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F 1.
	 ABSTRACT

This report covers the finnI hardware and system qualification phase of a two

part stand-alone photovoltaic (PV) system development. Phase one, reported

previously, included the analysis of methodologies, conduct of trade-off

studies and the evolvement of viable conceptual design alternatives and

preliminary designs culminating in the final design of an autonomous system

capable of being deployed in stand-alone power increments up to 15 kilowatts

peak. Emphasis was placed upon the achievement of optimally low balance-

of-system (BOS) costs as well as cost-effective modular expandability over the

spectrum of desired power ratings. The final configurations were also

required to be capable of being effectively deployed and operationally

survivable, on a world-wide basis.

The final design, approved for the Phase Two engineering mrrtel construction

. .0	 and qualification, incorporated modular, power blocks capable of expanding

incrementally from 320 watts to twenty kilowatts (pk). The basic power unit
1

(PU) was nominally rated 1.28 Up.

I
The controls units, power collection buses and main lugs, electrical

protection subsystems, power switching, and load management circuits are

housed in a common control enclosure. Photovoltaic modules are electrically

connected in a horizontal daisy-chain method via Amp Solarlok plugs mating

L

	

	 with compatible connectors installed on the back side of each photovoltaic

module. A pair of channel rails accomodate the mounting of the modules into a

frameless panel support structure. Foundations are of a unique planter

1

	

	 (tub-like) configuration to allow for world-wide deployment without

restriction as to types of soil. One battery string capable of supplying

approximately 240 ampere hours nominal of carryover power is specified for

each basic power unit. Load prioritisation and shedding circuits are included

to protect critical loads and selectively shed and defer lower priority or

I-	 non-critical power demands.

The baseline system, operating at approximately 2 112 PUs (3.2 kW pk.) has

been installed and deployed at Hughes, Long Beach since January 1983.

f.	
Qualification was successfully complete in March 1983; since that time the

l

	

	 demonstration system has logged approximately 3000 hours of continuous

operation under load without major incident.

U
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1.0	 SUMMARY

	

1.1	 OVERALL OBJECTIVE OF CONTRACT DEN3-207

The primary objective of Contract DEN3-207 was to develop a family of modular

stand-alone photovoltaic power systems that covered the range in power level

from 1 kWp to 15 kWp. Products within this family were required to be easily

adaptable to different environments and applications, and were to be both

reliable and cost effective. Additionally, true commonality in hardware was

to be exploited, and recurrent engineering charges associated with field

deployment were to be minimized. Assurance of compatibility with large

production runs, and ready BOS element availability were also underlying

program goals.

A second objective was to compile, evaluate, and determine the economic and

technical status of available, and potentially available, technology options

associated with the BOS for stand-alone PV power systems. The secondary

objective not only directly supported the primary but additionally contributed

to the definition and implementation of the BOS cost reduction plan. The

power systems considered in this contract were PV stand-alone (no utility grid

backup) DC systems utilizing fiat plate silicon solar cell modules. The study

was expanded to include modular systems of fractional kilowatt power levels

with ratings from 1/4 PU (approximately 320 watts peaks) to 16 PU (2048 kWp).

Both the primary and the secondary objectives of the contract were considered

satisfied by the sequential execution of Phase I, the initial analytical and

design phase, and the stand-alone system breadboarding, engineering model

construction, and evaluation, the subject of this Phase II final report.

	

1.2	 IMPLEMENTATION OF OBJECTIVE

Under Phase I design study the system was configured for world-wide application

within a general environmental temperature range of -15°C to +40°C in good to

moderate solar insolation environments. The central thrust of the design was

directed toward sun-belt (moderate temperature/equatorial) applications

requiring reliable power from the photovoltaic energy sourr o . Basic BOS
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elements designed or specified were the photovoltaic module/panel support

structures, the battery protection and charge controls, lightning and fault

protection, load management, instrumentation and diagnostics, electrical and

mechanical installation, and checkout and operation. Economic analyses and

cost trade- off studies of the BOS elements were an integral part of the

design and parts selection process.

Go-ahead was given on Phase II shortly after completion of Phase I and

approval of the surviving final design. The general approach for the conduct

of the Phase II work was outlined under the Phase II (Option) "Modular System

Development & Evaluation", Page 17 of Exhibit A, Contract DEN3 -207. It was

stipulated therein that Hughes would build and evaluate the modular system

designed and approved in Phase I of the contract. A breadboard model of the

critical electronic elements were to be first constructed. Breadboarding and

developmental testing was principally directed toward the electronic circuits

and control subsystems; other BOS elements of greater design maturity, or

those not requiring experimentation were specified and directly incorporated

in the final engineering model. An example of a high maturity item was the

C&D industrial battery; another BOS subsystem not requiring developmental

testing was the array structure and foundation. The solar cell modules

purchased were in production and commercially available within the cost and

performance goals. These PV modules additionally had to meet the Jet

Propulsion Laboratory's LSA Project electrical and mechanical performance

specifications for Block IV modules (JPL Document No. 5101-83).

The multipurpose modular PV power system was implemented within the baseline

requirements outlined above. Breadboarding and developmental testing was

undertaken only on the circuits comprising the battery C/R (Charger/Regulator),

the L/M (Load Management) functions, and the master systers control and

protection elements. The engineering model was assembled both from proven

circuits and circuit board and controls evolved out of the breadboard

verification successful test and evaluation was accomplished on this final

system hardware configuration. The economic analyses required by contract

were developed from the final design as constructed and proof-tested.



1.3	 CONCLUSIONS

The results of the program are considered successful; all 	 program goals were

rr
I. met.	 Competitive, cost effective designs have been evolved for the major BOS

systems;	 these designs have been mechanized as prototype field hardware and

qualified under stand-alone field conditions.

The	 manufactured	 hardware,	 purchased	 equipment,	 and	 sub-systems	 involve

"off-the-shelf" technology resulting in readily available hardware. 	 With the

possible exception of the lead-calcium battery, the subsystem will 	 have a life

expectancy of at least twenty years. 	 The battery does however represent the

"top-of-the	 line"	 insofar	 as	 quality	 industrial	 electrochemical	 storage

devices are concerned.	 The C/R and L/M circuit boards are of best industrial

quality,	 able	 to withstand,	 without	 incident,	 the	 rigors of	 the	 tropical,

coastal,	 or equatorial	 desert environment.	 Both	 the logic	 and	 the master

control	 boards employ circuit and semiconductors qualified to 	 stress	 levels

equivalent to military specifications; hermatic relays are exclusively used in

both control and power applications. 	 The selected photovoltaic modules

(15 Vdc nominal) are standard 2 ft x 4 ft devices delivering approximately 67

watts	 under	 standard	 conditions.	 The	 system-as-a-whole 	 can	 be	 readily

upgraded	 as	 the	 specific	 power	 output	 of	 PV	 modules	 increases.	 The

conservative	 rating	 of	 the	 Power Controller	 can	 presently	 accommodate	 a

significant	 increase	 in	 power	 level	 with	 virtually	 no	 retrofit	 or

modifications.

z,

The inclusion of a load management capability was an essential 	 requirement of s

DEN3-207.	 Both a means of determining the energy remaining in storage and one

of selectively shedding	 less critical	 loads	 in the event of an anticipated

energy shortfall were required. 	 Phase I analysis indicated that battery SOC

(State-of-Charge)	 offered	 the	 best	 present alternative	 for	 assessment	 of

energy	 remaining during	 the discharge cycle.	 We	 extensively	 reviewed and

analyzed options known to us for sensing battery SOC.	 One approach,	 that of a

GO/NO-GO cell	 specific	 gravity sensor was selected 	 as	 the candidate,	 and

( incorporated	 into	 the	 engineering	 model	 design.	 The	 production	 of	 this

candidate	 devices	 had	 an	 extensive	 listing	 of	 acceptable	 performance	 in

electromotive service similar to that encounted in electric vehicles. 	 In j

-3- i
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stationary fixed installation service the trip point below the selected

gravity threshold unfortunately proved to be erratic and the present design of

the method appears in question. With a modest additional developmental

engineering effort, however, a dependable, and precise design configuration

should result. These less than optimal results experienced to date should by

no means signal the abandonment of this potentially viable solution.

2.0	 INTRODUCTION

Terrestrial photovoltaics (PV) is an renewable energy technology evolving at a

substantial rate. Early proponents recognized that the contribution of this

soft energy generation could be significant in providing power to remote,

isolated sites throughout the world. A number of developmental, analytical,

and demonstration projects were undertaken by the Department of Energy's (DOE)

National Photovoltaic Program. The broad goals of these projects were to

prove the design, productivity and reliability of stand-alone s^ , stems, capable

of economically meeting the power needs of remote, isolated locations,

principally in emerging nations. It became apparent that stand-alone PV power

would ultimately need both greater flexibility and lower cost to realistically

meet the diverse power needs. Therefore, the NASA Lewis Research Center

established a contract with Hughes to investigate and verify solutions to the

above stated goals.

As several private and national efforts were under way to improve the

performance and reduce the costs of photovoltaic cells and modules, the NASA

effort concentrated on the Balance of Systems (BOS); only those attributes

associated with the physical aspects, voltage/current ratings, and wiring

topologies of the PV module were addressed as part of the BOS. The contract

was segregated into two phases; phase one convered the analytical investi-

gations and design optimization of a modular stand-alone PV system in the

range of one to fifteen kilowatts peak. Phase II, the subject of this report,

covered BOS hardware verification.

During the Phase I design study it was recognized that site-to-site

differences must involve standardized equipment complements not requiring

-4-
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major design alternations. However, Hughes was not able to identify a unique,

simplistic solution to the design of an optimally cost-effective stand-alone

photovoltaic power system capable of satisfying all ,ite specific variations.

The final system design was therefore selected to satisfy the "majority" of

potential worldwide installation requirements; deployments in extreme

environments, such as North Alaska, would require modifications to the basic

system design to accommodate unusual site specific requirements.

Hughes found the characterization of the BOS to be redsonably straightforward.

In some arreas, however, such as the system regulation and control, the

achievement of optimal designs involved the selection of BOS options which

involved innovativeness, technical judgement, and cost trade-off analyses. In

many instances several options appeared to be equally attractive.

This Phase II final report sets forth the activities and results in

fabricating, testing, and verifying the hardware of the final design prepared

under Phase I . Except for essential developmental upgrading involving

refining circuit characteristics, the apparatus has been "built to print" from

the Phase I documentation package. A generalized block diagram of the

engineering model is depicted in Figure 2.0-1.

2.1	 SCOPE OF PRESENT WORK

The DEN3-207 contract covers the development of a family of modular

stand-alone photovoltaic power system. Power ratings were from less than 1

Up to nominal maximum outputs of 15 Up. These modularly expandable systems

featured a high degree of hardware commonality as a means of eliminating

recurrent design and development costs and for reducing production costs by

facilitating large production runs. Both the initial BOS element costs and

the lifetime costs of energy producted by these systems were considered. The

scope of work of this contract included two sequential phases; Phase I, design

of the modular system, and Phase II, construction and evaluation of the

selected the modular final design developed under Phase I. Phase I, previously 	 j

reported, was executed in several sequential tasks, conducted within

well-defined developmental and analytical milestones. These tasks included:

-5-
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a) analyzing and evaluating BOS elements ad costs; b) conceptual designs of

alternative system approaches; c) preliminary system design options; and d) a

final system design, review and documentation. Phase II, the hardware

fabrication and qualification effort is the subject of this final report.

Subject report includes: developmental breadboarding,design retrofit,

fabiicatioi, assembly of the engineering model, test and evaluation, art

reporting.

2.2	 RELEVANCE OF THE MATERIAL REPORTED TO THE GENERAL FIELD

The stand-alone designs developed, fabricated and evaluated under this project

and the applications data accrued should be of direct interest to a group/

agency seeking a cost effective solution for supplying stand-alone village or

remote power by dispersed terrestrial photovoltaic generators. Remote power

application; dictate that photovoltaic power system exhibit high operational

'	 reliability and survivability. These designs, universally deployable with a

minimum of site-specific engineering, should satisfy such objectives.

3.0	 THE BREADBOARD MODEL

3.1	 PROGRAM REQUIREMENTS

R.>:'ine contract DEN3-207 criteria cites the possible need for laboratory

Aperimentation and breadboarding of criteria electronic circuits. It also

anticipated the probabilty of design refinements and iterations prior to

freezing the configuration of the engineering model. Circumstances indeed

proved that this step in verifying the functional adequacy of the solid state

circuits and logic was required. Breadboarding of the critical circuits

revealed several potential disparities that were readily corrected prior to

committment to printed circuitry. The control elements involved included the

load management circuits, the charger-regulator controls, and to a lessor

degree, the master display and power control circuits board. Specific circuit

changes incorporated in the the revised schematics are included under the

respective summaries for each element breadboarded.

-7-



rte---_ - _ a

Because only the conceptual approach of the load management functions and the

interactions with the charger-regulator and control circuits was available for

reporting on at the completion of Phase I, the rationale, logic and

developmental design details will be extended more explicitly in this Phase II

Final Report.

3.2	 BOS ELEMENTS

The stand-alone PV power system is functionally configured as depicted in the

block diagram, Figure 3.2-1 following, The major subsystems, including the

photovoltaic modules, that were fabricated and/or procured directly for the

engineering model are identified in the subsequent discussions. The control

electronics and logic were principally those BOS elements subjected to the

Intervening breadboarding step.

