
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19830026930 2020-03-21T00:53:30+00:00Z

Y

3

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report Na.
1

2. Government Accession No. 3. Recipient's Catalog No.
JPL Pub. 83 -54

4. Title and Subtitle 5. Report Date

Parallel Processing in a Host Plus Multiple Array
September 15	 1983

6. Performing Organization Code
Processor System for Radar

7. Author(s) 8. Performing Organization Report No.

9. Performing Organization Name and Address 10. Work Unit No

JET PROPULSION LABORATORY
11. Contract or Grant No.California Institute of Technology

4800 Oak Grove Drive NAS 7-100

13. Type of Report and Period Covered

JPL Publication

Pasadena, California 91109

12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 14. Sponsoring Agency Code
Washington D.C. 20546 RE 4 BP-656-44-03-03-00

15. Supplementary Notes

16. Abstract

Host plus Multiple Arroay Processor architecture is demonstrated to yiel a modular,
fast, and cost-effective system for radar processing. 	 Software methodology for
programming such a system is developed. 	 Parallel processing with pinelined data
flow among the host, array processors, and discs is implemented. 	 Theoretical
analysis of performance is made and experimentally verified.	 The broad class
of problems to which the architecture and methodology can be applied is indicated.

17. Key Words (Selected by Author(s)) 18. Distribution Statement
Computer Programming and Software
Computer Systems

Unclassified	 -	 Unlimited
Systems Analysis
SEASAT-A Project

19. Security Classif. (of this report) 20. Security Ciassif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 67
"I_ WIS. 1 110M

f	 ^-

^_

Parallel Processing in a Host Plus
Multiple Array Processor System for
Radar

1 1&1;	 Budak Ziya Barkan

September 15, 1983

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

3

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California institute of Technology, under contract with the National
Aeronautics and Space Administration.

3
a

1	 s

ACKNOWLEDGMENTS

I am grateful to my advisor Professor Walter Karolus of UCLA for his

direction, sage advice, and support. I acknowledge the excellent work and

dedication of Shirley Pang of JPL in all phases of the IDP and IDPMX

projects. I would like to thank Dr. Chialin Wu of JPL who provided the

algorithm and the environment. Without his thorough knowledge and guidance

these implementations could not have been done. Beatriz Abu-Ata pleasantly

prepared the manuscript.

This work was supported by research funds (as JPL Subcontract No. 955642

to UCLA) from Jet Propulsion Laboratory, California Institute of Technology,

under Contract No. NAS7-100, sponsored by the Information Systems Office of

the National Aeronautics and Space Administration Office of Space Science

and Applications.

I, W.

iii

F

^s

Host plus Multiple Array Processor architecture is demonstrated to

yield a modular, fast, and cost-effective system for radar processing.

Software methodology for programming such a system is developed. Parallel

processing with pipelined data flow among the host, array processors, and

discs is impleL,,ented. Theoretical analysis of performance is made and

experimentally verified. The broad class of problems to which the

architecture and methodology can be applied is indicated.

s ate:

iv

i

t

a

TABLE OF CONTENTS

Cha ter

I.

II.

I	 VI.

VII.

VIII.

APPENDIXES

Page

INTRODUCTION 1

HARDWARE ELEMENTS.. 4

Discs ... 4
Host	 Computer6.............. 7
Array Processors0......... 7

SOFTWAPE	 TOOLS0........ 9

Disc	 Related 5
Host	 Computer Related 10
Array Processor Related 10

SOFTWARE METHODOLOGY 13

Job	 Partitioning 13
Flow of	 Data 15

SYSTEMORGANIZATION0......6. 18

Configuration	 Issues 18
Usage0................ 21

PERFORMANCEEVALUATION O 22

Workload .. 22
Interference 25
Disc	 Latency 26
Future	 Considerations 28

CONCLUSION.. 	 30

REFERENCES.........0.......	 31

A. Program Listings 06..0.0...	 34
B. Performance Modeling Example.6....000..	 45
C. Cornerturn Papers........ ... 00.....0 0... 	 51
D. Cornerturn Example 	 66

v

FIGURES

LiF ire Page

1. IDPMX Block Diagram with Key System
Elements^..... 18

B-1. Innerloop Timeline for nap - 3 in Phase
RACR . .. 47

C-1. Basic Parameters in the Transpose Operations..... 52

C-2. Software Cylinder Formatting for
Improved Algorithm.... 56

C-3. Software Cylinder Formatting., * ***..* 61

C-4. Elapsed Time as a Function of DELTA for
N-L-512 and	 Bl-B2-4096 62

C-5. Elapsed Time (in seconds) in Phase 1 of
CGornerturn 63

D-1. Cornerturn Organization.... 0 67

LISTINGS

Listin Page

1 Logical-to-Physical Correspondence of APs 35

2 The Locp of 4-bit Unpack Routine. * ., 36

3 Range Compression in the AP * oo 99 * e. 39

4 Cornerturn Data Movement Routine. ** ooe 41

5 Main Loop of	 Phase	 RACR 43

vi

Table °^ ge

I. Disc	 Coordinates • $ • • . 4

II. Desirable Characteristics of a Disc
Subsystem • 0 .. 0 0.0 • • 6

III. Parallel versus Pipelined Configurations......... 20

IV. Per-Line Workload of the Phases 22

V. Elapsed Time (in seconds) to Complete 2K
Lines in each Phase on IDPMX as a Function
of	 the	 Number of APs 23

VI. Percentage Usage with Respect to Total Time
in the	 3 AP IDPMX System 24

VII. Disc Elapsed Time Step Function Behavior......... 26

VIII. Definitions of Throughput Modeling Terms......... 45

IX. Throughput Modeling Formulas..................... 46

vii

I. INTRODUCTION

Synthetic Aperture Radar (SAR) processing is characterized by high data

volume and intensive number crunching. This double requirement makes

efficient processing a challenge. The 10 subsystem has to hold the large

volume of data and sustain relatively high transfer rates. The arithmetic

unit has to meet the demands of the necessary correlations to be done.

As the data acquisition rate by the sensor is two to three orders of

magnitude faster than the processing speed, efficiency is paramount.

Various attempts at system design to do SAR processing have ranged from all

special-purpose hardware to minicomputer applications. There are important

cost performance tradeoffs to be made in this area. Hardware attempts at

real-time processing have not had widespread success, as this pushes the

state of the art too much. Giant supercomputers have been utilized in

medium-performance systems, but cost is prohibitive. The approach taken by

us at the Jet Propulsion laboratory (JPL) has been to use a cost-effective

host plus peripheral array processor setup as an experimental and

developmental system for radar.

A comprehensive background and a bibliography on SAR are in [191. A

survey of worldwide SAR digital processor development appears in [20]. The

current status of the JPL system and the system's capabilities are

summarized in [211.
t

1

The JPL radar algorithm on which this implementation is based is

described in [1-21. In summary, the computations involve convolutions and

filtering which can more effectively be done in the frequency domain using

Fast Fourier Transforms (FFT). The input data consists of sequential

samples of radar echo signals. Data are range-compressed by a

multiplication in the frequency domain. The ensembles of range-correlated

echo lines are then corner-turned or transposed to allow access in the

orthogonal direction. Azimuth correlation is done in the along-track or

azimuth direction. The severe range migration effect makes the processing

inherently two dimensional. The transform block sizes are large in both

range and azimuth directions. So the size of the matrix involved in the

cornerturn exceeds several megabytes.

The original JPL Seasat Processor is the Interim Digital Processor

(IDP). It was upgraded with additional primary and secondary storage and

APs. The augmented system is dubbed IDPMX, for IDP with multiple

execution. In either case, the requirements were to produce 100-km x

100-km, four-look, 25-m resolution pictures. IDP was operational in April

1979, featured parallel operation with one AP, and took 10 hours per

picture. IDPMX has been operational since February 1981, features parallel

operation with three APs, and takes 2.5 hours per picture. Recent

publications describing IDP and IDPMX have introduced some of the salient

:eatures of these systems [3-5].

2

The purpose of this report is to provide the necessary system design

and analysis methodology as it applies to a host plus multiple array

processor getup with parallel processing. In the HARDWARE ELEMENTS chapter,

the characteristics of the hardware used are described to exemplify the

capabilities required of the devices for suci. a system. The SOFTWARE TOOLS

chapter describes the development Necessary to utilize the hardware.

SOFTWARE METHODOLOGY covers job partitioning and pipelined parallel

processing at the device level. SYSTEM ORGANIZATION integrates the abo-re

hardware and software into a whole configuration. PERF,IRMANCE EVALUATION is

done with emphasis on speed; this chapter has recommendations for the design

u.° faster systems. In the APPENDIX there are code fragments in the various

languages used to give the flavor of the programming. Also, a detailed,

worked-out example illustrates the methodology of performance modeling. :or

completeness, two papers on cornerturn, titled "Transpose of Externally

Stored Matrices", have been included in the appendix.

+a

3

II. HARDWARE ELEMENTS

Discs

Discs, the host, and the array processors form the backbone of the

configuration. All three elements are equally important because the

resulting system balance will require about equal utilization of these

subsystems.

Discs are rotating mass storage devices. Viewed in cylindrical

coordinates (see Table I), each direction is partitioned into integer

addresses. Herein we will assume 300 —MB AMPEX discs as standard and will

discuss their characteristics.
s s

TABLE I

Disc Coordinates

angular sector 23

vertical surface 19

radial cylinder 815

A sector is the smallest addressable unit on a disc. The rotation

speed of 3600 rpm translates into 0.75 ms per sector. This is a natural

unit to use in calculations involving discs and will be named sector —pass-

time (SPT). T ►:.nsfer rate, assuming a single head per track and 192 words

per sector, is about 3.6 ps per word.

i

4

Crucial to the efficiency of a disc is the length of the ic.tersector

gap. This is the spacing between adjacent sectors on the disc. The sector

gap is too sna ll (10 us) to allow time for data and command chaining

without a next-sector miss. Thus multiple sequential records cannot be

accessed without incurring a heavy rotational latency penalty.

