made to include the temperature variation of specific attenuation with altitude [Misme and Waldteuful, 1980], but this introduces a complexity into the calculation of attenuation that has little effect upon the results. For most climates, the assumption of $0^{\circ} \mathrm{C}$ drop temperature should give good results [Olsen et al.. 1978]. Based upon the previous assumptions about the fine structure of rainfall, we believe that the use of spherical drops, the Laws and Parsons drop size distribution, and $0^{\circ} \mathrm{C}$ rain temperature will give reasonably accurate values of specific attenuation. A convenient source of computing the coefficients a and b for any frequency of interest are the
following equations taken from olsen et al. [1978]:
$a(f)= \begin{cases}4.21 \times 10^{-5} f^{2.42} & 2.9 \leqslant f<54 \mathrm{GHz} \\ 4.09 \times 10^{-2} f^{0.699} & 54 \leqslant f \leqslant 180 \mathrm{GHz}\end{cases}$
$b(f)= \begin{cases}1.41 f^{-0.0779} \\ 2.63 f^{-0.272} & 25 \leqslant £<164 \mathrm{GHz}\end{cases}$

Should more precise values of a and b be desired, the tabulated values given in [Olsen et al., 1978] should be used. To include the effects of polarization and elevation angle, refer to the tabulated values recommended by the CCIR [1981c] or to the regression equations given by Thompson et al. [1980] and Damosso [1981].

3.2.2 Point Rainfall Intensity Distribution

A critical parameter in the estimation of attenuation exceedance is the point rain rate distribution. As pointed ou' by Crane [1977], cumulative rain rate distributions may show considerable variability from year to year. For this reason care must be taken when estimating the average distribution at a site. an excellent review of procedures for

Figure 1. Gmulative distribution of rainfall intensity at Blacksburg, VA as measured for the period Jume 1976 to Jume 1979 (dots) and as estimated for rain climate zone K using the CCIR distribution [CCIR, 1981a].
estimating the rain intensity distribution is given by Fedi [1981a]. For use in attenuation estimates, data obtained from local sources are preferred. However, when adequate local data is not available, the distributions can be estimated from the rain climate region maps recommended by the CCIR [1981a]. These maps present cumulative rainfall distributions for 14 different regions of the world. A comparison between three years of measured data from Blacksburg, VA, and the corresponding CCIR region is shown in Fig. 1. The measurements were taken with a tipping bucket type rain gauge which usuaily provides a good approximation to the instantaneous rain rate. In general we have obtained good results using the CCIR rain region model [Dishman and Stutzman, 1982].

3.2.3 The Path Integral

If the rain rate profile, $R(l)$, were known along the extent of the propagation path, L, it would be a simple matter to calculate the total attenuation by integrating over the incremental (or specific) attenuation:

$$
\begin{equation*}
A\left(R_{0}\right)=\int_{0}^{L} \alpha[R(\ell)] d \ell \tag{4}
\end{equation*}
$$

In this equation we have indicated that total attenuation is a function of the point rain rate at the $\ell=0$ end of the path, or $R_{O}=R(l=0)$. This is done to emphasize the real-
ities of the problem. Rarely is $R(l)$ known, whereas point rain rate is directiy measured and is available in historical data form. Thus, A is expressed in terms of R_{o}. As mentioned earlier, one step in the modeling process is to obtain a spatial rain rate profile. Once this is done (4) can be used to make predictions. Since the profile $R(l)$ is an average one, the calculated attenuation will be also.

Several methods have been proposed to utilize the path integral, but without explicitly developing a rain profile $R(\ell)$. These methods include using an effective path length $L_{e}\left(\right.$ where $\left.A=\alpha\left(R_{0}\right) L_{e}\right)$, a path averaged rain rate (where $A=a R_{\text {ave }} L$), or a path average factor $r=$ $R_{\text {ave }} / R_{o}$. Although good results have been obtained in some cases, each of these approaches involve some approximation which limits its usefulness [Kheirallah et al.. 1980; Dishman and Stutzman, 1982]. Attenuation prediction for arbitrary situations follows directly from the path integral (4) and this is discussed in the next section.

3.3 SPATIAL RAINFALL DISTRIBUTION

The most difficult parameter of an attenuation model to characterize is the spatial distribution of rain. Generally, precipitation systems are combinations of both stratiform and convective rain structures. Radar measurements indicate that most precipitation is characterized by large areas of low rates with a number of smaller regions of high
rain rates [Crane, 1977]. It is the presence of these imbedded rain "cells" that makes the spatial distribution of rain difficult to describe. Because rain rate statistics are usually only available for point rain rates, it is necessary to develop an "effective" spatial rain distribution model (or rain profile) that relates the rainfall along a path to the rainfall at a point. A rain profile is not applicable to single event analysis; it is useful for communication system design situations that involve long term performance. In other words, the wide variations in rain cells (observed for short time periods) tend to average out over long time periods, and a rain profile is useful ir statistical predictions.

The rain profile for use in attenuation prediction must include both the horizontal and vertical spatial variations of rain as discussed in this section. Ideally, spatial variations should be determined with direct measurements of rain behavior, such as with rain gauge networks and radar. But there are not enough direct observations available to completely develop a model. The large indirect-measurement data base of attenuation on earth-space links must also be used [Fedi, 1981b]. Direct measurements are used in this section to establish a rain cell model which is exponential in shape. In the next section it is shown that the results agree with inferences from indirect measurements as well.

We will adopt the customary assumption that this effective distribution is the same in all geographic regions of interest. It is noted, however, that in regions where orographic features play a strong role or where rainfall is dominated by a particular form of precipitation (e.g. typhoons, hurricanes) this assumption may not hold.

3.3.1 Vertical Variation of Rain

Radar observations have shown that the vertical structure of precipitation is characterized by two different regions. The upper region consists of a mixture of ice and snow and does not contribute significantly to attenuation at frequencies below 60 GHz [CCIR, 198la]. The lower region is mostly rain and is the primary source of attenuation. The transition height between the two regions corresponds approximately to the height of the $0^{\circ} \mathrm{C}$ isotherm.

Goldhirsh and Katz [1979] have presented median reflectivity factor profiles obtained from radar observations of summer rain cells at Wallops Island, VA. These profiles indicate that reflectivity is essentially constant up to a certain height and drops off rapidly above this height. Similar observations have been reported by other researchers [CCIR, 1981a]. This leads to the assumption of uniform rain structure from the ground up to an "effective" rain height H_{e}, as shown in Fig. 2. The contribution to attenuation by particles above the effective rain height will be neglected.

Figure 2. Vertical profile containing the propagation path. H_{e} is the effective rain height. The earth station is e located at the $z=0$ point and is of height H_{0} above sea level.

The radar reflectivity profiles given by Goldhirsh and Katz [1979] show that the rain height is approximately constant and equal to the height of the $0^{\circ} \mathrm{C}$ isotherm for low rain rates. This is consistent with other observations of stratiform rain. As rain rate increases, however, the rain height indicated by the reflectivity profiles also
increases. This increase is due to the structure of convective rain cells in which liquid water may be carried well above the $0^{\circ} \mathrm{C}$ isotherm level by updrafts. The data of Goldhirsh and Katz indicates that on the average the rain height may extend approximately 1 km above the $0^{n} \mathrm{C}$ isotherm height for rain rates in excess of $100 \mathrm{~mm} / \mathrm{hr}$. A reasonable model for the effective rain height therefore consists of using the 0° C isotherm height for low rain rates and adding a rain rate dependent term to the $0^{\circ} \mathrm{C}$ isotherm height for higher rain rates. We propose the following simple relationship for the "effective" rain height H_{e} in km:

$$
H_{e}=\left\{\begin{array}{cl}
H_{i} & R_{0} \leqslant 10 \mathrm{~mm} / \mathrm{hr} \tag{5}\\
H_{i}+\log \left(\frac{R_{0}}{10}\right) & R_{0} \geqslant 10 \mathrm{~mm} / \mathrm{hr}
\end{array}\right.
$$

where R_{o} is the point rain rate in $m m / h r$ and H_{i} is the 0° C isotherm height in km. The breakpoint of $10 \mathrm{~mm} / \mathrm{hr}$ was chosen because it corresponds to the approximate value of the maximum rain rate associated with stratiform rain.

The $0^{\circ} \mathrm{C}$ isotherm height H_{i} varies with latitude and with the season of the year. Zonally averaged values of H_{i} versus latitude for the four seasons are given by Oort and Rasmussen [1971]. Based upon this data, Crane [1978] approximated the average height of H_{i} by

$$
\mathrm{H}_{i}=\left\{\begin{array}{cl}
4.8 & |\Lambda| \leqslant 30^{\circ} \tag{6}\\
7.8-0.1|\Lambda| & |\Lambda|>30^{\circ}
\end{array}\right.
$$

where A is the latitude in degrees. As stated by Crane, this expression is an approximation to the observed mean seasonal values that lies midway between the summer and spring or fall values. The effective rain height H_{e} is shown in Fig. 3 as a function of latitude and rain rate. These curves were obtained using (6) in (5).

3.3.2 Horizontal Variation of Rain

Convective cells imbedded in stratiform rain render the distribution of rain nonuniform in the horizontal direction. Direct methods of observing rain cell structure include rain gauge networks and radar, and possibly the synthetic storm method. Radar observations yield the best information about the rain structure, but have not yet been used widely in determining the path-averaged to point rainfall relation-

Figure 3. Variation of the effective rain height H_{e} with latitude and point rainfall rate, R_{0}.
ship. There have been a limited number of rain gauge networks operated around the world. Sims and Jones [1975] analysed data obtained from the 1946 Thunderstorm Project with lines of rain gauges in florida and from a network of gauges in Illinois during the summer of 1970. Freeny and Gabbe [1969] reported on the results of a dense rain gauge network operated for six months in New Jersey. Harden et al.[1977] and Valentin [1977] operated rain gauge networks in conjunction with radio links in England and West Germany, respectively. The synthetic storm method, as employed by Drufuca [1974] and others [Harden et al., 1974; Kheirallah et al., 1980; Watson et al.. 19771 uses the translational velocity of a storm over a rain gauge to convert point rainfall statistics to spatial distributions. Although this method is somewhat difficult to apply at an arbitrary site, it does provide useful information for developing a general relationship for the spatial rain distribution.

The point-to-path rainfall relation can be indirectly charactsrized from terrestrial link attenuation data. The most widely used method is the effective path length method, which was mentioned in Section 3.2.3. The exclusive use of these methods for determining spatial characteristics of rain should be avoided because of the non-linear relationship between specific attenuation and rain rate. However, when used in conjunction with data from rain gauge networks, attenuation data is very valuable.

The data of sims and Jones [1975] and of Harden et al.[1977] both suggest that the point and path-averaged rain rates are the same up to rates of 10 to $14 \mathrm{~mm} / \mathrm{hr}$. Similar results were reported by Kheirallah et al.[1980] based upon synthetic storm studies at three locations in Canada. For rain rates in excess of $10 \mathrm{~mm} / \mathrm{hr}$, the path-averaged rain rate decreases as point rain rates increase and as path lengths increase. Several researchers [Valentin, 1977; Barsis and Samson, 1975] have presented curves derived from rain gauge data that illustrate the point-to-path rain relationship.

As pointed out by Fedi [198la] and Kheirallah et al.[1980], the use of path-averaged rain rate in the specific attenuation relationship is not directly applicable due to the influence of the exponent in (1). Crane [1980] attempted to overcome this problem by fitting a power-law relation to the rain gauge data from Europe and the United States, then differentiating these data to obtain the path profile of the rain. The resulting data were fitted with a series of exponential functions that could be used in the path integral relation (4). Kheirallah et al. [1980] point out that the Crane model overestimates the path averaged rain rates for low values of point rain rate.

The piecewise uniform path profile model [Persinger et al. . 1980] gives good results but has only two rain rate values allowed along the path. The piecewise exponential

ORIGINAL PAGE ES OF POOR QUALITY

path profile of the global model [Crane, 1980] also gives good results but is unnecessarily complicated and does not include uniform rain rates for low point rain rate values. Combining these ideas together with a goal of simplicity we propose the following exponential-shaped effective path profile for rain rate:

$$
R(z)=\left\{\begin{array}{cc}
R_{0} & R_{0} \leqslant 10 \mathrm{~mm} / \mathrm{hr} \tag{7}\\
\cdot & R_{0}>10 \mathrm{~mm} / \mathrm{hr}
\end{array}\right.
$$

R_{O} is the point rainfall intensity, z is the horizontal distance along the path, and γ is a parameter controlling the rate of decay of the profile.

The path-averaged rain rate for a path of length D is found from (7) as

$$
R_{a v e}=\frac{1}{D} \int_{0}^{D} R(z) d z=\left\{\begin{array}{cl}
R_{0} & R_{o} \leqslant 10 \mathrm{~mm} / \mathrm{hr} \\
\cdot & \tag{8}\\
R_{0} \frac{1-e^{-\gamma \ln \left(R_{o} / 10\right) D}}{\gamma \ln \left(R_{0} / 10\right) D} & R_{0}>10 \mathrm{mmn} / \mathrm{hr}
\end{array}\right.
$$

This relation was compared to measured values of path rain rate obtained from the literature [Sims and Jones, 1975; and

Valentin, 1977; Freeny and Gabbe, 1969; Harden et al.. 1977] and to values derived using the synthetic storm model [Kheirallah et al., 1980] in order to establish the value of the parameter γ. Th: dits was bounded by values of γ between $1 / 10$ and $1 / 30$ giving a best fit. A plot of the normalized fithrufl:of (7) versus distance is shown in Fig. 4 for $\gamma=$ and everal values of rain rate.

3.3.3 Summary of the Proposed Rain Rate Profile

Equations (5)-(7) describe the proposed spatial distributions in the vertical and horizontal planes. Because the rain is assumed to be uniform in the vertical direction up to H_{e}, the rain profile $R(\ell)$ along the slant path (see Fig. 2) can be derived using the simple trigometric relationship $z=\ell \cos \varepsilon$ in (7), giving
$R(\ell)=\left\{\begin{array}{cc}R_{0} & R_{0} \leqslant 10 \mathrm{mml} / \mathrm{hr} \\ R_{0} e^{-\gamma \ln \left(R_{0} / 10\right) \ell \cos \varepsilon} & R_{0}>10 \mathrm{mmi} / \mathrm{hr}\end{array}\right.$
for $\ell \leqslant L$, where

$$
\begin{equation*}
L=\frac{H_{e}-H_{o}}{\sin \varepsilon} \tag{10}
\end{equation*}
$$

This expression is likely to be valid for elevation angles above about 10°. For lower elevation angles a value of I as suggested by the CCIR [1981b] could be used, although very

Figure 4. Normalized rain profile as a function of horizontal distance and point rainfall rate from (7) with $\gamma=1 / 22$.
low elevation angle satellite data and terrestrial data have not been compared to this model. H_{o} is the altitude of the earth station iocation and H_{e} i.s defined by (5) and (6). This expression will be used in the next section to derive the corresponding total attenuation model.
3.4 THE SIMPLE ATTENUATION MODEL AND ITS PERFORMANCE

The total attenuation due to a point rainfall rate R_{0} is easily computed using the effective rain profile from (9) in the path integral (4). Evaluating the integral gives

where the path length L is given by (10).
The simple attenuation model (SAM) given by (ll) is a function of the point rainfall intensity only; it is not a function of the percentage of time that rain rate is exceeded. This decoupling of the attenuation model and the rain rate statistics allows evaluation of the model parameters independent of the errors associated with the rain rate statistics.

Many propagation experiments using satellite beacons have been conducted in North America, Europe, and Japan. An extensive collection of the rain rate, attenuation, and isolation statistics associated with these experiments has been assembled at VPI\&SU to form a data base for use in developing and testing propagation models. The attenuation versus rain rate data (based on equal probability levels) from this data base were compared to the predictions calculated from (11). The best average agreement was found when $\gamma=1 / 22$. This is the same value found when comparing the path-averaged rain rate to directly measured rain gauge data (see Section 3.3.2). Thus, both direct and indirect data agree with the model of (1l) when $\gamma=1 / 22$ is used. This adds confidence that the spatial rain rate variation of section 3.3 is an accurate model. A plot of typical A vs R_{o} data is shown in Fig. 5. The data were obtained from three years of measurements in Blacksburg, VA using the CTS (11.7 GHz) and COMSTAR (19 and 28 GHz) beacons. Also shown in Fig. 5 is the attenuation calculated using (11) with $\gamma=1 / 22$.

Estimates of attenuation statistics are found by combining the attenuation versus rain rate model with a rainfall distribution (see Section 3.2.2). An example of this procedure is given in Fig. 6. The predicted attenuation distributions were calculated using the CCIR rain rate distribution for the Blacksburg region (see Fig 4) together with the SAM predictions of attenuation as a function of rain rate.

ALITVOZ YOOd 30
Sil givd TVNFIBO

Figure 6. Cumplative attenuation distribution for Blacksburg, VA. The points are measured data using the CTS (11.7 GHz , Jume 1976 to Jume 1979) and COMSTAR (19.04 and 28.56 GHz , July 1977 to August 1980) beacons. The solid lines are the estimates using the proposed model and the cumulative rain rate distribution for CCIR rain climate region K.

To do this we make the customary assumption that the probability of the attenuation exceeding a certain values is the same as the probability of the point rainfall intensity exceeding the point rainfall rate used to predict the attenuation. Also plotted in Fig. 4 are the measured attenuation distributions obtained from three years of observations in Blacksburg.

The complete VPI\&SU data base which consists of attenuation measurements from 47 experiments is presented in Table 1 [Dishnan and stutzman, 1982]. The experiments represent 17 different sites in the U.S., Europe, and Japan ranging in latitude from 28 to $52^{\circ} \mathrm{N}$, varying in frequency from 11.5 to 34.5 GHz , and having elevation angles from 10.7 to 57°. Of the 47 experiments, 18 represented two or more years of data (24 months or more as indicated in parentheses with the time interval). The attenuation values given in Table 1 for the 1% down to the 0.001% level of occurence were taken from the literature cited.

In Fig. 7 a scatter plot of the percent deviation values of the simple attenuation model predictions for each of the 47 data sets is plotted together with the mear and standard deviation limits. Good agreement is obtaine v.r the model. The relatively high percent deviation sur high percentages of time arise from the fact that the attenuations are low and small deviations appear as high percentages. This is overcome by using an absolute deviation in $d B$ as

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cinde} \& \multirow[b]{2}{*}{Latabtan} \& \multirow[b]{2}{*}{F requenty Polarizallan＊＊} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Hevanull \\
Angle \\
Heyresu
\end{tabular}} \& \multirow[b]{2}{*}{Tinat lntersalt} \& \multicolumn{7}{|l|}{Seishatd Allonualiun for Given Percentage of Time} \& \multirow[b]{2}{*}{Sunuce} \\
\hline \& \& \& \& \& 10＂ \& 10．3＇＊． \& 41＂． \& （1，113＂．1 \& ［1．01＇\({ }^{\text {a }}\) \& \(0001{ }^{\circ \prime}\) \& 0．60］＂： \& \\
\hline 428 \& Kiahimal，Japan \& 11.50 \& 46.5 \& Mas 1477 April 197612） \& 1.0 \& 1.5 \& 2.4 \& 4.3 \& 6.2 \& 100 \& \& ［funimu．1979］ \\
\hline 473 \& Bhichabutg．Virginia（matin）＊ \& \(11.6{ }^{\circ}\) \& 1167 \& July l9xil June 198！ats） \& 1.2 \& 3.6 \& 6.0 \& \& \& 20.2 \& \& \｜Fimmatrat al．，thin mate｜ \\
\hline A74 \& Bltah hhurg．Virginia （rembtu）+ \& 11．6C \& 10.7 \& July 1980．June 1981（12） \& 1.2 \& 1.6

2.3 \& 6.1
4.4 \& 127
87 \& 16.2
13.9 \& 21.2
17.4 \& 23.9
20.1 \&

\hline A48 \& Fucino．Itil\} \& $11.6{ }^{\circ}$ \& 33.0 \& Jam． 1978 Dec 1980x36］ \& \& 3 \& 4 \& 2.9 \& 4.8 \& 848 \& 11.5 \& ［Taturs amb Prurthomi．［198I］

\hline A49 \& Iarior，Italy \& 11.6 C \& 33.0 \& Jan． 1978 Dec 19K0x36］ \& \& \& 2.6 \& 4.5 \& 8.2 \& 12.9 \& \& ［\＄turs amd Purabrni，1981）

\hline A40 \& Spino D＇Adda．Italy \& 11.6 C \& 32.0 \& Ott．1978 Sept 198024） \& ． \& \& 2.8 \& 4.4 \& 6.8 \& 10.0 \& 11.9 \& 〔．1f curs amd［＇arthoni，1981］

\hline A65 \& Slough．United Kingdem \& 11.6 C \& 29.5 \& Supt 1977－Aut 19804361 \& \& \& \& \cdots \& 3.11 \& 5 s \& 9.6 \& ［Durios dr al．［98］］

\hline A32 \& Gomerz－la－Ville．France \& 11．6．C \& 32.0 \& Nio． 1977 Niet 1978（13） \& $1: 2$ \& 1.8 \& 2.4 \& 3.4 \& 4.6 \& 63 \& 7.7 \&

\hline A기 \& Leeheim．Weat Germany \& 11.6 C \& 28.8 \& Jan． 1979 De 197911？ \& \& \& \& 3.0 \& 7.1 \& 13.1 \& 18.0 \& ［Rucker．1980］

\hline 461 \& Kashimit．Japan \& 11．7．7 \& 37.7 \& Aug． 1978 －Juls 1979121 \& \& 1.4 \& 20 \& 4.8 \& 6.2 \& 8.6 \& \&

\hline 420 \& Blachishurg．Virgmia \& 11.7 C \& 33.6 \& June 1976 Jure 39791311 \& ． \& 2.7 \& 3.7 \& 6.3 \& 10.3 \& 160 \& 23，1 \&

\hline A 314 \& Austin．Texas \& 11.7 C \& 44.15 \& June 1976－June 1979，37r \& \ldots \& 1.2 \& 2.8 \& 7.1 \& 13.5 \& 21^{-} \& ． \& ［ Futhel 1980］

\hline －19 \& Wallham．Massachusetrs \& 11.7 C \& 24.11 \& June 1977－Mia：1979134］ \& \cdots \& 1.1 \& 20 \& 4.8 \& 9.7 \& 151 \& \&

\hline A 47 \& Crawford Hill．New Jersey \& 11.76 \& 27.0 \& Hay 1976 Aprl 1979（36） \& ．．． \& \cdots \& 3.3 \& 6.9 \& 12.4 \& 21.5 \& \& ［CCOR．197ч］

\hline A72 \& Greenbelt．Marsland \& 11.76 \& 29.10 \& July 1976 Junc 1979136） \& \cdots \& 0.9 \& 1.8 \& 4.9 \& 11.9 \& 21.5 \& 26.7 \& ［CCIR，1974］

\hline 464
164 \& Gomes－ia－Ville．Frame \& 11.86 \& 33.6 \& Jan．197y Now 197911） \& \cdots \& 1.5 \& 2.3 \& 3.4 \& 5.1 \& －． 4 \& 11.4 \& ［Kumat．｜19 I］