3.2.1 Photovoltaic Modules

The Phase I selection of 2 ft x 4 ft PV modules delivering approximately 67

watts peak at 4.4 Adc remained unaltered for the engineering model.

3.2.2 3KCPSA-5 Battery Strings

Two series strings of 20 each 3KCPSA-5 batteries manufactured by C & D were

procured directly for the engineering model. These three cell batteries

(289AH, 100 hr. rate at 77°F) are precisely as configured during the Phase I

final report.

3.3	 POWER CONTROLLER DEVELOPMENT

3.3.1 Design Commonality of C/R and L/M Control Circuits

The multilevel charger regulator (C/R) control circuits and the load

management (L/M) decisional circuits utilize a common printed circuit board.

The change of a few divider resis tor valurs and serse inputs, the deletion of

the temperature compensation function, and the add'.tion of the DELTP.R SOC 	 l

sense inputs convert a C/R board to L/M control board. In the load management

function the inputs to each of four dual state comparators are dedicated

respectively to each of four DELTAR sensor outputs corresponding to 20 	 i

-8-
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percent, 40 percent, 60 percent and 80 percent state-of-charge. In the

multilevel regulator configuration, two comparators perform the dual channel

regulation function; a third comparator is used for undervoltage trip. The

fourth channel is presently uncommitted ...d available as a spare. Figure

3.3.1-1 is the schematic of this common plug-in element with both configura-

tions shown. In the common circuit, the comparator IC outputs to a bipolar

drive transistor, which in turn energizes a hermatically sealed, "one-half

crystal-can" relay. These channel output rela y s can energize up to eight

Mercury displacement contactors installed in the series "OFF-ON" charge

regulating circuit.

In the L /M configuration, each of the four comparator output relays energizes

the corresponsing contactor assigned to that particular prioritized load bus.

Each comparator is in turn actuated by an output level change in the DELTAR

specific gravity sensor for that channel. Figure 3.3.1-2 is a specification

control drawing of the DELTAR sensor assembly.

3.3.2 The Charger-Reg ulator (C/R) Board Function

In the charger-regulator configuration Channel "A" and Channel "B" comparators

are both used for battery charge regulation through the mechanization of the

Hughes multilevel series 'OFF-ON" control system. This scheme, described in

Para 3.5.9 of the DEN3 -207 Phase I report, is herein included as Appendix

"A". In the multilevel control scheme, the array field is compartmentalized;

two subfield positive buses are summed at the inputs of the Power Switching

Modules (PSM) controlling the power developed by one half of the PV branches.

Figures 3.3.2-1;2, and -3 are simplified schematics of each comparator and the

unique relay configurations for each individual function.

Figure 3.3.2-4 shows the load latch logic, load reset logic, and the

undervoltage protection function. In the event the battery discharges below

1.80-1.85 volts per cell, the inverting input of the comparator goes low,

raising the output level to the "Hi" state, and subsequently energizing the

control relay, Kc. This subsequently opens the normally closed contacts and

interdicts coil power to the load management contactors, thus shedding all

loads. The UV trip is employed as a emergency (or contingency) back-up to the 	 5

four channel prioritized load management function. In the event of a DELTAR

sensor malfunction, or a failure elesewhere in the load shedding circuits, the

UV trip can prevent full battery depletion.

_11_
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I
The charge control comparators, in concert with the power switching

assemblies, form a closed-loop regulator.	 Stability is assured by the

charging time constant of the battery, and smooth hysterisis control. In

protective functions typical of the UV trip circuit the response may not be

unconditionally stable; some combination of parameters may produce

regenerative trips, for example, a trip may result from an inordinarily heavy

load on a partially depleted battery. The load current will discharge the

battery to below the preset 1.80-1.85 Vpc (volts per cell) level, causing the

comparator to change state. The battery, under the condition resulting from

release of loads, would quickly recover to perhaps 1.95 VPC. 	 If the

hysterisis setting is such that the comparator resets below this level, a

change of state back to the original will result. A potentially disruptive

cycling could thus result. A hysterisis setting of 25%, a relatively large

value, lengthens the regeneration period; the amount of positive feedback
i
r

	

	 would however be excessive and detrimental to precise and positive comparator

triggering. The power remedial action was to reconfigure the comparator/relay

"

	

	 drive as a latch. This bistable configuration was obtained by using the

second uncormitted relay contact set to bypass the drive transistor to neutral

(electronics common). Figure 3.3.2-4 shows the latching circuitry of the L/M

Board. With a transition to "Hi" on the output of the IC, the relay will

remain latched, irrespective of the state of the comparator. The relay can

then be released only by the manual or automatic opening of the switch, or

alternatively the set of contacts, in the `atch line. The utility of this

latching mode, as well as the availability of the additional contact set is

further described in the discussion of `_.`.- load managment breadboard.

Referring to Figure 3.3.2-5, an MC 1741 SU operational amplifier is configured

as a voltage follower. In this negative feedback configuration the output

voltage is a precise replication of the potential appearing between the

positive input and neutral. The actual reference potential is established by

potentiometer R-3, which when adjusted to center position at a 25°C ambient

temperature, yields a midpoint voltage of 4.0 Vdc. This is accomplished by

first making the value of the parallel combination of RNL the external

"sensistor" and R 1 a 100 kilohm potentiometer, in series with the padding

resistor R2 , approximately equal to R4.

I	

-17
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I
The Texas Instruments Sensitor 

RNL 
is a silicon resistor with a positive

4	
temperature coefficient of resistivity of about 0.79% per degree centigrade.

1	 Approximately 0.25% per °C correction is required to perform the float voltage

compensation previously described. Application of the full temperature

coefficient of the sensistor without "dilution" with linear resistors would

result in overcompensation. During first article design the values of R1

and R2 were selected to yield approximately the required compensation when

R1 and R3 were centered. All resistors and potentiometers, except the

Silicon RNA , are precision 1% metal film devices with a + 50 ppm temperature

coefficient. For subsequent systems adjustment of R1 establishes the actual

precentage compensation; R3 then permits resetting of the absolute magnitude

of the reference level.

The sensistor probe is hermatically sealed in a copper reference block which

in turn is affixed to the negative battery terminal.

Only minor changes were made in the transi:tl m from the hand wired

experimental breadboards to the printed circuits of the engineering model.

These changes were as follows:

a) Increase of R 1 to 100 kiiohms

b) Deletion of series diode clamps around R1

c) Substition of 2.2 mf/35V tantalum capicator. for the diode clamps.

d) Increase in thermal conductivity and mass of reference copper block.

The charging control algorithm for lead acid batteries is temperature

dependent. (he float voltage for lead calcium cells must decrease from the

25°C value at 6 millivolts per °C per cell to assure battery survivability at

high temperature. Correspondingly, the float potential must linearly increase

at this same rate below 25°C to ensure full recharge. At 25°C (77°F) a float

potential of 2.45 Vpc has been recommended by the manufacturer for batteries

using 1.300 specific gravity electrolyte. For 60 cell complement, the

charging bus must therefore be set for a float voltage of 147 Vdc. This

voltage should be decreased 300 millivolts for each degree centigrade ris

_19_
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This programmed decrease at higher temperatures precludes overcharging,

water-loss, and suhsequent cell damage. As the temperature decreases the

electrolyte resistivity increases. As the result of this decreasing battery

activity, a higher float voltage must be employed to assure complete energy

replenishment.	 If the control algorithm is not implemented for low

temperature, the cells will simply not recharge.

3.3.3 Load Management Board Function

The load prioritization control function was mechanized by modifying the

configuration of the standard (universal) printed circuit board by changing

specific jumpers and components. The actual printed circuitry is designed to

accomodate either the L/M and the C/R versions; the differences are only in

few assembly and wiring details with but one variation occuring in the

reference circuit, the Pin (3) non-inverting input. In the C/R configuration,

the reference level inversely tracks the temperature coefficient of battery

float voltage. In the L/M board, Pin (3), the comparators is preset and

adjusted for 4.0 Vdc. Similarly, the variable sense input in the C/R is a

voltage divider whose top point is sampled at Pin (4), the inverting input.

Just prior to a transistion, the positive potential on Pin (4) is only

slightly less than that on the Pin (3) reference. In the L/M application

however, the inverting input remains high, i.e., +5 Vdc, until the Deltar

sensor had changed states from "Hi" to "Low" as the result of falling below

the transition value as the result of charge depletion. The basic comparator

circuits, and component values established for the breadboard however, remain

unaltered through the transition to the final printed circuits.

One singular improvement was the selective conversion oT the analog comparator

function to one of the amplitude sensitive latching type. This breadboard

change required utilization of the unused contact set on each of the trip

relays KA-KD driven respectively by the associated comparators. As

described earlier Pin (4) (-) remains "High" as long as the Deltar ball is
interdicting the LED produced light beam falling upon the phototranslstor.

When the ball becomes negatively buoyant relative to the electrolyte specific

gravity as the result of acid depletion, the ball sinks. The latch circuit

ensure that a comparator transition always occurs at the precise moment the

ball sinks.'
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3.3.4 The Mother Board

The mother board performs the following:

a) Serves as main internal electrical intertie for all control, display

and logic functions.

b) Routes and distributes all control and sense signals including both

automatic and manual commands, to the proper contro'i and/or

decisional

circuit.

c) Provides protected DC power to the various control and logic

circuits.

I
Breadboarding and test prior to commitment to artwork and printL-d circuit

board fabrication resulted in the following design refinements.

. Inclusion of automatic reset lines for L/M channel latches

. Extension of automatic crowbar function to include load disconnect

. Deletion of manual disconnect crowbarring control mode

. Relocation of protective DC/DC converter fuses

The leading particulars of each of the above circuits modifications are

described in the paragraphs following.

3.3.4.1 Inclusion of Automatic Rese, Lines for L/M Channel Latches

Deltar probe ,sitter during the "High" to "Low" output transition required that

the comparator/relay threshold sense circuits be configured as voltage

sensitive latches. For L/M channels "A", "B", "C", and "D" each respective

state change triggered by a sinking or non-buoyant float results in a latch-up

in the "load disconnect" state. Initially the latch would ensure that the

particular load conta::tor would be held open until the circuit were later

broken by manually energizing the UV Reset pushbutton. Conceptually this

mechanization approach proved to be unacceptable since it would require manual

intervention before the affected load could be restored. The circuit was there-

fore modified to reflect the final configuration depicted on Figure 3.3.2-4.

r
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Refering to Figure 3.3.2-4 the reset function for any/all of the four load

control channels were shifted to Channel "B" of the multilevel battery charge

regulator. In the multilevel charging scheme the PV array is partitioned into

separate current generat'ng elements typically consisting of an equal number

of contributing parallel branch circuits. As the battery approaches full

charge one of the contributing segments is automatically switched off , thus

tapering the final charge. In the engineering model, the float cycle point on

the segment controlled by Channel "B" is set for 2.35 Vpc to at 77 0F. When

the battery recharges to this float voltage, the Channel "B" comparator trips,

thus deenergizing the normally open relay, interdicting this portion of the PV

charging current. A committed contact in the Channel "B" charging relay is

used to mechanize the reset function. At nightime or during any other periods

when battery charging current is not present and the bus voltage is perforce

low, the control relays revert to "On-charge" state, closing the charging

contactor. Energizing the charging relay subsequently closes the second set

of normally open cc-tacts on the Channel "B" charging relay, thus holding the

latch for any of the L/M contro relays (K 
A, 

KB , KC , KO on the L/M

Board) that have latched and held the load contactor open due to a load

shedding command. This latch will hold through the next period of insolation

during which the battery is recharged. With recharging, the battery energy is

continuously replenished. The " ,V'a-Charge" voltage will rise to the preset

trip point, in this case 2.35 Vpc, producing a comparator transition, which in

turn deenergizes the relay thus breaking the affected L/M channel latch. This

control logic accrues several advantages:

a) The restoration of service to a previously disconnncted load becomes

automatic, thus not requiring manual intervention.

b) Load pick-up is delayed until the battery state-of-charge

replenishment is at some safe predetermined point within the

subsequent recharge cycle.

c) Except by manual override, a load cannot later be reconnected to a

battery whose state-of-charge has not been sufficiently restored to

support that load for a prescribed future period.

-2P-
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1+	 Repatching of existing circuit interfaces would permit expanison of this

C control function to selectively perform several other load management tasks.

For example, the fourth comparator on the C/R board might be dedicated to the

most critical load channel. The algorithm here might defer automatic pickup

of this most essential load (for example the radio transmitter or the medical

refrigerator) only for a minimum recharge period, perhaps only until the

	

r	 battery had reached 2.20 - 2.35 Vpc. Similarly the fourth channel C/R

	

I	 comparator, set at 2.45 Vpc, could be employed to interlock with the lowest

priority "D" channel latch. In this case, the deferrable, non-essential

loads, for exampIc those involved in community recreational/social functions

might not be picked up until the battery were fully recharged during the next

insolation period. This modest degree of additional decisional capability may

be of future operational value.

