
NASA Technical Memorandum 85665

NASA-TM-85665 19830027380

Time-Critical Multirate Scheduling
Using Contemporary Real-Time

Operating System Services

Dave E. Eckhardt, Jr.

SEPTEMBER 1983

2Y5
25th Anniversary
1958-1983

https://ntrs.nasa.gov/search.jsp?R=19830027380 2020-03-21T01:08:28+00:00Z

I

I
1
1

NASA Technical Memorandum 85665

Time-Critical Multirate Scheduling

Using Contemporary Real-Time

Operating System Services

Dave E. Eckhardt, Jr.

Langley Research Center
Hampton, Virginia

N/A
National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1983

Use of trade names or names of manufacturers in this report does not
constitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

INTRODUCTION

A time-critical computer system is a real-time system in which the environment
is said to be "hard real-time" (ref. I). Because time-critical applications have
hard deadlines, the system response time must be guaranteed to occur within a speci-
fied time frame. Unknown and untimely responses cannot be tolerated in time-critical
applications.

For the most part, however, real time is taken to encompass a wide range of
computer applications (ref. 2). Real time, for example, may imply a system response
time which can vary from the millisecond response time necessary for automatic con-
trol of radar systems to the multisecond response time of airline reservation systems
and point-of-sale systems. Some definitions include any response time that is neces-
sary to control a given environment. Thus, response times of minutes and even hours
could be included. Additionally, one could describe the response times of these
systems in probabilistic terms. One might specify, for example, that 90 percent of
the time a response to an input stimulus will occur within some specified time inter-
val. Therefore, a fixed response is not guaranteed on each interaction with the sys-
tem. Deadlines, then, are "soft" and sometimes will be relaxed during overloaded
conditions.

There are many minicomputer manufacturers that provide real-time operating sys-
tems. (Ref. 3 provides a comprehensive list.) To various degrees, these operating
systems provide the services necessary to process multirate time-critical applica-
tions. These services may include, for example, (I) provisions for designating tasks
as real time in order to receive high priority service or special capabilities (such
as locking tasks in memory), (2) provisions for dynamically controlling individual
task priorities, (3) provisions for creating, suspending, resuming, and deleting
tasks, (4) interprocess communications facilities such as semaphores and event flags,
(5) means for entering a state of inactivity while waiting for signals from other
tasks or waiting for the occurrence of a user-defined event, (6) means to share com-
mon memory areas among tasks, and (7) preemptive processor scheduling. However, even
with this seemingly complete set of operating system services, it is still necessary
to develop an executive-level (i.e., at a level above the operating system) schedul- !
ing mechanism in order to coordinate a set of synchronized, time-critical tasks which
execute at different cyclic rates. This paper will examine time-critical scheduling
algorithms and address executive-level scheduling requirements.

TIME-CRITICAL TASKS

A time-critical task is characterized by repetitions of C units of processing
over a frame interval F within a deadline time D _ F. The processor load factor
L is equal to C/F. For asynchronous tasks, a variable frame time might be desir-
able; however, in practice a minimum frame time is specified in order to bound the
processor load factor. The deadline, within which all processing must be completed,
may result from a particular system implementation; that is, the output data must be
available by D so that the system will have time to transfer the data out by the
end of the frame. The deadline may also result from the requirements of the applica-
tion itself. For example, a closed-loop control system will have time delay con-

straints to avoid in_cing stability problem. _ten, it is sufficient to let
D=F.

For any set of time-critical tasks, it is necessary to determine the compatibil-
ity of the set, where compatibility refers to the ability to process all tasks of the
set without having missed deadlines. Depending on the particular implementation of
the time-critical system, this may simply require that the sum of all load factors
plus some overhead factor is less than 1. On other implementations, a check of this

necessary condition may not be sufficient. One brute force method of checking com-
patibility is to analyze each combination of possible frame occurrences. In effect,
the entire time sequence of all time-critical processes operating together is simu-
lated to ensure that each and every deadline can be met. Less complex algorithms
(e.g., ref. 4) check only sufficient conditions for compatibility. This, of course,
is a more conservative approach, since there may be compatible sets that do not meet
the sufficiency conditions. Whatever approach is used, including a trial worst-case
run on the actual system, it is useful for the system to detect and report missed
deadlines.

