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ABSTRACl' 

The NASA/Goddard Space Flight Center Hydrogen Maser Pro- 
gram has had as goals f o r  many years the developnent of 
improved f i e l d  operable hydrogen masers, the  improvement 
of e x i s t i n g  f i e l d  operable hydrogen masers and the devel- 
oplnent of novel hydrogen maser frequency standards. This 
paper presents a review of recent data, taken both i n  t h e  
laboratory and i n  the f i e l d ,  i n  these areas. Data is 
presented on the phase and frequency s t a b i l i t y ,  over time 
periods extending to  one week, of the new NR f i e l d  opera- 
b le  hydrogen masers developed by the Applied Physics Labo- 
ra tory  (APL) and the older  NX and NP f i e l d  operable hydro- 
gen masers developed by Goddard Space Fl ight  Center and 
maintained and upgraded by Bendix F i e l d  Engineering Corpo- 
ra t ion  (BFEC). Data is presented on t h e  NR masers i n  t h e  

a tory  showing frequency s t ab i l i t i e s  well i n to  the 
range and phase stabilities well i n t o  the  100 ps 

range f o r  periods of up t o  one day. Data is presented on 
upgraded NP masers i n  t h e  laboratory showing tha t  t h e  
frequency s t a b i l i t y  has been improved subs tan t ia l ly  t o  
v i r tua l ly  t he  NR l eve l .  VLBI data is presented on the 
phase difference between NX-2 a t  Owens Valley, Cal i fornia  
and NR-2 a t  For t  Davis, Texas f o r  a one week period show- 
ing, after removal of a constant frequency d r i f t ,  a 350 ps  
RMS phase s t a b i l i t y .  The role  of a temperature control 
chamber for hydrogen masers developed by BFEC i n  improving 
t h e  long term s t a b i l i t y  of hydrogen masers is discussed. 

Extensive development work is being performed by 
both APL and BFEC t o  improve the  performance of hydrogen 
masers beyond t h e i r  current levels .  A quartz cav i ty  liner 
designed to  r e t r o f i t  i n t o  ex is t ing  NR,  NP, and NX micro- 
wave cavi ty  s t ruc tures  has been developed by BFEC and APL 
i n  a cooperative e f fo r t .  This  l i n e r  has been i n s t a l l e d  i n  
an NR maser and has been shown t o  reduce the  cavi ty  temper- 
ature coeff ic ient  by a factor  of 8 .  Data is presented 
showing the s t a b i l i t y  of this m a s e r  against other  NR 
masers. A completely quartz cavi ty  and s torage bulb 
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(cont 

t ruc ture*  called the i n t  al cavi ty  which 0 
ret in to  the NR, NP masers is being developed 
by and APL i n  her cooperative effort e This  
s t ruc ture  should reduce the  cavi ty  temperature coeffi- 
c ient  by a factor  of 25 or more and should improve the  
maser's frequency s t a b i l i t y  under mechanical shock. Data 
is presented on the recent progress i n  the development of 
an external bulb var iab le  V O l U m 8  hydrogen maser primary 
frequency standard. 

INPRODUCII ON 

The NASA/Goddard Space F l igh t  Center Hydrogen Maser Program has 
had as its goals for many years the development of improved f ie ld  operable 
hydrogen masersI the  improvement of existing hydrogen masers, and the 
development of novel hydrogen maser frequency standards. This  paper repre- 
sents a review of recent data taken both i n  the laboratory and i n  the f i e l d  
i n  these areas. The paper is broken i n t o  two basic sect ions reporting on 
data taken by Bendix F i e l d  Engineering Corporation and the Applied Physios 
Laboratory of Johns Hopkins University, t h e  two main contractors to the 
NASA Hydrogen Maser Program. 