\hline 164
2.58 \& Slough．United Kingeom
Martlesham Heath．L＇ailed \& 11．8 ${ }^{\circ}$ \& 30.3 \& July 1978－Au：19kixas \& \& \& ．．． \& ．．． \& 4.2 \& －． 5 \& 15.9 \& ［Datats at al．1981］

\hline \& Kingdom \& $11.8 C^{\circ}$ \& 29.9 \& July 1976 June 198024］ \& \cdots \& ． \& ．\cdot \& \ldots \& 3.8 \& 54 \& 74 \& ［Thirhath amd Howrefl．］us！］

\hline 427 \& I．eehem．West Gernany \& 11.8 C \& 32.5 \& Jan． 1979 Dec 1979121 \& \cdots \& \& \cdots \& 3.1 \& 5.5 \& 9.4 \& 14，2 \& ［Rithter．19x0］

\hline B19
B23 \& Blachsburg．Virginia \& 19.04 V \& 450 \& July 14ワ7－Au̇．1980，34） \& 20 \& 34 \& 5.1 \& 10.0 \& 16.9 \& 23 x \& ．．． \&

\hline 823
1311 \& Crawford Hill．Sew Jerney \& 19.04 V \& 18.5 \& July 1976 June 1976i24） \& 2.5 \& 6.8 \& 11.5 \& 25.11 \& \cdots \& \& － \& ［4madith wh．14kl］

\hline 1311
$0 ? 6$ \& Crauford Hill．Sicu Jertes \& 19.04 Y \& 38.6 \& Miry 197 May 147atI2． \& \& 3.4 \& 6.0 \& 12.8 \& 21.3 \& \& ． \& ［ tramed el wh．lymul

\hline 826
327 \& Palmellu，Georbia \& 1904 V \& 29.4 \& June 1976 Jul：197012， \& \& 54 \& 11.1 \& 15.0 \& \& \& － \& ［ $1 . i n$ a $\mathrm{al}^{\text {d．}}$ 1480］

\hline B27
B 24 \& Palmello．Georyia
Grant Park．Ilinuis \& 19.14 V
19.14 V \& 49.5
27.3 \& Aus 19 ${ }^{-7}$－AL \& ． \& \& 9.7 \& －1．3 \& \& \& \cdots \& ［1．in at ul．1980］

\hline B25 \& Gram Park．Illinois \& 19.104 \& 41. \& Aug 19 ${ }^{-7}$ ALs 10－si？ \& \ldots \& \& 10.0 \& 32.4 \& \cdots \& ． \& ． \& ［l．in et sl．1980］

\hline B32 \& Charkshurg．Mury lind \& 19.04 V \& 21.14 \& July 19\％－Aus 1970113） \& \ldots \& 3.9 \& 8.5 \& 16.7 \& 295 \& ．． \& \& ［Kimbar．1981］

\hline B．3．4 \& Clarkshurg．Maryhand \& 19.04 V \& 41.11 \& Aug 19\％Aus 147m13） \& \ldots \& \& 5.7 \& 12.4 \& 25.11 \& －－ \& \ldots \& ［ Kimuar．［4NT］

\hline B3 ${ }^{1}$ \& Clarhishurg Marytand \& 19.04 V \& 43.3 \& \& \cdots \& 5.0 \& 9.6 \& 16.1 \& ．．． \& ．－ \& \ldots \& ［Kumare 1＇S1］

\hline 83］ \& Wathham．Alassichusetts \& 19.04 V \& 38．2 \& Jan．14－9－－Des．1979412） \& 2.1 \& 3.9 \& 7.5 \& 13.1 \& 18.7 \& ． \& ．．． \& ［Tunt amal Ditidumb 1以8t］

\hline B30 \& Tirmpa，Florida \& 19.04 V \& 57.13 \& Jan．19－6．Dix 1979（12） \& 1.8 \& 10.6 \& ．．． \& ．．． \& \& \ldots \& －\cdot \& ［Tand ant Durridsom．1Чs1］

\hline 日기 \& Austin．Tevas \& 19.04 V \& 52.6 \& Oci．［978－Aus 1980 23 ） \& 1.0 \& 2.5 \& 6.5 \& 17.0 \& 24.0 \& ． \& \ldots \& ［ 1 b，iclit this issule］

\hline 638 \& Kashima．Japan \& 19．50 C \& 48.0 \& April［078－Marcit 1980024］ \& 1.5 \& 3.0 \& 5.4 \& 9.4 \& 1t． 2 \& \ldots \& \ldots \& ［Fuhuchis er al．196］］

\hline C11 \& Blathsburg．Firginia \& 28.56 V \& ＋50 \& March［97－Aug 1980441］ \& 5.5 \& 8.1 \& 11.5 \& 19.5 \& 27.4 \& ． \& \ldots \&

\hline 12 \& Cramfurd Hill．\ew Jerses \& 28.56 V \& 38.6 \& Maty 1977－M3 1978112）． \& 3.7 \& 7.5 \& 13.5 \& 28.1 \& ＋4．0 \& \cdots \& \cdots \& ［－1rumh th al．［980］

\hline $C 14$
$C-15$ \& Palmetto．Giturelit
Palmeto． \& 28.56 V \& 29.4 \& Junt 1476－Jul 197712） \& ．．． \& 8.0 \& 21.8 \& ．．． \& ．．． \& ： \& ．．． \& ［ $1.14 \cdot t$ ch． 19801$]$

\hline C25 \& Palmetto．Georuia
Grant Parh．Ilimoi \& 28．56 V \& 49.5 \& Aug．1977－Aus 1978，131 \& －\cdot \& 8.8 \& 19.2 \& \cdots \& \cdots \& \cdots \& \ldots \& ［l．in at al．1980］

\hline \bigcirc \& Gram Parh．Illionis \& 28.56 \& 27．3 \& July 1976 Jund 1977（12） \& \cdots \& 8.0 \& 17.6 \& \cdots \& \cdots \& － \& \cdots \& ［l．im st al．，1\％k0］

\hline c） \& Clarhshure Maryland \& 28.56 V \& 21.0 \& Aug．1977－Aus ${ }^{\text {duly }} 1976$ Aug 197（13）
Aug \& 3.4 \& 8.2
5.3 \& 20.0
15.9 \& 27.5 \& \cdots \& \ldots \& \ldots \& ［Lin et all．1980］

\hline 929 \& Clarhaburg Aiaryland \& 38.56 V \& 41.0 \& \& 3.4 \& 10.7 \& 13.9
13.6 \& 27.5

24.7 \& \cdots \& \& \ldots \& | ［Kiwnir，I4XI］ |
| :--- |
| ［Ktandr 198I］ |

\hline C3I \& Clarhahurge Marydand \& 28.56 V \& ＋3．5 \& Aug 1978 Aus 198025 \& 4.5 \& 9.8 \& 17.5 \& 26，7 \& ． \& \& \ldots \& | ［Kwhir，19\＄I］ |
| :--- |
| ［Kimhar，1981］ |

\hline （27 \& Walchimm，Maswathuselts \& 2 sk 56 V \& 38．2 \& Jan 1479［ dec $^{(4741121}$ \& 4.1 \& 23.5 \& 149 \& \ldots \& ． \& \& \ldots \& | ［Kimhar，1981］ |
| :--- |
| ［Tumi mul Daridsim．］98］］ |

\hline C1\％ \& Tambibl Flarida \& 2s．56 V \& 57.11 \& Jan．14\％）Dee 149412） \& 44 \& 6.10 \& 1 \& \& \ldots \& \& \ldots \& | ［T The mid Daridsom．19k］］ |
| :--- |
| |

\hline ¢ 11 \& Ausim．Texts \& 2x．56 Y \& 53.1 \& \& 1.5 \& 7.3 \& 15.0 \& 32.1 \& ． \& \& \& | |
| :--- |
| ［ 1 mudith thes istat ］ |

\hline C211 \& Wallups lishad．Viremat \& 28，56 \& 43 S \& \& \ldots \& 10.4 \& 15.5 \& ．．． \& \cdots \& \& \& ［Goldharsh．［ution

\hline $\mathrm{Cl7}$ \& Kashimbas Jiturn \& 3450 \& 46.5 \& \& 47 \& \& 20.0 \& \& \& \& \&

\hline
\end{tabular}

[^1]

Figure 7. Scatter plot of relative deviations of the simple attenuation model from the data of Table 1.
presented in Table 2. Another measure of the qualicy of fit for a model is that recently proposed by the CCIR [1981a]. In this method, data from many radio link experiments are tabulated at fixed probability levels, such as 1.0, 0.1, 0.01 , and 0.001% of the year. A test variable is computed from the logarithm of the ratio of predicted to measured attenuation. To suppress measurement inaccuracies, the test variable is set to zero if the measured and predicted values differ by less than $I d B$. The figure of merit, D, is computed for each probability level from the mean and standard deviation of the test variables. According to the CCIR, the best prediction method produces the smallest D values. This evaluation method represents an important first step toward developing a standard model evaluation method. The results of deviation in $d B$ and the D values are shown in Table 2 for the simple attenuation model (SAM).

An important consideration in the evaluation of an attenuation model is whether or not the model offers an improvement over existing models. With this in mind, the performance of the proposed model was compared to the global model [Crane, 1980] and the CCIR [1981b] model. These models were chosen because they represent different approaches to the modeling problem. The global model is a rain profile model based on rain gauge measurements. The recently introduced CCIR model is an empirical model derived from terrestrial and slant-wpath attenuation data. There is a "maritime" and

TABI.E2. Summary of Deviations Beaween Measured Altenuation From Dala Sets of Table 1 and Model Predictions

Percent Time	Simple Allenuation Model			Global Model			CCIR Model (Mariume)		
	Mtan	Slandard Deviation	D	Mean	Standard Deviation	D	Mean	Standard Deviation	D
$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} -1.2 \mathrm{~dB} \\ -3.5 \mathrm{n} \end{gathered}$	$\begin{gathered} 1.4 \mathrm{~dB} \\ 53.9^{\prime \prime} \end{gathered}$	111.7"	$\begin{gathered} -0.9 \mathrm{~dB} \\ -22.0^{" .} \end{gathered}$	${ }_{\left(6-1.0^{-10}\right.}^{1.6}$	110.1".	$\begin{gathered} 0 . \mathrm{dB} \\ 21.8^{\prime \prime} . \end{gathered}$	$\begin{gathered} 1.3 \mathrm{~dB} \\ 69.3 " . \end{gathered}$	53.6".
$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1.3 \mathrm{~dB} \\ -1+3.3 . \end{gathered}$	$\begin{gathered} 3.3 \mathrm{~dB} \\ 28.1 \mathrm{n} \end{gathered}$	43.7%	$\begin{aligned} & 0.6 \mathrm{~dB} \\ & 5 . \mathrm{l}^{\prime \prime}, \end{aligned}$	$\begin{gathered} 4.0 \mathrm{~dB} \\ 34.7{ }^{2} \% \end{gathered}$	32.74.	$\begin{aligned} & 0.4 \mathrm{~dB} \\ & 6 . \mathrm{o}^{\circ} . \end{aligned}$	$\frac{26 \mathrm{~dB}}{30 . \mathrm{n}^{\prime \prime} .}$	$30.2 \times$
$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 0 d B \\ -11 \sigma^{\prime} . \end{array}$	$\begin{gathered} 3.3 \mathrm{~dB} \\ 250^{\circ} . \end{gathered}$	31.1".	$\begin{array}{r} 2.9 \mathrm{dg} \\ 7720 \end{array}$	$\begin{gathered} 5.1 \mathrm{~dB} \\ 3 . \mathbf{K}^{+} \end{gathered}$	36.9\%.	$\begin{gathered} -0 . \mathrm{x} \mathrm{~dB} \\ 0 \underset{y y}{c} . \end{gathered}$	$\begin{gathered} 3.4 \mathrm{~dB} \\ 26.4^{\circ} . \end{gathered}$	$31.0{ }^{\circ}$
$\begin{aligned} & 0.461 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 14 \mathrm{~dB} \\ & 15 \mathrm{j} \end{aligned}$	$\begin{array}{r} 5.2 \mathrm{~dB} \\ 379 \end{array}$	42.10	$\begin{gathered} 4.9 \mathrm{~dB} \\ -45.8 \end{gathered}$	$\begin{gathered} 5.3 \mathrm{~dB} \\ 47.7^{\prime \prime} \end{gathered}$	S4.8".	$\begin{aligned} & 0.6 \mathrm{~dB} \\ & 8.9 . \end{aligned}$	$\begin{gathered} 82 \mathrm{~dB} \\ 44^{9} . \end{gathered}$	thro.

a more complicated "continental" version of the CCIR model. We use the maritime CCIR model for all calculations since its results are superior to those found when including the different procedure for continental regions. The CCIR model for percentages of time from 0.001 to 0.1% are found in [CCIR, 1981b] and for 0.001 to 1% [CCIR, 1981d].

Attenuation values predicted using the global and CCIR models are given in Table 2 for the 47 experiments. The specific attenuation coefficients used were obtained from the sources recommended by each model. The CCIR rain climate regions were used to determine rainfall statistics for each model to eliminate the affects of variations in rainfall distribution models. Results are shown for the $1,0.1$, 0.01 , and 0.001 percentages of time, but similar values occur for intermediate values. The comparison in Table 2 indicates that on the whole all three models provide good agreement to data. At high percentages of time (1 and 0.1\%) the CCIR model yields the lowest mean and standard deviations in $d B$ as well as D values. For the important low percentages of time (0.01 and 0.001) the SAM and CCIR models give very good fits to the data. The global model is slightly inferior at all levels. The SAM model has the lowest percent standard deviation at all levels. Comparison on the basis of the D value should be made with caution. Much lower D values result from underprediction than from overpredictions by the same amount, especially at low attenua-
tions (high percentages of time). Thus, the D values associated with tinderpredictions at high percentages of time in Table 2 are disproportionately high.

3.5 CONCLUSIONS

In this chapter the simple attenuation model (SAM) was introduced for use in estimating rain-induced attenuation along an earth-space path. The model is both conceptually and computationally simple. It is a rain profile model that uses an effective spatial rain distribution which is uniform for low rain rates and has an exponential shaped horizontal rain profile for high rain rates. The spatial distribution function was derived from direct observations of rain using rain gauge data and verified indirectly by comparison to slant-path attenuation data from many experiments. Model estimates of attenuation as a function of point rainfall rate are easily computed with SAM using the physical parameters of the earth station location (elevation angle, latitude, and altitude) and the frequency of operation. To produce attenuation exceedance estimates, the model is combined with a model of the point rainfall intensity distribution for the geographic region of interest.

Attenuation data for various percentages of time were presented for 47 experiments throughout the world. See Table l. Comparisons were made to this data base with predicted values from the SAM, global, and CCIR (maritime)
models using CCIR rain climate regions rainfall statistics. See Table 2. The SAil model performed well in the important region of low percentages of time (0.01 and 0.001%) and the lowest percent standard deviation at all percent time values tested. Furthermore, the SAM model is easy to use and is modular in construction. It is basically an attenuation versus point rainfall rate model that is coupled with rain. rate exceedance to produce an attenuation exceedance predic. tion. This allows for separate inclusion of rain rate statistics that affect the accuracy of attenuation exceedance prediction.

3.6 REFERENCES

Andrews, J. H.. C. Ozbay, T. Pratt, C. W. Bostian, E. A. Manus, J. M. Gaines, -R. E Marshall, W. L. Stutzman, and p. H. Wiley (1982), Results of the COMSTAR Experiment, Radio Science, $17(6)$, pp. 1349-1359, Nov./Dec. 1982.

Arnold, H. W., D. C. Cox, H. H. Hoffman, and R. P. Leck (1980), Characteristics of rain and ice depolarization for a 19- and $28-\mathrm{GHz}$ propagation path from a COMSTAR satellite, IEEE Trans. on Ant. and prop., AP-28, 22-27.

Arnold, H. W., D. C. Cox, and A. J. Rustako (1981), Rain attenuation at $10-30 \mathrm{GHz}$ along earth-space paths: elevation angle, seasonal, and diurnal effects, IEEE Trans. on Comm.. COM-29, 716-721.

Barsis, A. P., and C. A. Samson (1976), Performance estimation for $15-\mathrm{GHz}$ microwave links as a function of rain attenuation, IEEE Trans. on Comm., COM-24(4), 462-470.

Brussaard, G. 91981), prediction of attenuation due to rainfall on earth-space links, Radio Science, 16(5), 745-760.

CCIR (1979), USA Attenuation by rainfall at 11.7 GHz from CTS observations, CCIR Study Group Report 564-1, Doc. USSG 5/25T.

CCIR (1981a) Radiometeorological Data, Draft Report 563-1 (MOD F), DOC. 5/5049-E.

CCIR (1981b) Propagation Data Required for Space Telecommunication Systems, Draft Revision of Report 564-1 (MOD F). DOC. 5/5046-E.

CCIR (1981c) Attenuation by Precipitation and other Atmospheric Particles, Draft Report 721 (MOD F), Doc. 5/5026-E.

CCIR (1981d) Propagation Data for Broadcasting From Satellites, Draft Report 565-1 (MOD F), Doc. 5041-E.

Crane, R. K. (1977), Prediction of the effects of rain on satellite communication systems, Proc. IEEE, 65(3), 456-474.

Crane, R. K. (1978), A global model for rain attenuation prediction, EASCON Record (Arlington, VA), 391-395.

Crane, R. K. (1980), Prediction of attenuation by rain, IEEE Trans. on Comm., COM-28(9), 1717-1733.

Damosso, E., G. DeRenzis, F. Fedi, and P. Migliorini (1980), A systematic comparison of rain attenuation prediction methods for terrestrial paths, presented at URSI OpenSymposium of Effects of the Lower Atmosphere on Radio Frequencies Above 1 GHz (Lennoxville, Canada) Paper 2.11 .

Damosso, E. (1981), Dependence of specific rain-attenuation and phase shift on electrical, meteorological and geometrical parameters, CSELT Rapporti Tecnici. 6(3).

Davies, P. G., M. J. Courthold, and E. C. MacKenzie (1981), Measurements of circularly-polarized transmissions from the OTS and SIRIO satellites in the 11 GHz band, IEE Conf. on Ant. and Prop., Publ. No. 195, P5. 2, 76-80.

Dishman, W. K., and W. L. Stutzman (1982), Estimation of rain attenuation on earth-space millimeter wave communication links, Interim Report under JPL Contract 955954, Virginia Tech, EE Dept., Blacksburg.
Drafuca, G. (1974), Rain attenuation statistics for frequencies above 10 CHz from raingauge aboservations, J. Tech. Atmospheriques, 8, 399-411.

Fedi, F. (198la), Prediction of attenuation due to rainfall on terrestial links, Radio Science, $16(5)$, 731-743.

Fedi, F. (198lb), Normalization procedures and prediction techniques for rain attenuation on terrestrial and
earth-space radio links, IEE Conf. Publ. No. 195 (Antennas and Propagation) Part 2, 173-179.

Freeny, A. E., and J. D. Gabbe (1969), A statistical description of intense rainfall, BSTJ, 48(6), 1789-1850.

Fugono, N. (1979), Sumary of millimeter wave propagation experiments using Japan's first geostationary satellite "Kiku-2". Ann. Telecommun.. 34, 299-318.

Fukuchi, H., M. Fujita, K. Nakamura, Y. Furuhama, and Y. Otsu (1981), Rain attenuation characteristics on quasimillimeter waves using Japanese geostationary satellites CS and BSE, IEE Conf. Ant. and Prop., Publ. no. 195, Pt. 2, 41-45.

Goldhirsh, J. (1980), Cumulative slant path fade statistics associated with the COMSTAR beacon at 28.56 GHz for Wallops Island, Va. over a three year period, The Johns Hopkins University-Applied Physics Labortory Report SlR8OU-048.

Goldhirsh, J., and I. Katz (1979), Useful experimental results for earth-satellite rain attenuation modeling, IEEE Trans. on Ant. and Prop.. AP-27(3), 413-415.

Harden, B. N., J. R. Norbury, and W. J. K. White (1974), Model of intense convective rain cells for estimating attenuation on terrestrial millimeter wave radio links, Electronies Letters, 10(23), 483-484.

Harden, B. N.. J. R. Norbury, and W. J. K. White (1977), Measurements of rainfall for studies of millimetric radio attenuation, Microwaves, Optics, and Acoustics, 1(6), 197-202.

Ippolito, L. J. (1981), Radio propagation for space communications systems, Proc. IEEE, 69(6), 697-727.

Ippolito, J. R., R. Kaul, and R. Wallace (1982), Propagation Effects Handbook for Satellite Systems Design. Second Edition, NASA Reference Publication 1082.

Joss, J., J. C. Thams, and A. Waldvogel (1968), The variation of raindrop size distributions at Locarno, Proc. Int. Conf. on cloud physics, 369-373.

Kheirallah, H. N., B. Segal, and R. L. Olsen (1980), Application of synthetic storm data to evaluate simpler techniques for predicting rajin attenaution statistics, Ann. Telecommunic., 35(11-12), 456-462.

Kumar, P. N. (1981), Precipitation attenuation studies on 19/29-GHz COMSTAR beacon signals and 12-GHz radiometric measurements, 20th URSI General Assembly Meeting, Washington, D.C.

Lane, S. O., and W. L. Stutzman (1980a), Spatial rain rate distribution modeling for earth-space link propagation calculations, presented at URSI/IEEE AP-S International Symposium, Quebec, Canada.

Lane, S. O., and W. L. Stutzman (1980b), A Gaussian Rain Cell Model for Prediction of Rain Effects on Millimeter Wave Propagation, Virginia Tech Report SATCOM-80-3 under NASA Contract NAS5-22577, EE Dept., Blacksburg, VA.

Laws, J. O., and D. A. Parsons (1943), The relation of rain-drop-size to intensity, Trans. Amer- Geophys. Union, 24, 452-460.

Lin, S. H. (1979), Empirical rain attenuation model for earth-space paths, LEEE Trans. Comm., COM-27(5), 812-817.

Lin, S. H., H. J. Bergmann, and M. V.Pursley (1980), Rain attenuation on earth-space paths - summary of 10-year experiments and studies, BSTJ, 39, 183-228.

Marshall, J. S., and W. M. Palmer (1948), The distribution of raindrops with size, J. Meteor., 5, 165-166.

Marui, M. and A. Paraboni (1981), Attenuation statistics at 11.6 GHz from satellite SIRIO after three years activity in Italy, Report from Institute di Elettrotecnica ed Elettronia del Politecnico di Milano.

Misme, P., and P. Waldteufel (1980), A model for attenuation by preciptation on a microwave earth-space link, Radio Science 15(3), 655-665.

Nackoney, O. G. (1979), CTS 11.7 GHz propagation measurements third year's data and final report, GTE (Waltham, Mass.) TR 79-471.3.

Olsen, R. L., D. V. Rogers, and D. B. Hodge (1978), The a R^{b} relation in the calculation of rain attenuation, IEEE Trans. on Ant. and Prop., AP-26(2), 318-329.

Oort, A. H., and E. M. Rasmusson (1971), Atmospheric Circulation Statistics, NOAA Professinal Paper 5, U.S. Dept. of commerce.

Persinger, R. R., W. L. Stutzman, R. E. Castle, and C. W. Bostian (1980), Millimeter wave attenuation prediction using a piecewise uniform rain rate model, IEEE Trans. on Ant. and Prop., AP-28(2), 149-153.