The 192-word-per-sector format used as a standard is very wasteful of

disc space because of fragmentation. Page sizes are powers-cf-two in

virtual memory systems. There are many transforms, notably the FFT, that

operate on data of a power-of-two length. So a 128- or 256-word-per-sector

format can be used.

Transfer control word is a designation for the number of words that are

to be transferred to or from the disc. The larger the allowed maximum per

transfer the better. Some records might naturally be long. Also, if the

record length is a multiple of sector size, a multiple sequential record

transaction can be software chained into a single large record (uneven

'	 record lengths can be padded up to multiples of sector size; though a

potentially dirty method, this could be the only solution for faster 10 in

an existing system). Later, this can be accessed transparently an ,! the

constituent small records be available (this assumes effective sectors per

cylinder can :)e specified to the I0 routine). This does not require

hardware data chaining and would be more efficient for the particular case.

This is an important consideration in busy environments where congestion

might cause the hardware data chaining method to miss the next sector.

5

Giving the controller the complete address in a single stage (at once)

is preferable from logical and efficiency points of view. The cylinder and

sector together form a complete address. Bookkeeping in software is

diminished; all the system has to do is issue the single command, and the

controller itself in hardware will determine whether a seek is needed. This,

effectively decouples the intelligent controller from the CPU.

A disc subsystem consists of several drives all hooked up to a single

controller [6] (see Table II).

TABLE II
Desirable Characteristics of a Disc Subsystem

overlapped seek among drives

minimum latency targeting among drives

command and data chaining without next sector miss

power—of—two length sector format

wide transfer con - ,)1 word

single—stage address to controller

6

Host Computer

Systems Engineering Laboratories SEL 32/55 is a 32-bit minicomputer

with an efficient bus [7]. The SEL bus is 32 bits wide in data and also has

independent address and control lines. The memory on the bus is made of 4

noninterleaved 32-KW modules. Bus-to-bus memory access time is 0.6 us,

but requests to different modules can be overlapped. A memory read requires

2 transfers on the bus, a write only 1. On a cycle time of 150 ns, integer

RR instructions take 0.6 us and RX 1.2 us. There is overlap in

instruction fetch and execution.

Array Processors

Array processor AP-120B from Floatin. Point Systems (FPS) is a

pipelined machine with a wide horizontally 0 crocoded instruction word [8].

Independent functional units and multiple interconnecting paths are the key

to its computing power. (The architecture and the programming methodologies

of AP-120B have been the inspiration for the overall project. With

hindsight, AP-120B microcoding provides an accessible microcosm in which one

can learn and experiment with parallelism and pipelining. Also, one can

make useful analogies. Data pad, say DPX, read-write is similar to

APPUT-APGET, to illustrate a half-cycle operation). Working on a cycle time

of .167 us with a floating adder and a multiplier, the AP can

theoretically achieve 12 million floating point operations per secocd

(mflops). The APs have 64 IN of Main Data and 2 KW of Program Source memory

each. AP-120B is hooked to the host SEL computer by a formatter and a High

Speed Data (HSD) interface.

in

7

i
,I

The formatter converts between the host and AP data representations on the

fly. The HSD has a transfer rate of 1.2 ps per word.

The processing uses the raw power of the underlying hardware. Manual

resource management is substituted for convenience to gain speed. In this

light, machines which on paper have similar speed and functional

capabilities can be used instead of the ones we have chosen. No nonstandard

specific feature of host or array processor is necessary. To give some

examples, any combination of CSPI MAP or FPS AP-120B for the array processor

and DEC VAX, SEL 32, or PERKIN-ELMER 32 for the central processing unit will

do. Even a 16-bit host might be sufficient (assuming intelligent array

processor interface), but this would be a risky alternative in view of the

overall hardware investment required for the system (half-million dollars).

8

u

A custom disc IO routine, SARIO, was developed to efficiently handle

the large volume of data that is moved around by the processing [9].

Another motivation was the necessity to define files of a size larger than

allowed by the system. The key points are access modes and multiple record

facility. In the processing, all of the accesses are highly regular and

patterned. Most of the data are accessed in sequential mode. To facilitate

corner-turning, a skipped mode was defined. In the skipped mode, a fixed

distance between adjacent records is assumed. In both modes, the next

""	 record address on disc is easily calculable. Multiple record facility

allows several records to be queued with a single call to the IO routine.

The gains are more apparent in the sequential mode where only one latency

per call is incurred. On our system, chaining was not available, so a

sector is bypassed between records in order to have enough time to issue the

next record transaction. The whole IO routine assumes dedicated discs. In

the processing, only one file is active on a given disc at one time so the

environment is virtually seek free. SARIO works asynchronously. After the

subroutine call is processed and the first command initiated, control

returns to the calling program. SARIO is from that point on interrupt

driven to service completions and the issuing of further transactions that

it was given in the original call. Later, for synchronization, SARIO is

called with a wait command.

9

F	 .

Host Computer Related

The FORTRAN compiler on SEL RTM performs reasonably for straightline

f code, though it is weak on loops. Lack of induction variable analysis is

the main reason; also the compiler has trouble recognizing variables that

are local to a loop. Thus assembly language was used to code the buffer

movement loops using loop unrolling techniques. (SEL uses an encoding of

the instruction type into the operand address, utilizing the redundancy in

address to type correspondence, thus freeing instruction bits. Instructions

are generic and can handle halfword, word, and doubleword types. This makes

assembler programming quite tricky at times).

Array Processor Related

The basic software utilization of the AP-120B is through the Math

Library supplied by FPS [10). The canned routines written in APAL, the

microassembler for AP-120B, are callable from the host [11). If there is

need to develop additional subroutines these can be coded in APAL and added

to the Mathlib. Mathlib includes vector arithmetic, data formatting, and

numerical and signal processing routines. For the bulk of the radar task

the Mathlib is sufficient; nevertheless, some improvements and additions

were made. These were 11-cycle 4-bit-unpack, 8-cycle 8-bit-unpack, and

3-cycle (extra +1 for highclip, +2 for lowclip) scale-bias-clip routines

[12). (Signed unpack is slower and can not be improved. After FFT, bias

can be subtracted from the first coefficient. So, with the free bias adding

r
in the clip routine, data can be kept positive if FFT is the first operation

to be done).

10

In the development of APAL routines, the AP simulator and debugger

programs, APSIM and APDEBUG, were not used. Microcode development and

testing were done by comparing the end results with FORTRAN equivalents.

Development and testing environments were the same. The testing philosophy

was biased towards random testing. It is felt that for the type of

procedures coded, this is an adequate ana correct approach. Preparing

deterministic test cases is inherently harder and more error prone than

writing a correct program. Still, the ranges of random input values and

vector lengths must be chosen with thought to make random testing

effective. To check staying in loops too long, memory locations surrounding

the result buffer are also examined.

The host overhead in initiating AP-calls is substantial (1.1 ms), so a

software package called Vector Function Chainer (VFC) is available from FPS

to efficiently utilize the AP [131. Multiple consecutive calls are linked

together to yield one call that will do the whole thing by subroutine calls

internal to the AP. VFC also allows limited integer and logical operations

so complete loops can be put into the AP.

AP-to-host connection is achieved by the Array Processor Executive

(APEX) supplied by FPS [141. APEX keeps tables of presently residing

microcode in the AP, the commands to issue to the AP, and the HSD channel

the AP is on. AP-120B also works asynchronously with respect to host CPU

operation and data transfers to or from the host. The synchronization calls

APWR and APWD are available in APEX to wait for AP running and AP direct

memory access transfers, respectively. (The redundant wait-on-wait-type

logic used in APEX was improved by us).

I

R.

To make multiple array processors controllable from one program, a

multiple-AP Apex was developed [15]. The modifications involved duplicating

internal tables and data areas and providing facilities for indexing into

them. This code also allows dynamic assignment and release of APs. It is

completely upward compatible, in that programs using only one AP can run

unmodified as is. The program when assigning APs establishes a logical-to-

physical correspondence. This allows all code develnnment to address

logical AP numbers. The added SETAP routine sets the AP which is going to

be acted on in the subsequent calls to multiple-AP Apex.

IV. SOFTWARE METHODOLOGY
	

i

Job Partitioning

Job partitioning to facilitate the efficient implementation is an

important step in the planning stage. This way, proper utilization of the

a.'Zllable computing and storage resources can be attained. Range processing

does not need any big buffers. Cornerturn needs two, one for each stage.

Azimut'. processing needs one, a window to handle the range curvature. ThiF

way there are eight disc IO per line. Combining range and the first stage

of cornerturn reduces the IO count to six. Further combining the second

stage of cornerturn with azimuth would reduce the IO count to four. But

this combination would require two big buffers in one program, for which we

did not have space. The partitioning into two subtasks would reduce IO

requirements considerably.

The overall key problem is the accommodation of the cornerturn

process. Our algorithm for cornerturn is an on-line algorithm. This means

all the range data need not be done before the cornerturn can start.

Cornerturn can proceed to do part of its work immediately after the first

range processed line arrives. In fact, cornerturn is integrated into what

comes before and after the simpleminded cornerturn. This way we avoid an

extra read/write of the whole range processed data. Another consideration

was to implement cornerturn in a skip-write, sequential-read fashion. As

data is azimuth processed with overlap, what is written once gets read

multiple times depending on the degree of overlap. As the skipped mode is

always the more time consuming operation, skip-write, sequential-read is the

better choice than sequential-write, skip-read.

13

m

Using software disc formatting techniques, the skipped operation can be

speeded up dramatically. The idea is to anticipate the locations one will

be at after each record of the skipped mode whether or not a seek is

involved. This way, which involves addressing complexities and also affects

the reading method, latency throughout can become zero and only the seek and

transfer times will show [16-17).

Another application of software cylinder formatting is real-time disc

I0. For multiple records, the worst-case formula is latency + seek +

latency + transfer. The first latency is random, and therefore is figured

as a full revolution. The latency after seek is calculatable, and can be

eliminated using appropriate DELTA in SARIO.