BENDIX FIELD ENGINEERING 

The Bendix F ie ld  Engineering Corporation (BFBC) has supported the 
NASA Goddard Space F l i g h t  Center hydrogen maser program for the  past t e n  
years. Reoently, BFBC has expanded its support i n  response t o  the increas- 
ing demands of the NASA Crustal  Dynamics Project and the  NASA researoh 
program. Both hydrogen maser maintenance and operations and hydrogen 
maser research and developent  are now performed a t  BFEC's new 4500 square 
foot  Hydrogen M a s e r  F a c i l i t y  located a t  BFEC Headquarters i n  Columbia, 
Maryland. 

Thermal  Chamber for Hydrogen Masers 

Figure 1 shows a thermal chamber developed by BEZC to  improve t h e  
l'mg term frequency s t a b i l i t y  of hydrogen masers by improving their  ther- 
m a l  environment. These chambers typ ica l ly  reduce room temperature f luctu-  
a t ions  by a f ac to r  of about 100 and t y p i c a l l y  keep the  temperature of t he  
hydrogen maser f r o m  f luc tua t ing  no more than 10-2OmC i n  a laboratory envi- 
roment  (1C room temperature fluctuations).  Figure 2 shows the thermal 
chamber with a side panel removed. This  shows some of the main features of 
the  thermal chamber: 

1. Completely f i e l d  dismantlable so the un i t  can be brought i n t o  a 
roo511 through a 30 inch door . 
2. Uses thermoelectric coolers f o r  high r e l i a b i l i t y .  
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3. Has 18 Rotron fans t o  
t o  reduce the  effects of 
m a l  conductivity of the m 
Um. 1 
4. Shock mounts on the 
vibration problem e 

5. A failsafe thermostat to  prevent accidental  overheat of the 
maser i n  case of chamber fa i lure .  
6. Separate fuses for the thermoelectric coolers and the f 
individual failures i n  these devices w i l l  not kee C 
f r o m  operating. 
7. Remote and local alarm outputs. 

The chamber has also been successfully used to  improve the lmg term 
s t a b i l i t y  of Hewlett Packard high performance cesium standards . 

Figure 3 shows t y p i c a l  thermal chamber performance i n  a good labo- 
ra tory  environment. The figure shows N R - 1 ' s  upper cabinet temperature and 
the corresponding air temperature outside the  box(smoothed with a 1.5hr 
time constant temperature probe). I n  s t a t ion  environments where the tem- 
perature has varied as much as lOK, the temperature i n  the chamber has 
varied less than 0.1K. 

V L B I  Data 

Figures 4 and 5 s h o w  a 7 day phase(group delay) intercomparison 
between NR-2 a t  Fort  Davis, Texas and NX-2 a t  Owens Valley, California by 
very long baseline interferometery(VLB1) (ref 1) * Figure 4 shows the phase 
difference i n  seconds with only a frequency offset term removed from the  
data(as well as nonclock V L B I  terms such as earth rotat ion) .  Notice that 
the data has the quadratic behavior associated with uniform frequency 
d r i f t .  Figure 5 shows the same data wi th  a uniform frequency d r i f t  term 
also, removed. The least squares fit used t o  generate t h i s  f igure  produced 
clock parameters as follows: 

x =5686.83( 10)ns 
y00=-236.26(04)E-14 
Do=-1 .16(0l)E-l4/Day 

The  RMS phasekroup delay) deviation from the f i t  w a s  347ps. 

Repair and Upgrade of Hydrogen Masers 

Figure 6 s h o w s  several  NASA Np and NX hydrogen masers being 
repaired and upgraded i n  BFEC's Hydrogen Maser Fac i l i ty .  The upgraded NP 
and NX masers have received new cavi ty  thermal controls,  synthesizers ,  
VXCO's , receiver components, and d is t r ibu t ion  amplifiers and have had the 
physics packages rebu i l t .  Figure 7 shows the before upgrade and the after 
upgrade frequency stabilities of  NP-2 measured aga ins t  NR-6 from 1 to 1000 
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seconds averag tice the almost one order of 
ure 8 shows t h  

upgraded NP-2 and the nongupgraded NP-3 measured agai 
seconds averaging time. n thermal chambers and 

-3 was not. Thus the  fac tor  term s t a b i l i t y  improve- 
ment shown is due both t o  the maser upgrade and the use of the hydrogen 
maser thermal chambers. 