Pruppacher, H. R., and R. L. Pitter (1971), A semi-empirical determination of the shape of cloud and raindrops, J. Atmos. Sci.. 28, 86-94.

Ramat, P. (1981), Propagation oblique dans les bandes de frequencies des 11 et 14 Gfiz , Anne. de Telecomms.. 36, 8-14.

Rogers, R. R. (1976), Statistical rainstorm models: Their theoretizl and physical foundations, IEEE Trans. on Ant. and Prop.. AP-24(4), 318-329..

Rucker, F. (1980), Simultaneous propagation measurements in the $12-\mathrm{GHz}$ band on the SIRIO and OTS satellite links, URSI Open Symposium on Effects on the Lower Atmosphere on Radio Propagation at Frequencies Above 1 GHz , Paper 4.1, Lennoxville, Canada.

Sims, A., and D. Jones (1975), Frequencies of short-period rainfall rates along lines, J. App. Meteor., 14, 170-174.

Tang, D. D. and D. Davidson (1981), COMSTAR 19/19 GHz propagation experiment, II. 1979-1980, GTE Report TR 81-471.1.

Thompson, P. T., A. W. Dissanayake, and P. A. Watson (1980), The frequency dependence of microwave propagation through rainfall, AGARD Conf. on Prop. Effects in Earth-Space Paths (London), No. 284, Paper. 5.

Towner, G. C., R.E. Marshall, W. L. Stutzman, C. W. Bostian, T. Pratt, E. A. Manus, and P. H. Wiley (1982), Initial results from the VPI\&SU SIRIO diversity experiment, Radio Science, 17(6), pp. 1489-1494.

Upton, S. A. J., B. G. Evans, and A. R. Holt (1980), Variations with model parameters of earth/space attenuation derived from radiometer and radar measurements, URSI Commission F Open Symposium on Effects of the Lower Atmosphere on Radio Frequencies Above 1 GHz (Lennoxville, Canada), Paper. I.6.

Valentin, R. (1977), Attenuation and depolarization caused by rain at frequencies above 10 GHz , Proc. URSI Commission F Open Symposium (La Baule, France), 273-278.

Vogel, W. J. (1980), CTS attenuation and cross polarization measurements at: 11.7 GHz , U. of Texas Final Report under Contract NAS5-22576.

Vogel, W. J. (1981), Presentation at January 1981 NASA Experimenters Meeting, Boulder, Colorado.

Watson, P. A., G. Papaionnou, and J. C. Neves (1977), Attenuation and cross-polarisation measurements at 36 GHz on a terrestrial path, Proc. URSI Commission F Open Symposium (LaBaule, France), 283-287.

Chapter 4

SINGLE PARTICLE SCATTERING COMPUTATIONS

In order to study radio wave or light wave propagation through an ensemble of scatterers, the scattering properties of individual scatterers must first be determined. Knowing the scattering properties of the individual scatterers, the effects of the ensemble of the scatterers on the propagating wave can be studied.

In this chapter, we will present the general formulation for a plane wave scattered by a single scatterer. Since the exact solution to this problem exists only when the scatterer is a sphere (Mie-solution), approximations to the general formulation will be given. After establishing calculation procedures for scattering by a single scatterer, scattering by an ensemble of scatterers will be discussed in Chapter 5.
4.1 THE SINGLE-SCATTERER PROBLEM AND SOLUTION METHODS

Let us consider a scatterer enclosed in volume V ' have permittivity and permeability wo . The medium in which the scatterer is embedded is vacuum, with parameters $\mathrm{E}_{0},{ }^{\mu} \mathrm{o}$ (see Fig. 1). Eo is the incident plane wave upon the scatterer. The total electric field $\vec{E}(\vec{r})$ obeys the Fredholm

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1. Geometry for scattering of a Dlane wave by a single particle.

ORIGINAL PAGE is OF POOR QUALITY

$\vec{E}(\vec{r})=\vec{E}_{0}+\left(\vec{\nabla} \vec{\nabla} \cdot+k_{0}^{2}\right) \frac{1}{4 \pi \varepsilon_{0}} \int_{V^{\prime}}\left(\varepsilon-\varepsilon_{0}\right) \vec{E}\left(\vec{r}^{\prime}\right) \psi\left(\vec{r}, \vec{r}^{\prime}\right) d V^{\prime} \quad$,
where

$$
\begin{equation*}
\psi\left(\vec{r}_{\mathbf{r}}, \overrightarrow{\mathbf{r}}^{\prime}\right)=\exp \left(-j k_{o}\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|\right\} /\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right| \tag{2a}
\end{equation*}
$$

and k_{0} is the free space wave number

$$
\begin{equation*}
k_{0}^{2}=\omega_{0}^{2} \mu_{0} \varepsilon_{0} \tag{2b}
\end{equation*}
$$

Equation (1) has an exact solution only when the scatterer is a sphere (Mie-Theory). A detailed derivation for the scattered field by a sphere is presented in Ref. [2]: For arbitrary scatterers, different approximations exist to equation (1). In most practical situations, and especially in propagation through precipitation, we are interested in the scattered field in the far zone. At a large distance r from the scatterer the scalar Green's function $\psi\left(\vec{r}, \vec{r}^{\prime}\right)$ may be approximated as

$$
\begin{equation*}
\psi\left(\vec{r}, \vec{r}^{\prime}\right) \sim \exp \left\{-j k_{0}\left(\vec{r}-\hat{r} \cdot \vec{r}^{\prime}\right)\right\} / r, \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{r}=|\overrightarrow{\mathrm{r}}| \tag{3b}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{r}=\frac{\vec{r}}{|\vec{r}|} . \tag{3c}
\end{equation*}
$$

Under this approximation the total field in the far zone may be written as
$\vec{E}(\vec{r})=\vec{E}_{0}+\frac{k_{0}^{2} e^{-j k_{0} r}}{4 \pi \varepsilon_{0}^{r}} \int_{V^{\prime}}\left(\varepsilon-\varepsilon_{0}\right) \vec{E}\left(\vec{r} \vec{r}^{\prime}\right) \cdot(\overline{\mathrm{I}}-\hat{\mathrm{r}}) e^{j k_{0} \hat{r} \cdot \vec{r}^{\prime}} d V^{\prime}$, (4a)
wher $-\bar{I}$ is the unit dyadic. The field scattered by the scatterer in thie far zone is given by

$$
\begin{equation*}
\vec{E}_{s}(\vec{r})=\frac{k_{o}{ }^{2} e^{-j k_{0} r}}{4 \pi \varepsilon_{0}^{r}} \int_{V^{\prime}}\left(\varepsilon-\varepsilon_{0}\right) \vec{E}\left(\vec{r}^{\prime}\right) \cdot(\bar{I}-\hat{r} \hat{r}) e^{j k_{o} \vec{r} \cdot \vec{r}^{\prime}} d V^{\prime} \tag{4b}
\end{equation*}
$$

Depending on the scatterer size relative to wavelength and its dielectric constant, different approximations can be made to equation (4). In the following, three important approximations will be discussed: Rayleigh scattering, Ray-leigh-Gans scattering and the WKB approximation.
a) Rayleigh Scattering [3]:

When the dimensions of the scatterer are very small relative to wavelength, in other words when $k_{o}|\vec{r}| \ll 1$, the exponential within the integrand of (4) may be replaced by unity. Then,

$$
\begin{equation*}
\vec{E}(\vec{r})=\frac{k_{o}^{2} e^{-j k_{o} r}}{4 \pi \varepsilon_{0} r}\{\vec{p}-(\vec{p} \cdot \hat{r}) \hat{r}\} \tag{5a}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{p}=\varepsilon_{0} \int V^{\prime} \quad\left(\varepsilon_{r}-1\right) \vec{E}\left(r^{\prime}\right) d V^{\prime} \tag{5b}
\end{equation*}
$$

The scatterer in this case radiates as an electric dipole of moment \mathbf{p}.

Equation (5) holds under two assumptions [4]. Let ℓ be the maximum dimension of the scatterer. Then, $k_{0} Q$ must be much less than unity $\left(k_{0} l_{l} \ll 1\right)$, and $\left|k \varepsilon_{r} \ell\right| \ll 1$. The first assumption, i.e., $k_{0} \ell \ll 1$, justifies the derivation of (5) and also indicates that the scatterer may be regarded as placed in a uniform external field. The assumption that $\left|k \epsilon_{r} \&\right| \ll 1$ implies that the field inside the scatterer follows the eycernal field instantaneously, so that the phase changes are of no consequence.

The problem is thus reduced to a static one. We have to determine the interna? field of the scatterer induced by a uniform electrostatic external field. By using (5b), the
dipole moment of the scatterer can be calculated from the internal fieid. In Ref. [5], the dipole moments of an oblate and prolate spheroid are calculated under the Rayleigh scattering assumptions. These results are used to calculate the scattering matrix of an ice-needle (prolate spheroid with eccentricity equal to one), and an ice plate (oblate spheroid with unity eccentricity).
b) Rayleigh-Gans Scattering:

The index of refraction of the scatterer is given by $n=\sqrt{\varepsilon_{r}}$, where ε_{r} is the relative permittivity of the scatterer. In Rayleigh scattering, no specific assumptions about η were made. When η is approximately equal to unity, the scatterer is called diaphanaous [4]. For a diaphanous scatterer with $k_{o l} \ln 2-1 \mid \ll 1, ~ t h e ~ R a y l e i g h-G ̣ a n s ~[6] ~$ or Borr [7] approximation holds.

In the Rayleigh-Gans approximation the field $\overrightarrow{\mathbf{E}}(\vec{r})$ inside the scatterer is approximated with the incident field \mathbf{E}_{0}. Under this assumption, the far-zone scattered field $\mathbf{E}_{\mathbf{S}}(\vec{r})$
from (4) becomes
$\vec{E}_{S}(\vec{r})=\frac{k_{o}^{2} e^{-j k_{o} r}}{4 \pi \varepsilon_{0} r} \int_{V}\left(\varepsilon-\varepsilon_{o}\right) \quad\left(E_{o}-\left(\vec{E}_{0} \cdot \hat{r}\right) \hat{r}\right) e^{+j k_{o} \hat{r} \cdot \vec{r}^{\prime}} d V^{\prime}$

For a homogeneous diaphanous sphere (see Fig. 2) the scat-

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. Geomatry Eor scattering by a diadohanous sphture.
tered field takes the form

$$
\begin{align*}
& \vec{E}_{s}(\vec{r})=k_{0}^{2} \frac{e^{-j k_{o} r}}{4 \pi \varepsilon_{0} r}\left(\varepsilon-\varepsilon_{0}\right)\left\{\vec{E}_{0}-\left(\vec{E}_{0} \cdot \hat{r}\right) \hat{r}\right\} \\
& \int_{0}^{2 \pi} d \phi^{\prime} \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{r} \int_{0}^{a} r^{\prime^{2}} \exp \left\{2 j k_{0} \sin (\theta / 2) \cos \theta^{\prime}\right\} d r^{\prime} \tag{7a}\\
& =\frac{k_{0}^{2} e^{-j k_{0} r}}{\varepsilon_{0}^{r}}\left(\varepsilon-\varepsilon_{0}\right)\left\{\vec{E}_{0}-\left(\vec{E}_{0} \hat{r}\right) \hat{r}\right\}\left[\frac{\sin \left(2 k_{o} \sin (\theta / 2) a\right)}{2 k_{0} \sin (\theta / 2)}\right.
\end{align*}
$$

$$
\begin{equation*}
\left.-\frac{a \cos \left(2 k_{o} \sin (\theta / 2) a\right)}{\left(2 k_{0} \sin (\theta / 2)\right)^{2}}\right] \tag{7b}
\end{equation*}
$$

where a is the radius of the sphere and θ is the angle between \vec{r} and the z-axis, assuming that the origin is the center of the sphere. For more complicated shapes of scatterers the volume integral in (7a) cannot be calculated analytically and numerical solutions must be used. Exact evaluation of the volume integral can be done for ellipsoias [4].
c) High Frequency Scattering; The WKD Method:

The WKB approximation is applicable to cases where the Rayleigh or the Rayleigh-Gans approximations cannot be

ORICINAL PREE GS
 OF POOR QUALITY

applied. Specifically the WKB approximation holds when

$$
\begin{equation*}
\left|\eta^{2}-1\right| k_{0} \ell \gg 1 \text { and }\left|\eta^{2}-1\right|<1 \text {. } \tag{8}
\end{equation*}
$$

In the wKB approximation and the field $\vec{E}(\vec{r})$ inside the volume V^{\prime} is approximated by a plane wave propagating in the same direction as the incident field, with propagation constant equal to

$$
\begin{equation*}
k^{2}=\omega^{2} \mu_{0} \varepsilon_{o}=\left(n k_{0}\right)^{2} \tag{9}
\end{equation*}
$$

Under these assumptions equation (4) takes the form

$$
\begin{equation*}
\vec{E}(\vec{r})=k_{0}^{2} \frac{e^{-j k_{0} r}}{4 \pi \varepsilon_{0} r} \int_{V^{\prime}} \frac{2\left(\varepsilon-e_{0}\right)}{n+1} \vec{E}_{0} e^{-j\left[k_{0} z_{1}+k_{0} n\left(z^{\prime}-z_{1}\right)\right]} \tag{10}
\end{equation*}
$$

$$
\times \mathrm{e}^{j \mathrm{k}_{\mathrm{o}} \hat{r} \cdot \overrightarrow{\mathrm{I}}^{\prime}} \mathrm{dV} V^{\prime}
$$

The incident plane wave is assumed to be propagating in the z-direction. z_{1} is the value of z^{\prime} associated with \vec{r}^{*} for points lying on the surface of the scatterer as shown in Fig.3. The factor $\frac{2}{n+1}$ is the normal incident transmission coefficient from a vacuum to the medium of the scatterer. The WKB approximation is part of a general mathematical method developed by Wentzel. Kramers, and Brillouin [8]. According to the wKB method the field inside the scatterer

ORTGNAL PAGE PS OF POOR QUALITY

Figure 3. Geometry in calculacing the scatcered field by WKB approximation.
is expanded in the series
$\vec{E}(\vec{r})=e^{-j k_{0} f(\vec{r})}\left\{\frac{\vec{E}_{0}}{}+\frac{\vec{E}_{1}}{k_{0}}+\frac{\vec{E}_{2}}{k_{0}^{2}}+\ldots\right\} \quad$.

Using the above equation in conjunction with (2) and collecting together like powers of k_{0}, a set of equations can be obtairsd for $f(\vec{r}), \vec{E}_{o}, \vec{E}_{1}, \vec{E}_{2}, \ldots$, etc.. For high frequencies, $k_{o}\left(n^{2}-1\right) \ell \gg 1$. In this case $\vec{E}(\vec{r})$ can te approximated by

$$
\begin{equation*}
\vec{E}(\vec{r})=e^{-j k_{0} f(\vec{r})} \vec{E}_{0} \tag{12}
\end{equation*}
$$

and equation (10) is obtained.
The three approximations discussed so far are valid only in specific cases when certain assumptions hold. However, in many scattering problems it is necessary to calculate the scattered field when none of the aforementioned approximations hold. For these specific problems exact analytical results do not exist. Most of the work in this area is based on numerical techniques and the use of fast computational machines. In the next few paragraphs we will sumarize the most commonly used methods to calculate the scattered field by a dielectric body with complex permittivity. The majority of these methoas have been used to calculate
the scattering coefficients of a spheroidal or ellipsoidal scatterer.

i) Point-Matching Technique:

In the point-matching solution the incident field, the scattered field, and the field inside the scatterer are expanded in terms of spherical wave functions. The ifinite modal summations of the expansions are truncated at some model index (M, N), and boundary conditions are applied to the same number of points as the number of unknown expansion coefficients. The coefficients are then calculated by inverting a square $\mathrm{M} * \mathrm{~N}$ matrix that is formulated by the boundary conditions at $\mathrm{M}^{*} \mathrm{~N}$ points.

The method described above has been used by Oguchi [9]. Morrison and Cross [10] also used the point-matching technique with a least squares fit. In the latter case the number of boundary points is larger than the number of unknown coefficients and the fields are matched at these foints in the sense of least squares. The least squares fit technique coverges much faster than the one used by Oguchi.

ii) Spheroidal Wave Function Expansions:

The scattering properties of a spheroidal scatterer are obtained by expanding the fields in spheroidal vector wave functions and truncating the infinite summation of the expansion to a finite sum. The unknown coefficients of the
expansion functions are evaluated by applying boundary conditions. Usually, spheroidal wave function expansion methods require the boundary conditions to be applied to fewer points than the point matching technique, especially when the scatterer is a spheroid. This method has been applied by Oguchi [11].

iii) Waterman's T Matrix Formulation (Extended Boundary Condition):

This technique has been used extensively for scattering by perfectly conducting bodies. Recently, the technique has been applied to dielectrics. The scattered field is expressed in terms of electric and magnetic surface currents. These currents are expanded in terms of $M_{\text {rnm }}$. $N_{\text {rnm }}$ [12] spherical harmonics. Boundary conditions are applied on an inscribed sphere inside the scatterer. By truncating the infinite expansion of the currents, the expansion coefficients can be obtained by matrix inversion.
iv) Fredholm Integral Equation Method:

This method was introduced by Holt, Uzunoglou and Evans [13]. Starting with the integral equation for scattering of (1), it is shown that the Fourier transform of the field inside the scatterer is the solution of two coupled integral equations. The integrations are reduced by numerical quadrature methods to matrix equations, whose solution can be
easily obtained. It is important to notice that the scattering amplitude obtained by this method satisfies the Schwinger variational principle, and thus the method is stable.

Of these numerical methods the most favorable are Waterman's method and the Fredholm Integral Equation method, since both converge rapidly over a wide range of scatterer sizes. It should be noted though that the latter needs a large amount of computer storage when the shape of tire scatterer is complicated.

4.2 THE FREDHOLM INTEGRAL EQUATION METHOD APPLIED TO RAINDROPS

An extensive derivation of the method is described in [13]. The details of the derivation have been verified, but in this section we shall present a summary useful for performing calculations. Example calculations are performed for rain. The size of raindrops is of the order of the wavelength in the microwave region and Rayleigh or RayleighGans approximations do not hold.

The field scattered by a dielectric body of relative dielectric constant $\varepsilon_{r}(\vec{r})$ and volume V obeys the equation
$E(\vec{r})={\underset{J}{i}}^{J_{i}} \exp \left(i \vec{k}_{i} \cdot \vec{r}\right)+\int_{V \underline{G}}\left(\vec{r}, \vec{r}^{\prime}\right) \quad \gamma\left(\vec{r}^{\prime}\right) E\left(\vec{r}^{\prime}\right) d \vec{r}^{\prime}$

$$
\begin{align*}
& \underline{\underline{G}}\left(\vec{r}, \vec{r}^{\prime}\right)=\left[\frac{1}{\underline{e}}+\frac{1}{k_{0}^{2}} \nabla \nabla\right] \frac{\exp \left(1 k_{0}\left|\vec{r}-\vec{r}^{\prime}\right|\right)}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{13b}\\
& \gamma(\vec{r})=k_{0}^{2}\left[\epsilon_{r}(\vec{r})-1\right] \tag{13c}
\end{align*}
$$

k_{0} is the free space propagation constant, 1 is the unit dyadic, \vec{k}_{i} is the direction of propagation of the incident wave and

$$
\begin{equation*}
\underline{\underline{J}}_{i}=\underline{\underline{1}}-\overrightarrow{\hat{k}}_{i} \overrightarrow{\hat{k}}_{i} \tag{14}
\end{equation*}
$$

In the far-field of the scatterer ($\vec{r}+\infty$) the scattered field in the direction \hat{k}_{s} is given in terms of the scat-

$$
\begin{equation*}
\underline{\underline{E}}_{\underline{g}}(\overrightarrow{\mathrm{r}})=\frac{\exp \left(i k_{o} r\right)}{\underline{r}} \underline{\underline{\underline{E}}}\left(\vec{k}_{\mathrm{s}}, \vec{k}_{i}\right) \tag{15a}
\end{equation*}
$$

ORIGINAL PAEE ES OF POOR QUALITY

Figure 4. Geometry for electromanetic scattering from a single spheroidal particle.
T. where

ORIGINAL PAGE IS OF POOR QUALITY
$1 \quad \underline{\underline{f}}\left(\vec{k}_{s}, \vec{k}_{i}\right)=\frac{1}{4 \pi} \underline{\underline{J}}_{s} \cdot \int_{V} \exp \left(-\vec{k}_{s} \cdot \vec{r}\right) \quad \gamma(\vec{r}) E(\vec{r}) \vec{d} \vec{r}$.
(15b)

Let $\underline{\underline{C}}(\vec{k})$ be the Fouxier transform of $\underline{\underline{E}}(\vec{r})$ with respect to \vec{r}. Then $f\left(\vec{k}_{s}, \vec{k}_{i}\right)$ can be expressed in terms of $\underset{\underline{G}}{ }(\vec{k})$ as

$$
\begin{equation*}
V\left(\vec{k}_{1}, \vec{k}_{2}\right)=\int_{v} r(\vec{r}) \exp \left[-i\left(\vec{k}_{1}-\vec{k}_{2}\right) \cdot \vec{r}\right] d \vec{r} \tag{16b}
\end{equation*}
$$

$\underline{\underline{C}}(\vec{k})$ obeys the integral equation

$$
\begin{equation*}
\int d \vec{k}_{2} \underline{\underline{k}}\left(\vec{k}_{1}, \vec{k}_{2}\right) \cdot \underline{\underline{c}}\left(\vec{k}_{2}\right)=\underline{\underline{J}}_{1} v\left(\vec{k}_{1}, \vec{k}_{i}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
& \text { ORIGNAL PREE [G } \\
& \text { OF POOR QUALITY } \\
& w\left(\vec{k}_{1}, \vec{k}_{2}\right)=\int_{v} \exp \left[-1\left(\vec{k}_{1}-\vec{k}_{2}\right) \cdot \vec{r}\right] \gamma(\vec{r}) \varepsilon(\vec{r}) d \vec{r} \tag{18b}
\end{align*}
$$

and

$$
\begin{equation*}
\underline{\underline{z}}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\frac{1}{8 \pi^{3} k_{o}^{2}} \lim \int \frac{p^{2} d p}{p^{2}-k_{0}^{2}-i \varepsilon}[\underline{\underline{1}}-\hat{p} \hat{p}] v\left(\vec{k}_{1}, \vec{p}\right) v\left(\vec{p}, \vec{k}_{2}\right) \tag{18c}
\end{equation*}
$$

Evaluating the integrals of (15b) and (17) by numerical quadrature we get:

$$
\begin{equation*}
\underline{\underline{f}}\left(\vec{k}_{s}, \vec{k}_{i}\right)=\underline{\underline{J}} \cdot \sum_{\ell=1}^{n} W_{\ell} \underline{\underline{c}}\left(\vec{k}_{\ell}\right) v\left(\vec{k}_{s}, \vec{k}_{\ell}\right) \tag{19}
\end{equation*}
$$

where
 inversion; and then placing these values into (19), the scattering tensor of the dielectric scatterer can be calculated.