TIME-CRITICAL SCHEDULING ALGORITHMS

The basic objective of a time-critical scheduling algorithm is to allocate pro-
cessor time to a given number of time-critical tasks while at the same time maintain-

ing the hard deadlines for these tasks. An efficient, time-critical scheduling
algorithm, then, attempts to maximize the availability of processor time for time-
critical tasks while minimizing the effects of constraints imposed by multiple and
different frame intervals. Peducing the effects of these constraints, of course,
increases the number of tasks that can exist together. Basically these algorithms
can be classified according to the manner in which priorities are determined; that
is, schedulers are either nonpriority, static priority, or dynamic priority.

The nonpriority algorithm is a time-slicing one that is somewhat analogous to a
round-robin scheduler. Time is divided into quantum slices Q and each task i is

given a proportion of the quantum based on the task load factor, i.e., LiQ. If the
system has interrupts, then the interrupts associated with the task are only allowed
to be active during this time. If the deadline is equal to the frame time and if
frames are restricted to be a multiple of the quantum, then over its frame time the
ith task receives

(Di/Q)LiQ = LiFi = Ci

units of processor time within its deadline. This fulfills its requirements. If
overhead is neglected, then the sum of all load factors being less than or equal
to I is a necessary and sufficient condition to insure that all task deadlines can be
met. Furthermore, 100 percent of the processor can be utilized by time-critical
tasks. However, neither is true if Di < Fi, as can be seen by the following exam-

ple. Suppose there exist two tasks with the following parameters: F1 = F2 = D1 = I,
D2 = 0.50, CI = 0.60, and C2 = 0.25. Observe that, even though over I unit of time

only 0.85 processor units are required, task 2 has only received D2L2 = 0.125
within its deadline. This is less than the required C2.

In the limit as Q approaches 0, this algorithm reduces to one in which each
time-critical task appears to have its own processor. Task i has a processor with

2

a processing rate LiR, where R is the actual processing rate of the processor.
Note that this is different from a processor-shared model of the batch round-robin
scheduler, where for m tasks the processors are homogeneous and process at the same

rate R/m. In addition to the problem with this scheduler when Di < Fi, it is sub-
ject to a great deal of context switching, and so overhead may become excessive.

In the fixed priority algorithm, the static scheduler assigns each time-critical
task a priority as it enters the system. This priority will remain constant for the
task. These priorities will determine the order in which time-critical tasks receive
processor service. Note, it would be possible to process the two tasks of the previ-
ous example if task 2 is given priority over task I so that task 2 always gets the
first 0.25 processor units each frame. Liu (ref. 5) shows that for the case where

all Di = Fi, a priority assignment based on iteration rate (smallest frame time
having highest priority) is optimum. It is optimum in the sense that any other set
of fixed priority assignment rules which can schedule a set of time-critical tasks
can also be scheduled by a priority assignment based on frame time.

As previously mentioned, the performance of the time-critical schedule is deter-
mined by its ability to allocate a maximum amount of processor time to time-critical
tasks while maintaining task deadlines. For a given set of tasks, there will be an
upper bound of processor utilization U, which is the sum of all load factors. Vary-
ing the frame times for this set of tasks may decrease the maximum utilization that
is feasible (i.e., where all deadlines are met). The worst-case processor utiliza-
tion is the least upper bound of processor utilization. For m tasks, both Liu
(ref. 5) and Serlin (ref. 6) show that for the fixed priority scheduling with all

Di = Fi, this least upper bound is

U = m(2 I/m - I)

If the set of m tasks has a total processor utilization below this number, then
there exists a fixed priority assignment which is feasible. Above this number, an
assignment is feasible only if the frames are suitably related. The least upper
bound U degrades to approximately 70-percent utilization as m approaches infin-
ity. In the worst-case, then, for a large set of tasks, there could exist conditions
for which only 70 percent of the processor time can be allocated to time-critical
tasks.