BFEC and APL have a jo in t  e f f o r t  t o  improve the temperature coeffi-  
c i e n t  and t h e  mechanical s t a b i l i t y  of N P ,  NX, and NR hydrogen masers with 
r e t ro f i t ab le  quartz cavi t ies .  There are 2 retrofitable designs being dev- 
eloped. The Hybrid Cavity shown i n  Figure 9 uses a quartz cylinder coated 
on the outside with s i l v e r  as an in te rna l  l i n e r  i n  the microwave cavity. 
This reduces the temperature coef f ic ien t  of the  microwave cavi ty  by about a 
fac tor  of 5, but still allows the microwave cavi ty 's  frequency t o  be set 
with tunable end plates and allows one t o  use temperature tuning of the  
cavity as with the conventional aluminumcavity. The Hybrid Cavity is being 
tested i n  PlRB by APL and is reported on i n  the  APL section. The temperature 
coeff ic ient  of NRB with the  Hybrid Cavity has been measured by APL as 
6.9(9) IO-%C. 

The second r e t ro f i t ab le  design being developed is t h e  In tegra l  
Cavity whose main components(storage bulb not shown) are shown i n  Figure 
10. I n  the in t eg ra l  cavi ty  a l l  the  parts making up the microwave cavity are 
made of quartz. After trimming the cavity t o  the proper frequency, a l l  the 
pieces (including t h e  storage bulb) w i l l  be fused or  cemented together. 
This  design w i l l  have a cavity temperature coeff ic ient  a fac tor  of 25 
smaller than a conventional aluminum cavi ty  and should achieve g rea t e r  
mechanical s t a b i l i t y  because of the fus ing  of the pieces. An in t eg ra l  
cavi ty  has already been fabricated and w i l l  be tested i n  NRX. It has not 
been determined ye t  whether temperature or  varactor tuning w i l l  be used. 

External Bulb Hydrogen Maser 

The External Bulb Hydrogen Maser is a variable volume hydrogen 
maser being developed by BFEC for NASA. The purpose of the  maser is t o  
provide a primary hydrogen maser frequency standard which w i l l  el iminate 
t e f lon  wall frequency s h i f t s  and other accuracy l i m i t i n g  frequency s h i f t s  

t o  the 1 x level(ref2) .  A s  p a r t  of the development e f f o r t ,  the maser 
has been tested with a 1/2 m i l  t h i ck  t e f lon  f i l m  bulb and a long time 
constant collimator(without the external bulb). The r e s u l t s  of that  test 
demonstrating an operating l i n e  Q of 6.539 are shown i n  Figure 11, The 
maser has a l so  successfully operated a t  9OC. Currently t h e  maser is being 
r e b u i l t  t o  overcome magnetic problems. 
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SER STABILITY DATA 

i n  Fig.12, has several  advantages 

This microprocessor provides diagnostic and mo 
NX an 
processor. 
t i on  on many maser operations, and provides automated control  f o r  cavi ty  
tuning. 
maser o r  t he  c r y s t a l  o s c i l l a t o r  i n t e rna l  t o  the maser; o r  
t he  microprocessor t o  adjust  t h e  cavity f o r  a pr  

i r  biggest advantage is an in t  

Cavity tuning can be accomplished by autotuning 

era1 NR masers are presented. T 
quency f a c i l i t y  of The Johns Ho 

Laboratory. 

Maser Intercomparisons 

S tab i l i t y  measurements between two o r  more masers are accomplished by 
o f f se t t i ng  the  frequency of one of our masers, NR-6, by -5 X 10-8. 
s igna l  from NR-6 can then be mixed with the  s igna l  from a second maser at  
200 MHz t o  obtain a 10 Hz beat. An HP 5300 time in t e rva l  counter is  then 
used t o  measure the  phase difference between NR-6 and a second maser. This 
measurement technique using an o f f s e t  maser provides a 20 mill ion multipli-  
cat ion factor  f o r  t h e  t i m e  i n t e rva l  measurement; one millisecond on the 
counter corresponds t o  50 picoseconds of phase difference a t  200 MHz. 