The total processing job is now partitioned into several subtasks

called phases. Each phase represents a pass or one step of processing over

a large amount of data. The limitations on the data volume for each pass

are set by the available intermediate disc storage space. Three major phases

of the SAR correlation ar, termed RACR, CRAZ, AZOL. Respectively their

functions are: range correlation with initial cornerturn operation,

completing cornerturn with first part of azimuth processing, and completing

azimuth filtering to form single-look imagery. Another intent of this

partitioning is to balance the amount of arithmetic processing that is

performed by the APs over the three phases. Additionally, there are two

peripheral phases for postcorrelation data handling. These are OVLY for 	 r
t

multiple-look overlay from correlated single-look imagery and MERG for

assembling smaller image blocks into the final frame size [9].

14

Flow of Data

In the three major functional software modules described in the

previous paragraph, the flow of data is similar. Data records, called

lines, are read from one disc into computer memory. :within the computer

some preprocessing is applied, which consists mainly of data selection and

address manipulation. The preassembled data lines are transferred to the AP

where the filtering operation is performed and then returned to the computer

memory for postfiltering buffer movement operation. The results are then

written onto the second disc. In this data flow structure we can identify

the following seven data handling functions: (1) input from disc, (2) data

selection, (3) transfer to AP, (4) AP processing, (S) transfer from AP, (6)

postprocessing data selection, (7) output to disc. Each data line must go

through these seven functions to complete a correlation operation.

Concurrent execution of these functions with pipelined data flow is possible

if independent buffers are provided. (Functions 2, 6 and 3, S cannot be

done in parallel as they utilize the same physical device, CPU and AP HSD,

respectively. The CPU carries the additional load of initiating the various

calls). The concept of pipelining involves doing function 1 for line n,

function 2 for line n-1, up to function	 for line n-6. In the case of

multiple APs, with the number of APs equal to nap, the above scheme is

imitated except now every function is done on nap lines. In the AP

processing function each line is sent to one of the nap APs.

V

15

The choice of the number of APs was made based on preliminary estimates

of times taken by the overlap&ale subfunctions to be performed. The ideal

is to achieve balance in the sense that the resulting system performance

will be bound by all subfunctions. This way, utilizat!on of subsystems will

be close to unity. With 3 APs the system is limited by disc IO and a

reasonable balance is struck.

In general, the methodology for determining the optimum number of APs

is as follows. A per-line workload is determined for each of the

subsystems. ran, the total elapsed time is calculated bottom up from the

formulation given in the PERFORMANCE EVALUATION section for some number of

APs. At some point diminishing returns are reached as overhead to use the

APs swamps the available time or the system is bounded by I0.

Another decision, which influences both the quality of the final image

and the throughput, is the number of bits per pixel at intermediate stages

of the computation. The big buffers made up of such data affect the

computer memory size, the IO volume, and the disc storage requirements. The

size chosen was 8-bit-real, 8-bit-imaginary part per complex pixel to make

the problem managable within the existing hardware. To what degree this

tradeoff degrades the quality of image is open to investigation, though it

is felt that the choice is satisfactory.

16

r	 __

IL s

The parallel AP methodology is used in a problem in which the

independence of a sequence of lines is exploited ("time"). The methodology

is also applicable to parallelism in subportions of a line ("space"). In

any case uniformity, granularity, large supply, and large frame times in the

AP are needed. Many signal processing and image processing problems have

these characteristics.

At JPL, (21-241, thz Seasat digital processor has already been adapted

to two other radar tasks, namely Aircraft and Quick-look, that had

peculiarities of their own. Automated preprocessing, and geometric

rectification have been carried out in a parallel-pipelined environment. A

feasibility analysis of near-real-time processing and a proposal for the now

defun--t VOIR mission were submitted. The upcoming SIR-B digital correletor

will utilize the tools developed and the general approach.

17

ORIGINAL PAGE {S

V. SYSTEM ORGANIZATION	
OF POOR QUALM

Configuration Ii^aues

The design of the IDPMX system is based on the SEL 32 / 55 computer

running under RTM and acting as host to three iPS AP-120B arra y processors

running under multiple -AP Apex. Overall philosophy is one of central

control and central organizatioi: around the SEL bus. Two Ampex 300-MB discs

on separate channels serve as the bulk storage medium. One is the raw data

disc, the other serves as the intermediate disc. A third channel houses the

system disc for software and auxiliary data storage. The radar data is

transferred to the raw data disc through a fiber-optic link from the

playback recorder (see Figure 1).

Sr

FIBER-OPTIC LINK
xxxxxxxxxxxx
• SEASAT x ----»»»»>--
x RECORDER x
xxxxxxxxxxxx

INTERFACE

SELBUS

COMPUTER

Figure 1. IDPMX Block Diagram with Key System Elements

This architecture was chosen for itis conceptual simplicity and that it

does not require any nonstandard interfaces. The parallel configuration

involves all APs doing the same work and all of the work on different

lines. Furthermore, the requirement of a common buffer accessible to all

18

APs rules out the direct AP-to-disc connection for the time being in the

parallel setup.

The remedy seems to be the recreation of the general-purpose integer

computer on the other side of the APs. Data needs to be collected in a

common memory (because of algorithmic and efficiency reasons) before it is

ready for IO to the disc or to the APs. This memory can be configured on

the AP side. The data selection work that is now in the CPU could be done

by intelligent IO c3ntrollers working on the common memory. (GPIOP by FPS

is an example of such a device). The advantage of such a configuration is to

iff-load the host. But cost, ease of development, and flexibility would

tend to favor making good use of and expanding the host facilities. As

discs are the heart of the processing, the supplier of the best discs sholild

be given weight in the decision of which common memory to configure.

The alternative is pipelining the APs so that portions of the work of

one line are done serially by each AP. Each AP would perform a unique step

in the pipelined setup. If the data source has limited distributive

capabilities, the pipelined mode might be the only possible solution to

speedup. An example would be an analog-to-digital converter whose output

has to be quickly processed. If there is need for accumulation from

different time periods then the last AP in the pipelined mode would

automatically serve as the common buffer. Note that for very-short frame

times, eliminating the host connection is desirable. This adds more to the

requirements of the AP, though; essentially, you need an AP that is a
P

self-sufficient minicomputer with operating system and interrupts.

t

19

1
I

w

Judging their relative merits, the parallel approach seems to be

superior for our application, as shown in Table III.

TABLE III
Parallel versus Pipelined Configurations

1) Control protocol for the parallel AP processing is conceptually

simple and requires no nonstandard interfaces.

2) Computational efficiency of the pipeline mode is dirty to try to

optimize because the processing times of subfunctions are

different.

3) Parallel AP configuration enhances the reliability and maintainability

of the system.

4) Parallel AP configuration is more amenable to modular expansion.

Very-high uniformity, easy control, flexibility, and the general number

of AP programmability characterize the parallel setup. A recent paper with

a different viewpoint on multiple array processor configurations and related

issues has come to our attention [18].

The advantages of the pipelined setup are minimizing hardware and

solving the common data problem through specialization. The analogy to the

tradeoffs involved in one two-stage-pipelined adder versus two nonpipelined

adders is worth invoking. If the APs are specialized, then hardware is

minimized but usefulness to other problems is severely limited. Common data

requirements make the pipelined setup look good. An example would be

interpolation done across records whereby a window slides down the data.

20

i

For the parallel setup, communication transfers are proportional to nap (the

number of APs); for the pipelined setup, they are independent of nap.

Usage
i

The software organization of the radar job affects the general

usability of the computer system. The main phases are relatively large

(60-80 KW), utilize most of the hardware, and run a couple of minutes each.

For IDP the executive routine was done as a main program that brought in the

single level overlays. This practically tied up the computer for a whole

run. For IDPMX an executive routine with a sequence of activations as a

control mechanism was developed. There is a communication facility to pass

parameters and to inform a phase of tL.- executive that activated it; when a

phase is done it resumes that executive. Automation, standardization, and

L	 reducing the space-time product were the goals. The implementation is a

batch queue that allows cut-in by jobs in the same batch class. This way

another radar run can cut in at an appropriate point when there is no loose

data on the intermediate disc. Also, when there is heavy daily activity,

the newly activated phase ends up in the allocation_ queue, thus making the

system more usable to others.

As far as just the radar jobs are concerned, the system is

monoprogrammed. This should not be seen as a deficiency; in fact,

multiprogramming in this context is a pitfall to avoid. Other activity on

the same two discs would cause thrashing and severe slowdown as a result of
F

frequent head movement, though concurrent small jobs using the system disc

present no problems. (This type of concern should influence job scheduling

algorithms for mainframe operating systems).

21

TABLE IV
Per-Line Workload of the Phases

PHASES RACR CRAZ AZOL

Read 1.7 1.0 1.0 KW

Preproc --- 1.0 1.0 KW

Apput .S 1.0 1.0 KW

Aprun 31.0 20.0 18.7 ms

Apget .6 1.0 .3 KW

Postproc .6 --- --- KW

Write .6 1.0 .3 KW

Note:
E.s
E	 1)	 RACR is loop within loop;

in the outer loop is the big buffer write

2) CRAZ is loop within loop;

in the outer loop is the big buffer read
a

3) AZOL is one loop;

in the loop is a big buffer window

s

i

i

22

The programs were written with the number of APs to be used, nap, as a

variable. By selectively bypassing sections of code in the main loop one

can time sutfunctions. Easily, by moving the wait statements around, one

can simulate sequential execution. There is dramatic speed gain due to

concurrent 10, CPU, and AP operation. All the phases can be mod gted fairly

accurately. Calculations are within 5 percent of the measured values shown

in Table V (a detailed example is in the APPENDIX). The parallel 1 AP

figures are faster than the original IDP due to increased disc and memory

storage available on the IDPMX system.