Figure 1(a) shows an example of fixed priority scheduling with FI = D1 = I,
CI = I/2, and F2 = D2 = 3/2. As can be seen, if task I has a higher priority than
task 2 (based on frame rate), then C2 = I/2 is the maximum amount of processor time
that can be allotted to task 2 and results in U = 5/6. However, with an assignment

as shown in figure 1(b), it is possible for C2 to increase to 3/4 for 100-percent
processor utilization. This improvement is brought about by the use of a dynamic
priority algorithm, which is described next.

The dynamic priority algorithm will reevaluate the priorities of all tasks
requiring the processor whenever an external interrupt, or clock, signals that a new
time-critical task is queued up for the processor. The task whose deadline will
occur next has the highest priority and is assigned the processor. For this reason,
this algorithm is often called the "least-time-to-go" or the "relative urgency" algo-
rithm (ref. 7).

TASK i FI = DI = i, CI = 1/2

T jc2jIt2, I
TASK 2 F2 = D2 = 3/2, C2 = 1/2

(a) Fixed priority allocation.

TASK i FI = DI = i, C1 = 1/2

TASK 2 F2 = D2 = 3/2, C2 = 3/4

(b) Dynamic priority allocation.

Figure I.- Examples of fixed and dynamic priority scheduling.

As seen in figure l(b), initially task I has the next deadline and, therefore,
has priority over task 2. However, during the second frame of task I and the first
frame of task 2, task 2 has priority over task I. During the third frame of task I
and the second frame of task 2, both tasks have equal priority, and task 2 is not
interrupted.

Although not shown in this example, interruption of the processing of a task to
allow for a higher priority task is sometimes necessary. However, as is the case
with a fixed priority system, there is less task switching than with the time-slicing
algorithm. Presumably, then, there is also less overhead. Another advantage of

dynamic scheduling is that for the case where all Di = F. and the overhead time is
0, 100-percent processor utilization is obtainable, and t_e sum of the load factors
being less than or equal to 1 is a necessary and sufficient condition for all tasks
to meet deadlines (ref. 5).

SCHEDULING REQUIREMENTS

A time-critical scheduling facility would ideally provide the following

capabilities:

(1) Means to synchronize a set of tasks with different iteration rates. This is

a desirable feature, since the iteration rates of segments of the applica-

tion can be tailored to application dynamics rather than executing the

entire application at the highest iteration rates required.

(2) Means to determine if the processes are maintaining synchronization while at

the same time meeting the processing requirements.

(3) Precedence ordering within a frame interval; that is, the physical system

will dictate that outputs from some tasks be inputs to other tasks, and

thus a fixed ordering is required.

(4) Efficient task control services, such as task waking, context switching, and

setting and clearing event flags, must be time efficient, since large sys-
tem overheads are detrimental to tasks with iteration rates on the order

of 20 to 50 iterations per second.

(5) Maximum utilization of the processor by the time-critical tasks. In addi-

tion to the system overhead, the scheduling algorithm, as previously

shown, also dictates the availability of the processor.

EXECUTIVE-LEVEL SCHEDULING

Next we shall consider executive-level scheduling algorithms for a time-critical

application which is comprised of a set of multirate tasks. We will assume a system

in which task processing can be preempted by higher priority tasks. The executive

routine will execute at the highest priority with a frame size F. The time-critical

tasks can execute at a frame which is any integral multiple of F. Task synchroniza-

tion is accomplished by the executive, which controls the initiation of frame pro-

cessing for all tasks. An operating system service is required to activate the exec-

utive at regular frame intervals.

The executive also determines if tasks are maintaining time synchronization. A
lost-time-synchronization indicator, its, is maintained for each time-critical task.
These indicators are set by the executive at the beginning of a task frame interval
and are cleared by the task itself when it has completed processing for that frame.
The most effective means of implementing the lost-time-synchronization indicator is
the use of a table in a shared memory area. Each task, as it is created, is given
its own index into the table.