During a l l  the  data  runs t o  be presented, NR-6 was located i n  an 

The 

environmental control  chamber; and w a s  programmed t o  compensate f o r  a pre- 
dicted cavi ty  d r i f t .  A t  regular in te rva ls ,  but not during any of t he  da ta  
runs presented here, NR-6 was tuned. 

Recently we began using an automated system f o r  recording phase d i f f e r -  
ence measurements between three maser p a i r s  (all  referencing NR-6) a t  in t e r -  
va ls  of 100 seconds, onto floppy disks. This system allows continuous phase 
difference information over long periods of time. 
room and the  maser environmental chambers are a l so  recorded a t  hourly inter- 
vals.  

Temperature data f o r  t he  

Figure13 shows the  residuals  t o  a least squares fit of t he  phase d i f fe r -  
ence between NR-3 and NR-6 over a seven day span. 
data is  consistant with tha t  of t he  VLBI users).  NR-3 w a s  located i n  an 
environmental chamber; NR-3 w a s  not autotuning during t h i s  time. Over t h e  
majority of the  da ta  span, t he  residuals  remained within 2 . 5  ns, with ex- 
tremes of & 1.0 ns. Within t h i s  da ta  are two re l a t ive ly  l a rge  phase jumps 
of approximately . 5  ns. These jumps are a r t i f a c t s  of our measurement 
tem, which we are working on eliminating. Even with these jumps, the  
deviation of t he  week long data w a s  0.316 ns. 

(This treatment of t h e  

The Allan Variance of the  (NR-3) - (NR-6) data  shown i n  Fig. 13, re- 
moving the  two discont inui t ies ,  is shown i n  Fig.14. 
both t h e  r a w  data and t h e  residuals  (i.e. d r i f t  removed data) are shown. 

The Allan Variance of 

425 



r bars are given fo r  the d r i f t  rate removed data but s imilar  e r ror  bars 
f o r  the r a w  data. These e r ro r  bars w e r e  estimated by 

Error = k % 

where N is the  number of adjacent t i m e  in te rva ls  of length t au  (T).  
f ac tor  of two is  required because the  r a w  data  is i n  phase ra ther  than 
frequency. 
and hence a fac tor  of 2 5 w a s  included i n  the  calculations.  

The 

Both masers-rere assumed t o  contribute equally t o  the  noise, 

Figure14 shows tha t  NR-3's s t a b i l i t y  a t  100,000 seconds is 4 X 
fo r  the  d r i f t  rate removed data. 

Figure15 again shows the  residuals t o  a least squares f i t  of t h e  phase 
difference between NR-B and NR-6. 
t h e  improved temperature coeff ic ient  , approximately 7 X 10-15/0C. 
long data span is shown. 
environmental control  chamber. However, NR-B's chamber w a s  operating near 
its upper temperature control l i m i t ,  causing la rger  var ia t ions as shown i n  
the  temperature plot  i n  Fig.15. One would not expect temperature varia- 
t i on  as large a fac tor  i n  NR-B's performance as other NR masers without a 
quartz l i n e r  and, i n  f a c t ,  t he  residuals plot ted i n  Fig.15 show a peak-to- 
peak var ia t ion of only k .5 ns. 
seven days w a s  only 0.251 ns. 
resu l t ing  from the  measurement system.) 

NR-B has the  in tegra l  cavi ty  l i n e r  with 
A week 

NR-B w a s  not autotuning, and w a s  located i n  an 

The RMS deviation of t he  data over t he  
(Again there  appeared a s ingle  discontinuity 

The Allan Variances with the  d r i f t  rates removed of NR-5, NR-B, and 
WR-2 whose residuals  were not shown, a re  plot ted i n  Fig.16. 
data w a s  measured only on NR-2. 
and the  variances and er ror  bars were calculated i n  the same manner as that 
described earlier f o r  NK-3. 
not. 