A spheroidal dielectric scatterer obeys the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{21a}
\end{equation*}
$$

$$
\begin{equation*}
b=a \tag{21b}
\end{equation*}
$$

Assuming that $\varepsilon_{r}(\vec{r})$ is constant and equal to $\varepsilon_{r}, V\left(\vec{k}_{1}\right.$, \vec{k}_{2}) for the spheroid becomes

$$
\begin{equation*}
V\left(\vec{k}_{1}, \vec{k}_{2}\right)=4 \pi a b c \gamma j_{I}(x) / X \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
x=\left|\vec{k}_{1}-\vec{k}_{2}\right| \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{k}_{i}=k_{i}\left(a \sin \theta_{i} \cos \phi_{i}, b \sin \theta_{i} \sin \phi_{i}, c \cos \theta_{i}\right) \tag{24}
\end{equation*}
$$

$j_{n}(x)$ is the spherical Bessel function given by

$$
\begin{equation*}
j_{n}(x)=\left(\frac{\pi}{2 x}\right)^{1 / 2} \frac{J}{\underline{N}}(n+1 / 2) \tag{25}
\end{equation*}
$$

Also the tensor $\underline{\underline{k}}\left(\vec{k}_{1}, \vec{k}_{2}\right)$ for spheroidal shaped scatterers takes the matrix form:
where I is a 3×3 unit matrix and

$$
\begin{aligned}
& \underline{Z}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\frac{i-8 \pi a^{4} c^{2} y^{2}}{k_{0}} \int_{0}^{1} d x \frac{1}{y^{2}} \sum_{n=0}^{\infty} \sum_{n=1}^{\infty} \sum_{n=0}^{\infty}(2 m+3)(2 n+3) \\
& \frac{j_{n+1}\left(k_{1}\right)}{k_{1}} \frac{f_{m+1}\left(k_{2}\right)}{k_{2}} j_{m>+1}\left(k_{0} y\right) h_{m<+1}\left(k_{0} y\right) \\
& \sum_{s=0}^{n} \sum_{t=0}^{m} \frac{(s+1)(n-s)!}{(n+s+2)!} \frac{(t+1)(m-t)}{(m+t+2)!}: \frac{P_{n+1}^{s+1}(x) P_{t n+1}^{t+1}(x)}{\left(I-x^{2}\right)} \frac{P_{n+1}^{s+1}\left(x_{1}\right) p_{m+1}^{t+1}\left(x_{2}\right) 0_{s t}(x)}{\left[\left(1-x_{1}^{2}\right)\left(1-x_{2}^{2}\right)\right]^{1 / 2}}
\end{aligned}
$$

with

$$
\begin{equation*}
y=\left[a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi\right]\left(1-x^{2}\right)+c^{2} x^{2} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
x=\cos \theta \quad, \quad y=\sin \theta \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
x=c x\left[a^{2}+\left(c^{2}-a^{2}\right) x^{2}\right]^{-1 / 2} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}=c x\left[a^{2}+\left(c^{2}-a^{2}\right) x^{2}\right]^{-1 / 2} \quad i=1,2 \tag{31}
\end{equation*}
$$

original page is OF POOR QUALITY

and

$$
\underline{o}_{s t}(x)=\left(\begin{array}{ccc}
I_{1}(s, t)-y^{2} I_{6}(s, t) & -y^{2} I_{5}(s, t) & -x y I_{3}(s, t) \tag{32}\\
-y^{2} I_{5}(s, t) & I_{1}(s, t)-y^{2} I_{4}(s, t) & -x y I_{2}(s, t) \\
-x y I_{3}(s, t) & -x y I_{2}(s, t) & y^{2} I_{1}(s, t)
\end{array}\right)
$$

Notice that the matrix $\mathcal{Q}_{\mathrm{st}}(\mathrm{x})$ is symmetric and from (26) it is obvious that $\underset{\underline{K}}{ }\left(\vec{k}_{1}, \vec{k}_{2}\right)$ is symmetric. The elements of the $\underline{\underline{Q}}_{s t}(x)$ matrix are given below. For st even

$$
\begin{aligned}
& I_{1}(s, t)=G\left(\phi_{1}, \phi_{2}\right) \\
& \left\{\begin{array}{l}
I_{4}(s, t) \\
I_{5}(s, t) \\
I_{6}(s, t)
\end{array}\right\}=G\left(\phi_{1}, \phi_{2}\right)\left\{\begin{array}{c}
I_{3}=0 \\
\sin ^{2}(\bar{\phi}) \\
\sin \bar{\phi} \cos \bar{\phi} \\
\cos ^{2} \bar{\phi}
\end{array}\right\}+\pi \delta_{s t}\left\{\begin{array}{c}
\cos \left(s \phi_{12}+\phi_{1}\right) \\
-\sin \left(s \phi_{12}+2 \phi_{1}\right) \\
-\cos \left(s \phi_{12}+2 \phi_{1}\right)
\end{array}\right\}(33)
\end{aligned}
$$

ORIGNAL PACE 5 OF POOR QUALITY
and for s+t odd

$$
\begin{align*}
& I_{1}(s, t)=I_{4}(s, t)=I_{5}(s, t)=I_{6}(s, t)=0 \\
& \left\{\begin{array}{l}
I_{2}(s, t) \\
I_{3}(s, t)
\end{array}\right\}=G\left(\phi_{1}, \phi_{2}\right)\left\{\begin{array}{c}
\sin \bar{\phi} \\
\cos \bar{\phi}
\end{array}\right\} \tag{34}
\end{align*}
$$

where

$$
\begin{equation*}
G\left(\phi_{1}, \phi_{2}\right)=2 \quad c_{\mathrm{II}}^{1}<\left[\cos \phi_{12}\right] \tag{35}
\end{equation*}
$$

$C_{m^{\prime}}{ }^{r}(x)$ is the Gegenbauer polynomial

$$
\begin{equation*}
\phi_{12}=\phi_{1}-\phi_{2} \tag{36}
\end{equation*}
$$

and

$$
\bar{\phi}= \begin{cases}\phi_{I} & s \geqslant t \tag{37}\\ \phi_{2} & s<t\end{cases}
$$

In the version of (37) presented by Holt et al. the equal sign was missing in the inequality $n>m$.
ϕ_{1}, ϕ_{2} are the angles of wavevectors \vec{k}_{1}, \vec{k}_{2}, respectively. See (24). In (27) $p_{n}^{\ell}(x)$ is the associated Lengendre function and $h_{h}(x)$ is given by

$$
\begin{equation*}
h_{n}(x)=\left(\frac{\pi}{2 x}\right)^{1 / 2} H_{n+1 / 2}^{(1)}(x) \tag{38}
\end{equation*}
$$

where $H_{n+1 / 2}(x)$ is the Hankel function. After finding $K\left(\vec{k}_{j}, \vec{k}_{\ell}\right)$ where $j=1,2, \ldots, n \ell=1,2, \ldots, n$ and $V\left(\vec{k}_{j}, \vec{k}_{i}\right)$ we can solve (20) for $\left[\underset{\sim}{\mathrm{C}}\left(\overrightarrow{\mathrm{k}}_{1}, \underset{\vec{C}}{\mathrm{C}}\left(\overrightarrow{\mathrm{k}}_{2}\right) \ldots, \underset{\underline{C}}{\mathrm{C}}\left(\overrightarrow{\mathrm{k}}_{\mathrm{n}}\right)\right]^{T}\right.$. The scattering matrix $\underline{\underline{f}}\left(\vec{k}_{g}, \vec{k}_{i}\right)$ can be computed then from (19). In calculating the element of the $\underset{\underline{Z}}{ }\left(\vec{k}_{1}, \vec{k}_{2}\right)$ matrix the spherical Bessel and Neumann functions must be calculated as well as the associated Legensre functions and Gegenbauer polynomials. The integration in (27) required to evaluate the $\underline{\underline{Z}}\left(\vec{k}_{1}, \vec{k}_{2}\right)$ matrix was performed using a seven point Clenshaw-Curtis quadrature. The infinite sumation was truncated to N terms. It was found that convergence occurred for small raindrops when $\mathbb{N}=5$ and for large raindrops when $N=13$. Note that these values of N were also used by Holt et al. The wave vectors \vec{k}_{1}, \vec{k}_{2} are composed of $\left(x_{1}=\cos \theta_{1}, \phi_{1}\right)$ and ($\left.x_{2}=\cos \theta_{2}, \phi_{2}\right)$ respectively. In (20) we chose the x pivots to be n_{x} with x varying between $-1 \leqslant x \leqslant 1$. The n_{x} pivots are equally spaced in the above interval. The pivots are equally spaced in the interval $0 \leq \phi \leq \pi$.

ORIGINA PACE FS OF POOR QUALITY

A Fortran computer program (called COEFF) was written. In Section 6.2 the COEFF program is described and a statement listing is presented.

Finally in this section we present the results from an example computation for raindrops using the COEFF program and compare those results to published values. Let

$$
\begin{equation*}
f^{\prime}(0)=f\left(k_{0} \hat{X}, k_{0} \hat{x}\right) \cdot \hat{z} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime \prime}(0)=f\left(k_{0} \hat{x}, k_{0} \hat{x}\right) \cdot \hat{y} \tag{40}
\end{equation*}
$$

$f^{\prime \prime}(0)$ and $f^{\prime \prime}(0)$ are the forward scattering coefficients for incident field polarizations along the major and minor drop ares, tespectively. The values $\mathrm{f}^{\circ}(0), \mathrm{f}^{\prime \prime}(0)$ were calculated for a spheroidal raindrop with $a=0.125443 \mathrm{~cm}, c=0.172355$ cm and $\varepsilon_{r}{ }^{2}=n_{O}=7.884+j 2.184$ at frequency of 11 GHz. These values were compared with one's of Holt. (See Table 1) Fof the above calculations the pivots n_{x}, n_{ϕ} were both equal to 5 and $N=9$. The execution time was 10.5 minutes. Execution time increases significantly with increasing \mathbb{N}, n_{X}, and n_{ϕ}. Keeping n_{X}, n_{ϕ} constant, $C P U$ execution time is proportional to N^{2}. For larger values of a. N must be increased which causes a large increase in execution time.

ORIGINAL PARE SS OF POOR QUALITY

	Values computed using COEFF	Val ues from Holt et al
$f^{\prime}(0)$	$0.2479+j 0.0204$	$0.2473+j 0.02045$
$f^{\prime \prime}(0)$	$0.03517+j 0.02379$	$0.03513+j 0.02333$

Tablt 1
\because Omparison st Scotterint $:$ Et"icient Values

We have seen that single-particie scattering coefficients can be calculated by one of a variety of analytical or numerical methods. These resuits are then to be used in computing the scattering effects of an ensemble of particles in precipitation media. This is facilitated by casting the single-particle problem into a tensor form. In this section we discuss the single-particle tensor in preparation for use in the multiple scattering algorithm for rain in Chapter 5.

For an incident plane wave propagating in the z-direction with electric field \vec{E}_{0}, the far zone scattered field of (4) has electric field components perpendicular to the direction of scattering and can be expressed as

$$
\begin{equation*}
\vec{E}_{s}(\vec{r})=\frac{e^{-j k r}}{r} \vec{f}(\vec{r}) \vec{E}_{0}, \tag{41}
\end{equation*}
$$

where $\bar{f}(\vec{r})$ is the scattering tensor of the scatterer. For example, in the case of Rayleigh-Gans scartering it follows from (6) that the scattering tensor is given by

$$
\begin{equation*}
\bar{E}(\vec{r})=\frac{k_{o}^{2}}{4 \pi \varepsilon_{0}} \int_{V^{\prime}}\left(\varepsilon-\varepsilon_{0}\right)(\bar{I}-\hat{r r}) e^{+j k_{o} \hat{r} \cdot \vec{r}^{\prime}} d V^{\prime} \tag{42}
\end{equation*}
$$

Equation (41) may be written in a matrix form as

$$
\left[\begin{array}{l}
E_{x_{s}} \tag{43}\\
\\
E_{y_{s}}
\end{array}\right]=\frac{e^{-j k r}}{r} \underline{f}(x)\left[\begin{array}{l}
E_{o x} \\
\\
E_{o y}
\end{array}\right]
$$

where $\underline{f}(\vec{r})$ is a 2×2 matrix corresponding to the scattering tensor

$$
\underline{\underline{\mathrm{E}}(\overrightarrow{\mathrm{r}})}=\left[\begin{array}{ll}
\mathrm{E}_{11} & \mathrm{~F}_{12} \tag{44}\\
\mathrm{E}_{21} & \mathrm{E}_{22}
\end{array}\right]
$$

4.4 REFERENCES

1. J. Stratton, Electromagnetic Theory McGraw Hill Book Co., New York, 1941.
2. M. Kerker, The Scattering of Light, Academic Press, New York 1969.
3. Lord Rayleigh, Phil Mag., vol. 44, p. 28, 1897.
4. D. S. Jones, The Theory of Electromagnetism, MacMillan Company, New York, 1964.
5. W. L. Stutzman, W. P. Overstreet, C. W. Bostian, A. Tsolakis and E. A. Manus, "Ice Depolarization on Satellite Radio Paths," Final Report for Intelsat Contract, INTEL-123, VPI\&SU EE Dept., April 1981.
6. R. Gans, Ann. Phys., vol. 37, p. 881, 1912.
7. A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.
8. L. I. Schi-f, Quantum Mechanics, McGraw-Hill Co., New York, 1955.
9. T. Oguchi, "Attenuation of electromagnetic wave due to rain with disturted raindrops," J. Radio Res. Labs., vol. 33, pp. 467-485, 1960.
10. J. A. Morrison and T. S. Chu, "Perturbation calculations of rain-induced differential attenuation and differential phase shift at microwave frequencies," vol. 52, pp. 19071913, Dec. 1973.
11. T. Oguchi and Y. Hosoya, "Differential attenuation and differential phase shift of radio waves due to rain: Calculations at microwave and mil imeter wave regions," J. de Rech. Atin., vol. 8, p. 121-128, 1974.
12. P. M. Morse and H. Feshback, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.
13. A. R. Holt, N. K. Uzunoglou, and B. G. Evans, "An integral equation solution to the scattering of electromagnetic radiation by dielectric spheroids and ellipsoids," IEEE Trans. Ant. Prop., vol. AP-26, pp. 706-712, 1978.

Chapter 5
 MULTIPLE SCATTERING COMPUTATIONS

5.1 Introduction

Scattering problems involving more than one scatterer are complicated and, in general, analytical solutions do not exist. It is necessary to make certain simplifying assumptions. Typically it is assumed that the scatterers are randomly distributed, are infinite in number, and are in the far zone of each other. In this paper a general approach to scattering from particulate media which includes multiple scattering is presented. The results are applied to the problem of millimeter wave propagation through rain. An excellent review of the role of multiple scattering in radiowave propagation through precipitation is given by Olsen [1982].

Scattering by random distributions of scatterers was first studied by Rayleigh [1871], who used a single-scattering approximation and identical, aligned scatterers. A detailed derivation of Rayleigh's results is available [Van de Hulst,1957]. The single-scattering approximation does not hold when the density of scatterers is large or the propagating wave frequency is high. Improved accuracy over that using single-scattering is possible using first-order multiple scattering or complete multiple scattering.

In this chapter equations are derived for the average vector electric field $\langle\vec{E}(\vec{r})>$ in the presence of a random distribution of scatterers using, first, lower order scattering
approximations and, second, the multiple scattering approach. In Section 5.2 the single-scattering approximation is used to derive expressions for the coherent electric field in an ensemble of scatterers with random distributions of location, size, shape, and orientation. These results are used to treat the ensemble of scatterers in which particle scattering only occurs once but the incident wave on each particle has included the effects of previous particles; this is first-order multiple scattering. In Section 3 complete multiple scattering is considered in which the field incident on a particle can arise, in part, from fields scattered from any other particles. The Foldy-Twersky scattering procedure is used to derive an integral equation for the vector coherent field in an ensemble of particles. In Section 4 fultiple scattering results are applied to the rain propagation problem. Some typical calculations are performed.

5.2 Lower Order Scattering

Scattering from discrete media that does not include all orders of multiple scattering has been studied from various approaches by many investigators. An excellent review was prepared by. Ishimaru [1977]. In this section we discuss two of these which have been applied to the rain propagation problem.

Single scattering
Under the single-scattering approximation, the electric field is scattered only once by the scatterers. Let us consider specifically the slab of scatterers of thickness L shown in Fig. 1 , with a plane wave incident upon it. Each scatterer (say the $p^{\text {th }}$ one) can have a random position \vec{r}_{p}, size as measured by the equivolumetric radius a_{p}. shape as represented by the shape parameter s_{p}. and orientation angle represented by ${ }^{\theta} p$. The field at point \vec{r}, where the receiving antenna is located, is the incident. field plus the field scattered by particles in the active region of the slab; the active region is the central few Fresnel zones. Summing over the contributions from N particles in the active region, we obtein
$\vec{E}(\vec{r})=\vec{E}^{i}+\sum_{p^{\prime}=1}^{N} \frac{e^{-j k_{o}\left(x_{p}^{2}+y_{p}^{-2}\right) / 2 r_{p}}}{r_{p}}{\underset{p}{p}}^{(\vec{r})} \cdot \vec{E}^{i}(\vec{r}) \quad$,
where $\bar{f}_{p}(\vec{r})$ is the scattering tensor of the p th scatterer and $r_{p}=\left|\vec{r}_{p}\right|$.

In order to compute the average field at point \vec{r} we assume that the scatterers are randomly distributed in position, size, shape, and orientation angle, and that all of them have the same particle distribution

$$
\begin{equation*}
\frac{n\left(\vec{\omega}_{p}\right)}{N}, \tag{2}
\end{equation*}
$$

Figure 1. A plane wave propagating through a slab of scatterers.
where $\vec{\omega}_{p}$ represents the random parameters of position \vec{r}_{p}, size a_{p}, shape s_{p}, and orientation angle θ_{p}, $n\left(\vec{\omega}_{p}\right)$ is the number of scatterers per unit volume for partioles in class $\vec{\omega}_{p}$.

Equation (1) is averaged using the distribution given in (2):
$\langle\vec{E}(\vec{r})\rangle=\left[\bar{I}+\int_{r^{\prime}, \omega} \bar{f}\left(r^{\prime}\right) \frac{e^{-j k_{0}\left(x^{\prime 2}+y^{\prime 2}\right) / 2 r^{\prime}}}{r^{\prime}} n\left(r^{\prime}, \omega\right) d r^{\prime} d \omega\right] \cdot \vec{E}^{i}$

Here, $d r^{\prime}=d x ' d y ' d z '$ is the elemental volume of space, and w encompasses the distribution parameters for the particle size, shape, and orientation, $\omega=(a, s, \theta)$.

Since major contributions arise from particles in the. first few fresnel zones, r^{\prime} is nearly independent of x ', and Y^{\prime} in in the integral appearing in (3). We can make then the substitutions

$$
\begin{equation*}
x_{1}=\sqrt{\frac{j k_{o}}{2 r^{\prime}}} x^{\prime} \quad, \quad y_{1}=\sqrt{\frac{j k_{o}}{2 r^{\prime}}} y^{\prime} \quad, \quad z_{1}=z^{\prime} \tag{4}
\end{equation*}
$$

giving

$$
\begin{align*}
&\langle\vec{E}(\vec{r})\rangle= {\left[\vec{I}+\frac{2}{j k_{0}} \int_{\omega} d \omega \int_{z_{1}} d z_{1} \int_{-\infty}^{\infty} d x_{1} \int_{-\infty}^{\infty} d y_{1} e^{-\left(x_{1}{ }^{2}+y_{1}{ }^{2}\right)} \overline{\mathrm{f}} \mathrm{n}\left(\mathrm{r}_{1}, \omega\right)\right] } \\
& \cdot \vec{E}^{\dot{i}(\vec{r})} \cdot \tag{5}\\
&-81-
\end{align*}
$$

Using the relationship

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-u^{2}} d u=\sqrt{\pi} \tag{6}
\end{equation*}
$$

and assuming that $n\left(r_{1}, w\right)$ varies only in the direction of propagation $2,(5)$ gives

$$
\begin{align*}
\langle\vec{E}(\vec{r})\rangle & =\left[\bar{I}+\frac{2 \pi}{j k_{0}} \int \bar{f} \underset{\sim}{n}\left(z_{1}, \omega\right) d z_{1} d \omega\right] \cdot \vec{E}^{i}(\vec{r}) \\
& \equiv[\bar{I}-j \bar{k}] \cdot \vec{E}^{i}(\vec{r}) \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
\overrightarrow{\mathrm{k}}=\frac{2 \pi}{\mathrm{k}_{0}} \int \overline{\mathrm{f}} \mathrm{n}\left(z_{1}, \omega\right) \mathrm{d} z_{1} \mathrm{~d} \omega \tag{8}
\end{equation*}
$$

If the elements of the tensor \bar{k} are small, the quantity \bar{I} $j \bar{k}$ may be approximated by an exponential. This step is further motivated by our knowledge that the exponential form includes multiple scattering effects as it will be shown in Section 5.3. Within the framework of this approximat on (7) can be written in the matrix form as

$$
\begin{equation*}
\langle\underline{E}(\vec{r})\rangle=e^{-j \underline{k}} \underline{E}^{i}(\vec{r}) \tag{9}
\end{equation*}
$$

Here, 〈E $(\vec{r})\rangle$ is the column matrix corresponding to the vector $\langle\vec{E}(\vec{r})\rangle$. Similarly, $\underline{E}^{i}(\vec{r})$ is the column matrix associated with $\vec{E}^{i}(\vec{r} ;$ and \underline{k} the matrix corresponding to the tensor \bar{k}.

ORIGINAL FA:
OF POOR Quat?

The coherent field scattered by a slab of scatterers can, in general, be written as

$$
\begin{equation*}
\left\langle\overrightarrow{\mathrm{E}}^{\mathbf{S}}(\vec{r})\right\rangle=\overrightarrow{\mathrm{D}} \cdot \vec{E}^{\mathbf{i}}(\vec{r}) \tag{10}
\end{equation*}
$$

where $\overline{\mathrm{D}}$ is the scattering tensor of the slab and depends on the scattering properties of the individual scatterers and their random distribution in position, size, shape, and orientation angle. Specifically, for the single scattering case

$$
\begin{equation*}
\overline{\mathrm{D}}=\overline{\mathrm{I}}-\mathrm{j} \frac{2 \pi}{\mathrm{k}_{0}} \int_{z_{I}, \omega} \overline{\mathrm{f}}(\omega) \mathrm{n}\left(z_{I}, \omega\right) \mathrm{d} z_{I} \mathrm{~d} \omega \tag{11}
\end{equation*}
$$

In the derivation of this result the assumption was made that the plane wave is scattered only once by the particles. This assumption is unrealistic, since the wave may be scattered several times by the particles before reaching the point R at position \vec{r}. When the scattering coefficients of the particles and the particle density are small, contributions to the scattered wave by second, third, and higher order scattering may be ignored. There are cases, however, where the scattering coefficients of the scatterer are large (e.g., for raindrops above 30 GHz), and the multiple scattering contributions cannot be ignored. Starting with the next section we will take into consideration multiple-scattering contribctions.