TABLE V
Elapsed Time (in seconds) to Complete 2K Lines in each

Phase on IDPMX as a Function of the Number of APs

MODES RACR CRAZ AZOL

Sequential 1 AP 143.0 116.9 123.4

Parallel 1 AP 68.2 59.4 53.4

Parallel 2 AP 35.9 33.1 29.7

Parallel 3 AP 26.7 30.6 28.8

The elapsed time is not inversely proportional to nap. So the process is

not AP limited. It means all sorts of additional features using AP can be

added to the programs, only mildly affecting run time in the nap=3 case. As

disc IO elapsed time is a step function of AP run time, the effect might even

be nil.

Based on per-line workload, one calculates, as in Table VI, a percentage

usage of subsystems that is normalized by the most time-consuming item.

W

W a

23

TABLE VI
Percentage Usage with Respect to Total Time

in the 3 AP IDPMX System

PHASES RACR CRAZ AZOL

Disc Input (elapsed) 93 80 100

AP IO Transfer 11 25 18

AP Processing 83 87 80

SEL CPU 61 73 95

SEL Bus Load 35 40 43

Disc Output (elapsed) 100 100 63

Disc Input (transfer) 	 52	 55	 55

Disc Output (transfer) 	 22	 55	 18

Note:

1) Disc elapsed percentages include latency and overhead.

2) CPU percentage does not include slowdown due to inter=erence.

SEL bus load was calculated by averaging IO load and adding in a

typical instruction CPU model. Assume loadword and storeword as typical

instructions. This takes 2.4 us and uses 6 bus cycles, as instructions

are fetched in pairs. This results in a 10-MB/s bus load due to the CPU.

Interference

Slowdown due to I0 interference applies both to the AP and the CPU.

The effect of AP transfers on AP running is usually negligible. The worst

case is 2 cycles per word transferred (the average case is close to the

worst case). Given relatively large frame times (20 to 30 ms) and short

0 to 2 KW) transfers, ignoring this interference is justified. HSD transfer
rate is quoted at 1.2 us per word (in practice the measurements indicate

1.0 MW for APPUT and 1.4 MW for APGET). Still, on an interference per I0

elapsed time basis the effect is 25 percent and could be a problem if very

little processing needs to be done on the data. AP memory refresh causes a

3-percent slowdown (3 cycles every 15 us). Host CPU slowdown due to bus

and memory contention is a substantial effect. Per I0 elapsed time, memory

intensive CPU slowdown is 20 percent for APGET and 30 percent for APPUT

(this timing was done on a 2-way interleaved SEL 32/77). For this reason we

do not transfer to all the APs together in parallel. The combined load

would effectively stop the CPU and this is intolerable in the case of

issuing the next record transaction to the discs. The missed sector would

result in a full revol-ition delay. As our frame times are considerably

larger than transfer times to the APs, doing the transfers in sequence

presents no efficiency loss. (In fact, the latest system configuration has

all the APs daisy-chained on one HSD).

Disc Latency

The latency due to overlapping disc transfers with AP running is

calculable because the process resynchronizes after a few repetitions.

Elapsed time plotted agait.st AP run time (fixed disc transfer size) is a

step function. Assume no overhead and disc transfer of length D and an AP

run of duration A in sector-pass-time (SPT) units. For concreteness 23

sectors per rotation is given. Also assume that we are on sector and all

ready to proceed. For A <= D latency is 0 and elapsed time is D. For

A >- D + 23 latency does not matter and elapsed time is A. In the middle

range when D < A < D + 23 the step function behavior is exhibited. Define

AT as the sector we are on, WAT as the sector we want to be on, LAT as the

latency from AT to WAT (mod 23). ELAPS is the maximum of (A , D + LAT).

WAT will increase by D from record to record. LAT is J * (D - A) mod 23,

where J is the number of records already done since initial conditions. AT

will increase by ELAPS = A until ELAPS = D + LAT (as 23 is prime, multiples

of D - A will cycle the range). An example with D = 9 and A varied will

suffice, as shown in Table VII.

TABLE VII
Disc Elapsed Time Step Function Behavior

0 <= A <- 9; avg.elaps - 9

10 <= A <= 20; 41/ 2; avg.elaps = 20.5

21 <- A <= 28; 85/ 3; avg.elaps = 28.3

29 <= A <_ 29; 233/ 8; avg.elaps - 29.12

30 <= A <- 30; 361/12; avg.elaps = 30.08

31 <= A <- 31; 713/23; avg.elaps = 31.00

32 <- A	 ; avg.elaps = A

r

f

26
i

t

The same calculations would not be valid for overlapping disc transfers

with a CPU run. There is coupling between IO and CPU. Effective A is

increased as IO slows down the CPU; this in turn affects the degree of

slowdown dependent on how much of the latency coincides with the CPU run.

Measurements still indicate a step function behavior. It would be

interesting to try to model this. Another related question is the modeling

of two independent disc IO streams from separate controllers overlapping

each other and AP or CPU.

SARIO disc handler overhead is 0.5 ms for the initial call and 0.2 ms

for each subsequent transaction issued as part of the software record

chaining. As there is disc IO on two channels going simultaneously there is

_	 a possibility that two interrupts might appear during the same sector-pass-

time (SPT - 0.7 ms). Slowdown due to other IO and additional overhead due

to context switching will aggravate the situation. Though two 0.2 ms are

likely to fit in an SPT, this concern highlights the importance of

optimizing -andler operation. Cases when one or both of the disc items to be

done is the initial call can occur in our application. The possibility of

doing a seek as part of the record chain, especially in the software

cylinder formatted cornerturn where latency after seek is zero, complicates

the assessment. There might be some asymmetry depending on relative channel

interrupt priority ranking.

27

f

Future Considerations

In all phases about half the CPU time is associated with overhead. The

other half is the work spent on necessary data selection buffer movements

per line. The type of function "move multiple long with increment," if

implemented as an instruction in the Writable Control Store (WCS), will

halve the bus demand; if this type of function is implemented as I0 in the

Regional Processing Unit (RPU), it will also free the CPU. Data selection

is best done in a RPU-based host-multiple AP interface as that boundary is

crossed immediately before or after the selection in any case. This setup

is desirable because the slight bus load is a good tradeoff for general

utility of the host memory. If the number of lines per AP is doubled, CPU

percentage usage will decrease as the overhead stays constant. But the

denser environment will increase the CPU slowdown factor. Memory bandwidth

can be increased to the point where it is equivalent to the bus bandwidth by

additional memory bus controllers and interleaving. Another gain can result

from optimizing the AP software interface.

Comparing disc elapsed to disc transfer times will show the importance

of latency. By doubling the number of lines per transaction, latency can be

drastically reduced. Nonfull sectors and 'he in-between sector can be

avoided with discs that have power-of-two sector size and allow hardware

record chaining. A software cylinder formatting an improved cornerturn

algorithm with bigger buffers and discs can be implemented.

Disc transfer rates, using present discs, can be attacked by going to a

four-channel, four-disc, split-file configuration. A file would be split

across two discs, and these discs would be read simultaneously. The issues

of organization, latency, and multiple-interrupts in an SPT make this a

speculative attempt.
`s

28

With the existing hardware, 15-percent potential improvement in the

main phases is estimated. With new hardware, up to 45-percent speedup is

possible (SEL 32/87 with 32-KB cache, 256-01 memory, 600-MB discs, and

faster APs with 64-KW memory each. Actually that powerful a computer is

unnecessary if intelligent AP interfaces can be developed as outlined

above. Faster APs are not strictly required either as five present ones

will do). With optimized overlay this would mean a sub-one-hour processing

time per picture.

There is an ongoing activity to cut the processing time to 1.5 hours

[25). This is to be done on the existing system augmented with a fourth

AP. The software effort involves the improved cornerturn, optimized APEX,

twice the number of lines per disc I0, and all of the peripheral phases

redone for speed.

The approach taken in implementing the IDP and IDPMX projects is

software intensive. Development effort and programming difficulty are

considerably more than what they would be for achieving comparable

throughput on a supercomputer. But supercomputer prices are prohibitive.

The operating system, sophisticated compiler, and the fast hardware of a

supercomputer would automatically do partially what in our approach has to

be done manually. But the full capabilities of a supercomputer would not be

utilized. The parallel pipelined programming methodology can also be

applied to supercomputers and their 10 devices. Exploiting independent

operation of subsystems by software control from one job is a valid approach

for any problem where speed is needed.

29

V-

VII. CONCLUSION

An efficient. SEASAT SAR processing system and the methodology of

parallel data handling among the discs, CPU, and APs in a host plus

peripheral array processor environment have been demonstrated. The relevant

programming and efficiency issues have been analyzed. Quantitative

discussion of overhead, latency, and congestion has been made. The design

approach is general enough that the tools developed and implemented are

applicable in different contexts.

N..

VIII. REFERENCES

[1) C. Wu, "A Digital System to Produce Imagery from SAR Data",

Proc. AIAA Systems Design Driven by Sensors Conf.,

Paper 76-968, New York, N.Y., October 1976.

[2) C. Wu, "A Digital Fast -orrelation Approach to Produce SEASAT SAR

Imagery", Proc. IEEE 1980 International Radar Conf., pp. 153-160,

New York, N.Y., April 1980.

[3) C. Wu, B. Barkan, B. Huneycutt, C. Leang, S. Pang,

"An Introduction to the Interim Digital SAR Processor and the

Characteristics of the Associated SEASAT SAR Imagery",

JPL Publication 81-26, Jet Propulsion Laboratory, Pasadena, Calif.,

April 1981.

[4) B. Barkan, C. Wu, W. Ka^:plus, D. Caswell, "Application of Parallel

Array Processors for SEASAT SAR Processing", Proc. IGARSS 1981, Vol. I,

pp. 541-547, New York, N.Y., June 1981.

[5) C. Wu, B. Barkan, W. Karplus, D. Caswell, "SEASAT Synthetic Aperture

Radar Data Reduction Using Parallel Programmable Array Processors",

IEEE Trans. Geoscience and Remote Sensing, Vol. GE-20, No. 3,

pp. 352-358, July 1982.