Shorter term 
A l l  masers w e r e  measured r e l a t ive  t o  NR-6 

NR-5 and NR-2 were autotuning while NR-B w a s  

Figure16 coupled with Fig.14 on NR-3's s t a b i l i t y ,  i l l u s t r a t e s  t he  range 
of performance i n  the  hydrogen masers APL has completed. 
are seen t o  be w e l l  i n t o  the lO-l5 range f o r  taus  (T's) of 500 - 100,000 
seconds when d r i f t  is removed. 

Their s t a b i l i t i e s  

WBI-1 Long Term S tab i l i t y  

NR-1 maser resides  at  APL on a long term basis  and serves as our 
laboratory standard. 
t ed  the  performance of a hydrogen maser being operated as a clock r e l a t i v e  
t o  our laboratory's cesium option 004 Hewlett-Packard frequency standards. 

Taking advantage of NR-1's ava i l ab i l i t y ,  w e  investiga- 

For ten months, from September 1981 through June 1982, w e  maintained 
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a continuous record of t h e  phase d i f f e rence  between NR-1* and our C e s i u m  
793. The phase d i f f e rence  w a s  measured a t  5 MHz using a dua l  balance 
t i m e  delay m i x e r  with a beat frequency of about .25 Hz relative t o  each 
standard. I n  our Time and Frequency Laboratory within APL we maintain 
th ree  cesium standards.  Timing information i s  reported t o  BIH (Bureau 
In t e rna t iona l  de 1’Heure) on these  th ree  cesiums r e l a t i v e  t o  our  paper 
clock, and t h e  USNO (United S t a t e s  Naval Observatory) Master Clock #I, 
with whom w e  t r a n s f e r  time using por tab le  cesium clocks. 
ca l cu la t e s  and publishes bimonthly, t h e  rates of t h e  repor t ing  clocks 
relative t o  UTC (Universal T ime  Coordinated). Figure17 shows both t h e  
bimonthly clock rates of our t h r e e  cesium standards published by BIH, 
and t h e  derived c lock  rate of NR-1. 

BIH, i n  tu rn ,  

Figure17 shows t h a t ,  as a clock, NR-1 performed as good o r  b e t t e r  t han  
the  b e s t  t en  month d a t a  span of any of t h e  t h r e e  cesiums. I n  fact ,  t h e  
a c t u a l  performance of t h e  NR-1 maser i s  most probably masked by t h e  l imi t ed  
r e so lu t ion  i n  t h e  BIH published da ta ,  given only t o  If: 10 ns; and by t h e  
performance of t h e  cesium t r a n s f e r  standard. 

Another advantage of t he  NR-1 hydrogen maser operating as a clock 
is  t h e  a b i l i t y  t o  set t h e  frequency without advers ly  a f f e c t i n g  t h e  in- 
herent s t a b i l i t y  of t h e  device. This i s  not t r u e  of present cesiums. 

A f t e r  our t e n  month da ta  run comparing NR-1 t o  Cesium 793, t h e  maser 
operating conditions were changed; NR-1 w a s  placed i n  a continuous auto- 
tune mode. This opera t ing  mode allows t h e  c a v i t y  b i t  r e g i s t e r  t o  automati- 
c a l l y  ad jus t  t o  compensate f o r  t h e  cavi ty  frequency d r i f t .  The cav i ty  
r e g i s t e r  value w a s  p r in t ed  out at  four  hour i n t e r v a l s  and later converted 
t o  t h e  frequency s h i f t  through a measured value of t h e  frequency s h i f t  
per  cav i ty  r e g i s t e r  bit**. Figure18 shows t h e s e  cav i ty  r e g i s t e r  d r i f t  cor- 
r ec t ions  p lo t t ed  over a four month in t e rva l .  