	

:I	 3.3.4.2 Extension of Automatic Crowbar Function to Lod Disconnect
Fault current flowing from the isolated conductor ,o ground, if above 12

milliamperes DC, will energize the ground fault de'.ection circuit. The ground

fault os most serious if errant personnel are involved; the ground fault relay

(GFR) in turn will activate the crowbar. In this emergency mode battery

	

l	 charging is terminated. If the crowbar closure goes undetected all subsequent

	

(	 power demands will be supplied by the battery until the crowbar is released.

l'

	

	 It is immaterial whether the crowbar activation occurs during the daytime or

nighttime period. Extended battery discharge without replenishment will

	

t	
invariably result in total load shedding and near-depletion of the battery.

t	 This will of course finally call attention to the required crowbar reset

	

y!	 action; in the meanwhile, without immediate annuniciation, energy available

from the system would be temporaiiy and undersirably lost. In the interests

	

(	 of system performance and safety the crowbarring function has been extended to

[l,	 include simultaneous shedding of all loads.	 These circuits have been

	

_	 incorporated into the motherboard design. See Figure 3.3.4.2-1 for Ground

	

r	

Fault Logic.

LI
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3.3.4.3 Deletion of the Manual Disconnect Crowbar Control Mode

The inclusion of a manually selectable disconnect mode has proven valuable in

connection with the checkout of the other control functions. To inhibit

crowbar activitation in this mode via front panel switching may not be

desirable for the reasons of increased operating risk and non-essentiality.

For example if the mode selection switch is advertantly left in the

"Disconnect" position, ground fault detection and protective response will not

be present. The fact that the GFR is reset, and the array can charge the

battery, amply verified that the crowbar is open. This change has likewise

been incorporated in the mother board PC design.

3.3.4.4 Relocation of Protective DC/DC Converter Fuses

Subject fuses were revised and shifted from the 120 Vdc input lines to the 24

Vdc output lines. The fuses now fully protect the redundant DC/DC converters

from control overloads and short circuits. In this original configuration the
F	

transformation impedance of the DC/DC prevented potentially damaging overloadsr

r	 from safely initiating fuse melting and clearing.

3.3.5 Deltar Sensors and Conditioning Electronics

The Deltar specific gravity sensing technique was extensively evaluated during

the Phase I 80S analysis. At that time concern was expressed that some

automation problems might be expected. This has proven to be the case. It

was also concluded at that time that the methodology was both sound and

applicable; if properly mechanized the approach should yield both a reliable

and direct assessment of battery SOC. Using a directly proportioinal

parameter is always a more desirable aporoach. Given initial electrolyte

conditions, once temperature corrections are made, a direct proportionality

exists between specific gravity and battery SOC.

The potential problem of stratification had surfaced early in developmental

evaluation. The possibility of a small "closed cycle: electrolytic lift pump

was considered. The electrolyte of the individual pilot cells would be 	 4

f
t	 s
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properly stirred, or circulated and the opto-electronic transition would take

place at a specific gra y .ty representative of the entire cell. Early

experiments indicated that this somewhat cumbersome auxiliary might not be

required. It appeared that the relating long charge-discharge cycles provided

an opportunity for the electrolyte to reach equilibrium concentration without

supplemental mechanical agitation.

Another shortcoming of the Deltar sensor design quickly overshadowed the

stratification problem. Even without the circulating pump assistance, the

concentration equilibrium appeared manageable by calibration of the specific

gravity. This more serious problem, that of failure to respond to the actual

specific gravity transition is summarized below.

This problem possibly of a more unmanageable nature, might be characterized as

"hang-up", or failure of the ball to sink at the transition point. As the

electrolyte slowly depletes due to discharge, each Deltar ball sensor drops as

it assumes a negative buoyancy point . Each of the four sensors include a

ball fabricated to become negatively buoyant at a particular specific gravity

correspondong to 80%, 60%, 40% and 2-% pf charge remaining. This methodology,

neither new nor noval, has been in industrial use for perhaps four decades.

In one particular test the system was exercized through some thirty short

charge /discharge cycles. It was observed that the transition dependability

was low in some 30% of the discharge events. The ball:

o did not immediately make the transition unaided, or

o went from "float-to-sink" some point later, as indicated later by

independent hydrometer measurements.

o did not exhibt a constant delay period for delayed transitions.

The problem appears related to "stiction" (static-friction) or surface

tension, and is not one of transition accuaracy or uncertainty. The desired

transition could be f^ ced by sharply rapping the battery case. The surface

tension against air for a 1.300 specific gravity solution of H 2SO4 in

water is

-25-
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1.	

comparatively high in the range 60-65 dynes per centimeter. The diameter of

f	
the DELTAR ball is about 3mm; it is estimated to weigh approximately 15

I.

	

	 milligrams. A potentially serious succeptibillty to "stiction" appears

probable. In electromotive applications the cells are always subject to

severe vibrational and shock stresses. In fact batteries used in forklifts,

steelmill auxiliaries and the like, may incorporate special internal supports

to prevent plate deformation. In these high stress applications, the

opto-electronic as well as the visual "green-eye" indicators operate

i	 satisfactorily.

The unsuitability of the present Deltar design for these stationary PV

applications was communicated to the manufacturer. One dual assembly

exhibiting this problem was returned to him for evaluation. No definitive

result; have to date been forthcoming; likewise no "quick fixes" or inuitive

solutions of the short-term type are expected.

Hughes h:wever yet considers the specific gravity control methodology to be

one of high potential utility and direct applicability to the load management

strategy advanced in this study. The failure of a particular electro-

mechanical sensor to yield the required results (perhaps in an incompatible

application) should not vitiate the promise of the overall approach. Hughes

is of the opinion that the problems of stratification and "stiction" might be

expeditiously solved by directing an investigation along the following:

o Design a miniature floating element of the same general form-factor

as a conventional hydrometer float. This type of float gives a

proportional rather than a OFF-ON response.

o For C&D batteries, use the lift pump access port.

o Investigate the use of various types of transducers (optic-

electronic, magnetic and linear variable differential transformer for

coversion of float level changes to an electrical analog signal.C
6
0
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None of the above criteria appear to impose insurmountable technical

problems. Battelle (Switzerland) has recently announced the development of a

state-of-charge monitor based upon change of electrolyte refractive index with

its acid concentraction. A synopsis of this methodology is included as

Appendix C.

3.4	 DEVELOPMENTAL TEST & EVALUATION

During the breadboarding phase, the circuit refinements described under 3.3

preceeding were implemented and subject to testing. Circuit changes were

first made on the hand+ired modules; after proof testing, the changes were

incorporated into the engineering model schematics and thence to the printed

circuit boards themselves.

The engineering model of the complete stand alone system was brought on line

in the protected test and evaluation area adjacent to the Hughes, Long Beach

Plant.

Initial testing was accomplished with the engineering model versions of all

BOS subsystems except the electronic boards within the Power Controller.

During later testing, but prior to the conduct of Acceptance Tests, the actual

printed circuit boards were retrofitted in the model. At the conclusion of

systems upgrading and verification, with the possible exception of the DELTAR

sensors, all BOS subsystems and assemblies ware performing within

specifications.

During breadboarding and final debugging it was essential that the control

system be synthetically tested under power in the laboratory. An 180 Vdc/30

Adc voltage regulated, current limited, phasA back power supply was employed

to simulate the array output; a 10 module/60 cell DELCO 2000 battery string

provided laboratory electrical storage in lieu of the larger C&D complement of

the array. Several dummy loads to 2.5 kW @ 120 Vdc nominal were additionally

employed. A block diagram of the t?st set-up is shown in Figure 3.4-1. A

special calibration fixture was devised for the purpose of establishing the

control parameters and performing the final calibration and temperature

compensation.

-27-
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3.5	 DEVELOPMENTAL RESULTS

Overall results of developmental breadboarding were satisfactory. Changes of

the UV comparator to a latched circuit produced the required stability. Minor

chages on the TC reference circuit reduced the numbers of circuit elements and

resulted in simpler calibration procedure. The latch and associated voltage

sensitive reset circuits (imp l emented in the L/M and the C/R boards

respectively) resulted in mc •e intelligent control logic, improved

automaticity and expanded flexibility. Expansion of emergency crowbarring to

include automatic load disconnect was an essential change that should improve

power availability. Testing and performance verfication proceeded smoothly

from bench and laboratory testing to full system testing in the field. By the

time the system was readied for final commissioning tests all breadboard

circuits had been retrofitted with the printed circuit board versions; the

system was performing as the full engineering model.

	

4.0	 THE ENGINEERING MODEL

	

4.1	 REQUIREMENTS

Under Phase II of the contract Hughes was required to build and evaluate the

modular system designed and approved in Phase I of the cont r act. The

engineering model described herein was constructed for the purpose of

demonstrating the form, fit and performance of the modular concept and

incorpt-ation control system design verification results of developmental

breadboarding. This engineering model conforms to the approved design, as

upgraded by the developmental effort.

Detailed designs and drawings developed under Phase I permitted the

construction, installation, operation, and maintenance of a baseline system.

This documentation included:

(a) Electrical block, schematic, and wiring diagrams of the baseline

system.

(b) Engineering design drawings in agreement with MIL-STD DOD-D-10008

level 2.

-2g-
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I
(c) Physical layout and installation of the modular system.

(d) Instrumentation incorporated in the operational system.

(e) Parts list with part sources. model number and rated values.

(f) A detailed Acceptance Test Procedure, including installation and

checkout.

The manufacturing test and assembly processes and resulting hardware for the

engineering model comply with the approved design documentation and

specifications; no significant departure from plan occured during this

particular phase. An Acceptance Test Procedure (ATP) was required by

contract. This procedure, as well as its successful execution, was reported

separately.

' r
k,

4.2	 SITE PREPARATION & INSTALLATION
ci

Remote systems are frequently located on mountain peaks as means of powering

i
communication gear and other apparatus. The Hughes FPUP China Lake

installations are a good example. Digging foundation holes or trenches in

rocky or dense soil/aggregrate can be expr-1sive. The ballasted "planter" was

F developed for this application. The installation cost and complexity is low

as compared to designs requiring excavation, concrete piers/footings and other

anchoring techniques. The ballasted planter approach essentially frees the

photovoltaic system installer from terrain peculiarities and variabilities.

The system is readily installable on virtually any terrain and soil type,

e except steeply sloped monolithic rock, which require anchor-bolts or their

equivalent. The engineering model is shown in Figure 4.2-1. A perimeter

fence, not necessaily typical is also shown.

4.3	 ARRAY STRUCTURES AND FOUNDATIONS

The modular frameless panel is a straightforward design, economical to

manufacture, and adaptable to various module widths and lengths. Field

experience has shown that no installation problems have been encountered.

1.
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I
The planter shown in Figure 4.3-1, consists of a hot-dip galvanized sheet

metal trough weldment with panel support stanchions located at the ends.

Installation involves clearing the selected area of major rocks and

vegetation, rough shovel grading of the planter ground, and placing the

plenters thereon. Spacer rods are then fastened between the adjacent planter

stanchions to ensure easy acceptance of the array panels. 	 The planter end

closures are then bolted into place. The planter troughs are filled with

nearby rocks, dirt or sand bags. Battery platforms are bolted across the

planter's top flanges and the batteries installed. This foundation design

appears to have almost universal site acceptability.

The installation shown has been installed for about 8 months. It has been

exposed to a winter of a'most continuous storms, one of cyclonic intensity.

It has survived without incident.

4.4	 ELECTRICAL CONFIGURATION OF THE STAND-ALONE PV POWER SYSTEM

Figure 4.4-1 following is the generalized electrical schematic for the

baseline one Power Unit (PU) system. The baseline has an nominal output of

1.28 kWp consisting of two parallel branches, each rated 150 Vdc at 4.3 Adc or

640 Wpk. Each branch is a series string of 10 PV modules. Each module is

2 ft x 4 ft in size, delivering a nominal 64 Wpk. Table 4.4-2 illustrates the

modular expansion of the array field (16 PU to 20 kWp) and its partitioning

into a 1/2 PU (640 Wpk) output and a 1/4 PU (320 Wpk) output, respectively.

The 1/4 PU rating requires the use of 1 ft x 4 ft (32 Wpk) modules. The

baseline battery string is a 60 cell/20 battery module complement of C&D

3KCPS5A-3 cell packages, each cell rated 260 AH at the 8 hr. rate; the 1/4 and

112 PU ratings also use this basic complement; the battery strings are

proportionally replicated for the higher ratings.
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Generalized Electrical Schematic

Figure 4.4-1
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Table 4.4-2

Power Rating Structure

Power Peak Power Peak Array Basic PV Array Basic Basic
Unit from Array Current at Module Power Battery Power
(PU) 150 Vdc Size (ft) Branch String Controller

and power	 Increments Complement Capacity
W* A W PU (PU)

1/4 320 2.1 1	 x 4 (32W) 112 1	 ea. 4
1/2 640 4.3 2 x 4 (64W) 1 1	 ea. 4

1 ** 1,280 8.5 2 x 4 (64W) 2 2 ea. 4
2 2,560 17 2 x 4 (64W) 4 4 ea. 4

4 3,120 34 2 x 4 (64W) 8 8 ea. 4

8 1,249 68.3 2 x 4 (64W) 16 16 ea. 8
16 20,480 1,36.3 2 x 4 (64W) 32 32 ea. 8

(2 ea.)

* At 1000 Watts/M2 insolation; Air mass = 1.5;
T ambient = 25°C

** Baseline Rating
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Within the overall electrical system, the array field wiring and cabling

provides the electrical power interface between the power generating array

elements, the series module branches, and the power controller. Except for

the fractional power unit ratings, the horizontal folded daisy chain wired

string of 10 series, 15 volt/64 Wpk modules will be employed. For the

extended higher power ratings, above 8 PU, transition from the intermodule

wiring to the radial branch cabling can be accomplished in several ways. The

following wiring options become available when the site geometry forces the

deployed systems to be deployed out in multiple East-West oriented rows:

(1) Aerial/burial cable, with North-South overhead ductway.