[6) Systems Engineering Laboratories, "Disc Processor Model 9024 Reference

Manual", Report No. 301-329024-000, Fort Lauderdale, Fla., November

1979.

[7) Systems Engineering Laboratories, "SEL 32 Reference Manual", Report No.

324-322000-001, Fort Lauderdale, Fla., August 1975.

[8) Floating Point Systems, "FPS Processor Handbook", Report No.

860-7259-003, Portland Ore., February 1979.

31

i

(9) S. Pang, "Interim Digital SAR Data Processing (IDP) Programs Users

Guide and Documentation", Jet Propulsion Laboratory, Pasadena, Calif.,

October 1979, (unpublished JPL document).

(10) Floating Point Systems, "AP Math Library Manual", ?eport No.

860-7288-004, 3 volumes, Portland, Ore., Feb=,ry 1979.

(11) Floating Point Systems, "Programmers Reference Manual", Report No.

860-7319-000, 2 volumes, Portland, Ore., January 1978.

('_?) B. Barkan, "Fast Unpack Routines for AP-1208", Proc. 1981 ARRAY Conf.,

pp. 237-241, • Floating Point Systems, Portland, Ore., April 1981.

[13) Floating Point Systems, "VFC The Vector Function. Chainer", Report No.

860-7351-004, Portland, Ore., September 1979.

(14) Floating Point Systems, "APEX Manual", Report No. 860-7371-003,

Portland, Ore., December 1979.

(15) D. Caswell, B. Barkan, "A Multiple-AP Apex", Proc. 1981 ARRAY Conf.,

pp. 242-244, Floating Point Systems, Portland, Ora., April 1981.

[16] B. Barkan, C. Wu, "Transpose of Externally Stored Matrices", Proc. 1982

ARRAY Conf., pp. 179-185, Floating Point Systems, Portland, Ore.. March

1982.
r

(17) B. Barkan, S. Pang, "Transpose of Externally Stored M.ar*ices - Il",

Proc. 1983 ARRAY Conf., pp. 	 107-114, Floating Point Systems, Portland,

Ore., April 1983.

(18) J. Burns, "Greater Throughput with Multiple Array Processors", Computer

Design, pp. 207-2i1, September 1981.

't 19) C. Elachi, T. Bicknell, R. Jordan, C. Wu, "Spaceborne Synthetic-
-

Aperture lmaging Radars: 	 Applications, Techniques, and Technology",

Proc. IEEE, Vol. 70, No.	 10, pp.	 1174-1209, New York, N.Y., October

s
1982.

,

31

W

[20] J. Gredel, J. Guignard, "Digital Ground Preprocessing of SAR Data",

Proc. 7SPRS, International Archieves of Photogrammetry, Vol. 24-II,

pp. 479-490, Ottawa, Canada, September 1982.

[21] C. Wu, B. Barkan, J. Curlander, M. Jin, S. Pang, "Current Performance

of the Interim Digital SAR Processor", in SIR-A Symposium Proceedings,

JPL Publication 83-11, Jet Propulsion Laboratory, Pasadena, Calif. (in

press).

[22] M. An, C. Wu, "A Digital Quick-Look SAR Processor", Proc. Inter.

Society of Photogrammetry Conf., Ottawa, Canada, 1982.

[23] J. Curlander, C. Wu, A. Pang, "Automated Preprocessing of Spaceborne

SAR Data", Proc. IGARSS, Vol. II, FA-1, pp. 3.1-3.6, IEEE, New York,

N.Y., June 1982.

[24] J. Curlander, S. Pang, "Geometric Registration and Rectification of

Spaceborne SAR Data", Proc. IGARSS, Vol. II, FA-2, pp. 5.1-5.6, IEEE,

New York, N.Y., June 1982.

(25] B. Barkan, S. Pang, B. Lewis, A. Pang,

"Speed Upgrade of IDPMX Digital SAR Processor", Jet Propulsion

Laboratory, Pasadena, Calif. (in preparation).

____q

APPENDIX A

Program Listings

This appendix contains program fragments to highlight the optimizations

done in several languages and to illustrate the parallel programming

methodology at the device level. All the examples are taken from the first

phase, RACR. Listing 1 is the invocation of SETAP to establish the logical-

to-physical correspondence at array processor assignment time, which is done

once at the top of each phase. Listing 2 is the loop of the 4-bit unpack

routine, VUP4C, coded in APAL. It shows a technique of branching that uses

two inputs delivered in FA and FM after the branch. Listing 3 is an example

of a Vector Function Chained list of AP calls, RACRX, that does the range

processing. Listing 4 is the first-stage cornerturn data movement

subroutine, RACRM, coded in SEL assembler. Listing 5 is the main loop of

the phase RACK. This fragment incorporates all of the above. It also

illustrates the usage of SARIO and the way first-stage cornerturn has been

integrated into the processing. This main loop is preceded by a buildup and

followed by a wind down in the complete code.

3':

C

C******

C

NAP=O

DO 1 LAP=I,NAPDESIR

CALL SETAP(LAP)

CALL APINIT(O,O,IAPSTS)

IF(IAPSTS.GT.0) NAP=NAP+1

1	 CONTINUE	 -

IF(NAPDESIR.NE .NAP) CALL EXIT

C

C	 ******

C

35

Listing 2

The Loop of 4-bit Unpack koutine

C

C	 *******

C

L:	 DEC S; SETMA;

a W.-

M .	LDSPF E; DB=MD; DPX<MD;

FADD TM,DPX(CO);

MUL TM,rA

112.

"32 IN FM

ADD EB,E; DPY(B1)<SPFN;

WRTMAN;

FMUL TM,FA

113.

"B2 IN FA

SUB 18,D; SETMA; MI<FM;

FADD DPX(F16),FA;

FMUL TM,FA;

BFGE P

"4.M

DFCMA; MI<FM;

FADD ZERO,DPY(B1);

FMUL TM,FA

3

I

36

r

FAND DPY(M8),MDPX; MOV C8,C8;

FAND DPY(M7),MDPX; MOV C7,C7;

P:	 LDSPE E; DB=MD; DPX<MD;

FAND DPY(M8),MDPX; MOV C8,C8;

FAND DPY(M7),MDPX; MOV C7,C7;

"5.M

"B2 FROM FA

DECMA; MI<FA;

FMUL;

BFGE DONE

"6.M

DECMA; MI<FA;

FMUL;

BR C

"4.P

DECMA; MI<FM;

FADD ZERO,DPY(B1);

FMUL TM, FA

"5.P

"B2 FROM FM

DECMA; MI<FM;

FMUL;

BFGE DONE

"6.P

DECMA; MI<FA;

FMUL;

BR C

37

"7

C:	 FAND DPY(M6),MDPX; MOV C6,C6;
	

DPX(CO) <FM ;

DECMA; MI<FA

FAND DPY(M5),MDPX; MOV C5,C5;

DECMA; MI<FA

"8

119.

FAND DPY(M4),MDPX; MOV C4,C4;

DECMA; MI<FA

FAND DPY(M3),MDPX; MOV C3,C3;

DECMA; MI<FA

FAND DPY(M2),MDPX; MOV C2,C2;

FMUL TM,FA;

BR L

C

C	 *******

C

"10.

"11.

38

Listing 3

Range Compression in the AP

C

C
E ^	

DEFINE RACRX(BL,SU,IR)

E	 LOCAL SU4 , IR12,IR14
E

SU4=4096-SU

IR1Z= 12288+IR

IR14= 14336+IR

IF BL = 2 GOTO EVEN

ODD: CALL VUP4C (0000,SU4,513)

CALL RFFTB(4096,8192,4096,1)

CALL RFFTSC (8192,4096,2,0)

CALL CVMUL(IR12,2 , 08192,2,6144 , 2,1024,1)

CALL CVMUL (IR14 , 2,10240,2,4096 , 2,1024,1)

CALL CFFTB (4096,8192,2048,-1)

CALL VCLIP(8192,1,4080,4081,8192,1,2560)

CALL VPK8 (8192,1,2048,1,640)

GOTO DONE

39	
1

r.

CALL RFFTSC(8192,4096,2,0)

CALL CVMUL(IR12,2,08192,2,6144,2,1024,1)

CALL CVMUL(IR14,2,10240,2,4096,2,1024,1)

CALL CFFTB(4096,8192,2048,-1)

CALL VCLIP(8192,1,4080,4081,8192,1,2560)

CALL VPK8(8192,1,3072,1,640)

DONE: END

C

C *******

C

40

Listing 4

Cornerturn Data Movem-nt Routine

C

C

$EXECUTE ASSEMBLE

PROGRAM RACRM

DEF RACRM

M.REQS

*

* IAD,IBH,NRBB,NCH	 PARAMETERS

* ASSUMES:

* NRB	 . EQUAL TO 64

* NCH	 . DIVISIBLE BY 8

*

RACRM TRR	 RO,X1

LEA	 X2,*1W,X1

LEA	 X3,*2W,X1

NRB EQU	 64

LNW	 R1,*4W,X1

41

i

t

A
a

LOOP LW

LW

STW

STW

STW

STW

SRLD

SRLD

STW

STW

STW

STW

ADI

ADI

BID

DONE ADI

TRSW

END

Ri3OD,X2

R6,1D,X2

R4,1*NRB,X3

R5,3*NRB,X3

R6,5*NRB,X3

R7,7*NRL,X3

R4,16

R6,16

R4,0*NRB,X3

R5,2*NRB,X3

R6,4*NRB,X3

R7,6*NRB,X3

X2,2D

X3,8*NRB

R1,LOOP

R0, 5W

RO

C

c	 *******

C

42

Listing 5

Main Loop of Phase RACR

C

C	 *******

C

DO 1000 L-LREDB,LREDE,NAP

C

C

DU-BI ; BI-BL ; BL-DU

C

CALL SARIO(R,F1,1728,NAP,IC(1,1,BL))