First-order miltiple scattering by a slab of scatterers
Under the first-order multiple scattering approximation, the slab of particles of length L is divided into n thin subslab's. In each individual subslab the single approximation is assumed to hold. The coherent field at point R is then given by

$$
\begin{equation*}
\langle\vec{E}(\vec{r})\rangle=\overline{\mathrm{D}}_{1} \cdot \overline{\mathrm{D}}_{2} \cdot \ldots \overline{\mathrm{D}}_{\mathrm{n}} \cdot \overrightarrow{\mathrm{E}}^{i}(\vec{r}) \tag{12}
\end{equation*}
$$

where \bar{D}_{i} is the scattering tensor of the i th subslab and is defined by (ll). This first-order multiple scattering approach has been used by a number of researchers in different areas of wave propagation. In radio wave propagation through precipitation, for example, Persinger et al. [1980] have used a computerized code to evaluate (12) in order to calculate attenuation and isolation of a wave propagating through a medium consisting of ice-particles and rain.

5.3 Multiple Scattering

Single scattering holds only when the scattering coefficients and the dersity of the particles are small. Firstorder multiple scattering holds for any forward scattering propagation situation provided that the thickness of each subslab is kept small. As shown in (12), the coherent field in this case contains the dot products of a large number of
tensors and its evaluation can be performed only by fast digital machines.

In order to include both forward and backward multiple scattering, we will use an approach first introduced by Foldy [1945] and developed further by Lax [1951] and Twersky [1962]. In our formulation we will assume that the medium is anisotropic, and we will derive the Dyson equation for the coherent vector electric field in terms of the scattering tensor of the individual scatterers and their distribution in location, size, shape and orientation.

Derivation of the general multiple scattering integral equation

Let \dot{N} scatterers be randomly distributed in space, and have random size, shape, and orientation. The medium between any two scatterers is free space. (See Fig. 2) The vector electric field $\vec{E}(\vec{r})$ between the scatterers satisfies the Helmholtz equation

$$
\begin{equation*}
\left(\nabla^{2}+k_{0}^{2}\right) \vec{E}(\vec{r})=0, \tag{13}
\end{equation*}
$$

where k_{o} is the free space propagation constant.
The incident field \vec{E}^{a} at the point $\overrightarrow{\mathrm{r}}_{\mathrm{a}}$ is the sum of the incident electric field $\stackrel{E}{E}_{i}{ }^{a}$ in the absence of the scatterers and the field scattered by the N scatterers, spe-

Figure 2. Geometry for multiple scattering. The total field at point a, ${ }^{7}$ a, is the sum of the incident field in the absence of scatterers, $\overrightarrow{\mathrm{E}}_{\mathrm{i}}{ }^{\text {a }}$, plus the fields scattered from all other particles.
cifically, we have

$$
\begin{equation*}
\vec{E}^{a}=\vec{E}_{i}^{a}+\sum_{j=1}^{N} \vec{G}_{j}^{a}, \tag{14}
\end{equation*}
$$

where $\vec{G}_{j}{ }^{a}$ is the field at position \vec{r} that is scattered by the $j^{\text {th }}$ scatterer. The latter is a function of the scattering properties of the $j^{\text {th }}$ scatterer at position \vec{r}_{j} and the location \vec{r}. We can define a tensor $\vec{g}_{j} a$ such that

$$
\begin{equation*}
\overrightarrow{\mathbf{G}}_{j} \mathrm{a}=\overline{\mathcal{G}}_{j} \mathrm{a} \cdot \overrightarrow{\mathrm{E}}^{j} \tag{15}
\end{equation*}
$$

The field incident on the j th particle is

$$
\begin{equation*}
\vec{E}^{j}=\vec{E}_{i}^{j}+\sum_{k=1, k \neq j}^{N} \vec{G}_{k}^{j} \tag{16}
\end{equation*}
$$

Substituting (16) into (15) we obtain

$$
\begin{equation*}
\overrightarrow{\mathrm{G}}^{j}=\overline{\mathrm{g}}_{\mathrm{j}} \mathrm{a} \cdot\left[\overrightarrow{\mathrm{E}}_{\mathrm{i}}^{\mathrm{j}}+\sum_{\mathrm{k}=1, \mathrm{k} \neq \mathrm{j}}^{\mathrm{N}} \stackrel{\rightharpoonup}{\mathrm{G}}_{\mathrm{k}}^{\mathrm{j}}\right] \tag{17}
\end{equation*}
$$

Using (17) and (14), we nave
$\vec{E}^{a}=\vec{E}_{i}^{a}+\sum_{j=1}^{N} \bar{g}_{j}^{a} \cdot \vec{E}_{i}^{j}+\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \bar{g}_{j}^{a} \cdot \bar{g}_{k}^{j} \cdot \vec{E}^{k} \cdot$

By iterating the above process it follows that OF POOR QUALITM
$\vec{E}^{a}=\vec{E}_{i}^{a}+\sum_{j=1}^{N} \bar{g}_{j}^{a} \cdot \vec{E}_{i}^{j}+\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \bar{g}_{j}^{a} \cdot \overline{\mathrm{~g}}_{k}{ }^{j} \cdot \vec{E}_{i}{ }^{k}$

$$
\begin{equation*}
+\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \sum_{\ell=1, \ell \neq k}^{N} \bar{g}_{j}^{a} \cdot \overline{\mathrm{~g}}_{k}{ }^{j} \cdot \overline{\mathrm{~g}}_{\ell}{ }^{k} \cdot E_{i}^{\ell}+\ldots \tag{19}
\end{equation*}
$$

The triple summation in (19) may be written as
$\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \sum_{\ell=I, \ell \neq k}^{N} \bar{g}_{j}{ }^{a} \cdot \overline{\mathrm{~g}}_{k}{ }^{j} \cdot \overline{\mathrm{~g}}_{\ell}{ }^{k} \cdot \vec{E}_{i}^{\ell}$

$$
\begin{align*}
& =\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \ell=1, \ell=k, \ell \neq j \\
& \sum_{j}^{N} \bar{g}_{j}^{a} \cdot \bar{g}_{k}^{j} \cdot \overline{\mathrm{~g}}_{\ell}{ }^{k} \cdot \vec{E}_{i}^{\ell} \tag{20}\\
& \quad+\sum_{j=1}^{N} \sum_{k=1}^{N} \bar{g}_{j}^{a} \cdot \overline{\mathrm{~g}}_{k}{ }^{j} \cdot \bar{g}_{j}^{k} \cdot \vec{E}_{i}^{j} \quad .
\end{align*}
$$

Assuming that backscattering is smaller than forward scattering, the second summation in (20) may be ignored, and (19) may be written as

$$
\begin{align*}
\vec{E}^{a} & =\vec{E}_{i}^{a}+\sum_{j=1}^{N} \bar{g}_{j}^{a} \cdot \vec{E}_{i}^{j}+\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \bar{g}_{j}^{a} \cdot \overline{\mathrm{~g}}_{k}^{a} \cdot \vec{E}_{i}^{k} \\
& +\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \sum_{\ell=1, \ell \neq k, \ell \neq j}^{N} \overline{\mathrm{~g}}_{j}^{a} \cdot \overline{\mathrm{~g}}_{k}^{j} \cdot \overline{\mathrm{~g}}_{\ell}^{k} \cdot \vec{E}_{i}^{\ell}+\ldots . \tag{21}
\end{align*}
$$

Another way to state the significance of the approximation

ORGINAE PRES :
OF POOR QUALITY
involved in this equation is that we have ignored the following: triple scattering between two scatterers, fourth order scattering between three scatterers, and so on. The above procedure was first introduced by Twersky [1.962] in order to obtain a closed form equation for the coherent field.

We next make the assumption, as in Section 2, that the scatterers have the same position, size, shape, and orientaltion distribution, and that there are no correlations between scatterers. The particle distribution may be defined as in (2). However, now N is the total number of particles in the entire volume. Taking the ensemble average of (21), we obtain an expression for the coherent field at point r:

$$
\begin{align*}
& \left\langle\vec{E}^{a}\right\rangle=\vec{E}_{i}^{a}+\sum_{j=1}^{N} \int_{\vec{\omega}_{j}} \vec{g}_{j}^{a} \cdot \vec{E}_{i}^{j} \frac{\dot{n}\left(\vec{\omega}_{j}\right)}{N} d \vec{\omega}_{j}+\sum_{j=1}^{N} \sum_{k=1, k \neq j}^{N} \\
& \int_{\vec{\omega}_{j}} \int_{\vec{\omega}_{k}} \bar{g}_{j}^{a} \cdot \bar{g}_{k}^{j} \cdot \vec{E}_{i}^{k} \frac{n\left(\vec{\omega}_{j}\right) n\left(\vec{\omega}_{k}\right)}{N^{2}} d \vec{\omega}_{j} \mathrm{~d}_{\mathrm{\omega}}^{\mathrm{k}}+\sum_{j=1}^{N} \sum_{k=1, k \neq j \quad \ell=1, \ell \neq k, \ell \neq j}^{N} \\
& \int_{\vec{\omega}_{j}} \int_{{\underset{\omega}{w}}^{\prime}} \int_{\vec{\omega}_{\ell}} \bar{g}_{j}^{a} \cdot \vec{g}_{k}^{a} \cdot \bar{g}_{\ell}^{k} \cdot \vec{E}_{i}^{\ell} \frac{n\left(\vec{\omega}_{j}\right) n\left(\vec{\omega}_{k}\right) n\left(\vec{\omega}_{\ell}\right)}{N^{3}} d \vec{\omega}_{j} d \vec{\omega}_{k} \mathrm{~d}_{\boldsymbol{\omega}}^{\ell}+\cdots . \tag{22}
\end{align*}
$$

or

$$
\begin{align*}
\left\langle\vec{E}^{a}\right\rangle= & \vec{E}_{i}^{a}+\int_{\vec{\omega}_{j}} \bar{g}_{j}^{a} \cdot \vec{E}_{i}^{j} n\left(\vec{\omega}_{j}\right) d \vec{\omega}_{j}+\frac{N-1}{N} \int_{\vec{\omega}_{j}, \vec{\omega}_{k}} \bar{g}_{j}^{a} \cdot \bar{g}_{k}^{j} \cdot \vec{E}_{i}^{k} \\
& n\left(\vec{\omega}_{j}\right) n\left(\vec{\omega}_{k}\right) d \vec{\omega}_{j} d \vec{\omega}_{k}+\frac{N-2}{N} \int_{\vec{\omega}_{j}, \vec{\omega}_{k}, \vec{\omega}_{\ell}} \vec{g}_{j}^{a} \cdot \vec{g}_{k}^{j} \cdot \bar{g}_{\ell}^{k} \cdot \vec{E}_{i}^{\ell} \\
& n\left(\vec{\omega}_{j}\right) n\left(\vec{\omega}_{k}\right) n\left(\vec{\omega}_{\ell}\right) d \vec{\omega}_{j} d_{j} \vec{\omega}_{l} \vec{\omega}_{\ell}+\ldots \tag{23}
\end{align*}
$$

By letting N tend to infinity, the ratios $\frac{N-1}{N}, \frac{N-2}{N}$, etc., tend to unity, and the infinite summation in (23) can be represented by the integral equation

$$
\begin{equation*}
\left.\cdot \vec{E}^{a}\right\rangle=\vec{E}_{i}^{a}+\int_{\vec{\omega}_{j}} \vec{g}_{j}^{a} \cdot\left\langle\overrightarrow{\mathrm{E}}^{j}\right\rangle n\left(\vec{\omega}_{j}\right) d \vec{\omega}_{j} \tag{24}
\end{equation*}
$$

This is the Dyson equation for the coherent field in an ensemble of randomly distributed scatterers, and it is often called the Foldy-Lax-Twersky equation. It has been derived on the basis of the Twersky procedure. The same equation may also be obtained using Lax's polycrystaline approximation [Lax. 1951].

The Dyson equation, (24), is more general than the equations for the coherent field derived by the single scattering or first-order multiple scattering approximations; it includes backscattering. Evaluation of (24) is very difficult and depends on the complexity of the operator $\bar{g}_{j}{ }^{a}$. If the medium is tenuous (the average distance d between ariy
two arbitrary scatterers much greater than the free space wavelength, i.e., $\left.k_{0}{ }^{d} \gg 1\right)$, then each scatterer is in the far zone of all other scatterers, and $\bar{g}_{j}{ }^{\mathrm{a}}$ may be replaced by

$$
\begin{equation*}
\overline{\mathrm{g}}_{\mathrm{j}}{ }^{a}=\frac{e^{-j k_{o}\left|\vec{r}-\vec{r}_{j}\right|}}{\left|\vec{r}-\vec{r}_{j}\right|} \bar{f}, \tag{25}
\end{equation*}
$$

where $\overline{\mathbf{f}}$ is the scattering tensor for the scatterer.

Evaluation of multiple scattering for plane wave incidence
Most practical situations (such as in communications applications) are well approximated by a plane wave incident normally on a slab of scatterers as described in the previous section. Let a plane wave be propagating in the z-direction with electric field

$$
\vec{E}_{i}=\vec{E}_{o} e^{-j k_{o} z}
$$

The average field $\langle\overrightarrow{\mathrm{E}}\rangle$ inside the slab obeys the vector Fol-dy-Lax-Twersky integral equation of (24). The medium of the scatterers is assumed to be tenuous, so that the scattering operator $\bar{g}_{j}{ }^{a}$ can tare the form shown in (25). Substituting (25) into (24) and evaluating at the observation point a with position vector $\overrightarrow{\mathbf{r}}$,

$$
\measuredangle \vec{E}(\vec{r})\rangle=\vec{E}_{o} e^{-j k_{0} z}+\int_{\vec{\omega}_{j}} \bar{f}_{j}\left(\hat{z}, \vec{r}-\vec{r}_{j}\right)<\overrightarrow{\mathrm{E}}{ }^{j}>\frac{e^{-j k_{o}\left|\vec{r}-\vec{r}_{j}\right|}}{\left|\vec{r}-\vec{r}_{j}\right|} n\left(\vec{\omega}_{j}\right) d \overrightarrow{\omega_{j}}
$$

where $\left|\vec{r}-\vec{r}_{j}\right|=\left[\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}+\left(z-z_{j}\right)^{2}\right]^{1 / 2}$ vary only in the z-direction and, therefore, the fields will also. Evaluation of (26) then proceeds by noting that the medium is assumed to be homogeneous in the $x, y-p l a n e$ and employing the method of stationary phase to reduce the integral giving
$\langle\vec{E}(z)\rangle=\vec{E}_{0} e^{-j k_{0} z}+\frac{2 \pi j}{k_{0}} \int_{\omega} \vec{f}\left\langle\vec{E}\left(z^{\prime}\right)\right\rangle e^{-j k_{0}\left(z-z^{\prime}\right)} n(\omega) d \omega$
where $\omega=\left(z^{+}, a, s, \theta\right)$ and $\overline{\mathbf{f}}$ is the single-particle forward scattering tensor. The sclution to this integral equation in matrix form is

$$
\begin{equation*}
\langle\underline{E}(z)\rangle=e^{-j \underline{k}} \quad E_{0} e^{-j k_{0} z} \tag{28a}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{\underline{k}} \quad=\frac{2 \pi j}{k_{0}} \int_{\omega} \underline{E} n(\omega) d \omega \tag{28b}
\end{equation*}
$$

A similar solution bas been reported [Oguchi, 1981] in the case where the medium was uniform in the 2 -direction.

Note that $: 28$) is che same as (9). Thus, the exponential approximation to the derived single-scattering formula in (7) is justified on the basis that it really includes multiple zsatcering effects.

The equations derived in this section for the coherent vector electric field can be used to study radio wave propagation through precipitation media which vary in composition along the direction of propagation. This is explored in the nest section.

5.4 Applications to Ralin Media

The results of the derivation in the previous section can be applied to precipitation madia. Here we consider rain. The formulation has the following features: it includes miltiple scattering effects; it allowf for direct inclusion of distributions of raindrop sizes, shapes, and canting angles; and it allows for a nonuniform rain rate along the propagation path. Most models used to make actual calculations for rain do not have such flexibility. quite frequently the rain is assumed to be of uniform rate over some path length, the canting angle distribution is omitted or is included by modifying a constant canting angle resul.t, and/or al. drop shapes are alike.

Persinger et al. [1.980] presented a Eirst-order multiple scattering model that included a nonuniform spatial rain rate vactation as well as raindrop canting angle and shape distributions. In this section we use the ideas of Persinger et al. together with the nultiple scattering model to make calculations for rain media.

The scattering matrix for single raindrops

The equivolumetric radius of the raindrops varies from 0.1 to 4.0 mm . At millimeter wave frequencies the raindrop radius is comparable with the free space wavelength and the Rayleigh scattering approximation is not adequate for the calculation of the raindrop scattering matrix. It is necessari then to use one of the available numerical methods [Oguchi, 1981] to calculate the raindrop scattering coefficlients. In our computations we will use values of scattering coefficients published by Uzunoglu et al. [1977]. These results have been computed using the Fredholm integral equation method. We will assume that the raindrops are either spherical or oblate spheroids.

Let θ be the canting angle of the oblate raindrop. The single raindrop scattering matrix is given by
$\underline{f}=\frac{1}{2}\left[\begin{array}{ll}f_{V}(a)+f_{H}(a)+\cos 2 \theta\left[f_{H}(a)-f_{V}(a)\right] & {\left[f_{V}(a)-f_{H}(a]\right] \sin 2 \theta} \\ {\left[f_{Y V}(a)-f_{H}(a)\right] \sin 2 \theta} & f_{V}(a)+f_{H}(a)+\cos 2 \theta\left[f_{V}(a)-f_{H}(a)\right]\end{array}\right]$

In this expression, a is the equivolumetric radius of the oblate raindrop, and $f_{V}(a), f_{H}(a)$, are the scattering coefficients for the incident electric field aligned with the minor and major axes, respectively. The quantities $f_{V}(a), f_{H}(a)$ are expressed in terms of powers of the
equivolumetric radius of the raindrop; specifically,

$$
\begin{equation*}
\underset{H}{f V}(a)=\sum_{i=0}^{5} a_{i}{\underset{H}{V} a^{i}, ~ i}_{i} \tag{30}
\end{equation*}
$$

Values of $\alpha_{i}{ }_{H}^{V}$ are obtained by curve fitting published tabular results in terms of size, at a specific elevation angle.

Rain medium computations

The rain medium is represented by a slab of raindrops of extent \ddagger. With plane. wave incidence the coherent field propagating inside the rain medium obeys (28), where the single drop scattering matrix E is given by (29). In $\mathrm{n}\left(z^{\prime}, \omega\right)$ $n(\omega)$ of (28), z^{\prime} is the distance along the direction of propagation into the rain slab, a is the equivolumetric radius for the individual raindrops, s is the shape of the raindrop (spherical or oblate speroidal), and θ is the raindrop canting angle. In the distribution density function $\dot{n}(\omega)$ of (2sh) θ and s are assumed to be statistically independent; i.e.

$$
\begin{equation*}
n(\omega)=n_{0}\left(z^{\prime}, \text { a) } p_{1}(\theta) p_{2}(s)\right. \tag{31}
\end{equation*}
$$

$\mathrm{g}_{2}(\mathrm{~s})$ is a discrete shape distribution density Eunction in which F_{0} is the fraction of drops that are oblate spheroidal and the remaining fraction 1 - Fo are spherical. The canting angle distribution is Gaussian with mean $<\theta$, and
standard deviation σ_{θ} :
ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{equation*}
p_{1}(\theta)=\frac{1}{\sqrt{2 \pi} \sigma_{\theta}} e^{-(\theta-<\theta>)^{2} / 2 \sigma_{\theta}^{2}} \tag{32}
\end{equation*}
$$

For $n_{0}(z, a)$ we use the drop size distribution of Marshall and Palmer [1948] with rain rate as a function of position:
$n_{0}(z, a)=16,000 e^{-8.2\left[R(z)^{-0.21}\right] a} \quad \mathrm{~m}^{-3} \mathrm{~mm}^{-1}$

The rain rate spatial variation used in the examples to follow is piecewise uniform as introduced by Persinger et al. [1980], where

$$
R(z)=\left\{\begin{array}{lc}
R_{0}\left[\frac{R_{0}}{10}\right]^{-0.66} & 0 \leqslant z \leqslant 0.2 L \tag{3F}\\
R_{0} & 0.2 L \leqslant z \leqslant L
\end{array}\right.
$$

in which R_{0} is the point rainfall rate at the receiving station ($z=\mathrm{L}$).

Evaluation of k in $28 b$) can proceed after substituting in the above stated information on the distributions:
$\underline{k}=\frac{2 \pi}{k_{0}} \int_{0}^{L} d z^{\prime} \int_{0}^{\infty} d a \int d \theta\left\{\left(1-F_{0}\right) \underline{f}^{S P H}(a)+F_{0} \underline{E}^{O B L}(a, \theta)\right\}_{n_{0}}\left(z^{\prime}, a\right) F_{1}(\theta) \quad$.

The integral over the angle θ may be performed by first
evaluating the expressions
$\langle\sin 2 \theta\rangle=\int_{\langle\theta\rangle-\alpha}^{\langle\theta\rangle+\alpha} d \theta \sin 2 \theta F_{I}(\theta),\langle\cos 2 \theta\rangle=\int_{\langle\theta\rangle-\alpha}^{<\theta\rangle+\alpha} d \theta \cos 2 \theta p_{1}(\theta)$
where a is the maximum variation of the canting angle. It can be shown that (36) is approximated by

$$
\begin{equation*}
\langle\sin 2 \theta\rangle=\exp \left(-2 \sigma_{\theta}^{2}\right) \sin 2\langle\theta\rangle \tag{37}
\end{equation*}
$$

and, similarly,

$$
\begin{equation*}
\langle\cos 2 \theta\rangle=\exp \left(-2 \sigma_{\theta}^{2}\right) \cos 2\langle\theta\rangle \tag{38}
\end{equation*}
$$

With these approximations the average scattering matrix k becomes
$\underline{k}=\frac{2 \pi}{k_{0}} \int_{0}^{L} d z^{\prime} \int_{0}^{\infty} d a\left\{\left(1-F_{0}\right) \underline{f}^{S P H}(a)+F_{0}<\underline{f}^{O B L}(a)>\right\} n_{0}(z, a)$
where < $\underline{f}^{(O B L}(a)$ > is the average of $\underline{\underline{E}}^{O B L}(a, \theta)$ with respeat to θ, and is obtained from $£(a, \theta)$ by replacing $\sin 2 \theta$, $\cos 2 \theta$ with $\langle\sin 2 \theta>$ and $\langle\cos 2 \theta>$, respectively.

The scattering coefficients $\mathrm{f}^{S P H}(\mathrm{a}), \underset{\mathrm{H}}{\mathrm{OV}}$ (a) are expressed, as in (30); in terms of powers of a up to the fifth order. Then the final evaluation of (Bc-) follows
after performing the indefinite integral

$$
\begin{align*}
I & =\int_{0}^{L} d z \cdot \int d a £(a) n_{0}\left(z^{\prime}, a\right) \\
& =\sum_{n^{2}=0}^{5} c_{n} \int_{0}^{L} d z \cdot \int d a a^{n} e^{-\gamma(z) a} \tag{40}
\end{align*}
$$

where $\gamma\left(z^{t}\right)=-8.2 R\left(z^{i}\right)^{-0.2 I}$ and c_{n} are the expansion coefficients as in (30). Integrating over a and substituting in the rain rate variation of (34) and performing the final integration gives
$I=\sum_{i=1}^{2} \ell_{i} \sum_{n=0}^{5} c_{n}\left[\sum_{m=1}^{n} \frac{n!}{(n-m)!} \frac{(a)^{n-m}}{\gamma_{i}^{m+1}}(-1)^{m}+\frac{a^{n}}{\gamma_{i}}\right]$
where $\ell_{1}=0.2 \mathrm{~L}, \ell_{2}=0.8 \mathrm{~L}$, and $\gamma_{i}=\gamma\left(\ell_{i}\right)$.
The elements of the matris k have been evaluated explicity with (39) and (4l). The depolarization matrix $e^{-j k}$ of (28a) is then evaluated using eigenvalue-eigenvector methods. After the depolarization matrix is evaluated for the rain medium, attenuation and channel isolation on a dual.polarized system can be calculated for a wave passing through the.rain slab [Cox, 2981].