(2) Rigid metallic/non-metallic conduit, for special protection of power

cables; IMC; or alternatively protected surface runs, also with

aerial/burial cable.

Figure 4.4-3 is the specification control drawing for the Solarlok devices;

Figure 4.4-4 is that of the "Supercon" connectors used in array battery and

load terminations within the Power Controller. The branch currents are routed

directly to the Power Controller. Radial collection `.s employed throughout.

A two string summing junction can be used directly at the termination of two

subranch loops in the event the smaller i ft x 4 ft modules are deployed in a

320 Wp series string. Figure 4.4-5 is a photograph of the backplane of the

engineering model.

4.5	 PHOTOVOLTAIC MODULES

The basic photovoltaic modular building block is the 2 ft x 4 ft solar cell

module described in Hughes Procurement Specification SEP-11396 (Appendix B).

The module was produced by Photowatt International Inc. of Tempe, Arizona. A

photograph of a typical panel is given in Figure 4.5-1.

The module specification defines the electrical performance parameters, tests,

and mechanical design of the module. The specification basically conforms to

JPL's Block IV solar cell design and test specification (No. 5101-83).

-36-



BUS SAN HOUS1P
(121076.1)

-., —..

OF POOR	 --'i'f

AMP' SOLARLOK'
COMECYON SYSTEM F

10 CTION MILLT

 1400 .211 .1
	 1

Tublishsd 1-5.31

PUMA

1.1 pscritiea

AM SOLAR1,0I0 Connector was 1.3 Other kits will be available
primarily designed and introduosd with variations in tyve and
to the Solar Energy Industry is length of wire, S tab Bus Be"
1979. The Connector system is and assorted Quantities of Sus
packaged and initially available Bar Bousings and Barman
as a complete kit as shown In Connectors to accommodate
Pigurs- 1 •	 . customer m Quirsmsnts.

1.2 Rath kit consists of a ons tab
rr
Read the following instructions

Bus bar. Bus Dar Rousing and for specific informatiso to
Rarnesk Connector with 18" Viro regard to the AMP SOLARLO[e
length. The basic kit is isail- cgoneoter installation for a
able under AMP part number troleal nodule.
1RIDS5-1•

• TAAIEMARI OF APB INCOMRATm

Specification Control Drawing for Solarlok Connectors

Figure 4.4-3

-37-

i



4

r .^ f

ro," also"	 hips votel w

tips WIOQMtt	 row nioemr

ORIGINAL PAGE Is
OF POOR QUALITY

lwarmO SPECIFICATIONS and OIMENt10M= 	 _ —	 . —	 Y	 SUPERIOR ELECTRIC '0
1<

PRICES SHOWN AT BACK OF THIS SECTION. 	 ALL IrwaON nnSPAOa NORMALLY NJ MINARIK STOCK.

1	 100 AMPERE SUPERCONO 	I

CATALOG NUMBER

COLOR
SOCKET PIN NICEPIACLI

JI
PIN WCKET

RECERACLI PLUG PLUG

ILA" 11111000E P► 100(11 RP1000B ►1110008

YELLOW RSIOOGY

111110008

MIOOG Y RPI OOG V P1110GOY

RIO ►P1 DOG 11 At 1! P11100GR

BLUE RS10066L MOGUL RP100GIL IOOGII
GREEN RSIOOGGN IPPIOOGGN RPIOOGG14 S10GGGN
WORE RS1000WT IPPIOOGWY RPIOOGWT ►S10DOWT

100 AMPERE TYPES RS and PP DIMENSIONS

N.	 ,..r

M

(Wt] P rw\ .aL (a.j ^.rd

IY
(110) — --	

-^)

r-j1 K .i. rpl	 ( „) • 41,30
IA M.IIN [Pr4[t¢J

!I

1	 100 AMPERE TYPES RP and PS DIMENSIONS 	 I

t^	 1^
J

eta	 _ rn	 --	 + n	 -- IM
(r 9 -^	 (trQ	 Co.]	 r —	 [raJ

^I - (ri1]' i	 ~ l/{{]	 1.	 w ~ (ni] 'M ` h) -CPO]-* 
(rt] 0	 (1610.	 T

f	 /rims	 let -	 IM.)
-	 s	 I

1

.s	
wlt	

rr ... ar,	 It )^	 r-r{ Kr. rc.	 I	 1.i)0	
(+101a

`(rt] 0 •.r. -o.{	 ({.) I.c.r IC	 tAr{w111 corracfa

SAFETY WARNINGS

INSTALLATION:— It is the responsibility of the apparatus to reduce hazards to persons and properly.
equipment manufacturer or individual installing
the apparatus to take diligent care when installing USE:— The chance of electric shocks, fire or explo-
equipment. The National Electrical Code (NEC), sion can be reduced by giving proper consideration to
sor • rad local electrical and safety codes, and when the use of Grounding, thermal and over-current
applicable, the Occupational Safety and Health Act protection, type of enclosure and Good maintenance

( (OSHA) should be followed when installing the procedures.

^ of Cwtraa.

SCO for Supercon Connectors

Figure 4.4-4

-38-

^J

d
T



- 39 -

I'

r
i
r
i
i

i
r
i
i
^r

I^
i

ldm
^Ln

t^

CM
W
wO
ta

a

ORIGINAL PAGE t!
OF POOR QUALITY



i)

H

ORIGJf •:AL PAGr  18
OF POOR QUALITY

-war

Typical PV Panel

Figure 4.5-1

-40-



I
The procurement specification SEP 11396 (Appendix B) defines all quality

assurance provisions and acceptance testing to ensure that the requirements

will be met. Photowatt's module inspection system plan is covered by

SEP-11396.

The module specification requires that the module design be capable of

withstanding the following Block IV environmental tests:

Thermal cycle

Humidity cycle

Mechanical loading

Twisted-Mounting Surface

Hail impact

I	 Photowatt letter, March 28, 1983 (Appendix D) certifies that the aesign met

the environmental requirements as demonstrated through previous Block IV

testing.

All 50 modules were subjected to acceptance testing. Each nodule was visibly

inspected for any non-conforming or damaged front surfaces, frames, solar

cells, interconnects, solder joints, laminates, terminals, diodes and

dimensional variations.	 Electrically, each module's performance was

determined by obtaining a current-voltage (I-V) curve of the module by means

of a pulsed xenon solar simulator. All I-V curves were corrected to standard

conditions of AM 1.5 1000 W/M 2, 28°C. Appendix E contains a summary of each

module's serial number and performance. The average output for the 50 module

lot was 66.17 watts. Based on the performance summary, the modules were

electrically matched into circuits each containing ten series connected

modules. The location of each module by serial number in the array is shown

in Figure 4.5-2 the Module Matching Plan.
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I

In addition to electrical performance testing, each module wa, subjected to a

3000 Vdc electrical insulation test and a diode verification test. All

acceptance test data were submitted to Hughes for review and approval.

A sample of two production modules was selected at random for inspection and

performance verification by Hughes. I-V curves were obtained for each module

under natural sunlight conditions. The data was corrected to standard

conditions of AM 1.5, 1000 W/M2 , 28 °C. The performance of these modules

agreed with Photwatt's acceptance test data within + 2%.

Each solar array string of 10 series connected modules was electrically

performance tested on February 14, 1983. Although there were thin, high

clouds the array strings all appeared to be functioning properly. When

corrected to AM 1.5 1000 W/M 2 28°C the following performance parameters

were obtained.

String Imp

(Pangs)

Vmp

(Volts)

Pmp

(Watts)

Upper West 4.20 164.1 689.0

Lower West 4.16 162.5 676.1

Center 4.06 157.5 639.8

Upper East 4.16 165.1 686.8

Lower East 4.16 162.1 674.4

4.6	 POWER CONTROLLER

The Power Controller (PC) is the collection, conditioning and distribution

center for all system DC power. One basic Power Controller is furnished; this

baseline configuration is used in all ratings through 8 PU. Power Switching

Modules (PSM) are progressively added with increasing power ratings. Figure

4.6-1 is a photograph baseline 8 PU cabinet. Figure 4.6-2 is the cabinet and

controller interface wiring diagram. The Power Controller also houses the

Power Control Panel (PCP) and the Power Output Panel (POP). These panels and

the associated hardware assemblies are also common  for all systems. The Power

Controller also accomodates all of the SOLARLOK male receptacles that

-43-
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interface with the PV array branch collection circuits as well as the

"Supercon" load connectors outputting from the distribution circuit breakers.

The PC cabinet also houses the high current summing bus or main lugs sized for

maximum system power rating. The battery strings are connected by "Supercon"

connectors to these main lugs.

4.6.1	 Power Control Panel (PCP)

The PCP houses all of the master electronic controls for the power systems.

It includes the following:

1) The Two Channel Charger (Multi-Level) Regulator printed circuit

board.

2) The Load Management printed board.

3) Summary system status displays and indicators and the zero

centered battery current meter.

4) The ground fault relay.

5) The control system motherboard, electrically interfacing the power

control subsystems, the electronic sensing and decisional

circuits, the manual/automatic control, and the displays and

indicators.

6) Manual override controls and mode selectors.

7) All pilot relays required to energize the main contactors.

8) The dual redundant DC/DC converters, supplying 24 Vdc control

power.

9) System protective logic and control elements.

10) Interfaces with the Deltar SOC sensors.

Figure 4.6.1-1 is a photograph of the PCP front panel and Figure 4.6.1-2 shows

the interior physical arrangement of the several PCP subassemblies. Figure

4.6. 1 -3 is a schematic of the motherboard; Figure 4.6.1-4 is a photograph

showing the physical layout of the major elements. A low cost DC/DC converter

is employed to efficiently obtain '.ow voltage control power without

dissipation in the dropping power resistor. Two converters are redundantly

employed in the cold standby/manual switchover mode. A DC/DC converter is

included as Figure 4.6.1-5.
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4.6.2	 Universal Control Board Printed Circuit

The multilevel charge-regulator control circuits and the load management

decisional circuits utilize a common printed circuit board. The change of a

limited number of divider resistor values and sense inputs, plus the deletion

of the temperature compensation function and the addition of the DELTAR sense

inputs convert a charge regulator board to L/M control board . In the load

management function the inputs to each of four dual state comparators are

dedicated respectively to each of four Deltar sensor outputs corresponding to

20 percent, 40 percent, 60 percent and 80 percent state of charge. In the

multilevel regulator configuration, two comparators are dedicated to the dual

channel regulation and the third to undervoltage trip. The fourth channel is

presently uncommitted and available as a spare. Figures 4.6.2-1 and 4.6.2-2

are photos of the C/R and L/M boards respectively; Figure 4.6.2-3 and 4.6.2-4

are of the schematics of the boards. In the standard circuit the comparator

IC outputs to a bipolar drive transistor which in turn operates a one-half

crystal can hermetic relay. The charge regulation channel output relays can

energize up to eight series switching Mercury contactors. In the L/M

configuration, each of the four comparator output relays energizes the

corresponding contactor in that particular prioritized load bus. Upon

occurance of a Deltar sense transition, the comparator, upon dropout, latches

in response to a change in level in the DELTAR specified gravity sensor

assigned to that particular channel.

	

4.6.3	 Power Switching Module

The Power Switching Module (PSM) consolidates all input power switching

elements for each 1 PU (1.28 kWp) increment on a single panel. Figure 4.6.3-1

is the photo layout of a single PSM panel; Figure 4.6.3-2 depicts the parts

layout and the intraconnective wiring. The PSM accepts the output of

contributing branches, delivering the power to to the summing (battery) bus.

It includes the following control/protective switchgear: Figure 4.6.3-3
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Photograph of Load Management Board
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Power Switching Module Panels

Figure 4.6.3-2

Power Switching Module Layouts and Wirings

Figure 4.6.3-2
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1) An input circuit breaker for manually connecting/disconnecting the

particular array branch involved.

2) A crowbar contactor, part of system protection.

3) A series power relay of the hermetic mercury displacement type,

protected by a snubber, performing the dual function of the power

pass element in the feedback control loop and "overvoltage

shutdown."

The blocking diode, CR-1, precludes back current flow from the main power bus

to the array in the event of a faulted array element. The power snubber

circuits used with the hermetic contactors result in virtually arcless power

interruption, thus ensuring MCBF (means-cycles-before-failure) in excess of

several million -ycles. Metal Oxide Varistors are across the PSM input hold

voltage surges .:,3 
safe dielectric levels. Up to eight power switching modules

may be installed in the power controller cabinet, thus accomodating ratings up

to 8 PU, 10.24 kWp. The main bus circuits are rated at 135% continuous

overload; the layout of the main lugs and interconnective control and power

harnesses are depicted in the photograph. By using 2 each 8 PU controllers in

tandem, a 16 PU rati;,^ is achieved.

4.6.4	 Power Output Panel

The Power Output Panel (POP) is depicted in two figures, the front panel

photograph ar.i layout, Figure ..6.4-1, and the interior photograph and wiring

interconnection drawings, Figure 4.6.4-2. the POP incorporates the output

contactors that control the power flow to the four prioritized load outputs.