DO 52 LAP-1,NAP

CALL WSU(SU); CALL WIR(IR); CALL SETAP(LAP)

52
	

CALL RACRX(BL,SU,IR)

C

DO 51 LAPs1,NAP

CALL WSW(SW); CALL SETAP(LAP)

CALL APPUT(IC(SW,LAP,BI),P(BI),513,0)

FU-FU+1 ; OV-OV+1

CALL RACRM(IAD(1,LAP,BL),IBH(FU,BBL),NRB,NCH)

IF(FU.LT .FULL) GO TO 100

C
	

ASSUMES FULL DIVIDES OVLP

CALL SARIO(D,F2,512,COMPCODE)

IF(OV.LT .OVLP) GO TO 90

43

C CONFIGURE NEW WRITING SPACE

CALL SARIO(C,F2,512)

F2SP-F2SP+LUFF*RECW

CALL SARIO(O.F2,512,F2SP,WSKIP,LUFF,FF2)

OV-0

90 CONTINUE

DU-BBI ; BBI-BBL ; BBL-DU

CALL SARIO(W,F2,512,RECW,IB(1,BBI))

FU-0

100 CONTINUE

CALL APGET(IA(1,LAP,BI),G(BI),640,0)

_	 = 51 CALL APWD

E C 1
i

DO 53 LAP-1,NAP

CALL SETAP(LAP)

3
53 CALL APWR

CALL SARIO(D,F1,1728,COMPCODE)

C

r C

1000 CONTINUE

C

C *******

_	
1

44

r
i

APPENDIX B

Performance Modeling Example

This appendix (including Tables VIII, IX, and Figure B-1) is s detailed,

worked-out example of modeling the performance of the RACK phase.

TABLE VIII
Definitions of Throughput Modeling Terms

ap.ov W overhead per call to AP

apput.tr a transfer time to AP

cpu 0 cpu work overlapped with apput

cpu.el a cpu with slowdown

apput.el 0 elapsed time for apput

apret.tr transfer time from AP

apget.el - elapsed time for apget

apio.el elapsed time for all AP IOs

aprun processing time in an AP

aprun.^l a aprun with slowdown

aprun.av W available time for overlapping

ap.el elapsed time for all APs

disc.tr disc transfer time including extra sector

disc.el - disc elapsed time for overlapping with ap

total.el total elapsed time in given loop

45

TABLE IX
Thrnughput Modeling Formulas

apput.el	 0	 nex (apput . tr , cpu.el) + 2 * ap.ov

apget.el	 0	 apget.tr + 2 * ap.ov

apio.el	 M	 nap * (apput.el + Raget.el)

Aprun .av	 M	 aprun.el - (nap - 1) * ap.ov

ap.el	 n	 mix (apio.el, apr^n.av) + 2 * nap * ap.ov

c'isc.el	 calculate with (in SPT units)

D - nap * disc.tr

A • ap.el

tota ..l.el	 max (ap.el , disc.el)

46	 1-

ORMNAL PAQ9 18
OF POOR QUALITY

Im Im lxxx I	 I	 I	 I	 I	 I	 1	 1	 1	 I xxx lxxx lxxx l	 I

disc.el

XXX	 XXX AP#1

XXX	 XXX AP#2

XXX	 XXX AP#3

ap.el

ap.ov

aprun.el

aprun.av

apio.el

Figure B-1. Innerloop Timeline for nap - 3 in Phase RACR

47

i
i

A

p.ov	 =

pput.tr =

pu	 =

pget.tr =

prun	 =

prun.el =

cpu.el	 =

Worked out Numerical Example

1.1 ms	 (APEX per call)

0.5 ms	 (1.0 MW per s)

3.3 ms	 (5.4 us per word, see RACRM)

0.6 ms	 (1.0 MW per s when with contention)

31.0 ms (see RACRX)

aprun + 2 AP cycles of slowdown per word transferred

31.0 ms + 0.3 us per word * 1.1 KW

31.3 ms

(The above 31.3 me is used in the succeeding pages. Correct

aprun.el is 32.2 ms, taking into account the 3% slowdown from

AP memory refresh. This inaccuracy is minor and does not

cause any qualitative discrepancy).

portion of cpu under the APPUT and two discs (0.3 ms) +

portion of cpu under just the two discs (3.0 ms)

(cpu slowdown factors are guesses)

0.3 ms * 1.5 + 3.0 ms * 1.1

3.8 ms

Assumptions:

1) Aprun and apio overheads same

2) Control code takes little time

3) SARIO overhead is hidden

Consult per-line workload in PERFORMANCE EVALUATION and the listings in tl

APPENDIX.

48

ORIGINAL PAGE 19

OF POOR QUALITY

apput.el -	 max (0.5 , 3.8) + 2 * 1.1

m W-

= 6.0 ms

apget.el	 = 0.6 + 2 * 1.1

= 2.8 ms

apio.el 3 A (6.0 + 2.8)

= 26.4 ms

aprun.av	 = 31.3 - (3 - 1) * 1.1

= 29.1 ms

ap.el	 = max (26.4 29.1) + 2 * 3 *	 1.1

= 35.7 ms

disc.el	 = calculation with (SPT units)

D=3* (9 +1) =30

A = 35.7 / 0.73 - 49

using 30 = 7,	 49 = 3 (mod 23)

AT	 0	 3	 6	 9	 12	 15

WAT	 0	 7	 14	 21	 5	 12

LAT 0 4 8 12 16 20

ELAPS 49 49 49 49 49 50

ELAPS - max (LAT+D , A)

so avg.elaps = 49.2 SPT

	

=	 35.9 ms

	

total.el -	 max (35.7 , 35.9)

	

=	 35.9 ms (for 3 lines)

This corresponds to 24.0 s for 2K lines; as the existing cornerturn takes

26.2 s, just the cornerturn time will show. The calculated 26.2 s is in

good agreement with the measured 26.7 s.

49

Speed Estimate for a Faster RACR

Assumptions:

: 1)	 ap.ov	 0.2 ms (software interface optimization)

2)	 cornerturn twice as fast (software cylinder formatting)

3)	 less disc input latency (twice the lines read in)

4)	 nap = 4 (buy fourth AP)

apput.el	 =	 4.2 ms

apget.el =	 1.0 ms

apio.el	 =	 20.8 ms

aprun.av =	 30.7 ms

ap.el	 32.3 ms

disc.el	 =	 33.4 ms

calculate with (in SPT)

D= 80, A= 88

using 80 = 11, 88 = 19 (mod 23)

AT 0 19

WAT 0 11

LAT 0 15

ELAPS 88 95

so avg.elaps = 91.5 SPT (for 8 lines)

total.el = 33.4 ms (for 4 lines)

This corresponds to 16.7 s per 2K lines, as the improved cornerturn will

take only 15.3 s and will be overlappable with the above. dote that the same
1

first three assumptions with nap-3 give ap.el = 32.1 ms, D-60, A=88; so

total.el = 32.1 ms (for 3 lines). This is 21.4 s per 2K lines. The nap-3

versus nap-4 comparison shows the fourth AP cost-effective provided our

assumptions are realizable. QED

50

APPENDIX C

Cornerturn Papers

For completeness, two papers on cornerturn are included here.

Proceedings of the 1982 ARRAY Conference

TRANSPOSE OF EXTERNALLY STORED MATRICES*

by

Budak Barkan**, Chialin Wu

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109

ABSTRACT

This paper presents a method for transposition of arbitrary matrices that are
-`

	

	 larger than available primary storage. Advantages of the approach compared to
previously reported results are flexibility and efficiency. Input matrix
dimensions are unrestricted and the implementation is very fast. This
transposition method should be of interest to those carrying out 2D Fast
Fourier Transforms on FPS Array Processors.

INDEX TERMS

Matrix transpose, 2D transforms, Corner turning.

INTRODUCTION

In several applications, like 2D transforms, an efficient algorithm for matrix
transposing is needed. Because the size of the matrix is much greater than the
available high-speed primary storage, the operation requires careful buffer
management and IO planning for the secondary storage device.

This is a two-stage operation; each stage requiring a big buffer in core. In
the first stage data is read in line by line and put into big buffer 1. This
buffer is written out in records whenever full. The above is repeated until
the whole matrix has been read in and written out. In the second stage enough-	
records are read in to fill big buffer 2. From this buffer lines are formed
and written out. Phis is repeated until all lines have been formed.

Skip-write, sequential-read is one way of implementation. A logical but not

speedwise equivalent way would be sequential-write, skip-read.

*This paper presents the results of one phase of research carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under Contract
No. NAS7-100, sponsored by the National Aeronautics and Space Administration.

**Part of the analysis was done while B. Barkan was a student at Computer
Science Department, UCLA.

51

PT

ORIGINAL PAGE IS
OF POOR QUALITY

L

	

B1
	

f

T*N1
C

BASIC PARAMETERS

ld	 L

f-- B2//N

1
NJ

I
	

l

1
No	 NW* LW/N 1 --►

Figure C-1. Basic Parameters in the Transpose Operations

52

^=tm

^..g

BASIC PARAMETERS (Figure C-1)

Input	 N lines of length L each
C	 N * L	 Input matrix size
B1	 First stage big buffer size
B2	 Second stage big buffer size

(All below divisions should yield zero remainder)

N1 = B1 / L	 Number of lines that fit into B1
T	 = C / B1	 Number of segments in one column
LW = B2 / T	 Line length in writing out B1
NW - B1 / LW	 Number of lines to write out B1

The idea is to write out B1 with records as big as possible and have T of them
fit B2. When B2 is 'Lull, B2 / N lines are ready to be formed.

Total write count 	 = Total read count
=T*NW

(C*C) / (B1*B2)

PROCEDURE

Each phase is done until all "input" is exhausted:

Phase 1

A line is put into B1 point by point with spacing N1 in B1 for adjacent points
in the line.

When full, B1 is written out as NW records of length LW each, with spacing T
records on a disk in between.