Comparison of mintiple and first-order miltiple scattering results
The multiple seattering model as presented in Section 5.3 has been coruputer programmed. Program inputs include frequency, elevation angle, mean and stanaard deviation of
canting angles, rain rate at the receiver, fraction of oblate raindrops, rain medium length, and incident wave and receive antenna polarization parameters.

Calculations have been performed to test the model and to examine the frequency dependence of multiple scattering effects. To facilitate comparison, as frequency is varied over 11, 20 , and 30 GHz the rain medium parameters are fixed with a 5 km length, a uniform rain rate along the entire path, and a shape mixture of 60% oblate and 40% spherical raindrops. The oblate raindrops have a Gaussian canting angle distribution with a mean of 0 degrees and a standard deviation of 12 degrees. The incident wave polarization is linear with a 45 degree tilt angle. The elevation angle is 45 degrees. Attenuation and isolation as a function of rain rate were computed using both the first-order multiple scattering and complete multiple scattering models. the results are plotted in Fig. 3 for 30 GHz . Note that there are only slight differences between the values computed for the two models. At lower frequencies the differences were negligible. From these calculations it can be concluded that high-er-order multiple scattering effects in rain begin to appear in the range of 30 GHz . However, results using the single scattering formulation of Seceion 5.2 would deviate noticeably.

Figure 3a. Comparison of multiple scattering and first-order multiple scattering rain attenuation calculations at 30 GHz .

Figure 3b. Comparison of multiple scattering and first-order multiple scattering rain-induced isolation calculations at 30 GHz .

To further justify the claim that higher-order multiple scattering effects of rain are negligible. on communication links operating below 30 GHz , the calculated attenuation and isolation are plotted in Fig. 4 for parameters matching those of the VPI\&SD COMSTAR D2 satellite, earth terminal. To more realistically represent rain, the piecewise uniform rain distribution of (34) was used. Note the nearly identical results with and without higher-order multiple scattering included.

5.5 Conclusions

In this paper formulations were presented for computing the effects of electromagnetic scattering from tenuous particulate media. The formulations were for single, firstorder multiple, and complete multiple scattering. Each included the distributions of particle sizes, shapes, and orientation angles.

The multiple scattering formulation as presented here offers several features for calculation of millimeter wave propagation through precipitation media. These features are as fallows. (a) The formuiation is rector in nature and easily accomodaces arbitrary polarization states for the input wave and receiving antenna. (b) Complete medium depo-

Figure 4a. Comparison of multiple scattering and first-order multiple scattering rain attemuation calculations for the Comstar satellite at 20 GHz .

Figure 4b. Comparison of multiple scattering and first-order miltiple scattering rain-induced isolation calculations for the Comstar satellite at 20 GFz .
larization effects can be calculated (i.e., attenuation, isolation, and phase shift). (c) Scattering particle distributions of particle size, shape, and orientation angle are directly included into the model. (d) Varying medium density along the propagation path (such as rain rate) can be accomodated. (e) Ice as well as rain hydrometeors can be included. (f) The multiple scattering formulation is numerically efficient. For typical communication link calculations the computer solution executes at least 30 times faster than the first-order multiple scattering version. (g) The multiple scattering model will give accurate results for systems operating above 30 GHz .

The multiple scattering model was used to calculate communication link performance for rain along earth-space paths. It was shown that higher-order multiple scattering effects only begin to become important in the 30 GHz frequency range.

5.6 References

Cox, D.C. (1981), Depolarization of raủio waves by atmospheric hydrometeros in eartr-space paths: A review, 16(5), 781-812.

Foldy, L.L. (1945), The multiple scattering of waves, Physical Review, 67(3\&4), 107-121.

Ishimaru, A. (1977), Theory and application of wave propagation and scattering in random media, proc. IEEE, 65(7). 1030-1061.

Ishimaru. A. (1978), Wave Propagation and Scattering in Random Media, Vol. 2, Academic Press, New York, Chapter 14.

Lax, M. (1951), Multiple scatiering of waves, Reviews of Modern Physics, 23(4), 287-310.

Marshall, J.S., anā \mathfrak{W}. M. Palmer (1948), The distribution of :aindrops with size, J. Meteorology, 5, 165-166.

Oguchi, T. (1981), Scattering Erom hydrometeors: A survey, Radio Science, $16(5)$, 691-730.

Olsen, R.I. (1982), A review of theories of coherent radio wave propagation through precipitation media of randomly oriented scatterers, and the role of multipls scattering, Radio Science, to be published.

Persinger, R.R., W.L. Stutzman, R.E. Castle, and C.W. Bostian (1980), Millimeter wave attenuation prediction using a piecewise uniform rain rate model, TEEE Trans. on Ant. and Prop., AP-28(2), 149-153.

Rayleigh, Lord (1871), On the light from the sky, its polarization and colour, Phil. Mag., 41(107), 274.

Tsolakis, A. T. (1982), Mrittiple Scattering of Waves by Distributions of Particles with Applications to Radio Wave Propagation Through Precipitation, Ph. D. Dissertation, Virginia Tech (EE Dept. Blacksburg, VA), January, 1982.

Twersky, V. (1962), On scattering of waves by random distributions. I. Freespace formalism, J. Math. Phys., 3, 700-715.

Uzunoglu, N.K., B.G. Evans, and A.R. Holt (1977), Scattering of electromagnetic radiation by precipitation particles and propagation characteristics of terrestrial and space communication systems, Proc. IEE, 124(5), 417-424.

Van de Hulst, H.C. (1957), Light Scattering by Small Particles, John Wiley, New York.

Chapter 6

APPENDIX: COMPUTER PROGRAMS

In this section three computer programs are presented. They correspond to the following: the simple.attenuation model of Chapter 3 , the single rain drop scattering coefficient derivation of Chapter 4, and the multiple scattering model for rain of Chapter 5.

6.1 SIMPLE ATTENUATION MODEL PROGRAM The statement listing of the Simple Attemation Model (SAM) follows.


```
C* CALCULATE SPECIEIC ATTENUATION COEFEICIENTS
        IE(FREQ.GE.1. .AND. FREQ.LE.1000.) GO TO 20
```

 WRITE \((6,10)\) EREQ
 10 FORMAT(1H1,' EREQUENCY=', F10.4,' IS OUT OF PERMITTED RANGE',
 \$ ' - - FROGRAM STOP')
 GO TO 999
 \(20 \mathrm{~A}=6.39 \mathrm{E}-9 *\) EREQ**2.03
 IF(EREQ.GE.2.9) AI=4.21E-5*FREQ**2.42
 IE(EREQ.GE.54.0) A1=0.0409*FREQ**0.699
 IF(EREQ.GE.180.) A1=3.38*FREQ** (~0.151)
 BI=0.851*EREQ**0.158
 IF (EREQ.GE.8.5) BI=1.41*EREQ**(-0.0779)
 IE (EREQ.GE.25.0) B1=2.63*EREQ** (-0.272)
 IF (FREQ.GE.16A.O) B1=0.616*FREQ**0.0126
 C* INITIALIZE RAIN DISTRIBUTION PARAMEIERS
GAMMA=1./22.0
C CALCULATE AVERAGE ZERO-DEGREE ISOTHERM HEIGHT
HI=4. 8
IE(LAT. GT. 30.) $\mathrm{HI}=7.8-0.1 * \mathrm{LAT}$
C SUBTRACT EARTH STATYON ELEVATION
$\mathrm{HI}=\mathrm{HI}=(\mathrm{HO} / 1000.0$)
ELEVR=ELEV*3.14159265/180.
C* PRINT OUTPUT EEEADER
WRITE $(6,25)$ LABEL
25 FORMAT(1H1,///,11X,'SAM - - SIMPTE ATTENUATION MODEL'//,5X,5A4,A2)
WRITE (6,30) FREQ, ELEV, LAT, HO, REGION
30 EORMAT('O', AX,' FREQUENCY: 'E5.2,'GHE'/.5X,'ELEVATION: ',F5.2,

\$5X,' ALTITUDE: ' $\operatorname{FS} .1$.' METERS'/5X.'RAIN CLIMATE REGION: ', I2)
WRITE $(6,35)$ AI, BI
35 EORMAT ('O', 4X,'SPECIEIC ATTENUATION COEFFICIENTS: A1=',F8.5./.
\$40X, 'Bl=', E8.5)
WRITE $(6,40)$
40 FORMAT(IHO,7X,'PERCENT',/,9X,'ITME RAINRATE ATTENUATION'/)
C* CALCUEATE ATTENUATION
DO $70 \mathrm{~J}=\mathrm{I}, 7$
$\mathrm{N}=8-\mathrm{J}$
R=RAIN(N, REGION)
HE=HI
IF(R.GT.10.) $\mathrm{HE}=\mathrm{HI}+$ ALOG10(R/10.)
$\mathrm{L}=\mathrm{HE} / \mathrm{SIN}$ (ELEVR)
ALPHA=A1*R**BI
IF(R.GT.10.) GO TO 45
$A=A C$.FHA*L
GO TO 50
45 ARG=GAMMA*BI*ALOG(R/10.)*COS (ELEVR)
A=ALPHA* (1. -EXP (-ARG*L))/ARG
50 WRITE (6,55) T(N),R,A
55 FORMAT (9X,F5.3,5X,F5.1,7X,F6.2)
70 CONTINUE
999 STOP
END

6.2 SINGLE RAINDROP SCATTERING PROGRAM

The COEFF program was written based on the algorithm developed in Section 4.2. It computes the scattering coefficients of a raindrop. In this section we will describe the main subroutines of the program.

1. Subroutine GENLGP.

This subroutine calculates the associated Lengendre polynomials. It uses the recurrence formulas

$$
\begin{gather*}
P_{0}^{0}(x)=1.0 \quad P_{1}^{0}(x)=x \tag{1}\\
P_{n}^{m i}(x)=\frac{(2 n-1) P_{n-1}^{m}(x) x-(n+m-1) P_{n-2}^{m}(x)}{n-m} \quad m<n \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
F_{n}^{n}(x)=\frac{(2 n)!}{2 m} m^{m} \quad\left(1-x^{2}\right)^{m} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
P_{\mathrm{z} 1}^{m}(x)=0 \quad \text { II }>n \tag{4}
\end{equation*}
$$

2. Subroutine stipbes.

This subroutine calculates the spherical Bessel functions of first and second kind. Quadratic precision is necessary in order to match results
published in Iiterature. (I) First we compute the P and Q polynomials, then we compute the spherical Bessel functions and $h_{h}^{l}(x)$. P and Q are given by
$P(n+1 / 2, x)=\sum_{k=0}^{[1 / 2 n]}(-1)^{k}(n+1 / 2, k)(2 x)^{-2 k}$

$$
\begin{equation*}
Q(n+1 / 2, x)=\frac{[1 / 2(n-1)]}{\Sigma}(-1)^{k}(n+1 / 2,2 k+1)(2 x)^{-2 k-1} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
(\mathrm{n}+1 / 2, \mathrm{k})=\frac{(\mathrm{n}+\mathrm{k})!}{\mathrm{k}!\Gamma(\mathrm{n}-\mathrm{k}+1)} \tag{7}
\end{equation*}
$$

Then $j_{n}(x), y_{n}(x)$ are given by

$$
\begin{equation*}
j_{n}(x)=x^{-1}\left[P(n+1 / 2, x) \sin \left(x-\frac{n \pi}{2}\right)+Q(n+1 / 2, x) \cos \left(x \frac{n \pi}{2}\right)\right] \tag{8}
\end{equation*}
$$

(9)

$$
y_{n}(x)=(-1)^{n+1} x^{-1}\left[P(n+1 / 2, x) \cos \left(x+\frac{n \pi}{2}\right)-Q(n+1 / 2, x) \sin \left(x+\frac{n \pi}{2}\right)\right]
$$

(1)Abramowitz, M., Stegun, I.A., Hendbook of Mathematical Functions, Doven Publications, New York; 1965.

Then

ORIGINAL PAGE R OF POOR QUALITY

$$
\begin{equation*}
h_{n}^{1}(x)=j_{n}(x)+j y_{n}(x) \tag{10}
\end{equation*}
$$

3. Subroutine GENGEN.

This subroutine calculates Gegenbauer polynomiils using the recurrence formula

$$
\begin{equation*}
c_{0}^{1}(x)=1.0 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
G_{1}^{1}(x)=2 . * x \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
c_{n}^{1}(x)=c_{1}^{1}(x) * c_{n-1}^{1}(x)-c_{n-2}^{1}(x) \tag{13}
\end{equation*}
$$

4. Subroutine VMATR.

This subroutine calculates $V\left(\vec{k}_{1}, \vec{k}_{2}\right)$ as
$V\left(k_{1}, k_{2}\right)=4 \pi a b c \quad \gamma \frac{\sin \left|\vec{k}_{1}-\vec{k}_{2}\right|-\cos \left|\vec{k}_{1}-\vec{k}_{2}\right|}{\left|\vec{k}_{1}-\vec{k}_{2}\right|^{2}}$
Note when $\vec{k}_{1}=\vec{k}_{2}$ we divide by 0 so we must take the limit $\vec{k}_{2} \rightarrow \vec{k}_{1}$ giving

$$
\begin{equation*}
\mathrm{U}\left(\overrightarrow{\mathrm{k}}_{1}, \overrightarrow{\mathrm{k}}_{1}\right)=\frac{4}{3} \pi \text { abc } \gamma \tag{15}
\end{equation*}
$$

5. Subroutine ZMATR.

This subroutine calculates the integrand of (27).
6. Subroutine KNTGR.

This routine performs a numerical integration over x in (27) using a Clensaw-Curtis quadrature. Then it calculates matrix $K\left(\vec{k}_{1}, \vec{k}_{2}\right)$

$$
\begin{equation*}
\underline{K}=\varepsilon_{I} \underline{I} V\left(\vec{k}_{1}, \vec{k}_{2}\right)-\underline{\underline{Z}}\left(\vec{k}_{1}, \vec{k}_{2}\right) \tag{16}
\end{equation*}
$$

The seven point Clensahw-Curtis quadrature is given as:

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=\sum_{n=1}^{7} c_{n 1} f\left(x_{n}\right) \tag{17}
\end{equation*}
$$

where:

$$
c_{1}=1 / 35=c_{7} \quad c_{2}=c_{6}=16 / 63 \quad c_{3}=c_{5}=16 / 35 \quad c_{4}=-164 / 135(18)
$$

$x_{1}=-1, x_{2}=-\sqrt{3} / 2, x_{3}=-0.5, x_{4}=0.0, x_{5}=0.5$,
$x_{6}=\sqrt{3} / 2, x_{7}=1$
In the main program we develop the matrix equations to solve for $\left[\underline{\underline{C}}\left(\vec{k}_{i}\right)\right]$ and then calculate for the scattering tensor $\underset{\underline{\underline{E}}}{ }\left(\vec{k}_{i}, \vec{k}_{s}\right)$.

Inputs to the program are: the equivolumetric radius of the raindrop, the length of the major axis, frequency of incident wave, relative dielectric constant of raindrop, and the directions of the incident and scattering waves. The output is the scattering matrix of the rain drop. The list-
Γ ing of the program follows.
\square
\square
\square
\square
\square
\square
\square
－117－

\％	nensuen

$\begin{array}{ll}1 S n & 5011 \\ 1 S n & 0 \\ 15 & 1012\end{array}$
15 リ以12
1 S．ひi； 14

CsJun

 THET，PHII ：THE DIRECTIONS OF THE INCIDFNT WAVE THFS；Pris TH：PROGHAM IS A A APPIICATIOA TC A 1 HEORETICAL （：11）（T．FSIARI．1SUED UY HOLLT ETT ALI．

 C

```
                CHMACCII KEAL*B(A-H,EEH, (1-7), CONPIEX*16(C)
                CMPLEX DKK(60,65), ÉNNT(6い,})
                BAL*10 FACT(20),FACT1
```


COFAGACAFAFACT,FAC'

C $\quad 14$ IS :
$-{ }_{H}^{-5}=4$
$i=1$
$=9$
C
C
C
Ke: Trit Varaloles

1lc(n, 39) AHAR, A,FIS, CNO

S：1	\bigcirc
SH	
SI．	
SN	
Si	
Sid	
ISN	
［SW	
1 SH	
ISH	
ISN	
SN	0
S	
ISt	
$15:$	
Sid	
S\％	
ISN	00
S S_{1}	
ISil	0
Sid	0
ISI！	0
S 4	O
Sid	00
Sii	004
S 1	90
Sil	
ISil	0
IS．1	
St，	005
S．	
S！	
5	

```
            C=(ABHH**3)/(A**2)
            ハ=AC/16し.
            A=i/100.
```



```
            PHII=PHII*PI}118
            PHIT=PH1
            THEI=1HEl*PI/180.
            OHIS=PHIS*P1/1&O.
            |HES=1HES*PI/1ष0.
            CHPSIL=CNO**2
            HHTEL=3.OD+00
            MSO=[DSORI(RTHEL1)
```



```
            -**=0
            VE=(1.0,0.0)
            YY(1)=-0HEL
            Mi(3)=-0,NE/22*
            Y(2)=-0#H*RSQ/2.
            Y(4)=0゙EE*O0
            H}(5)=-1Y(3
            YY(b)=-Yr(2)
            v(7)=0N:E
            C:(1)=CONE/35.
            C:(7)=CONE/35.
            C.(2)=COHE*16/63.
            C
            (5)=C;(3)
            (7)=C(NAF*104./315
            C'SM=(AR(0**2)*(CEESJL-1.)
            CHK1=AKO*CNO
            OH2=AKCI*CNN
            Cun(l)=C0!ar.*AKO
            2%=%**+2
            \because5 1=1, id2
            CT(1)=fACT1(1-1)
                            5 :-4CT(1)=ムFACTI(I-1)
```

ISN 0057
15.1005%
S．：605y
CALCULATE THF JAI TFHSUR IN THE DTEECTION GF THE INCTDENT

$1 \div 11: 2=-3$
$\because \therefore$ \& bi, ISt IHE MATHIK E OUATIDMS IHAT THE I WO COUFIFD INTEGRAL
C1) PLED GUUATIUNS HAVE BEFB REDUCFD
THF DT IEHSION OF THE DKK MATETX IS NX*NFH*49*3

$\because, 1, ~!=1, \mathrm{~N}$
$!=-1, \pm(1-1,)^{*} 2 . /(!x-1$.
1.JU: $i=1$ こいいi. $1+3$
$\rightarrow 2=+1+(:-1) /,(1, P H-1$.
$2=0,1+(1,-1 \mid x) * 2.1(1 \times x-1$.)

CALCOLATE THF JAI TFVSUR IN THE DTEECTION GF THE INCTDENT
\therefore LLL ANA（PHIJ，IHEI，AJ） $1 \div 11: 2=-3$
$\because: 4 b_{i, I S H}$ IHE MATHIX EŋUATIOPS IHAT THE I WO COUEI．FD INTEGRAL TiF DT \＆EHSION OF THE DKK MATETX IS NX＊FFH＊49＊3

Sij	1） 00
IS．4	OUEI
1： 1	，＇lind
1洤：	リ11
1．11	
IS	い！
$13!$	060
51	（ $\because \cdot 1)$
15：	0）
T 51	（1）
4.	1：，li

```
IS| 0071
IS! 0072
ISN 00%3
ISII 0074
1SH10075
ISN 0076
IS|:0078
TSil 0079
ISiv C1)8')
1 Si! 00%%
ISil 0008
ISij 0084
ISII 0085
ISH}008
IS:N 0087
ISI O0B8
ISN1 U090
IS! U090
```



```
IN: 0091
ISN 0nyy
ISNM 00%7
İ:! n0q&
IS!1 009y 
IS1:01C0
150}0101
JS* 01013
JSN U1:1
IS. לं\110
JSn 01^7
IS:i 611 
{\mp@code{: 511 1u}
[\mp@code{Sil #:1}11
```



```
1:i!, i) 11% &
```

```
    l,1}300101n=1,
```



```
        20 CNNTIHUE
```

 20 CNNTIHUE
 ANTE (6,000)
 ANTE (6,000)
 GUU F',K|AT(5x,5HKHTGGK)
 GUU F',K|AT(5x,5HKHTGGK)
 1C
 1C
 T'11= D,ARCOS (X1)
 T'11= D,ARCOS (X1)
 Ci,L, li:AIK(C4K1, '2H1,TH1,CAKO,PHII,IHEI,CU)
 Ci,L, li:AIK(C4K1, '2H1,TH1,CAKO,PHII,IHEI,CU)
 ChL1, C:ill.T(\triangleJ,3:3,CW,CAN)
 ChL1, C:ill.T(\triangleJ,3:3,CW,CAN)
 1)}50\quad|KI=1,
 1)}50\quad|KI=1,
 50 1)i:MIT(ICOUMI+IKI,I,II)=CAJ(IKI,IJI)
 50 1)i:MIT(ICOUMI+IKI,I,II)=CAJ(IKI,IJI)
 () CumFlintic
 () CumFlintic
 |!=:NX*NPH*3

```
|!=:NX*NPH*3
```



```
C
7 0 0
            HOPMAT(%&
            C&HL LEUTICC(DKK, &iv, HN,DUNIT, 3, 3,0,D4A, IER)
    128
            GNTTE(6, 128) IER (5x, THF. TER IS*,I5)
            GT,A((0,70,THFSTER 1S*,I5)
            #! of i=1,0
            #".65 J=1,3
0}
            Cisuif(J,j)\stackrel{\prime}{=}(0,0,5,0)
            |rc|ly|=-3
```



```
            [i, 7G J=1,Nix
            <!=-1.+(j-1..)*2./( (1x-1.)
            & 机 
*O T:J(B,L)=0́Ni!IT T(TCOUNi+K,L)
            T TE1=DAKCOS(&1)
            C:I,L WHATR(CANII,EHIS,THES,CAK1,FHI,THE1,CU)
            C:L,LCEMuLJ(U'J,3,3,CLU)
    70 ,.,FIM,1F
            &lir. AJMA(F,t1S,I,ir.S,4J)
```



```
            i.:100 I = 1 =1,3,3
1.)O :1lE(0,1\cup2) CF(1,.1)
    1)2 &1, f(5x,3(上1), +,3x, r.12.4.2x))
    :\mp@code{C}
            1i-11-1%
```



```
ISN 009b
1SH 0090
lif nuy7
ISN 0098
IS!N 0099
ISN0100
ISN 01G1
ISiv 0103
T:IM=AINO(1MMIN)+1
COH1=(2.*IN+3.)*(2.*IM+3)*(CAKJJ(IN+1)/CAKK1)*
C(CAK2J(IM+1)/CAKK2) %CYKOJ(IMMAX) #(CYKOJ(IMIN) +CJAI*CYKOY(IMIN))
    CALL CMULT(SUH13,3
    1 0
    CHLLL MCSUM(CZZ, 3, 3,&SUM)
    CINTINUE
C\capHY=CJAI / (Y**2)
:2F TURN
    H.0!
IS:I 0002
ISn i）Uし 3
15100114
1 SH 0015
\(15 i \quad 000 n\)
\(1 S y 0007\)
IS．0）
1 i！ 10 （iy
IST Uily
ISM \(401 \frac{1}{3}\)
IS． 1 OO 13
IS：1 00） 14
IS． 1 IU15
IS．1 0016
IS．in 0017
JSli 0014
\(\begin{array}{ll}131 \\ 1 & 1\end{array}\)
15． \(0 \cap 22\)
13.41023
C SuBPGUTINE GE：NLGP（P，X，N）
C THIS SURRUUTIAE CALCULATES THE LENGENDRE FUNCTIONS
1．PLICIT REAL＊\({ }^{*}(\mathrm{~A}-\mathrm{H}, \mathrm{O}-\mathrm{Z})\)
ORIGINAL PAGE IS
OF POOR QUALITY
（ \(\quad r(1,5)=1,1\).
IF（ASII．EG．O．O RETURA
\(r(1,1)=1,0 / A S I N\)
RE．TUR is
\(\mu(2,1)=\lambda, \hat{A} S\)
\(\begin{array}{lll}\operatorname{li} 10 & I & =2 \text { ，} N \\ 1 ; 1 & 10 & J\end{array}\)
IF（J，E．．2，AND，J．EG．1）GU TO 10
L．\((1, i)=A B A C T(1+2 *(I-1)) * 4 S I\) iv＊＊\((I-2) /((2 * *(I-1)) * A F A C T(I))\)
6．：Jij 10
\(20 \quad \because(1,1)=((2 . * 1-3) * \kappa \neq P(I-1, J)-(I+1-3) * P(I-2, J))\)
10 CitiJuUE．
？！lukin
\(\begin{array}{ll}\text { ISir } & 062+ \\ \text { ISi } & 1025\end{array}\)
Jす。 1022
```