It also includes the four back-up low voltage circuit breakers that provide

manual load break and automatic fault trip. Each output panel will handle up

to four circuit breakers and contactors with an aggregate 105 Amps continuous

rating at 50 Vdc.
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The POP circuit breakers, as well as the array series disconnects are DC

breakers with auxiliary contacts. Their continuous carry and fault trip

ratings are coordinated with battery fusing and vary with system rating. For

the baseline 1 PU, the circuit breakers have been selected for 15 amperes

continuous carry and an NEMA inverse time trip characteristic 01 (1 sec/700

percent continuous). The four hermetic mercury displacement contactors, each

in series with a circuit breaker, are dedicated to that particular prioritized

distribution feeder. The panel also includes the master control relay that

interdicts the holding current on each of the four prioritized bus contactor

coils in the event of sensing a catastrophic battery undervoltage, nominally

less than 1.90 VPC at 25°C. The panel also includes the nain lugs for the

load output and battery input. The load buses and the battery interfaces use

Supercon connectors, however they ere not interchangeable.

4.7	 THE LEAD CALCIUM BATTERY

The Lead-Calcium Battery, the C&D 3KCPSA-5, selected for this application

represents the best, off-the-shelf product, consistent with reliability

performance, life cycle cost, and field handling requirements. Figure -+.7-1

the Specification Control Drawing, fully characterizes this battery. Figure

4.7-2 summarizes pertinent installation and maintenance data. The baseline 1

PU battery consists of twenty of these 3 cell batteries in series, giving a

nominal 120 Vdc bus voltage. A photograph of the two identical 60 cell

battery strings for the engineering model is shown in Figure 4.7-3

I

-60-

t i,..



ORIGPIAL
OF POOR QUALITY

NORMAL AND COLD CLIMATE APPLICATION DATA
For Averaoe Annual Tornoarstured Was Man 9VF (320C)

AN CePMOV
'H.. too Mr. 90o w. O..tdw

77e F 77e F TOP ter rF NAM solo
I

Mbi"t	 Mex. AM

be.	 I	 bej to cop F ► -- ,_TYr 2sec) )25em t75oC) tzrC) 1.186c) rt.	 I .ra a.. a.rl on.	 I alrql	 ►5A.3
3 vCFS A 3

31
31

42
42

50
50

45
as

36
36

&59
iI9

91
134

via
7i

167
167

10.]1
10.31

762
762

18A
27.7

oil
12.6
I60

50
2 6CPSA 5

DCFSA S
62
67

73
73

75
75

Y
S8

as
55

3M 91
131

7.33
7

167
167

1 31
10.31

262
262

22.6
3.6

10 316.2 67
67

2 0C►SA 7
3 DC ► SA•7

04
94

128
121
140
14

160
_ 150

145
145

134
134

106
108

L39
47

182
64 1

7.33
7.*

167
167

10411
10.31

292
262

369
1

16.7
24.6

1139
139

2 DCFti•9
^^FSAy_

125
125

129
129

105
IDS

6.]8
A7

162 1
1

in
7

187
19

10.31
10.31

762
762

409
611

2e18S
e9	 1 

DC P SA 11
DCPSA-13

156
168

212
255

?so
3w

224
266

162
216

L38
6.36

162
162

7M
7.36

187
197

10.75
10.75

773
273

37
39 16.517.7

250
286

DCPSA tS
0CFSA•17

219
2SO

300
766

310
265

276

204
22S
216

L38
L39

162
162

7.38
7i

187
187

10.76
10.75

273
773

41
1	 42

18.6
19.1

274
251

2 KC ►SA•5
3 KC ►SA•

225
225

259
9

340
340

306
6

249
_9

a"
53

142
7

IOA4
A4

795 ISIS
18.25

464
464

p
131

39.9
59.4

304
304

400
625
645
770

1055
1023

336
471
679
690
951
6_91

793
31114
471
661
774
72S

3192
492
199
639
a.S3
6-53

92
117
142
167
717
717

10.44
IOA4
10,44
IOA4
10A4
IOA4

765
266
765
Ids
7d6
m

1"
18.26
16'?.
1625
I"
15.25

464
464
464_
464
464
464

W-
75
N^

113
139
146

26.3
35,0
433
sli
$3.0
66.2

357
467
674
194
943
909

KCFSA•7
KCFSA 9
KC ► SA . 11
KCPSA•13
KCPSA•15
KC ►SA 117

337
4501
662
675
787
900

358
509
625
747

1023
997

4 LC ►SA 5
4LCPSA•7

LCPi A•11
LC ISA 113
LCPSA-15
LCPSA 17
LC►SA 19-
LCPSA 21
LC ► SA.23
LCFSA 26

420
a"

1050.
1260
1470
1690
1890-
2100
2310
2520

516
795

11402
1649
1671
1867
2308
2231
7680
2803

S3s
670

100
1700
1620
1925
2380
7300
7970
7890

479
734

1476
1521
1451
1723
2132
2061
2658
2Se9

390
597

1202
1238
1192
1403
1135
1676
2163
2107

10.14
15,40
792
797
792
9.62

10.62
10.62
13.19
1119

258
331
194
194
174
219
270
270
&%
3315

14.12
14.12
14.12
14.12
14.12
14,12
14.12
14.12
14.12
14.12

3159
369
359
359
359
Will
359
359
359
369

22.62
22.62
22.62
22A2
22.67
27.62
72.62
22.62
22.62
2242

676
676
576
676
576
S75
StS
575
S7s
575

276
391
198
70S-. -
222
2S4
294
310
353
370

125.2
177A
85.3
93.0

100.7
1152
133.4
1406
160.1
1679

474
727

1577
/SOB
1439
1707
2113
2042
2364

1	 2565
Recommended Charge Voltage - 7 4610 149 cone par con 4P 71-F (n-C)
Spec ihC Gravity at 77'F )75'C) - Full Charge - 1 300
SPeC 1 1-C G r evdy at 77'F (26'C) - 1 00% Ooscnarga - 1.130 $00 Now hate
Specific Gravity Of 32'v ( 0'CI - 1001 Viscnarge - 1 180 S00 Hour 11419

'Electrolyte will not freeze if lr+ase valuer+ are not exceeded.

BATTERIES--_..:_ BATTERIES OF t:.^NAD
3013 WALTON xOAD. ►LVMOUTH Mu 7 1000. PA 191411	 Hi0 cOg4H CAISCIMT, tlo+T it, C0 146C040. CW41AOIO Lox IM

Flt	 x .•^F	 Elt r coff""

SW580	 -

Specification for 3 KCPSA-5 Battery

Figure 4.7-1

«•on1rle

-61-



CAVTION:
WIT OAnc1112t Dual be Placed M thaw todoebt 0
arontlN M bad onllrwenty M E "ha a bAa.wtk,.
Mew tare M ohlpwynl wow bowv.

011r•CHAIIGID •ATT[11113A anon! be P ier" walk
wooed and cha r ged a1MM 11 w r"he Saw 044" a
M20s Is a If M aecslen W-"

MrAKNloic:
aleclreryle Is an acid am rrem &% Moe severe brlrrets. Ahoop
wear p o1KUve 9101Mng suc h der a rubber Wi lk as"
0010106 and wrbber gloss when workM$ arnOld /a►
fiat.

1. M-i:[1vIN0 -011 Sections malerotr shows adda6M of
Physics , C."g0 a sp.tlage of eloctyrolyN weka tlala
iron CA boo of And-no befo r e 0.grrong Chock aI9CMegM
o.o l in each coil It should be ber.re9n low and No
b.et lines H mo re then It' of plats surface has been aa-
Posed to S,r. the cell has awRorsd po r ma rMM OW41P
and should be reputed

I WITALLATION - Locate benery M a CoW Naafi dry
place so no cells a r e aflocted by red-slo pe Maters. or
pipes Arrange cells on rack alt they can be Corm-0c;,"d
posa•v0 to negal.ve throughout Connections Ml..wen
Celle must be clean dry Maw Of acrd and leaW wKh

q R 1 :^.,

OF POUR QUALITY

TION a a la a 11 of -vowwon w Opp" taw ow.
Saw. swam 040

S. to Will OIAM11T TO Cal"61111 - only
owl Gnaw Nc) As me" tv seem" C>trrhm am-
11rn Pwlrw oFtwrrtat tr 9a6agr p46tlne 10, .- wo
MKMI0 0900109 brorlat 10 rtho rgr 0100!00 traln11g1

l WAT90 MO - AN SPOn wed OF draatod wawa Bela
owMng a" as ratlrrwsd M a*" t'8 1MMoe bw ow
1ws9n NO alrld be •wN kns o M carrtMltar

a CLEANIMO . 11000 owns" M Woe Wan decd dry by
Nipins 06101a wow dowp cloth so rgMwOO aM My Mgr►
bald@ "I acid on cov"rs M conn"c"" wrlh a @Wh
o1arN"ned with a "IoA M M looking node and watar •tdet
wipe on as from 10 node NEv[R USE ANY 006 7EMTS
CLEAMINO COMPOUNDS. OILS. *AXIS 00 POL-
ISHES ON PLASTIC CONTAINER/ OR COVIRS $Mqn
SUCH MATERIALS MAT ATTACK THE PLASTIC AM
CAUSE (I TO CRA21 OR CRACK DO NOT USE Al l-
CORROSION AEROSOL SPRATS ON CONNECTIONS

CONDENSED INSTRUCTIONS FOR
STANDBY BATTERY SERVICE S FULL FLOAT OPERATION

PURPOSE AND METHODS OF CHANGING (RFFFM TO TA8L1[8 1 A Ice
wrrt" CIIAROE -	 rta "*I CheirM haw a woKagersgutatlM de 1111pp1y
A load-Antimony Types 11.110 nominal GOOCnie 	 Mat 01101 wMitin In ToNa 1 std N.

gravity) - G•ve molti charge not Isla itoWr a warlllto
Mar benory has been sh.pped and at "Not vw-
age permttled by connected bad Table 1 shper9
wr• aw suggasled wottsges and carnpondrllg VM

Lead•Co t clum Yypes (Check not not by«Mlle
growdy shown on namep late On top of oalb bat"
proceed-ns ► Chotgo al hrgholl woltage per alt par

-w.Md by connected bad (aqual,ra value of PoggiaO)
VMi ll Voltage Of lowest Call slope tit-Mg and than Mar
lintro fo r an sdd,bonlif is hours N botleo--
calls rs to be flossed at the recommended waK9M
they will tutoms .Cary rate 0,A their initial Sharp
91 th s vonege prov.d • ns they nave nW been an §pG"
ctircuh lot photo than six monlha N on Do"vilip"
ioMpe • than as months they Mould be given M ego-
boded eque t .a•ng cha • sa COntecl YOwr, IOC$ C A 0
ropr.ssma"Ve or the C A O Technical So vlao Oa-
porlrment lot more information,

FLOAT CHAROINO - FbAf bano r res CO MlnyoiNy o1Md

VA carnporrottla wake K necessa ry to woe She WAUW rnt
Seat re"490 wiry I ChKA penal vian" er galveo a
Moan ManMrd anwaoty eM cahtwou 0 hocMNry

NOVAL12N60 CIHARGES - C mW~te IV irregular
Sae in R9aUn0 log"Ir1e $Par$" are dealt "Quo ad R
Mlle MOCK pNrcAl vOKagn ialod N Table 11 Rath L44
WASoft to gown shown on Tab1" I A Il Cenlrnwa Mare
e1 Ira" atevaled vwwm eMM bwesl bon ratio wrlhlrr
0.011 wKs N she awsnge M the oath in the load cak.iw
battery lltad ant+waq Fns we pualued regularly M
bMervSb Of der 19 tirrree wont$ and as charged M
egUalue Poo@" *I or S to 14 ItaHrge.

FINISH RATIO - Nam l Son" rat$ ors W1W AM M
She a Herr Capacity M GAADC AH of *ho s ~ Caaatr-
IV FnrIM raw ewrrMb are Mri6ted in CA.M11la rrl Curtis"
ciyrgrre IV AM41 thergmg N dry cha r ged aMa and
Spac ial Mw*" Charging lochhqun iioal a nd VGM91-
be Cornelia We eonokda "iy leww cwronl •okras

TABLE 1 • LEAS-ANTIMONT CELLS

CHARGE VOLTAGE Plot CELL (V ►C)
—Al *to I ► 1CIFIC GRAVITY

INITIAL	 FLOAT	 EOUALI2E
vPC lrOu p1 _ VPC	 VPC

1 s1 _ -N 	 it1 to tit	 Laa^
i se	 00	 fw a is 14 ilea.
l-37	 IM
8 30	 off

-	 t 1e	 110

TAIL[ •-LEAD-CALCIUM CELLO

CHARGE VOLTAGE PER CELL (VPC)

`or OR. ,
OF CELLS MIN NOMINAL CRITICAL	 N011 VPC

INITIALrEOVALill (Vnl

CELL VOLT.
'11.111402 IT a tOtls a Is	 t 13-2 n
1123	 BID awls twat Big	 236-1  p
/.tsa	 ) so Its,-130 a t0	 13`84  W
1.1+1	 RED a tst 14 1 n	 2.0,146
I-x*l 	1 1 27 t 1)1s0 a 13	 166 -9 M

Installation and Maintenance Data
Figure 4.1-2

-b2-

L



U)
c^ Mz
cn

a
} L
^ 7
11.1 rn

Q

ORIGINAL PAGE  9
OF POOR QUAL ITY

i

-63-



	

5.0	 NODULAR SYSTEM ASSEMBLY, TESTING AND EVALUATION

	

5.1	 OVERVIEW

Shortly following approval to proceed on Phase II, Hughes was required to

develop and submit a fabrication work plan for approval by the NASA Protect

Manager. The plan included the proposed work schedule and fabrication

activity sequence, as well as planned procurement, inspection and quality

assurance coverage. It also included the rationale for the number of modules

and configuration needed to demonstrate the adapability of the modular system

to cover the range of power from 1 kWp to 16 kWp; fabrication of at 16 kWp was

not required as long as assurance could be given that "scaled-down" testing

would demonstrate modular expansion.