Phase 2

T records are read in filling B2. Then complete lines are assembled, one line
from T segments each of length N1.

ADVANTAGES OF THE ALGORITHM

1) Input matrix dimensions are relatively unrestricted. The matrix does not
have to be square or power of two on one side. (The amount of padding
required for the "odd" cases is minimal.)

2) Primary storage address calculations are of the trivial increment -fetch,
add-store variety.

3) Data input and output are line by line so the transpose operation can be
combined with what is being done before and after the transpose.

4) Input data is going to be processed with overlap; the first stage of the
transposing operation need not be repeated.

53

IMPLEMENTATION

The highly regular nature of the IO operation makes it a good candidate for
optimization.	 Asynchronous IO programs with multiple record capability for
sequential and skipped modes were written for two dedicated 300-MB disks on
different channels. 	 This approach makes a seek a rare event, and latency
occurs only once per multiple record.	 IO elapsed time becomes close to
transfer times.

1
The implementation was completed in 1978 as part of the Interim Digital
Synthetic Aperture Radar Processing System (IDP) developed at the Jet
Propulsion Laboratory (Refs. C-1 through C-3). 	 The computer was a SEL 32/55
running under RTM.

COMPARISON

The approach of Eklundh (Ref. C-4) is numerically compared to ours on similar
input sizes:

4	 Eklundh	 Ours

Input	 512 * 512	 complex	 1024 * 1280 halfwords
Equivalent input 	 512 * 1024	 words	 1024 * 640	 words
Buffer size	 16 KW, 16 KW	 20 KW, 16 KW

n=9, j=4
IO passes	 2	 1
IO count	 2048	 records	 2560	 records
Time CPU	 7	 s	 5	 s
Time IO	 108	 s	 17	 s
Total time	 115	 s	 22	 s

Our times given are the extra times just to do one transpose. (Matrix has to
be read in and written out in any case.) Note that Eklundh would have to
treat 1024 * 640 as 1024 * 1024.

DISK PARAMETERS

1

300 MB

SC sectors/cylinder	 437
data surfaces	 19

SS sectors/surface	 23
rotation speed	 3600 rpm

SPT sector pass time 	 .73 ms
words/sector	 192
word pass time	 4 us
next cylinder seek	 7 ms

ESC effective sectors/cylinder	 436

54

In this paper SPT is used as a time unit. It is a natural time unit in the
present context, e.g.: the next cylinder seek is 10 SPT.

Notice that ESC (chosen for convenience as a multiple of effective record
length) is a software construct and can be manipulated. (This idea is also
useful in real-time I0 buffering.)

ANALYSIS

RACR is our program that does the skip-write portion of cornerturn. In RACR,
40 512-word records are written with 32 record skips. A 512-word record
is 3 sectors. So the start-to-end sector difference is 40*32*4 = 5120
sectors. (Notice the extra sector in effective record length is provided for
reading efficiency.) This translates to 12 cylinders for the 300-MB disc.

Therefore, per 40-record skipped write:

300 MB

no seek	 28
one-cylinder seek	 12
two-cylinder seek	 --

Latency time calculations are tricky: the idea is to calculate which sector
will be under the heads after the seek (if any) and to compare it with the next
destination sector. Latency should be big enough to issue the necessary I0
commands. The assumption is that 1+ sector is enough to issue a seek and a
transaction.

In the following discussion, we assume the 10 command is already issued, all
ready to go; we are positioned just before the record.

L - present location
R - effective record length
AT - location you will be at
WAT - location you want to be at
SEEK - seek time; zero if no seek
NYCL - number of cylinders sought; zero if no seek
LAT - latency

ELAPS - elapsed time for a record
SKIP - number of records to skip

AT - L+R+SEEK
WAT - L+R*SKIP+(SC-ESC)*NCYL

LAT - (WAT-AT) mod SS
ELAPS - R+SEEK+LAT

55

c_. ..nn un_

no seek	 13
one cyl. seek	 14

Total:	 532 - 28*13+12*14

Observed times are for a 12288-line RACR run (the scaling factor is 384*.73,
because one block of 40 lines comes out of every 32 RACR lines).

300 MB

estimated	 149 s
observed	 157 s

That we are underestimating is consistent because the very first record's seek
time and latency time are worse (20 + 11 SPT additional).

IMPROVED ALGORITHM

An essential feature is that what is written does not get read the same way.
Reading is done in 32-record sequential reads. The improved algorithm
requires minor changes in the reading method.

A cylinder will be partitioned into 3*138 sectors, starting from sector zero.
Writing in the first pass, the first record will go to sector 0; second record
to sector 138+4; third record to 276+8. Fourth record will go to next cylinder
sector 0, etc. In the second and latter passes, the records go to the "next"
positions. This is equivalent to SKIP - 35.5. (In practice we implemented an
approximation with SKIP - 36, as our present software does not allow
fractional R skips.) Notice the resulting blocks can be read sequentially.
Disk utilization efficiency will be 384/436 - 88% of usual, but overall
address determination will be quite simple. This formatting scheme is shown
in Figure C-2.

	

0	

	

138
	

1	 2	 3	

	

276
	

1	 2 1 3 1 . •

414

(NUMBERS IN BOXES REFER TO
PASS NUMBER)

Figure C-2. Software Cylinder Formatting for Improved Algorithm

56

d
:

Latency time for the seek is:

AT - L+4+10
WAT - L-8
LAT - 1

Latency for no seek is:

LAT - 0

So total time is 314 - 26*4+14*15, which compares very favorably to 532.

CONSIDERATIONS

The software cylinder formatting idea is generally applicable. If one is not
lucky on the latency time for the seek, nonrepetitive addressing across
cylinders can be used. Command/data chaining without next sector miss,
power-of-two sector size, larger discs, and larger buffers will all facilitate
faster implementations.

A further efficiency gain, at the cost of software complications, results from
coupling the cornerturn with the transform operations. In that case, a direct
array processor-to-disc connection (like that provided by FPS) looks
particularly attractive.

1	 CONCLUSION

With an IO routine allowing multiple-record transactions in sequential/skipped
modes and software cylinder formatting, almost all latency can be masksd from

1	 the cornerturn operation.

ACKNOWLEDGMENT

The authors gratefully acknowledge S. Pang for her work on the disc IO routine.

REFERENCES	
r

(C-1) C. Wu, B. Barkan, B. Huneycutt, C. Leang, and S. Pang, "An Introduction
to the Interim Digital SAR Processor and the Characteristics of the
Associated SEASAT SAR Imagery," Publication 81-26, Jet Propulsion
Laboratory, Pasadena, Calif., April 1981.

(C-2) B. Barkan, C. Wu, W. Karplus, and D. Caswell, "Application of ?arallel
Array Processors for SEASAT SAR Processing," Proc. IGARSS "I, Vol. I,
pp. 541-547, IEEE, New York, N.Y., June 081.

(C-3) C. Wu, B. Barkan, W. Karplus, and D. Caswell, "SEASAT Synthetic
Aperture Radar Data Reduction Using Parallel Programmable Array
Processors," submitted to IEEE Transactions on Geoscience and Remote
Sensing.

(C-4) J. 0. Eklundh, "A Fast Computer Method for Matrix Transposing," IEEE
Trans. Comput., Vol. C-21, pp. 801-803, July 1972.

57
i

t
I

Proceedings of the 1983 ARRAY Conference

TRANSPOSE OF EXTERNALLY STORED MATRICES II*

by

Budak Barkan and Shirley Pang

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109

ABSTRACT

This paper presents a method for transposition of arbitrary matrices
that are larger than available primary storage. The algorithm utilizes
special purpose IO routines to facilitate the transposition operation
as skip-write, sequential-read. The intermediate file structure is
arranged to mask out latency. This software cylinder formatting tech-
nique is demonstrated to yield an efficient implementation. Timing
results as a function of matrix and buffer sizes are tabulated.

INTRODUCTION

An algorithm for out-of-core cornerturn and its performance analysis
was reported by the authors in Ref. C-5. This is a companion paper and
assumes the terminology of the earlier one. Here, the emphasis is on
the software cylinder formatting strategy that is used in conjunction
with the skip-write. The implementation was done as part of the IDPMX
Digital SAR Processor (Refs. C-6 and C-7).

MOTIVATION

Given the need to skip some fixed number of records repeatedly, one
defines and optimizes a skipped access mode. The approach is software
cylinder formatting to mask out latency. Additional padding, ALPHA, is
appended to a block to make latency-within-cylinder zero. A relative
starting sector offset, based on DELTA, is applied to cylinders to mini-
mize latency-after-seek. The overall ,erformance gain from these mani-
pulations can be up to an order of magnitude, depending on the record
size and skip distance. Some disc utilization efficiency is traded off
for speed.

*The research described in this paper was carried out at the Jet
Propulsion Laboratory, Califoraia Institute of Technology under contract
with the Information Systems Office of National Aeronautics and Space
Administration.

58

1

DEFINITIONS

NSB	 number of sectors per block

ALPHA	 additional sectors to skip

NBC	 number of blocks per cylinder

DELTA	 starting sector offset

NSB	 -	 T * ERL

ALPHA	 a	 ceil (NSB , SS) + ERL - NSB (mod SS)

NBC	 -	 quot (SC-SS , NSB+ALPHA)

if rem (SC-SS , NSB+ALPHA) >- NSB
then NBC-NBC+1

if NBC-1
then ALPHA-0

DELTA	 -	 (NBC-1) * (NSB+ALPHA) + SEEK + ERL (mod SS)

ESC	 -	 NBC * NSB

where

ceil (a,b) is least multiple of "b" greater than or equal to "a"

quot (a,b) is integer quotient of "a" divided by "b"

rem (a,b) is remainder of "a" after integer division by "b"

R-prefix refers to the quantites associated with the return from
the last cylinder to the first, to start a ne ,.j chain of
skip-writes
these are namely RLAT, RSEEK, RELAPS, and RNCYL

RNCYL	 (NW-1) / NBC

^m

59

ASSUMPTIONS

1) A block is a contiguous set of T records.
2) Integral number of blocks per cylinder.
3) Last block in cylinder does not have associated ALPHA.
4) If only one block in cylinder, then ALPHA - 0.
5) Addressing is relative to disc address of lass record done and

uses ESC.
6) SEEK - 6 SPT for our discs.