 CALL CMULT (SUM, $3,3, C D H 1, C S U M)$
10
10 constinue

4.0

```
ISN 000&
INm00u3
lSi 0ntu4
1S+10005
TSi n006
15%0007
IS% 000e
l
ls,uil
IS.4 00t1%
IS:1 0014
IS:1 3015
IN.! 4016
ISSili 0017
15:1 0021
13: 0022
134 1023
ISiv 0,0%
j管: itj2%
c SuBPOUTINE GE:NLGP(P;X,N
C
    I:PLICIT REAL**(A-H,O-Z)
    M,MF:SIDHP(HO),AFACI(20)
        CMMUN/ACT/ AFACL,FACT
        ASI星=DSORT(1--x**2)
        <)}51=1,
        4, r(1, )
        LF(ASIL.GEG.O.O) EETUFN
        P(1.1)=1.0%ASI:M
        H(2;1)=x<ASI:
        Mom10 j=2,N
        T;10}J=1,
        H(J.EO.2;AND.J.EOG1) GU TO 10
        F(1,i)=AFACT(1+<< ([-1))*4SIN**(I-2)/((2**(I-1))*AFACT(I))
        Gifulo
    20 :(1,.j)=((2.*1-3)*&*P(I-1,J)-(I+,!-3)*P(1-2,J))
    10 EHimjuve
    #luF*
```

IS 1
101 引1022
IS, 11623
$15: 10124$
1 $\because \because 10<0$
$151(1) 20$
15: LU<7
15! 6027
1St i:u31
15: 11033
1S: 11013
$15,1,135$
1SI: o(130
16,9017
IS\% 1536
$\begin{array}{ll}13 i & 91) \\ 34 \\ \text { Sin } & \text { (1) } 11\end{array}$
is: $\quad \therefore n+1$

S:	
Sid	
51	
ISI	
S':	
5	
5 C	(1)
SII	0 i) 1
51:	(1) 1

SURROUT $1 N E$ SHPBFS (OARG; $\mathrm{S}, \mathrm{OJSH}, \mathrm{OY} \mathrm{SH})$
THIG SURROUTIGE CALCULATES THE SPHERICAL RESSEL FUNCTIONS TH! HETHOC ISED IS THE ONE DISCRIBED IN THE ABRAMOVITZ STEGUN HA DBGOK OF MAT:HENAIICAL FUNCTIONS. QUADRATIC PRECISIGN IS NECESSARY
1:PLICIT FEAL, $\# 16(A-B, D-H, P-Z), C O M P L E X * 32(C), C O M P L E X * 16(0)$
+F:AL\# A AFACT(20)
O) MENSION DJSH (N), OYSH (N), FACT (20)
Cr.
$\because R G=O A K G$
:AR $20 \quad I=1$.
$\therefore \begin{aligned} \because 1 \\ \square\end{aligned}=(0,0,0,0,0)$
$\therefore \therefore=(11,0,0,0)$
$i 1=1 / 2+1$
i(i) $=\left(\frac{1}{2}-1\right) / 2+1,1$
$i_{n}=\mathrm{J}-1$
a $=\mathrm{J}-1$
CE1=($(-1) * * K,) \neq F A C 1(1+1+2 * K) /(F A C I(1+2 * K)$
C*FAC7(1+1-2*R)
$C P=C P+C H 1 /((2 . * C A R G) * *(2 * K))$.
?HTHEDE
$\therefore 30 \quad J=1,12$
A $=J-1$
$n=J=1$
$: 1=((-1) * * K) * F ん C T,(I+2 * K+2) /($ FACT (2*K +2$)$
C*FACT(1-2*k))
$\therefore)=C O+C O 1 /((2 . * C A H G) * *(2 * K+1))$
3, Clifliline
$\therefore=1 / 4$.

- $-1 P=(C P \neq C O S I 1 \cdot(C A R G)+C U * C O C O S(C A R G)) / C A R G$

nu

$\therefore S H=((-1) * *.(I+1)) \neq(C P+C O S I t(C A R G)+C O * C(C O S(C A P G)) / C A P G$

 \because lu yo

\because II11t
isri $(1)=\mathrm{cs:ip}$
$1, \therefore 1(1)=0$)
$\therefore \because 11 . .6$
$\therefore 1,1, \ldots$

151．0602 ？LAL FUHCTJOi AFACTI＊8（N）
C THIS SUFRCUTIVE CALCULATES THE N FACTORIAL USING DOUBLE
Thir uurs
15106104
IS 10006
is． 2007
IS： 9006
IS liney

15 10012

C
C
C
C
～AL．FUHCIIO＇．FACTI＊ 16 （N）
C THI：SUBFOUTIAE CALCULATES THE N FACTORIAL USING
2Uた TRATIC EFECISTON．

$$
\begin{aligned}
& \because / C H=1 . r
\end{aligned}
$$

$$
\begin{aligned}
& \text { FCT1=rACi } 1 \text { * } \\
& \text { FiCT1=rAC } \\
& \text { \% Ti? }
\end{aligned}
$$

Is： 10002
\therefore MRRNHIIAL GENGEN（C，CARG，N）

$$
\begin{aligned}
& \therefore \quad 1,1, S H F F B H J i r \text { CALCULATES THE GENGFNHAUFP POLYNOMIALS } \\
& \text { 1.5. GTME UECVRQROCE FORVULAS. } \\
& \therefore 1011 \text { ristata }(A=1,17-2) \\
& \text { - 际" } \\
& \because(1)=1 \cdot(1,+n 0 \\
& \therefore(2)=2+C A R C \\
& 1,1=3,1 \\
& \because \because:=C 1, C+(j-1)-C(1-2)
\end{aligned}
$$

```
                                    SURRCIUT1HE MULT(AJ,N,H,CAJ,M1,CF)
                                    C CHISS SUBKUUTIGE HIJLTIPLIES A PEAI MATRJX WITH A COMLEX ONE
                IMPI,TCIJ COAPLFX * 16(B-H,O-Z)
                OrathSl(1, CAJ(H,M1),CF(N,M1)
                ) HiEI,SICN AJ(N,隹)
            MO 20 I=1, is
            (i) }20\textrm{J}=1,0
            CSOH}=(6.0,0.0
                in 10 K =1,%00
    10 CGUP: =CSUM+AJ(I,K)*CAJ(K,J)
            CE(UN=CSGM+A,J
            C(I,J)=C
            ~TliRN
            F.1)
C
I PI，TCI＇COAPLEX＊ \(16(\mathrm{~B}-\mathrm{H}, \mathrm{O}-\mathrm{Z})\) OFHEHSI（1，CAJ（H，M1），CF（N，M1）
i）HELISIGN AJ（N，i4）
（！i） \(200 \mathrm{~J}=1,+1\)
CSUAH＝（ \(C, 0,0,0)\) \(\therefore \mathrm{Gu}(\mathrm{I}=\mathrm{CS} \mathrm{J}=\mathrm{CS}+\mathrm{A}, \mathrm{J}\)
目
4）
```

ISWCOO2 $\stackrel{C}{C}$ THIS SURNCUTINE SUnTRACTS ING COMFIFX AATPICES．
IS：C003

IS．مrús
IS：0v07
10,1008

4	0003
，	0004
14	00u5
5.	0006
S： 1	0107
\％	0008
	0009
5 ：	061
	$0{ }^{0} 1$
	Oul 2
	001
	0

I．3：000：．

1．5：	00い？
is	10， 3
IS．．	勿ち禹
1＊＇．	（9）！5
IS	¢0ヶッ
15	1i 31
14	160．9


```
    \because, , \thereforeA+10 C7(\because,,),CSUN(N,N)
```



```
    O
```

ISH 006 ?

I S:- 0003
IS:10604
IS' 0005
1:3 ग) 115
15:0007
15: 6004
$1 \rightarrow 1006$

15: 0 (0)
$\begin{array}{ll}154 & 1063 \\ 151 & 000 \pm \\ 15 & 0005 \\ 15 & 0005 \\ 150 & 0007 \\ 15 & 0002 \\ 15 & 606\end{array}$

15: 00い?


```
\(\stackrel{C}{C}\) THIS SURKOUTINE NULIIPLIES A REAL NATRIX WITH A REAI
                            \(\therefore\) ELICIT REAL* \(8(A-H, O-Z)\)
        \(\because 146 \leq 14.10(1.4,4)\)
            \(\because \quad 10 \quad j=1\) :
    \(10 \quad(1, J)=0(1, J) * A\)
            :
```


CMPLEA* 16 C(Gij, CSU $4(N, \%)$
$\because A 1+8, S U m_{1}(1,10)$
Min $10 \quad 1=1,4$

Tliki.


```
        #H-- SMFFOLITIFE ADDS T.HO PFAL :AIFICES.
            ! PICIA FEAL*8 (A-H,:O-Z)
            USint SuSi(i, (i),O(:1,i:
            1r, i=1,0
            1: , (1,.!)=SUM(1,J)+?(1,.J)
            TuF
```

IS: 1 onuz

I S: 10003
151000 t
Ist: 0005^{2}
Isin noun
Is.1 0007
IS: 15007

Sis 0002

「MFLey+16 CY,CZ (N,M)
1, 1 1 ($1=1,: 1$
i) $\quad \therefore(1, \cdot 1)=C \neq(I, J) \neq C$ I
\because THPF
$+\cdots$

S:ARUDIIWE AJHA (PHI, THE, AJ)
veus

1 FLICIT FEAL * ($H-4,0-2$)
ites Sit A,J $(3,3)$
$x=\cos (1+\cos)$
$=10$ SOR ($\left(1 .-x^{* *} 2\right)$
$\because \mathrm{r}=\mathrm{i}+4 \mathrm{~L}$
$\therefore ;(1,1)=1,-S X *(O C O S(P H I) * * 2$

$\therefore(2,2)=1+-5 x \neq(1) S 1 i(F H I)+42)$

(1,3) $=-\lambda * Y * 1, \mathrm{CoS}(k+1$ I $)$
$\therefore(1 \cdot 3)=-\lambda * i * J S(2(D H 1)$

- $(3 ; 3)=31$
\because !

```
IS" jOU2
#:% 300
IE:M U0014
IG.40005
IS. 00006
I S' 0008
12: 000%
jS:\mp@code{0N11}
jS. 0011
13:001
ISin(00)f;
1:3% )い117
C
300 FRRUAL(%,5X,6HZUATKX)
CNLL, CCNULT(C.,.3,3,CN(J))
20 C:LI, MCSUM(CLL,3,3,C2)
```



```
    4.)0 F,IRHAT(5X,FHSKATAA
    C.IN1=d.*PI*(A**4)*(AC**2)**(CGAN**2)/CAKD
    G&L_CC
            \because30 I=1,3
```



```
    3.7
            1=1)AR(OS(X1)
            i:L=ПAFCUSS(x X 2)
```



```
            I!, UATK(C
```



```
            *TJIRA
            +'D
15:000%
                    GiRFHTITJ&t UHA[R(CLK1,PH1, TH1,CAK2,PH2,'H2,CU)
                    C THIN SUFHOUTJNE CAJCULATES THE I:(F1,K2)
                            THLJCII FEAL+子(A=:, D=H,O=7),(C(%FIE)*1C(C)
            M,B/KAF/A,AC,BAL,PA,CLESII
```



```
            *(CDArS(CX).t?.".C) GO In 1C
```



```
            - Tlif.
```


6.3 MULTIPLE SCATTERING RAIN PROPAGATION PROGRAM

The multiple scattering formulation for the rain problem as developed in Chapter 5 has been coded into Fortran. The block diagram of the Rain Multiple Scattering Program (RMP) is shown in Fig. 1. The correspnding analytical development and examples of computer results are discussed in Section 5.3.

The statement listing of the program follows.

Figure 1．Block diagram of RMP program．

C
c THIS PROGRAM CALCULATES THE E VECTOR FIELD THAT COMES OUT
c FROM A RAIN CELI. IT ALSO CALCULATES THE POLARIZATION
c DIRECTIONS OF THE INCIDENT WAVE THAT HILL PASS THROUGH
C THE RAIN CELL UNCHANGED.
C EI IS THE INCIDENT FIELD TO THE RAIN CELL
C IFIV IS THE VEGTOR FIELD COMING OUT OF THE RAIN CELL
C L IS THE THICKNESS OF THE RAIN CELL IN METERS
C LOKANG IS, THE ELEVATION ANGLE OF THE SATELLITE

FREQ IS THE FREQUENCY OF THE WAVE IN GHZ

SIGM IS THE STANDARD DEVIATION OF THE CANTING
C ANGLE OF THE RAIN DROPS
C THE IS THE AVERAGE CANTING ANGLE

C

COMPLEX F(2,2), EIGV(2), EIGVC(2,2), WK(2), DIAG(2,2), UNIT(2,2)
$\mathrm{C}, \operatorname{HA}(2), \operatorname{EI}(2,1), \operatorname{EFIN}(2,1), \operatorname{EGVG}(2,2), \operatorname{MATR} 1(2,2), \operatorname{MATR}(2,2)$
c, MATR3(2,2)
COMPLEX FH, FV, FSH, JAI, SCTHE, DIFF, ER1, ISOL, ATT
C, ERO, ELO, FV1, FV2, FH1, FH2, DIFF1, DIFF2, FSH1, FSH2
C, MINUSJ, EXC, EYC, EXX, EYX

REAL HO, KO, LOKANG, L, LAM, I SOLDB, ISD(52), RATE(52)
C, AMODE (6), ATTD (52)
DATA AMODE/0.0,0.25,1.0,2.0,2.5,3.5/
COMMON/VAR/ ISD, RATE, ATTD
COMMON/BLOC1/ MINUSJ,CONV
COMMON/BLOC2/ VWACM
MINUSJ=(0.0,-1.0)
$\mathrm{PI}=\mathbf{3 . 1 4 1 5 9 2 7}$
CONV=PI/180.0
$J A I=(0.0,1,0)$
P1=0.4
$P 2=0.6$
c
READ in the variables of tir :a.it cell
c
15 READ(5,999) LOKANG, THE1, こ:Gin:, , NO, FREQ IF(LOKANG.EQ.O.) GO TO 88 READ $(5,977)$ EPSW, TAUW, EPSC, TAUC, EPSX, TAUX

977 FORMAT(6F10.0)
WRITE $(6,93)$
WRITE $(6,92)$ THE1, SIGM1,L
C
c READ THE INCIDENT VECTOR FIELD

C $\operatorname{READ}(5,91)\{\operatorname{El}(J, 1), J=1,2)$, STAT
c 91 FORMAT(4(F4.1,1X), 1X, 11)
LOKANG=LOKANG*PI/180.

THE=THE1*PI/180.
SIGM=SIGM1*PI/180.
LAM=0.3/FREQ
$K 0=2$. ${ }^{\text {PPI/LAM }}$
CALL COMPNT(EPSW, TAUW, EI(1, 1), EI(2, 1))
CALL COMPNT(EPSG, TAUC, EXG, EYG)
CALL COMPNT(EPSX, TAUX, EXX, EYX)
$E Y C=C O N J G(E Y G)$
EYX=CONJG(EYK)
VWACM=CABS(EXC\#EI(1, 1)+EYC*EI(2,1))
CALL ERROR(SIGM, ER1,2.)
SGTHE $=$ CEXP(JAI*2. *THE)*ER1*EXP(-2.*(SIGM**2))/2.
c
c CALCULATE THE AVERAGE OF $\cos \left(2.6^{* T H E T A}\right), \operatorname{SIN}(2 . * T H E T A)$
c

CTHE=REAL (SCTHE)
STHE=AIMAG(SCTHE)
STHE $=0.0$
CTHE $=$ EXP $\left(-2 .{ }^{*}\left(\right.\right.$ SIGM $\left.\left.{ }^{* *} 2\right)\right)$
WRITE $(6,777)$ CTHE
777 FORMAT(1X, F15.5)
$1 \mathrm{k}=9$
DO 50 IJK=1,50
$R O=10 .+145$. $(1 J K-1) / 50$.
$1 K=1 K+1$
D0 $66 \quad 1=1,2$
Do $66 \mathrm{~J}=1,2$
$66 \mathrm{~F}(1, J)=(0.0,0.0)$
Do $65 \mathrm{~J}=1,2$
$A L=0.8^{\text {Hi }} \mathrm{L}$
R=RO" ($\left.(\text { RO/10. })^{* *}(-0.66)\right)$
IF(J.EQ.2) AL=L*0.2
IF(J.EQ.2) R=RO
Do $65 \quad \mathrm{I}=1,5$
$\operatorname{AMODE} .1=\operatorname{AMODE}(1)+0.001$
AMODE2 $=$ AMODE $(1+1)$
CAIL COEF(FREQ, AMODE1, FV1, FH1, FSH1, DIFF1, LOKANG, R)

CALL COEF (FREQ, AMODE2, FV2, FH2, FSH2, DIFF2, LOKANG, R)
$F V=F V 2-F V 1$
FH=FH2-FH1
$\mathrm{FSH}=\mathrm{FSH} 2-\mathrm{FSH}$
DIFF=DIFF2-D|FF1
$F(1,1)=F(1,1)+\left(P_{1} * F S H+P 2 *((F H+F V) / 2\right.$. $-D 1 F F$
C"CTHE/2.))*AL"NO
$F(2,2)=F(2,2)+\left(P 1 * F S H+P 2^{*}((F V+F H) / 2 .+D 1 F F\right.$
C*CTHE/2.))*AL*NO
$F(1,2)=F(1,2)+($ P2"DIFF) \#AL"NO*STHE/2.

$$
F(2,1)=f ; 1,2)
$$

65 CONTINUE
$F(1,1)=2 .{ }^{* P I * F(1,1) / K O}$
$F(2,2)=2 . * P I * F(2,2) / K O$
$F(2,1)=2 . * P I * F(2,1) / K O$
$F(1,2)=F(2,1)$

C
C FIND THE EIGENVALUES AND EIGENVEGTORS OF THEPROPAGATION
c TENSOR F
C

CALL EIGCC(F,2,2, 1, EIGV, EIGVC, 2,WK, IER1) DIAG(1, 1)=CEXP(-JAI*EIGV(1))

DIAG(1, 1)=1.-JAI*EIGV(1)
$\operatorname{DIAG}(2,2)=1 .-J A \mid$ \# $E \mid G V(2)$
$\operatorname{D|AG}(2,2)=\operatorname{CEXP}(-J A|\# E| G V(2))$
DO $10 \quad 1=1,2$
DO $10 \mathrm{~J}=1,2$
IF(I,EQ.J) GO TO 10
$\operatorname{DIAG}(1, J)=(0 . e, 0.0)$
10 CONTINUE
D0 $20 \quad 1=1,2$
DO $20 \mathrm{~J}=1,2$
$\operatorname{UNIT}(1, J)=(0.0,0.0)$
IF(1.EQ.J) UNIT(I,J)=(1.0,0.0)
20 CONTINUE
DO $30 \quad I=1,2$
DO $30 \mathrm{~J}=1,2$
$30 \operatorname{EgVC}(1, J)=\operatorname{EIGVC}(1, J)$
C
G FIND THE INVERSE OF THE MATRIX OF EIGENVECTORS
AND THEN GALCULATE EXP $\left(F^{*} L\right)$ * INCIDENT VECTOR FIELD

CALL LEQT1G(EIGVC,2,2, UNIT,2,2,0,WA, IER)
CALL MULT(EGVC,2,2,DIAG,2,MATR1)
CALL MULT(MATR1,2,2, UNIT, 2, MATR3)
CALL MULT (MATR3, 2, 2, EI, 1, EFIN)
IF(IK.LT. 10) GO TO 150
WRITE $(6,97)$ RO, FREQ
97 FORMAT ($1 \mathrm{X}, /$, 'FOR RAIN RATE', F5.1, 'MM /HR AND FREQUENCY', F5. 1, C^{\prime} GHZ THE UNDEPOLARIZED POLARIZATION DIRECTIONS ARE: ')