To the above end, a mutually acceptable PV array and BOS subsystem

configuration was developed; the engineering model, now having completed

long-term evaluation (6 months)at Hughes, Long Beach, comprises the above

approved hardware complement. This configuration, described in Section 4.0

preceeding included:

o 2-60 cell/20 module, 3KCPSA-5 Battery Strings

o 5 each 640 watt, 150 Vdc PV module strings, each consisting of 10

series, 2 ft x 4 ft, 15 Vdc modules (2-112 PU)

o Power Controller with 6 power switching modules

Hughes was additionally required to submit a detailed test plan for approval

by the NASA Project Manager. The test plan cover testing subsystems, the

breadboard model and the engineering model. The test plan was designed to

evaluate electronic and control circuitry components and to verify the

functional adequacy of the modular system over the entire power range; the

plan also covered evaluation of the mechanical suitability of the system for

add-on, field utilization transportation, installation by unskilled personnel,

repairability and servicing. The tests were also designed to detect

deficiencies in design, materials and components, and to identify the key

causes of the deficiencies.
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The functional performance criteria imposed during testing upon the

breadboard vis-a-vis the engineering model were identical. Breadboard testing

was however specifically directed and limited to control elements and

circuitry particularly requiring verification through test. Further testing

of all BOS elements whose performance acceptability could be anticipated with

complete certainty was deferred until the conduct of the full acceptance

testing on the Engineering Model.

5.2	 ACCEPTANCE TEST PLAN

An Acceptance Test Plan (ATP) for the engineering model was developed and

submitted to the NASA Project Manager. In consanance with the requirements of

subject contract DEN3-207, the test plan addressed the following topics:

(1) Procedures for testing each component and subsystem and the

basis for evaluation of results.

(2) Procedures for testing the complete system and the basis for

evaluation of results.

(3) Environmental test conditions satisfying the criteria developed

during Phase I.

(4) Identification of data to be recorded and the results to be

derived from the data.

(5) A list of test instrumentation and their characterictics.

(6) Drawings and schematics of test fixtures and test

configurations.

(7) Description of location where testing will be performed.

(8) Procedures for correction of deficiencies uncovered during

testing.

(9) Test program schedule and duration of individual tests.

Figure 5.2-1 "The ATP Flow Chart for the Stand-Alone PV Power System" traces

the audit of the BOS element and system performance from factory testing,

through commissioning and into long te.m monitoring activities. The complete

ATP including the actual test records, was submitted to NASA on June 17, 1983

and is not included herein as a part of this final report.
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5.3	 SUMMARY Of TEST OPERATIONS

5.3.1	 TEST HIGHLIGHTS

The final engineering model tests at Hughes, Long Beach were conducted in

compliance with the approved plan under field conditions bimilar to a wide

variety of actual field installations.	 The period of installation,

pre-testing, formal testing and post test monitoring to date, encompassed a

span from Dec. 1982 to July 1983. During that period the following

environmental advertisities have been successfully survived, without untoward

incident.

Excessive wind driven rainfall to 2-3 inches per 24 hour period.

Cyclone force winds -- to 90 mph gusts.

Extenaad periods of high humidity, condensation during and

between storms.

Reasonably large diurnal temperature variations.

In addition to natural stresses the system was exercised extensively,

operating under substantial continuous load as well as cyclic loads for

several months.

6.0	 ECONOMIC ANALYS13

During the Phase I Design Study, economic analyses were carried out as an

integral part of the Life Cost analyses. A computerized cost breakdown

structure was generated to assist in the selection and optimization of the

various system design options. The final design selected and developed under

this Phase II effort was in part chosen on the basis of its lower overall

projected twenty year Life Cycle Costs. These Life Cycle Costs were generated

under the assumptions of a manure photovoltaic industry in which the systems

produced were part of a dedicated factory whose annual output was in the range

of one to ten megawatts.

Because the 2-1/2 PU power system fabricated under this Phase II effort was in

essence a 'one-of-a-kind" engineering model and included several developmental
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tasks, it is not practical to compare these BOS costs with the final design

Life Cycle Costs generated under Phase I efforts. For example, the Life Cycle

Costs of the battery subsystem require multiple battery replacements and

period maintenance over the twenty year life, while to demonstrate the

performance and modular capabilities of the engineering model, less than one

battir :t ying per PU is employed on a one time basis.

Detailed cost records were maintained of the material, assembly labor, and

installation elements. A listing of the major material items and subcontract

procurements are shown in Table 6.0-1. As the efficiencies of photovoltaic

modules are continually improving and will vary among various module

suppliers, these BOS elements costs are summarized in terms of dollars per

square meter of photovoltaic array (PV modules). The 2-1/2 PU engineering

model consists of 50 photovoltaic modules, each 2 ft x 4 ft in size; the total

array field being 37.16 square meters. The table following lists the actual

costs per square meter for this engineering model.

ACTUAL COSTS FOR 2-112 PU PV SYSTEM	

E/M2

Array structures and foundations 	 90.90

Installation and wiring	 27.29

Array and power wiring 	 9.26

Power controller and electrical protection and safety 448.98

Battery subsystem 	 285.58

Perimeter security (Hughes furnished) 	 Not applicable

Total $862.01/M2

*Note: $ at price level to customer.

The costs shown above include the Hughes labor employed in the assembly,

installation and field wiring of the 2•1!2 PU system. Care was taken to

exclude any costs associated with the engineering breadboarding and

developmental testing of the critical electronic control circuits. Even so,

-68-



i

N

an examination of these costs reflect generally higher than anticipated. The

z-
primary reason stems from this engineering model is a "one-of-a-kind" program

and the purchased parts and fabricated subassemblies cost substantially more

than the same items had they been procurred in larger quantities; no price

j	 breaks could be obtained on small quantity purchases. Also, as this was the

first manufactured article of the final design, much greater attention was

i
paid to the BOS elements that would have occured if this were one of many

factory fabricated, installed projects.

Because this was an "engineering" project rather than a "production factory"
1

project, engineering personnel performed tasks that would normally have been

l	
delegated to lower paid, semi-skilled labor. These included such tasks as

quality assurance and control, site installation supervision, vendor liaison,

and electrical test and check-out.

Installation of Support Structures

The siaiplicity of the structures and foundations allowed for easy assembly and

installation. The organized approach of laying out the ballast planters, the

stanchion and planter covers and allocating appropriate hardware to each, then

assembling the structures in sequence, allowed the assembly to be completed

with relative ease and speed. Although, the assembly initially required two

persons for the planter layout and assembly; assembly of the array stuctures

required only one person. This task was completed without incident.

I

Installation of the Batteries

To lift the batteries with a strap and place them on the battery platform

required two persons. A more than normal level of care is required because of

the dangers of tipping, dropping or damaging these potentially corrosive

devices.

Array and Power Wiring

The PV array wiring was completed with extreme ease and speed using the

Solarlok connectors. The connectors used on the engineering model were tht

j	

non-polarized type. The new polarized, Solarlok connectors will prevent
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polarity mismatch. The battery connections and the power wiring from the

array and batteries to the Fower Controller offered no problems.

Power Controller and Electrical Protection and Safety

The NEMA 4 enslosure was fabricated by a local vendor to Hughes specifications.

The enclosure was sized to handle eight PSMs. Surveillance Systems of Costa

Mesa, CA built one PCP, six PCMs, and one POP panel. Surveillance Systems

also fabricated the motherboard and the C/R and L/M boards, wired up the

subassemblies and installed them into the enclosure. The PCP, PCMs and POP

were fabricated in a model shop manner.

Perimeter Security

The engineering model was erected within a fenced off site on Hughes property

and therefore perimeter security costs were avoided.

Operation and Maintenance

Because of the developmental nature of this engineering model, operation and

maintenance costs were not collected.

Conclusions

The engineer model is the first article and as such incured costs that would

not have been incured from a "factory" model. The experience gained from this

system is primarly the efficient manner in which it can be installed. Material

costs depend largely cn quantity fo, cost breaks. The engineering model has

experienced a variety of local weather conditions and has held up very well.

The engineering model has met or exceed the design requirements.
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Material and Subcontract Procurement

Table 6.0-1

1

i

Item

Description Vendor Price

PV Modules Photowatt International $33,111

Tempe, AZ

Structures & Foundations Pico Metal 3,378

Los Angeles, CA

Power Controller Enclosure Metal Cabinets & Fixtures 1,667

Anaheim, CA

Power Controller Surveillance Systems Inc. 7,904

Costa Mesa, CA

Array Wiring & Connectors Amp Inc. 334

Lango, FL

Batteries (C&D) Manmac 10,612

Santa Ana, CA

Misc. Materials Various 7 113D

TOTAL	 $64,129
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OF POOR QUALITY

hultileyel Series Control (OFF-ON)Description

This control scheme, a variation of the series OFF /ON regulator, and the
Tri-State control are is depicted in Figure 3.5-8. Tri-state control features
leading to improved battery life are retained without the attendant complexity

of two different control modes.

The performance of each channel Is identical to that of the single channel
series contactor system except that the trip float voltage limits are set at
slightly different values for each of the two channels.

the 2.45 VPC maximum (VOILE per cell) at 250C is typically recommended by the
manufacturer cs a float voltage for the 1300 specific gravity lead calcium

cells. channel (1) typically controlling 50 percent of the array power is set
to trip at, 2.5 VPC. Channel (2) is set to trip at a slightly lower value,
about 2.45 VPC. At some point in the recharge cycle, the 2.45 VPC Channel 2
limit would be reached. For a 150 volts, 1 power unit system nominal charging
currant would be about nine amperes. An OFF-TRIP of Channel 2 would therefore
result In a 50 percent charge current reduction. The final charge regime on
the battery has now been tapere5( to about 4.5 amperes. When the cell
potential reaches 2.50 VPC ((YY 25 C, the Channel 1 regulator OFF-TRIPS,

terminating charging current completely.

As the battery discharges, the first trip point reached would be 2.45 VPC.

Charging resumes; the battery potential would continue to decline if a net
negative energy balance (Power out ) Power in) existed. WRen the 2.35 VPC

level is reached, the other contributing subarray would be connected.
Thereinafter, the cycle is repeated.

The advantages of multilevel OFF -ON series coc-rol are:

(a) As in the case of the Hughes tri-staie design, the charging current

is reduced to a minimum rate consistent with load and PV power
input. Battery heating is reduced, and battery life should be
extended from both cyclic and thermal considerations.

(b) Only a small heat sink is required for the string blocking diodes
(800mW/amp); no cabinet ventilation is required.

(c) Multilevel regulation requires only replication of the standard ai
(electromechanical) OFF -ON control and partitioning of parallel
array elements.

(d) Quasi-proportional control is approached if the number of array
power increments and steps are increased, and additional control
channels are employed.

(e) This method is also cempatible with summing and regulating the
outputs of hybrid Renewable Energy System sources on a battery bus.
This cannot be done with shunt regulation.

(f) Overvoltage protection, manual override and shutdown can be done
with the same multilevel control contactors.

I
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PRODUCT SPECIFICATION

SOLAR CELL MODULE

MODULAR STAND-ALONE SYSTEM

	

1.0	 Scope

This specification defines the requirements for the design and

construction of photovoltaic solar cell modules (herein referred

to as the module) to be used for terrestrial applications.

	

1.1	 Design Requirements

The module shall be designed to meet all requirements specified

herein. Designated tests shall be successfully completed

demonstrating the ability of the module to meet all performance

requirements of this specification.

	

1.2	 Deviations and Changes

Deviations from or changes to this specification shall not be

allowed without written authorization from Hughes.

	

2.0	 Applicable Documents

	

2.1	 Government Documents

The following documents, of the exact issue shown or of the current

issue when no date is shown, form a part of this specification to

the extent specified herein,. In the event of conflict between the

documents referenced herein and the contents of this specification,

the detail contents of this specification shall be considered as

binding.

I
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JPL 5101-83, Block IV Solar Cell Module Design 	 ORIGIN AL I '`O` 'ii

and Test Speciflciatlon for Residential Applications
OF POOR QUALITY

(November 1, 1978).

JPL #5101-138, 1982 Technical Readiness Module, Design and

Test Specification - Intermediate Load Applications -

(January 15, 1980).

	

3.0	 Requirements

	

3.1	 Functional DescriDticn

The module specified herein shall be used to convert solar energy

to electrical energy in terrestrial applications.

	

3.2	 Performance

The photovoltaic module shall provide the required power output

when subjected to the specified test conditions.

3.2.1	 Power Output

Power Output - ---	 ----I

4Configuration Flinioium	 Lot Average Module Minimum

-1 33 Watts 31.5 Watts
(2.04 amps) 0.94 amps)

-2 66 Watts 63 Watts

(4.07 amps) (3.89 amps)

3.2.2	 Test Conditions

Solar intensity 1000 W/m 2 , AM	 1.5

Cell	 temperature 28° C minimum

Test voltage - 16.2 volts minimum

3.3	 Design	 .

3.3.1	 Electrical Design

All module circuitry, including output terminations shall be insulated

from the electrically conductive external surfaces. Leakage current

2_
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shall not exceed 5') microamps when a potential of 3000 VDC is

applied between the external conductive surface and the output

terminals.