Precedence ordering of tasks is handled external to the executive. An effective
means for implementing ordering is to group all tasks that have the same frame inter-
val into a single task, each with a front-end miniexecutive. The executive invokes
the miniexecutives through operating system services, and each miniexecutive invokes
its ordered set of tasks through direct subroutine calls. This approach reduces the
number of interactions with the operating system.

A procedure for implementing a static scheduling algorithm is given below

PROCEDURE static
LOOP:

wait (event = clock__interrupt);
FOR i := I TO numtasks DO

IF count [i] < multiple [i] THEN
count [i] := count [i] + I;

ELSE
IF its[i] = false THEN

BEGIN

count [i] := I;
its [i] := true;
wake (task (i));

END
ELSE

lostsync (task (i));
ENDLOOP

The basic executive loop begins when the executive is activated by the system at
the beginning of a frame. For each task, the executive will increment a running
frame count, count [i], to a maximum value, multiple [i], which represents the number
of integral executive frame intervals per frame of the ith task. When a running
frame count reaches the frame multiple, the associated task should have completed
frame processing, cleared the lost-time-synchronization indicator, and be in a state
awaiting activation for the next frame. If not, then a lost-time-synchronization
indication is reported to a procedure for handling that condition. Initially, each
task is assigned a priority that is proportional to its cyclic frame rate, so that
once the executive initiates tasks, the operating system will provide the appropriate
preemption and task scheduling. Also count [i] should be initialized to multiple [i]
and its [i] to false so that all tasks will begin synchronized processing on the
first frame.

As previously mentioned, a dynamic scheduling algorithm generally provides more
processor time for synchronized time-critical applications. However, more system
overhead is induced, since the priorities of the time-critical tasks must be regu-
larly updated with operating system services. A procedure for the dynamic scheduling
algorithm is given below

PROCEDURE dynamic
LOOP:

wait (event - clock__interrupt);
FOR i: = I TO numtasks DO

IF count [i] < multiple [i] THEN
BEGIN

count [i] := count [i] + 1;
priority [i] := max- multiple [i] + count [i];
setpriority (task (i), priority (i));

END
ELSE

IF its[i] = false THEN (*TASK DONE*)
BEGIN

count [i] := I;
its [i] := true; (*CLEARED BY TASK AT TERMINATION*)
priority [i] := max - multiple [i] + count [i];
setpriority (task (i), priority (i));
wake (task (i), priority (i));

END
ELSE

lostsync (task (i));
ENDLOOP

A priority index is maintained for each task. This priority will increase to a
maximum priority, max, when the task reaches the last executive frame which makes up
the individual task frame. The maximum task priority must be less than the priority
of the executive. Count [i] and its [i] are initialized as in the preceding
algorithm.

These algorithms were implemented on a Digital Equipment Corporation VAX-11/780
computer running the VAX/VMS real-time operating system so that their effectiveness
could be investigated. The single performance measure used was the amount of proces-
sor time that was available for time-critical tasks. This measure is a function of
the number of tasks, the number and variations of task frame sizes, and the amount of
processing time each individual task requires. Thus, there are many combinations of
these factors. The results of one such combination are shown in figure 2. Each run
consists of N tasks (from I to 10). The ith task has a frame size iF
(F = 50 ms), and the available processor time is distributed such that all task load
factors are equal. The results demonstrate, for this particular system, that when
there is a requirement for frame sizes which can be any multiple of the executive
frame interval, then a dynamic algorithm is more effective. For the dynamic
algorithm, the unavailability of the processor is due entirely to system overhead.
For the static algorithm, overhead is lower, and for i < 3, this algorithm is more
effective. However, for i > 3, this particular combination of frame sizes reduces
the available processor time for time-critical tasks (although it is available for
asynchronous background tasks). Thus, the requirements (e.g., combination of frame
sizes) of a particular application will dictate the more appropriate scheduling
algorithm.

i00 --

__ ___ Dynamic

Time-critical _

processor 90 _7_availability,

percent _7_

s5

- o\
O_ Static

O---O
so

O

75 I ! I I I I I I I
i 2 3 4 5 6 7 8 9 i0

Number of time-critical tasks, N

Figure 2.- Comparison of dynamic and static scheduling algorithms for

Fi = 50i ms, i = I to N, and Li = Lj for i, j = I to N.