DO $55 \mathrm{~J}=1,2$
WRITE $(6,96)$ (UNIT($1, J), I=1,2)$
96 FORMAT $\left(1 X^{\prime},{ }^{\prime}\left(\right.\right.$ 'F5. $\left.2,^{\prime}+J A ., F 5.2,^{\prime}\right) X 0+$ ' $^{\prime}, F 5.2$,
$\left.\mathrm{C}^{\prime}+J A I^{\prime}, F 5.2,^{\prime}, \mathrm{YO}^{\prime}\right)$
55 CONTINUE
I $K=0$
150 CONTINUE
CALL OUTANT(EFIN(1, 1), EFIN(2, 1), EXC, EYC, EXX, EYX, ISOLDB, ATTDB
C, PIAS)
$\operatorname{ISD}(\mid J K)=1$ SOLDB
ATTD (IJK)=ATIDB
$\operatorname{RATE}(1 J K)=R O$
50 continue
CALL MAP

```
WRITE(6,8) (ISD(J), ATTD(J), RATE(J), J=1,20)
    8 FORMAT(5X, 3F10.3)
        G0 to }1
    999 FORMAT(3F5.2, F8.2,F12.3,F6.3)
    92 format(5x,'THE AVERAGE CANTING ANGLE:',F5.2,5X,
        C'the standard dev. of the canting angle:',f5.2,/,
        C5X, 'HE EFFECTIVE LENGTH',F8.2)
    93 format(1H0,15x,'the varalblesS OF THE RAIN CLOUD aRE'//)
    8 8
        STOP
N\mp@code{c}
        END
c
C
        SUBROUTINE MULT(A,N,M,B,M1,C)
c
c THIS SUBROUTINE MULTIPLIES TWO COMPLEX MATRICES
C
    COMPLEX A(N,M),B(M,M1),C(N,M1),SUM
    DO 10 I=1,N
    DO 10 J=1,M1
```

```
SUM=(0.0,0.0)
DO 20 IJ=1,M
20 SUM=SUM+A(I,IJ)#B(IJ,J)
10 C(1,J)=SUM
RETURN
END
c
C
SUBROUTINE ERROR(SIGM,ER,ALFA)
C THIS SUBROUTINE CALCULATES THE ERROR FUNCTION OF
C
C
C
C
A RANDOM VARIABLE WITH NORMAL DISTRIBUTION (0,SIGM)
C
    COMPLEX ER,JAI,Z1,Z2,Z,ZS,W1,W2,X3
    JAI=(0.0,1,0)
    Z1=3.3553-JAI*ALFA*SIGM/SQRT(2.)
    Z2=-3.3553-JAI*ALFA*SIGM/SQRT(2.)
    Z=JAI*Z1
    ZS=Z#Z
```

$\stackrel{1}{\stackrel{1}{\omega}}$

$$
\begin{aligned}
& W 1=-Z 1 *((0.4613135 /(Z S-0.1901635))+(0.09999216 /(Z S- \\
& \text { C1. } 7844927 \text {)) }+(0.002883894 /(2 S-5.5253437))) \\
& \text { W2=2. *CEXP (JAI \#5. \#ALFA"SIGM) } \\
& X 3=J A 1 \text { *A } \operatorname{MAG}(Z 2 \text { *Z2) } \\
& E R=W 2 \text { *CEXP }(-X 3)-\operatorname{CONJG}(W 1) \text { \#CEXP }(-Z 2 * Z 2)-W 1 * C E X P(-Z 1 * Z 1) \\
& \text { RETURN } \\
& \text { END }
\end{aligned}
$$

C
C
SUBROUTINE MAP
c
C THIS SUBROUTINE PLOTS ATTENUATION AND
C ISOLATION VERSUS RAIN RATE
G
REAL ISD(52), RATE (52), ATTD(52)
COMMON/VAR/ ISD, RATE, ATTD
CALL PLOTS $(0,0,50)$
CALL SCALE(RATE, $8.0,50,1)$
CALL SCALE (ISD, 6.0,50, 1)
CALL. SCALE(AITD, 6.0,50,1)
CALL PLOT(2.0, 2.0, -3)
CALL AXIS $(0.0,0,0,9 H R A I N$ RATE, $-9,8.0,0.0, \operatorname{RATE}(51), \operatorname{RATE}(52))$

CAIL AXIS(0.0,0.0,9HISOLATION,9,6.0,90.0, ISD(51), ISD(52))

CALL. LINE(RATE, ISD, 50, $1,0,0)$
CALL PLOT(0.0,0.0, +999)
CALL PLOTS $(0,0,50)$
CAIL PLOT(2.0, 2.0, -3)
CALL AXIS(0.0,0.0,9HRAIN RATE, $-9,8.0,0.0, \operatorname{RATE}(51)$, $\operatorname{RATE}(52))$
CALL AXIS(0.0,0.0,11HATTENUATION, 11, 6.0,90.0, ATTD(51), ATTD(52))
CALL LIINE(RATE, ATTD, 50, 1, 0,0)
CALL PLOT(0.0,0.0, +999)
return
END
c
C
SUBROUTINE COEF(FREQ, AMODE, FV, FH, FSPH, DIFF, LOKANG, R)

C THIS SUBROUTINE RETURNS TO THE CALLING PROGRAM THE SCATTERING
c COEFFICIENTS FOR SPHERICAL AND OBLATE RAIN DROPS.
C THE COEFFICIENTS ARE A FUNGTION of fREQUENCY AND dROP SIZE
c AND ELEVATION ANGLE. THE COEFFICIENTS USED ARE THOSE OF UZUNOGLU,
C EVANS AND HOLT. THIS IS A MODIFIED VERSION OF THE

SUBROUTINE DEVELOPED BY PRESINGER AND STUTZMAN.
C

COMPLEX CMPLX

REAL LOKAHG
c
COMPLEX FV, FH, FSPH, DIFF
DOUBLE PRECISION U22, U33, U44, U55, AK1, AK2, AK3, AK4, AK5
$A K=-8.2^{*}\left(R^{* *}(-0.21)\right)$
$A K 1=E \times P(A K * A M O D E) / A K$
C
IF(AMODE. LT. 0.25) $\mathrm{AMODE}=0.25$
IF(AMODE.LE. 0.25) GO TO 100
IF((INT(FREQ) .EQ. 11) . AND. (AMODE.GT. 3.5)) AMODE=3.5
IF((INT(FREQ).EQ. 14). AND. (AMODE.GT.3.5)) AMODE=3.5
IF((INT(FREQ) , EQ. 20) . AND. (AMODE.GT. 3.0)) AMODE=3.0
IF((INT(FREQ), EQ. 30). AND. (AMODE.GT. 3.0)) AMODE=3.0
IF((INT(FREQ). EQ. 20). AND. (AMODE.GT. 3.0)) GO TO 100
IF((INT(FREQ).EQ. 30).AND. (AMODE.GT.3.0)) GO TO 100
C
U11 = AMODE
U22=AMODE**2
U33=AMODE**3

U44=AMODE**4

U55=AMODE**5
AK2 $=A K$ * 2
AK $3=A K \# \# 3$
$A K 4=A K * * 4$
$A K 5=A K * * 5$
$U 1=(U 11-1 . / A K)$
U2=(U22-2.*U11/AK+2.0/AK2)
$U 3=(U 33-3 . * U 22 / A K+6$. \#U11/AK2
C-6.0/AK3)

GO TO 101

$100 \mathrm{U1}=\mathrm{AMODE}$

U2=(AMODE**2)
U3 $=($ AMODE**3 $)$
$U 4=\left(\right.$ AMODE ${ }^{* \# 4}$)

$$
U 5=(A M O D E * \# 5)
$$

101 CONTINUE
C
C
C
c $\quad 11.0 \mathrm{GHZ}$ COEFFICIENTS
C
IF（INT（FREQ）．NE．11）GO TO 1
C
c SPHERICAL DROP COEFFICIENTS
C
IF（AMODE．GT．1．00）GO TO 10
C

$$
\begin{aligned}
& E O R=-0.0020548+0.01638947^{*} \mathrm{U} 1-0.0417568^{*} \mathrm{U} 2+0.08832213^{*} \mathrm{U} 3 \\
& E O I=-0.0025154+0.01928553^{*} \mathrm{U} 1-0.0456816^{*} \mathrm{U} 2+0.03655147^{*} \mathrm{U} 3 \\
& \text { GO TO } 11
\end{aligned}
$$

10 CONTINUE

C

$$
\begin{aligned}
& E O R=-1.28155706+2.83287718^{* U 1-2.07399678 * U 2+0.601,90887 * U 3} \\
& \text { 1-0.00984194~シチーコ.01096165*U5 } \\
& \mathrm{EOI}=2.60278025-7.52434662^{*} \mathrm{U} 1+8.14691632^{*} \mathrm{U} 2-4.12133971 \text { *U3 } \\
& 1+0.99089467^{*} \text { U4-0.08731788*U5 }
\end{aligned}
$$

C

GO TO 12
11 continue
c
c
c

GO TO 1000
12 continue
c
EV90R $=-0.3653892+0.32540943$ \#U1 +0.45280976 \#U2-0.53907398*U3 1+0.20309215*U4-0.02432204;*U5
EV901=2.20618555-6.19251766*U1+6.43873903*U2-3.090414*U3 1+0.70600̣211*U4-0.0607173*U5
EH90R $=2.09022706-7.07345119^{* U U 1+9.03639726 * U 2-5.33156215 * U 3 ~}$ 1+1.49:16423*U4-0.15747063*U5
FH901 $=3.28654422-9.68217951^{*}$ U1 $+10.71102231 *$ U2-5.5491184*U3

1+1.36694565*U4-0. 12512466*U5
DIFFI $=1.08034369-3.48962081$ \#U1 +4.2722407 \#U2-2.45868344\#U3 $1+0.66093861$ \#U4-0.06440692*U5

IF(AMODE.GT.2.0) GO TO 120

C
DI FFR $=-0.32599997+0.7531995^{*}$ U1 -0.57039996^{*} U2 $+0.15039999^{*}$ U3 GO TO 1000

C
120 CONTINUE
c
DIFFR=11.94200847-14.59334299*U1+5.80600359*U2-0.7346671*U3
c
GO TO 1000
c
1 continui
c $\quad 14 \mathrm{GHZ}$ COEFFICIENTS

IF(INT(FREQ).NE. 14) GO TO 2
C
C SPHERICAL DROP COEFFECIENTS
C

$$
\text { IF(AMODE,GT, 1.00) GO TO } 20
$$

C

$$
\begin{aligned}
& \mathrm{EOR}=-0.001376+0.012776^{*} \mathrm{U} 1-0.040136^{* U} \mathrm{U}+0.128736^{* U 3} \\
& \mathrm{EOI}=-0.008796+0.06731467^{* U} 1-0.1588^{* U}+0.12418133^{* U 3}
\end{aligned}
$$

C
GO TO 21
29 CONTINUE
c

$$
\begin{aligned}
& \text { 1-4.69149894*U4 }+0.42548477^{*} \text { U5 } \\
& \mathrm{EOI}=-8.4550178+22.97909617^{*} \mathrm{U} 1-23.38444001^{\text {*U2 }}+11.09553161^{\text {\#UU3 }} \\
& \text { 1-2.41694538*U4+0.19907664\#U5. }
\end{aligned}
$$

C

$$
\text { GO TO } 22
$$

21 CONTINUE
C
C OBLATE DROP COEFFICIENTS
C

EV90R $=-0.000248+0.00335467 * \mathrm{U} 1-0.013928 * \mathrm{U} 2+0.10002133$ *U3 EV901 $=-0.008436+0.06455867$ *U1 $-0.152256^{*} \mathrm{U} 2+0.11893333^{*} \mathrm{U} 3$ E II90R $=-0.000656+0.007656^{*} \mathrm{U} 1-0.029656^{*} \mathrm{U} 2+0.122656^{*} \mathrm{U} 3$ $\mathrm{EH90I}=-0.010366+0.079154 * \mathrm{U} 1-0.18596{ }^{*} \mathrm{U} 2+0.143872^{*} \mathrm{U}_{3}$ DIFFR $=-0.000408+0.00430133 * \mathrm{U} 1-0.015728$ *U2 +0.02263467 *U3 DIFFI $=-0.00193+0.01459533$ \#U1-0.033704*U2 $+0.02493867^{* U 3}$

GO TO 1000
22 CONTINUE
C
EV90R $=-4.48493663+12.45481829$ \#U1-12.90182271*U2 +6.32901913 *U3 $1-1.42805671^{\text {\# U U4 }}+0.11875301^{\text {\#U }} 5$
EV901 $=-0.1923376+0.3425132^{* U 1}-0.196242$ \#U2 $+0.07468968^{* U 3}$

IF(AMODE, GT, 2.5) GO TO 24
C
$\mathrm{EH} 901=1.10278458-3.74696237^{*} \mathrm{U}_{1}+4.48042001^{*} \mathrm{U} 2-2.22964317^{*} \mathrm{U} 3$ $1+0.42010037{ }^{*} 4$

DIFFR $=-0.15268404+0.39830845^{*} \mathrm{U} 1-0.3527577^{*} \mathrm{U} 2+0.11767014 * \mathrm{U} 3$

DifFI $=-1.29960041+2.93303524^{* * U 1-2.15255009 * U 2+0.5206384 * U 3 ~}$
C
IF(AMODE.GT.2.00) GO TO 25
C
$E H 90 \mathrm{P}=-1.02599992+2.30733317^{\#} \mathrm{U} 1-1.60799988^{*} \mathrm{U} 2+0.426664^{24} \mathrm{U} 3$
C
GO TO 1000
24 CONTINUE
C
$E H 90 I=2.51000033-2.03000022^{* U 1+0.62000004 * U 2}$
DIFFR $=-15.85152202+18.27189723^{* * U 1}-6.68140666^{*}{ }^{*} U_{2}+0.79411153^{*}{ }^{*} \mathrm{U}_{3}$ DIFFI $=22.32321586-44.48681458^{*} \mathrm{U} 1+30.17926125^{*} \mathrm{U} 2-8.46925565^{*} \mathrm{U} 3$ $1+0.85300427^{*} \mathrm{U4}$

C
GO TO 1000
25 CONTINUE
c
$E H 90 R=-19.65+20.6567^{*} \mathrm{U} 1-6.66^{*} \mathrm{U} 2+0.6933^{*} \mathrm{U} 3$
C
GO TO 1000
2 CONTINUE
C
C
20 GHZ COEFFICIENTS
C

IF（INT（FREQ）．NE．20）GO TO 3
C
C SPHERICAL DROP COEFFICIENTS
C

$$
\text { IF(AMODE.GT. 1.0) GO TO } 30
$$

C

$$
E O R=0.020295-0.145276^{*} \mathrm{U} 1+0.297656^{*} \mathrm{U} 2+0.008224^{*} \mathrm{U} 3
$$

C

$$
E O I=-0.015488+0.12709133^{*} \mathrm{U} 1-0.334568^{*} \mathrm{U} 2+0.30583467^{*} \mathrm{U} 3
$$

C
GO TO 31
30 CONTINUE
C

$$
\mathrm{E} O R=3.35567152-8.61818659^{*} \mathrm{U} 1+7.8157989^{*} \mathrm{U} 2-2.68217917^{*} \mathrm{U} 3
$$

$$
1+0.3108073^{\#} \mathrm{U4}
$$

$$
E O I=1.85636 \mathrm{H}_{4} 63 * 3.70750898^{*} \mathrm{U} 1+2.19599302^{*} \mathrm{U} 2-0.25148145^{*} \mathrm{U} 3
$$

C

$$
\text { GO TO } 32
$$

c
C OBLATE COEFFICIENTS
C

EV90R $=0.02454800-0.17912133^{* U 1+0.384448^{*} U_{2}-0.07447467^{\#}{ }^{*} 3}$

EV90I $=-0.013492+0.11190533^{* U 1}-0.299032^{* U U}+0.27853867^{* U 3}$
EH90R $=0.02282-0.16596667^{* U 1+0.34976 * U 2-0.03061333 * U 3 ~}$
EH90I $=-0.015178+0.12623933^{*}$ U1-0.33848*U2+0.31533867*U3
DIFFR $=0.000072+0.00175467^{*} \mathrm{U} 1-0.015488^{* U 2+0.03426133 * U 3}$
D $\mid F F I=-0.001686+0.014334^{* U 1-0.039448 * U 2+0.0368 * U 3}$
c
GO TO 1000
32 continue
c
EV90R=1.56037246-3.97019757*U1+3.66524972*U2-1.24458239*U3 1+0.14526662*U4

EV901=4.77376463-13.63610787*U1+14.83397997*U2
1-7.66136891*U3+1.96881573*U4-0.19749381*U5
E!90R $=4.63026679-11.97374109^{* U 1+11.0254653 * U 2 ~}$
1-14.0050613*U3+0.50244373*U4

1-1.74544867*U4+0.17820925*U5
DIFFR=3.06989428-8.00354339*U1+7.36021547*U2

```
1-2.76047886#U3+0.3571771*U4
DIFFI=-6.31274803+19.97783334*U1-24.1872053*U2+13.8712166#U3
1-3.71425705*U4+0.3757024#U5
C
G0 то 1000
3 continue
C
IF(INT(FREQ).NE, 30) GO TO 2000
C
c 30 GHZ COEFFIGIENTS
c
C SPMERICAL DROP COEFFICIENTS
c
        iF(AMODE.GT.1.0) GO TO 40
C
        EOR=0.028004-0.221564*U1+0.530744*U2+0.022816*U3
        E0I=-0.007072+0.09329866*U1-0.390112*U2+0.55688533*U3
C
        GO TO 41
    40 continue
C
```

 \(E O R=-1.95096901+3.4107597 * U 1-0.82790307 *\) U2-0.39982485*U3
    ```
        1+0.1291964*U4
        EO1=5.77798866-16.3876166*U1+16.10102407*U2-6.06482662*U3
        1+0.82747918*U4
    c
        co to 42
    41 continue
c
c
C
```

c
c
C
EV90R $=0.03542-0.2838733^{*}$ U1 $+0.7038^{*}$ U2-0. 15834666*U3
EV90I $=0.013876-0.064756$ \#U1-0.026904\#U2+0.290784*U3 EH90R=0.031652-0.252652*U1+0.614952*U2-0.049952\#U3 E1190: $=-0.000532+0.04746533^{* U 1-0.299512 * U 2+0.50957867 * U 3 ~}$ DIFFR $=-0.003768+0.03122133^{* U 1-0.088848 * U 2+0.10839467 \# U 3 ~}$ DIFFI $=-0.014 \nmid 108+0.11222133^{*} U 1-0.272608^{*} U 2+0.2187946 i^{*} \cdot: ?$

C
GO TO 1000
42 continue
C
EV90R=3.93161268-10.97208846*U1+11.43870068*U2 1-4.78953064*U3+0.69447892*U4

EV90I=3.12729055-9.08249632*U1+9.16246329*U2
$1-3.47227982^{* W} \mathrm{U}_{3}+0.47789632^{* U 4}$

EH90R=-6.97583584+16.79179963*U1-13.53607686*U2
1+4.63811854**3-0.57535653*U4
EH90I $=-1.39373246+1.72736066^{* U 1-0.14076091 * U 2+0.05474057 * U 3 ~}$
DIFFR $=-10.9074 \mathrm{H}_{6} 51+27.76388807$ \#U1-24.97477753*U2
1+9.42764918*U3-1.26983545*U4
DIFFI $=5.33984552-17.20920477^{*} \mathrm{U} 1+20.7812541^{*}$ U 2
1-11.64360435*U3+3.07942984*U4-0.30370378*U5
c
1000 CONTINUE
c

ALPH $=1.576796$-LOKANG
CSLA $=0.001$ * $\cos \left(\right.$ ALPH) ${ }^{* * 2}$
SNL.A $=0.001$ *SIN(ALPH)**2
FVR=CSLA*EOR+SNL.A*EV90R
FVI $=-$ CSLA*EOI-SNLA*EV90I
FHR=CSLA*EOR + SNLA*EH90R
FHI=-CSLA*EOI-SNLA*EH90I
DIFFR=-SNLA*DIFFR

```
    D|FFI=SNLA*DIFFI
    EOR=0.001*EOR
    EOI=-0.001*EOI
c
        FV=CMPLX(FVR,FVI)#AK1
        FH=CMPLX(FHR,FHI)*AK1
        FSPH=CMPLX(EOR,E01)*AK1
        DIFF=CMPLX(DIFFR,DIFFI)*AKI
    c
        G0 то 3000
    c
2000 WRITE(6,2001)
2001 FORMAT(//,3X,'FREQUENGY NOT ALLOWED, ONLY 11,14,20,30 GHZ ALLOWED'
        1)
C
        STOP
    3000 CONTINUE
C
        RETURN
        END
C
G
```

SUBROUTINE OUTANT(EXN, EYN, EXC, EYC, EXX, EYX, ISOL1, ATTEN1, PHASE1)

THIS SUBROUTINE TAKES THE X and Y components of the Wave exiting the rain cell (EXN, EYN) and uses the complex vector method to compute values for attenuation, isolation, and phase as a result of the rain medium and polarization mismatch effects of the RECEIVE ANTENNA

TIIIS DATA IS STORED IN PROGRAM MEMORY FOR LATER OUTPUT this subroutine was written by presinger.

REAL ISOL. 1
COMMON/BLOC1/MINUSJ, CONV
COMMON/BLOC2/ VWACM
COMPLEX MINUSJ
COMPL.EX EXC, EYC, EXX, EYX

COMPLEX VWPAC,VWPAX
COMPLEX EXN, EYN
REAL VWPACM, VWPAXM

$$
\begin{aligned}
& V W P A C=E X N * E X G+E Y N * E Y C \\
& V W P A X=E X N^{*} E X X+E Y N^{*} E Y X
\end{aligned}
$$

C
C
VWPACR=REAL (VWPAC)
VWPACI=AIMAG(VWPAC)
VWPACM=CABS (VWPAC)
VWPACR=ATAN2 (VWPACI, VWPACR)
VWPACP = VWPACR/CONV
C
VWPAXR=REAL (VWPAX)
VWPAXI = AIMAG (VWPAX)
VWPAXM=CABS (V WPAX)
IF(VWPAXM.EQ.O.0) GO TO 10
VWPAXR=ATAN2 (VWPAXI, VWPAKR)
$V W P A K P=V W P A K R / C O N V$
IF(VWPAKM.LE. 0.000001) VWPAKP $=0.0$
c
1SOL.1=20.*ALOG10(VWPACM/VWPAXM)
Go to 11
10 CONTINUE
$V W P A X P=0.0$

| SOL $1=999.99$

11 continue
C
PIIASE1=VWPAXP-VWPACP
C
IF(PHASE1.LT.0.0) PHASE1=PHASE1+360.0
c
AITEN1=20.*ALOG10(VWACM/VWPACM)
C
RETURN
END
c
c
SUBROUTINE COMPNT(EPS, TAU, EX, EY)
c
c this subroutine returns the X and Y components given an epsilon c AND TAU (IN DEGREES) DESCRIBING AN ARBITRARY POLARIZATION STATE

COMPLEX EX, EY
complex minus.J
COMMON/BLOC1/MINUSJ, CONV

EPSR=EPS*CONV

TAUR $=$ TAU*CONV
C
IF(ABS(EPSR).EQ.(45.*CONV)) GO TO 1
IF(EPSR.EQ.O.) GO TO 2
IF(TAUR.EQ.O.) GO TO 3
IF(TAUR.EQ.(90.*CONV)) GO TO 4
c
T1=TAN(2. *EPSR)
T2=SIN(2.*TAUR)
DELTR=ATAN2(T1, T2)
GAMR $=0.5^{*}$ ARCos($\left.\cos \left(2^{*} E P S R\right){ }^{*} \cos \left(2^{* T A U R}\right)\right)$
GO TO 100
1 DELTR=2. "EPSR
GAMR $=45$. ${ }^{\text {HCONV }}$
Gо то 100
2 DELTR=0.
GAMR=TAUR
GO TO 100

3 DELTR=SIGN(1.,EPSR)*90.*CONV GAMR=ABS(EPSR)
co то 100
4 DELTR=SIGN(1.,EPSR)*90.*CONV
GAMR=90.*CONV-ABS(EPSR)
100 continue
c
EX= \cos (GAMR)
EY=SIN(GAMR)*CEXP(-MINUSJ*DELTR)
$\stackrel{\stackrel{1}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$

return

END

[^0]: *For ato by the National Technical Information Servien, Springifeld, Visginin 22Ist,

[^1]:

 ：Averate balte