	

3.3.1.2	 Electrical Interface

Each terminal on the module shall be equipped with an AMP SOLARLOY.

connector bus bar housing No. 121044-1. The polarity of each

socket shall be clearly marked in a permanent and legible manner.

Positive and negative terminals shall be located at opposite ends

of the module.

	

3.3.1.3	 Bypass Diode

Each module shall have at least 3 encapsulated bypass diodes. Each

diode shall be connected in parallel across no more than 12 series

connected solar cells. The forward direct current capacity of the

diodes shall be greater than 1.1 times the module short circuit

current and derated for a temperature of 75° C. The peak inverse

voltage rating of the diode shall be not less than 1000 volts.

The diode shall be designed and mounted so that heat generated

from diode forward current o peration shall not damage the module.

	

3.3.1.4	 Feliability and Redunda

The module shall meet or exceed the reliability and redundancy

require,.-nts of Section II, Part B, Paragraph 4 o` the referenced

JPL Specification 5101-83.

3



3.3.2	 Mechanical Design

3.3.2.1	 Geometry

Overall dimensions and hole locations shall conform to Figure 1.

3.3.2.2	 Optical Surface

The illuminated optical surface of the module shall be tempered

low iron glass and shall conform to the requirements of Section II,

Part C, paragraph 3 of the referenced JPL Specification 5101-83.

3.3.2.3	 Interchangeability

All modules shall be physically interchangeable.

3.3.2.4	 Defects

3.3.2.4.1	 Rejections

Modules with the following defects shdll not be accepted:

a) Cracked or broken front surface

b) Cracked or broken frame

c) Cracked or broken solar cells

d) Cracked or broken interconnects

e) Cells with unsoldered solder joints

f) Laminate voids greater than 1/4 inch diameter
and 1 square inch total area per module

g) Loose or broken terminals

h) Broken diode: or diode connections

3.3.2.4.2	 Allowable Cosmetic Defects

At the discretion of Hughes, selected cosmetic defects which do not

affect form, fit, function or reliability may be permitted.

4
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3.4
	

Operational Life

The module shall be designed for an operational life of

at least 20 years.

3.5

4.0

4.1

4.1.1

Environment

As a minimum the module design shall be capable of withstanding 	 j

exposure to the environmental tests defined in Section V of reference

JPL Specification 5101-83. The module shall also be capable of

meeting the requirements of the Hot Spot Endurance Test of Section II,

Part 8, paragraph 5 of the JPL Specification 5101-138.

Identification

Each module shall be legibly identified with the following:

a) Seller part number

b) Serial number

r.) Current at test voltage

d) Month and year of manufacture

Quality Assurance Provisions

General

The product covered by this specification shall be subject to 	 l

inspection and testing by both the seller and Hughes in accordance

wi th the quality assurance provisions of this section.

Interf_ace Control Drawing (ICD)

Prior to the manufacturing of modules for this Hughes program, the

., andor shall generate an "Interface Control Drawing" (ICD). This

drawing shall identify the coc:riguration, dimensions, parts and

materials used in module fabrication. This ICD shall be submitted 	
ll

to Hughes for approval prior to module fabrication. Any changes 	 !i

thereafter to the ICD shall be submitted for approval to Hughes prior

to intended implementation of such changes. 	 l

6
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4.2	 Requirement Verification

4.2.1	 Test and/or Inspection

Requirements specified in Section 3 of this specification and

listed in 4.2.3 (Requirements/Specification Matrix) shall be

verified by the applicable paragraphs of Section 4.

4.2.2	 Certification

Requirements specified in Section 3 of this specification not

verified by inspection or test shall be satisfied by a submittal

to Hughes of documentation showing evidence of conformance in the

form of data and/•or test reports.

4.2.3	 Requirements/Verficiation Matrix
Verification Method

Requirements Title Paragraph No.

3.2 Performance 4.4.2

3.3.1.1 Electrical	 Voltage Insulation 4.4.3

3.3.1.2 Electrical	 Interface 4.4.1

3.3.1.3 Bypass Diodes 4.2.2

3.3.1.4 Reliability and Redundancy 4.2.2

3.3.2.1 Moisture Protection 4.2.2

3.3.2.2 Geometry 4.4.1

3.3.2.3 Optical Surface 4.4.2

3.3.2.4 Interchangability 4.2.2

3.3.2.5.1	 (a-g) Rejections 4.4.1

3.3.2.5.1	 (h) Broken Diodes or Diode Connections 4.4.1/4.4.4

3.4 Operational	 Life 4.2.2

3.5 Environment 4.2.2

3.6 Identification 4.4.1

7
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Inspection and Test Methods

4.3.1
	

Hughes Source Inspection

The Hughes Aircraft Company, may, at its option, provide

inspection to monitor the seller's quality control procedures.

The completed hardware may be source inspected by Hughes to assure

that the product conforms to all the requirements specified on

the applicable drawings and specifications.

4.3.2

4.3.3

Test Location

Unless otherwise specified in the contract,

acceptance tests shall be performed by the seller at the seller's

plant. If the use of outside test facilities is required, such

use shall be subject to prior approval by Hughes. Hughes shall have the

right to witness, inspect and review all acceptance tests.

Test Conditions

Unless otherwise specified herein, all tests shall be performed

at the following nominal ambient conditions:

a) Temperature
	

+25 degrees + 5 degrees C

b) Relative humidity
	

No greater than 50%

4.3.4

4.3.4.1

Test Equipment

Test Equipment Accuracy

All meters, scales, thermometers and similar measuring equipment

used in conducting tests specified herein shall be accurate within

one percent of full-scale value except temperature which shall be

accurate within + 1°C. Full-scale deflection of meters shall not

be more than twice the maximum value of the item being measured.

8
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F 4.1.4.2

4.3.4.3

Test Fquipi^?nt Calibration

All test apparatus shall be calibrated at proper intervals and

records of such calibration shall be available for Hughes inspection.

Hughes may examine the seller's test equipment and determine that

they are of the proper type and range to i,iake measurements of the

required accuracy and are in calibration.

Solar Simulator

The solar simulator shall be capable of simulating air mass 1.5

spectral conditions and a solar radiation intensity of 1000 W/m2.

E

	

	

The soiar simulator intensity shaft be caiibrated and verified using

a Hughes approved standard sular cell which is traceable to a JPL

`

	

	 caiibrated standard. The simulator may be either a constant xenon

light source or pulsed xenon type.

4.4	 Acceptance Tests

4.4.1	 Examination

Each module shall be visually inspected for compliance to the

following paragraphs: 3.3.1.2, 3.3.2.2, 3.3.2.5, 3.6, and the

1CD (4.1.1).

4.4.2	 Electrical Performance

The seller shall test each module under the test conditions

specified in paragraph 3.2.2 to verify the output requirement of

paragraph 3.2.1 The solar simulator used for this test must

comply with paragraph 4.3.4.3.

9
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A full current-voltage (I-V) characteristic curve is required

for each module. If a pulsed xenon type simulator is utilized,

a minimum of 5 data points along the I-V curve 1s required including
short circuit current, current at -ated voltage and open circuit

voltage.

4.4.3

4.4.4

Electrical Voltage Insulation Test

Each module shall be subjected to a "Hi-Pot" test conducted with

the output terminations shortcircuited. The leads from a suitable

do voltage power supply shall be connected with the positive lead

on the terminals and the negative lead on the module frame. Voltage

shall be applied at a rate not to exceed 500 V/sec up to the test

voltage of 3000 Vdc, and then held at this test voltage for at least

1 minute. The module shall be observed during the test and there

shall be no signs of arcing or flashover. Leakage current shall

be monitored during the test and shall not exceed 50 microamps.

Diode Verification Test

A diode verification test shall be performed on each module to insure

that none of the bypass diodes or their associated connections

have open or short circuits. The procedure for this shall be

submitted to Hughes by the Seller for approval prior to performance

of this test.

4.4.5	 Hughes Electrical Performance Tests

Upon preparation for shipment of each lot of modules Hughes will

randomly select one module for each 25 modules in the lot. These

selected modules will be retested by Hughes in accordance with

paragraph 4.4.2. If the Hughes average values of power at the test

voltage for the sampled modules vary from the vendors values by

more than 2%, acceptance of the shipping lot shall be withheld

pending further test!ng and investigation.

10
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4.5	 Rejection and Retest - Production Modules

4.5.1	 Rejected Modules

Rejected modules shall not be resubmitted for acceptance without

furnishing full details concerning the rejection, the measures taken

to overcome the defects, and the prevention of their future occurence.

Each rejected module shall be identified by a serialized rejection

tag. This rejection tag shall not be removed until rework

requirements have been complied with.

4.5.2	 Defective Modules

Notwithstanding the warranty of individual modules, if, after

receipt by Hughes, a significant number of modules prove defective,

such as to indicate a vendor manufacturing problem, the entire

lot may be rejected.

4.5.3	 Retest

Any unilateral changes from Paragraph 4.1.1 by the supplier in

manufacturing techniques, processes, materials, quality control

levels, or type of manufacturing equipment shall be cause for

rejection of subsequent modules.

4.6	 Test Records

Records shall be kept of all tests and of all applicable manufacturing

data, and these records shall be made available to Hughes. All

physical markings, defects and other visual characteristics shall

be noted and recorded as a portion of the test record. The I-V

curve for each module shall be delivered to Hughes.



Preparation for Delivery

Packaging

The Seller shall package the modules into shipping containers

which adequately protect the modules from shipping damage.

Module containers shall be assembled onto and tied down to a

pallet for shipping and storage.

Markin

Each module shipping container shall be legibly identified with

the following:

a) Hughes part number (specification number).

b) Seller's part number, serial number ( s) and quantity of modules.

c) Lot number if applicable.

d) Month and year of manufacture.

Warranty

5.0

5.1

5.1.1

5.1 .2

5.2

6.0

The contractor shall warrant, that the solar cell modules offered

will be free from defects in material, workmanship, and performance

for a period of not less than two years after acceptance by

Hughes Aircraft Company. During the warranty period all modules

found to have defects not caused by misuse or accident through

fault or negligence by Hughes or end user must be replaced at

Seller's expense.

12
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Appendix C

ORIGINAL PAGE 18
OF POOR QUALITY,

Bent optical fibers
sense battery charge
n The level of charge in a lead-acid battery in
monitored with a fiber-optic probe that serves at , a
refractometer. Mounted in the cap of an automotive
battery, the probe tip consists of a polysi yrene fiber
connected between a light -emitting diode and a
photodiode. A refractive capability is provided by
several alternating bends in the fiber, which enablr
light propagated in the coating around the fiber cure
to leak into the surrounding fluid. Changes in the
density of sulphuric acid correspond to varlation^ in
the refractive index of the battery fluid, thereby
modulating the amplitude of light reaching the
photodiode. A small operational amplifier
incorporated in the device amplifies the signal thot
subsequently is relayed to a display. A similar
version of the probe can be used to sense the
concentration of antifreeze in water, reports Battvl Iv
Memorial Institute, Geneva, Switzerland.
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ORIGINAL PAGE 19
OF POOR QUALITY

PHOTOWATT
INTEMATIONAL

2414 WEST 14th STREET, TEMPE, ARIZONA 85281
(602) 884.85841TWX 810-854/1142

ELECTRICITY FROM THE SUN

SYSTFMS GROUP

26 March 1983

Mike keeling
Chief Engineer
Photowatt International, Inc.
2414 West 14th Street
Tempe, AZ 55281

Helen Lopez
Subcontract Administrator
Hughes Aircraft Company
Support Systems
P.O. Bo:; 9399
Long Beach, CA 90810

Dear Helen:

FD
PRO 1983

In response to Section 4.2.2 of the Hughes Product Specifi-
cation No. SEP 11396 Rev. C, the following letter is submitted
adressing each re.!.-irement in sequential order. All responses are
referenced in respect to photovoltaic modules shipped to Hughes'
purchase order No. 05-234838-DT5.

3.1 Functional Description

Photovoltaic modules are designed and manufactured by Photo-
watt for the expressed purpose of converting solar irradiance to
electrical energy.

3.2 - 3.2.2	 Performance, Power Output, Test Conditions

All Photowatt solar modules have undergone 100% testing and
comply with the power output requirements of Section 3.2.1. at
the test conditions of Section 3.2.2: excepting the AM 1.5 fil-
tering stipulation. This filtering requirement was determined
unnecessary through the use of a JPL standard reference cell
rnnstructed of Photowatt cell material having the same spectral
response as those assembled in production modules. Since the
reference cell has been calibrated at one sun, AM 1.5 by the JPL,

j	 the spectral distribution of the test light source has no effect
upon the module output referenced to the calibrated cell.

Records of individual module output power compliance have
been submitted to Hughes.

3.3.1 Electrical Design

All modules underwent 100% capacitive leakage testing at an

I
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applied voltage of 3000V without failure (i.e., without leakage
current exceeding 50 microamps).

3.3.1.2 Electrical Interface

Each module was constructed with 2 Amp-Solarlok bus bar
housings No. 121044-1, with legible, permanently attached polar-
it y markers. Positive and negative terminals were located at
opposite ends of the module.