A pictorial representation of software cylinder fo'matting is depicted in
Fig. C-3. Elapsed time versus DELTA is plotted in Fig. C-4. Figure C-5 is
a table of elapsed time for skipped-write as a function oC matrix and buffer
sizes.

ANALYSIS

Latency for "return seek":

AT -	 RNCYL * DELTA + ERL + RSEEK

WAT a	 ERL

RLAT •	 WAT - AT (MOD SS)

-RNCYL * DELTA - RSEEK (MOD SS)

If there is some rough estimate of RSEEK, one can calculate the total
elapsed time for "return" seek and latancy exactly. With timings as a
function of DELTA, one can isolate RSEEK.

Overall elapsed time for optimized ALPHA and DELTA:

TOTAL . T * (NW * ERL + RNCYL * SEEK + (RSEEK+RLAT))

M_

60

{

ORIGINAL PAGE 18

OF POOR QUALITY
SECTOR

xxx`xxx xxx`xxx`xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx

0 4 1	 2 ! 3 1 4	 5(6 1 7 , 8	 9 I A y B I C	 D	 E I F

CYL 0 (IXXX I	 1	 1

CYL I	 * * * 1	 jXXXI

CYL 2	 * *	 1XXXI

CYL 3 (* (jXXXI

CYL 4	 1XXXI	 I

CYL 5	 *	 *	 *	 1XXXI

DELTA	 NSB	 ALPHA

W rte. i

Assumptions:

SC-16 and SS=4
ERL= 1 and T=4
SEEK=1

Then by calculation:

NSB=4 and ALPHA-1
NBC=2 and DELTA=3
ESC=8

Figure C-3. Software Cylinder Formatting

61

ORIGINAL PAGE IS
OF POOR QUALITY

TIME
(seconds)	 33.4

32.3
31.2 31.3

*	 *

18.1 (unstable)
*

DELTA (sectors)

NOTE:

1) SEEK=6 for our discs as observed frc-- similar timings

2) the time step for other points is 1.1 s (-T*RNCYL)
3) time for DELTA-7 is the same as time for DELTA=8

(this also occurs for the DELTA=19, DELTA=20 pair)

Figure C-4. Elapsed Time as a Function of DELTA
for N=L=512 and Bl-B2-4096

w I

62

Op

ORIGINAL PAGE IS

OF POOR QUALITY

BUFFER SIZE (in words, B1-B2)

MATRIX SIZE 32K 16K 8K 4K
(in words, N=L)

256

512

1024

2048

Figure C-5. Elapsed Time (in seconds) in Phase 1
of Cornerturn (just skip-write)

NOTE:

1) if NSB > SC - SS
then ERROR

This is when the block size is bigger than a cylinder. Our IO routine is
based on an integral number of blocks per cylinder. The definition can be
extended to cover the multiple cylinders per block case. The original
nonblock cornerturn can handle all cases.

2) if LW >= 4096
then ERROR '+'

There is a slight increase in skip-write time for bigger buffers if record
length is more than system maximum transfer count. This is because of the
way a record is defined in our IO routine. A record is a contagious
number of sectors followed by an extra unused sector. Changing this to
software chained smaller portions with extra unused sectors in between
would so'.ve the slowdown problem for large record lengths.

3) Phase 2 cornerturn elapsed times are comparable and somewhat less, . Lhey
are not given as they can b e calculated rather easily as multiple
sequential reads.

+ + .4 .8

+ 2.0 4.4 13.0

10.4 19.4 98.9

110.0

63

EXAMPLE

Calculate with N-L=512 and B1-B2=4096:

LW-64; NW-64; T-64; N1-8;

ERL=2; ESC-384; ALPHA-12; DELTA=12;

NSB=128; NBC=3.

RNCYL=21

RLAT = -21 * 12 - RSEEK (MOD 23)

= 1 - RSEEK (MOD 23)

now assume 2 -< RSEEK -< 23; then

RLAT = (1 - RSEEK) + 23

RELAPS = RLAT + RSEEK

= 24 (in SPT)

TOTAL = 64 * [64 * 2 + 21 * 6 + 241

= 64 * [278]

= 13.1 s

The calculated 13.1 s agrees rather well with the observed 13.0 s
in Fig. C-5.

Calculation of RSEEK from the elapsed time versus DELTA anomaly: 	 ;m

DELTA	 7	 8	 1	 19	 20

RLAT	 14-RSEEK	 16-RSEEK	 15-RSEEK	 17-RSEEK	 ,-

EXTRA	 21	 21

To hide the +21, the expression above it has to be nonnegative.

Therefore, 16 =< RSEEK =< 17.

64
fi

a

CONSIDERATIONS

Absolute addressing, where the disc address is recalculated from scratch
based on record number, is expected to yield a cleaner implementation. Of
some theoretical importance is the validation of an address calculation
mechanism through some data structure and correctness proof type of
formalism. This is particularly necessary as the addressing is nontrivial
and read/write consistency needs to be maintained. A generalization to a
mode where multiple records are accessed after a skip is possible. For the
sake of disc utilization, the feasibility of blocks-across-cylinder-
boundaries software cylinder formatting needs to be investigated.

The concept of record chaining is important for easy implementation of
efficient 10. There is quite an advantage for ease of data management to
preserve the independence of a record. If some generality and read/write
access mode differences are to be preserved in an efficient :canner, blocking
is not an adequate solution. The software record chaining is an attempt to
combine speed and flexibility; but it needs the extra wasted sector and
involves software overhead. What is needed is intelligent controllers and
the complementary disc sectoring so that hardware can chain records within
the intersector gap. If the whole record chain is stored in the controller,
hardware record chaining without next sector miss could be possible.

A complete cornerturn package does include the generalizations to cover the
cases when the pixel size is a byte, half-word, word, or double word.

An IO routine that incorporates access modes, record chaining, and software
cylinder formatting is useful for cornerturn, real-time disc 10, and file
merging; these functions frequently appear in signal processing and
data-base operation.

RKVERENCES

(C-5) B. Barkan, C. Wu, "Transpose of Externally Stored Matrices,"
Proc. 1982 ARRAY Conf., pp. 179-185, Floating Point Systems, Portland,
Ore., March 1982.

(C-6) C. Wu, B. Barkan, W. Karplus, D. Caswell,
"SEASAT Synthetic-Aperture Radar Data Reduction Using
Parallel Programmable Array Processors,"
IEEE Trans. on Geoscience and Remote Sensing,
Vol. GE-20, No. 3, pp. 352-358, July 1982.

(C-7) C. Wu, B. Barkan, J. Curlander, M. Jin, S. Pang,
"Current Performance of the Interim Digital SAR Processor,"
in SIR-A Symposium Proceedings, JPL Publication 83-11,
Jet Propulsion Laboratory, Pasadena, Calif. (in press).

65
	

F

ORIGINAL PAGE IS
OF POOR QUALITY

APPENDIX D

Cornerturn Example

A pictorial cornerturn example (Figure D-1) is given here.

Input:

11 12 13 14

21 22 23 24

31 32 33 34

41

51

61

71

81 82 83 84

Given:
N = 8
L = 4

Select:
B1 = 8
B2 = 16

Calculate:
C - 32
N1 = 2
T = 4
LW	 4
NW	 2
N2 = 2 (N2 = B2/N; note that N2 also determines

the minimuh, overlap allowable on disc
during the read phase, for multiple_
contiguous cornerturns in overlapped usage
mode)

66

11 1 21 112 122
"DISC"

ORIGINAL PAGE IS
OF POOR QUALITY

"B1"
11	 12	 13	 14

I- - N1- -)

13 1 23 1 14 1 24

11B211

11 21

31 41

51 61

71 81

Figure D-1. Cornerturn Organization

NASA-,ft--WK. u.. C.M. 	
67

	GeneralDisclaimer.pdf
	0018A02.pdf
	0018A03.pdf
	0018A04.pdf
	0018A05.pdf
	0018A06.pdf
	0018A07.pdf
	0018A08.pdf
	0018A09.pdf
	0018A10.pdf
	0018A11.pdf
	0018A12.pdf
	0018A13.pdf
	0018A14.pdf
	0018B01.pdf
	0018B02.pdf
	0018B03.pdf
	0018B04.pdf
	0018B05.pdf
	0018B06.pdf
	0018B07.pdf
	0018B08.pdf
	0018B09.pdf
	0018B10.pdf
	0018B11.pdf
	0018B12.pdf
	0018B13.pdf
	0018B14.pdf
	0018C01.pdf
	0018C02.pdf
	0018C03.pdf
	0018C04.pdf
	0018C05.pdf
	0018C06.pdf
	0018C07.pdf
	0018C08.pdf
	0018C09.pdf
	0018C10.pdf
	0018C11.pdf
	0018C12.pdf
	0018C13.pdf
	0018C14.pdf
	0018D01.pdf
	0018D02.pdf
	0018D03.pdf
	0018D04.pdf
	0018D05.pdf
	0018D06.pdf
	0018D07.pdf
	0018D08.pdf
	0018D09.pdf
	0018D10.pdf
	0018D11.pdf
	0018D12.pdf
	0018D13.pdf
	0018D14.pdf
	0018E01.pdf
	0018E02.pdf
	0018E03.pdf
	0018E04.pdf
	0018E05.pdf
	0018E06.pdf
	0018E07.pdf
	0018E08.pdf
	0018E09.pdf
	0018E10.pdf
	0018E11.pdf
	0018E12.pdf
	0018E13.pdf
	0018E14.pdf
	0018F01.pdf
	0018F02.pdf
	0018F03.pdf
	0018F04.pdf
	0018F05.pdf
	0018F06.pdf
	0018F07.pdf