A r a t h e r  s i g n i f i c a n t  piece of da t a  on t h e  maser’s performance w a s  ob- 
During t h e  fou r  month time period, our room ta ined  q u i t e  un in ten t iona l ly .  

air conditioner su f fe red  a f a i l u r e  over a weekend when no one w a s  present t o  
immediately co r rec t  t h e  s i t u a t i o n .  
chamber, but t he  room temperature rose  above t h e  box’s con t ro l  l i m i t .  
sp ike  i n  t h e  da t a  of Fig.18 is t h e  cav i ty  r e g i s t e r  t ry ing  t o  compensate f o r  
t he  temperature c o n t r o l  f a i l u r e .  The behavior of NR-1 a f t e r  temperature 
con t ro l  w a s  r e s to red  is worthy of no te ;  t h e  c a v i t y  came back t o  t h e  same 
frequency as t h a t  j u s t  before t h e  temperature c o n t r o l  f a i l e d .  

NR-1 was i n  an environmental con t ro l  
The 

This behavior 

\ 

* During t h i s  time period, NR-1 w a s  i n  an environmental c o n t r o l  box f o r  
temperature con t ro l .  

“he frequency s h i f t  per b i t  f o r  NR-1 during this  time period was  
2.03 X 10”16/bit. 

NR-1 w a s  no t  autotuning during th i s  t i m e .  

** 
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following a f a i l u r e  is a g rea t  advantage f o r  our masers opera t ing  i n  remote 
areas where sho r t  term f a i l u r e s ,  such as t h e  one J u s t  described, are more 
l i k e l y  t o  occurJc. 

Ignoring t h e  temperature c o n t r o l  f a i l u r e ,  t h e  d r i f t  co r rec t ions  t o  t h e  
cav i ty  shown i n  Fig.18 appear t o  increase  i n  a nea r ly  l i n e a r  manner with 
t i m e .  
t h e  l i n e a r  d a i l y  d r i f t  of t h e  c a v i t y  as: 

A quadra t ic  least squares fit of t h e  d a t a  w a s  ca lcu la ted ,  which g ives  

-4.90 X 10-15/day. 

Higher order terms of cav i ty  d r i f t  as a func t ion  of t i m e  are i n s i g n i f i c a n t  
relative t o  t h e  l i n e a r  term. The da ta  i n  Fig.18 are frequency co r rec t ions  
made t o  cavi ty  t o  compensate f o r  its d r i f t ,  therefore ,  t h e  increasing f req-  
uency compensates f o r  a cav i ty  frequency t h a t  is d r i f t i n g  downward i n  freq- 
uency. 

I n  addi t ion  t o  t h e  cav i ty  r e g i s t e r  d a t a  shown i n  Fig.18, two determina- 
t i o n s  of the  NR-1 cav i ty  d r i f t  were made; one i n  e a r l y  August 1981, and t h e  
o the r  i n  l a te  February 1982. The t o t a l  change i n  NR-1's c av i ty  r e g i s t e r  
va lue  over a period of 78 days, w a s  obtained i n  each case and an  average 
d a i l y  d r i f t  rate w a s  ca lcu la ted .  
of t h e  d a i l y  cav i ty  d r i f t  ca lcu la ted  f o r  t h e  four  month d a t a  shown i n  Fig.18. 

These ca l cu la t ions  agreed t o  within 10% 

Linear Daily D r i f t  (averaged over 78 days): 

-4.4 X l0-l5/day period ending 
4 August 1981 

-5.1 X 10-15/day period ending 
24 February 1982 

The cav i ty  d r i f t  rate of NR-1 has remained e s s e n t i a l l y  constant over a time 
period of g rea t e r  than one year wi th  an uncer ta in ty  of k 5 X 10-16/day. 
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arlier this afternoon, we were t a l  k i n g  about frequency standards and clocks. 
From here on, we're t a lk ing  about networks fo r  synchronizing various clocks 
and, of course, you really have t o  have both i n  order t o  have viable pre- 
cision time and time interval systems. 

The first paper i n  this session i s  entitled, "Timl'ng Subsystems 
Devel opment/Network Synchronization Experiments" by Ken Backe. 
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