7.3.1.=	 Bypass Diodes

Each	 module shipped to this order was manufactured 	 with	 _
encapsulated	 diodes	 connected across 12	 series	 cells.	 These
diodes	 are	 rated	 at 1000V reverse breakdown as	 shown	 in	 the

[ attached	 Varo	 Semiconductor	 specification	 sheet.	 Photowatt
conducted	 tests upon diodes in sample EVA laminates exposed to a

I' 75.8	 C	 ambient with an applied forward current of 4.88 	 A	 (1.1
times module short-circuit current). 	 The maximum ±unction temp-

(' erature recorded was 105.4 C, 	 well below the minimum temperature
of 200 C at which EVA degradation begins to occur; 	 as defined in
the DuPont Co.	 Technical Guide for Elvax	 150 resin.	 This junc-
tion temperature is also below the maximum diode operating	 temp-
erature	 of 150 C specified by Varo. 	 No damaged was observed in
the laminate pottant.

f

3.3.1.4	 Reliability and Redundancy

As required in the JPL specification 5101-83, Section 2,
Part B. Paragraph 4, all modules utilized redundant triple cell
interconnection ribbons to insure reliability. A 2 series by 36
parallel cell interconnection configuration was used to provide
the specified output power characteristics. Integral bypass
diodes were utilized to provide protection against module damage
and power loss resulting from "hot-spot" heating of a shaded or
damaged cell.

Tests conducted by Photowatt, as outlined in the latter half
of paragraph 4 mentioned above, for single cell open-circuit
conditions, reveal that cell heating is eliminated through the
use of internal bypass diodes. In the event a single cell is
damaged or shaded, (simulated b y open-circuiting a cell), the
remaining cells of the affected parallel string begin operating
in the reverse bias mode; thus forward biasing the protective
diode.

The reverse current which would normally cause heating in
the damaged cell is carried by the diode at its forward voltage
drop of .8 volts. Because of this voltage drop, the remaining
affected parallel strings ara forced to operate virtually at
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short-circuit condition and power dissipation in these cells is
held at as safe minimum. Power dissipation in the diode w.11 not
e>:reed 3,5 watts at module short-circuit current. Diode tempera-
tures associated with this power dissipation are below the cafe
maximum pottant thermal operation limit as discussed previ n..-e1y.

_.7.2.1 & .3 Geometry & Interchangeability

All module dimensions and hole locations comply with the
specifications illustrated in Fig. 1.0 of SEP 11396 Rev. C.

1	 Because of this compliance, all modules are physically inter-
changeable.

3.3.2.2 Optical Surface

Iw

	

	 The illuminated optical surface of each module is construct-
ed of tempered, low iron glass. Photowatt takes exception to the
requirement that the exposed surface be smooth. 	 Photowatt has
produced modules to this order with a stippled glass surface
exposed. This configuration provides significantly improved
module power output due to a. -zero-depth concentration effect.

3.7.2.4.1 Rejections

All Photowatt modules supplied under this order comply with
the rejection criteria of this specification excepting No.
3.2.4.1 (c).	 Some configurations of broken or cracked solar

:ells are acceptable in accordance with the JPL Block 5 inspec-
tion criteria upon which the Photowatt Insper_tion System Plan is
based. A copy of this document has been enclosed with this
letter.

3.7.2,4.2 Allowable Cosmetic Defects

The acceptance of modules having cosmetic defects not
affecting form, fit, function or reliability has been left to the
discretion of Hughes Corp.

3.4 Operational Life

` In accordance with JPL Block. 5 module design and test speci-
fications, 5101-161, all Photowatt modules have been designed for
a minimum operational life of 20 years.

i
3.5 Environment

While the MU601(:) has not been subjected to the environmental
exposure testing of section V of 510;-03, a similar Photowatt
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module, the ML1961, has successfully completed all the JPL Block
IV environmental tests.	 documentation for these test results: is
enclosed. The ML1961 is a 46 by 16.28 inch PVB-encapsulated
module and contains 72, S inch solar cells in a 12 series by 6
parallel configuration.

While the ML1961 does not use EVA as its encapsulant mater-
ial, accelerated environmental tests conducted at Photowatt, as
well as tests performed by 8pringborn Laboratories, indicate that
the performance of EVA should be equal or superior to that of
PVB. EVA-encapsulated Photowatt modules are at present under-
going the Block V environmental test sequence at the JPL.

In order to estimate the hot spot endurance of its various
module configurations, Photowatt has developed a coir.puter simula-
tion program which can calculate worst-case cell temperature for
a given set of environmental characteristics (irradiance level,
cell shading, modiAle temperature) and electrical characteristics
(cell Isc, Voc, shunt resistance, series resistance, number of
series and parallel cells per module or diode). This program has
been verified by means of actual environmental testing and yeilds
an accurate estimate of worst-case hot spot cell heating.

This program was used to determine compliance with the
requirements of section II.B.5 of JPL 5101-138. Of the four
conditions listed in this section, condition (a), shadowing of
any section of any cell within the module, yields the worst-case
cell heating.	 Condition (b), a straight-line crack through the
cell in any direction. results in a reduction in cell output
current equivalent to that obtained by cell shading. Condition
(c), op.:,r,ing any single interconnect, results only in a minor
increase in cell string series resistance since two additional
interconnects are still available to carry current. 	 No signifi-
cant cell heating occurs in this condition.	 Condition (d),
short-circuiting a cell, forces the cells in that string to
operate slightly nearer their Voc point.	 This reduces current
flow through this string and increases current flow through the
adjacent parallel string. There is still a net power production
for tha 24 cell block protected by the bypass diode and no signi-
ficant cell heating occurs.

Simulations were performed to calculate the worst-case cell
heating in a 24 cell block (12 series by 2 parallel cells) pro-
tected by a bypass diode in the ML,6010 module. 	 Nominal values
for cell Voc and Isc at standard test conditions were used. A
shunt resistance value of 46.2 ohms was assumed, representing the
worst-case cell shunt resistance measured among several test
modules.	 The simulations assumed that the module was forced to
operate at its short-circuit condition. Two tests were run, one
at the module NOCT of 47 C, and one at the estimated module
worst-case temperature of 70 C.

In both cases the presence of the,b - p ass diode in the system

J
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significantly reduced cell temperature. For a module temperature
of 47 C, worst-case condition occurred with a cell shading of 29%
and a maximum cell temperature of 95.2 C was calculated. For the
case of a 70 C module temperature, the cell temperature was 108.7
C with 30% shading.

The 94.2 C cell temperature represents the worst-case condi-
tion to be expected in the hot spot endurance test references in
section II.B.S of 5101-13B. The 108.7 C temperature represents a
condition significantly worse than that tested in 5101-138 and is
representative of the most extreme condition ever to be expected
in the field. Both values are well below the 200 C temperature
where significant degradation begins to occur in the EVA encap-
sulant material.

7.6 Identification

Each MU6('J10 module shipped to this order is identified by
means of a metallized label containing information on the Photo-
watt part number, serial number, nominal module voltage and
power, the maximum recommended system voltage, and the date of
manufacture. While current at test voltage is not explicitly
stated on the label, nominal current at test voltage can be
readily obtained by dividing module nominal power by nominal
voltage.

We hope this response will fulfill your requirements for
additional information on the MU6010 module.

Sincerely,

^Xl/ C (X/

Mike Keeling	
CfChief Engineer

C
P

ITIL
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8	 TECHNICAL DIRECTION MEMORANDUM
JET PROPULSION LABORATORT
OLU •+A f+Ingo +l TTrl+oloJ,

.	 . c..... M .	 r.r.r e, rnr

TO (NAME Of CONTRACTOR) CONTRACT NO.

(ADDRESS OF CONTRA	 OR) TOM NO.

PhotowAtt	 International-	 Inr__	 241A W.	 14th St__ Tema	 AZ 85281 1 2
THIS TOM IS ISSUED PURSUANT TO THE CONTRACT ARTICLE ENTITLED' AUTHORITY OF JPL REPRESENTATIVES."
PURPOSE

q 	 q 	 ©	 qAPPROVAL	 DISAPPROVAL	 CLARIFICATION	 RECOMMENDATION
THE CONTRACTOR IS DIRECTED AS FOLI.OWS.

Subject:	 Qualification Tests

The Contractor is informed of satisfactory completion of the Qualification Tests.

Enclosed herewith, is a copy of the test data, entitled "Summary, Results of Environ-

mental Tests of Solar Modules at JPL 11 , dated 06/09/82.

ORIGINAL PACE 69
OF POOR QUALITY

THE DIRECTIONS GIVEN HEREIN ARE WITHIN THE SCOPE OF THE ABOVE NUMBERED CONTRACT, AND SHALL
NOT CONSTITUTE A BASIS FOR ANY CHANGE IN ANY OF THE CONTRACT PROVISIONS OR REQUIREMENTS
RELATING TO QUANTITY, QUALITY, FEE, FIXED PRICE, DELIVERY OR PERFORMANCE SCHEDULE, OR ANY
OTHER TERMS OF THE CONTRACT, NOR SHALL SUCH DIRECTIONS CONSTITUTE ANY CHANGE IN THE
INSTITUTE'S OBLIGATION TO YOU UNDER ANY LIMITATION OF COST OR LIMITATION OF FUNDS PROVISION
IN THE CONTRACT, BY YOUR ACCEPTANCE OF THIS TECHNICAL DIRECTION MEMORANDUM, YOU AGREE
THAT NO CLAIMS FOR CHANGE OR ADJUSTMENT IN ANY OF THE TERMS OR PROVISIONS OF THE ABOVE
NUMBERED CONTRACT WILL BE BASED UPON THE DIRECTIONS GIVEN HEREIN.

IF YOU TAKE EXCEPTION TO ANYTHING CONTAINED IN THIS MEMORDANDUM, DO NOT PROCEED WITH THE
DIRECTIONS, AND NOTIFY THE JPL AUTHORIZED REPRESENTATIVE WHOSE SIGNATURE APPEARS BELOW
OF SUCH FACT AS SOON AS POSSIBLE, BUT IN ANY EVENT, NO LATER THAN THREE 131 DAYS FROM THE
DATE THIS MEMORANDUM IS RECEIVED.

SIGNED (^	 (((111	 /I /^
I

THE CONTRACTOR ACCEPTS THIS TECHNICAL DIRECTION /
MEMORANDUM WITHCUT EKCEPT.ON.
SIGNED	 f^

(a !DATEY!	 AUTHORIBED3REPJBE(S/E71N/7A^T V-T . E -

_^

UTHORIZZO REPRESENTATI 	 CAP-
Melvin	 I.	 Smokler r111["a,-	 r-	 IKr — ,;r_

PRINT NAME  PRINT NAME

Technical Manager (_ICJIT	 ^1:i.^t,
TITLE TITLE

JET PROPULSION LABORATORY CONTRACTOR

COPT DESIGNATION- WHITE - CONTRACTOR COPY CANARY- CONTRACTOR ACKNOWLEDGMENT COP'
PINK ORIGINATOR COPY GOLDENROD NEGOTIATOR COPT
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NOTE: Discs are nickle plated copper
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DOUBLE-DISCED GLASS PASSIVATED CHIP 	
GCC 130 SERIES

fi

fa

' 1 .
r
i

MAXIMUM RATINO6 Ut T^ 26C
enlm alhemir Dosed) SYMBOL 0 1000 uNiT6

Peak Repetitive Reverse Voltage RRM

72C5

M420

0 1000 Volts

RMS Reverse Voltage R(RMS 0 700 Volts

Maximum Reverse Current @ Rated VRR4@TJm25 * C IRM 10 UA

Maximum Reverse Current @ Rated VRRM@TJm125 0 C Elm 2 mA

Maximum Instantaneous Forward Voltage @ 30amps Vf 1.4 Volt

Junction Operating 6 Storage Temperature ri,
rSTG

-50 to + 150 eC

r {

c,$

ELECTRICAL CHARACTERISTICS (At T„ a 2511C
wim omemix mod) SYMBOL UNITS

With adequate assembly, the following typical
operational properties are obtainable:

Peak Surge Current, 1/2 cycle at 60Hz IFSM 300 Amps

Avg. Rectified Forward Current (Resistance
Load)

10 15 Amps

f
VARO

VARO SEMICONDUCTOR, INC. P.O. BOX 676, 1000 NORTH SHILOH, GARLAND, TEXAS 76OW !?14) 271$611 TWX 8108605178
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,,..^INTERDEPARTMENTAL CORRESPONDENCE	 ....>'	 I

TO: G.J. Naff	 x: SEPS
ORO:	 H.A. Lopez

SUBJECT: NASA Lewis Stand-Alone
jArray String Test Results

OATe: 16 February 1983
Rev. SEPS/16

FROM: D.B. Cohen
ORO. C1-43-00

	

BLDG. Al	 MAiLsra 4C843
	Loc. LB	 PHONE 3490

Each solar array string of 10 series connected modules was
electrically performance tested on February 14, 1983.	 Although
there were thin, high clouds the array strings all appeared to be
functioning properly.	 When corrected to AM 1.5, 1000 W/M2 . 280C
the following performances were obtained;

STRING Imp Vmp Pmp
(Amps) (Volts) (Watts)

Upper West 4.20 164.1 689.0

Lower West 4.16 162.5 676.1

Center 4.06 157.5 639.8

Upper East 4.16 165.1 686.8

Lower East 4.16 162.1 674.4

D.B. Cohen

/ymh

6870 CS FEB 78

t
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