CONCLUDING REMARKS

Time-critical applications differ from so-called real-time applications in that
the former have hard deadlines which must be met, whereas the latter have soft dead-
lines which will sometimes be relaxed during system-overloaded conditions. It is not

surprising that real-time systems do not always provide time-critical scheduling
algorithms. It is shown here that these algorithms can often be provided within the
constraints of services provided by contemporary real-time operating systems. The
cost that is incurred is the overhead of implementing these algorithms at a level
above the operating system.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
August 17, 1983

REFERENCES

I. Manacher, G. K.: Production and Stabilization of Real-Time Task Schedules.

J. Assoc. Comput. Mach., vol. 14, no. 3, July 1967, pp. 439-465.

2. Martin, James: Design of Real-Time Computer Systems. Prentice-Hall, Inc.,
c. 1967.

3. Datapro Reports on Minicomputers. Datapro Research Corp., c.1979.

4. Steinbach, Gary R.: and Gracon, Thomas J.: Pre-Determination of Schedulability

for Least-Time-To-Go Interrupt Scheduling Schemes. Proceedings of the 1974

Summer Computer Simulation Conference, Simulation Councils, Inc., 1974,

pp. 115-119.

5. Liu, C. L.; and Layland, James W.: Scheduling Algorithms for Multiprogramming in

a Hard-Real-Time Environment. J. Assoc. Comput. Mach., vol. 20, no. 1, Jan.

1973, pp. 46-61.

6. Serlin, Omri: Scheduling of Time Critical Processes. AFIPS Conference Proceed-

ings, Volume 40 - 1972 Spring Joint Computer Conference, AFIPS Press,

pp. 925-932.

7. Fineburg, Mark S.; and Serlin, Omri: Multiprogramming for Hybrid Computation.

AFIPS conference Proceedings, Volume 31 - 1967 Fall Joint computer Conference,

Thompson Book Co., c.1967, pp. 1-13.

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM-85665

"4. Title and Subtitle 5, Report Date

TIME-CRITICAL MULTIRATE SCHEDULING USING CONTEMPORARY September 1983

REAL-TIME OPERATING SYSTEM SERVICES 6. PerformingOrganizationCode
505-35-33-01

7. Author(s) 8. Performing Organization Report No.

Dave E. Eckhardt, Jr. L-15644

10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center 11. Contractor GrantNo.
Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration

Washington, DC 20546 14 SponsoringAgencyCode

15. Supplementary Notes

16. Abstract

Although real-time operating systems provide many of the task control services neces-

sary to process time-critical applications (i.e., applications with fixed, invariant
deadlines), it may still be necessary to provide a scheduling algorithm at a level

above the operating system in order to coordinate a set of synchronized, time-

critical tasks executing at different cyclic rates. This paper addresses the sched-

uling requirements for such applications and develops scheduling algorithms using
services provided by contemporary real-time operating systems.

17. Key Words (Sugg_ted by Author(s)) 18. Distribution Statement

Scheduling algorithms Unclassified - Unlimited
Time-critical scheduling
Multirate scheduling

Subject Category 59

19. S_urity Classif.(ofthisreport) 20, S_urityClassif.(ofthis _ge) 21. No. of Pa_s 22. Dice

Unclassified Unclassified 11 A02

Forsale by the NationalTechnicalInformationService,Springfield,Virginia 22161
t_ASA-Lang]ey, 1983

National Aeronautics and THIRD-CLASS BULK RATE Postage and Fees Paid

Space Administration National Aeronautics andSpace Administration

Washington, D.C. NASA-451
20546

Official Business

Penalty for Private Use, $300

POSTMASTER: If Undeliverable (Section 158Postal Manual) Do Not Return

