@ https://ntrs.nasa.gov/search.jsp?R=19830027785 2020-03-21T01:06:32+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



SYSTEM DYNAMICS INCORPORATED

(NASA-CR-173878) SPACE SHCTILE FROPULSICN
PARAMETEER ESTIBATIUN USING CETIEAL

ESTIMATICN TECHNIQUE3S Monthly Frogress

Beport {Systems Dynawmics, Inc.) 75 p

HC AJ4/MF ADI C5CL «¢ZB G3/16

MONTHLY PROGRESS REPORT #5
for
SPACE SHUTTLE PROPULSION PARAMETER ESTIMATION
USING

OPTIMAL ESTIMATION TECHNIQUES

CONTRACT NO NAS8-35324

submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA

20 September 1983

X83-3€056

Unclas
44C91

1218 NW. 10 AVE. . PCST OFFICE BOX 13687

GAINESVILLE, FLORIDA 32604 .(804)-376-31 98



MONTHL.Y PROGRESS REPORT #5
for
SPACE SHUTTLE PROPULSION PARAMETER ESTIMATION
USING

OPTIMAL ESTIMATION TECHNIQUES

CONTRACT NO NAS8-35324

submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLF, ALABAMA

20 September 1983




b
(]
o

NNVMNN
3
W N -0

L] * »

¢« o
’ o
NNNN -
. e
W N -

.
.
Ld

WWwWwwwwn =
e @
NaWN =

* .
.
.

WWWWw NDNNNNNNDNNRNN =

.
L .
W N -

WWWww WWWwWwwwwww Wwwwwww

»
.
o

INDEX

INTRODUCT ION

FILTERING AND SMOOTHING ALGORITHM

Extended Kalman Pilter Algorithm

Modified Bryson-Frazier Smoother Algoritim
Iterations with the Filter/Smoother Algorithm

FILTER/SMCOTHER ALGORITHM SYSTEM AND MEASUREMENT MOLEL
BEquations of Motion and Measurement Equations

Rigid Body Equations of Motion

Measurement Equations

Platform Accelerztion Measurements

Platform Attitude Measurements

Ground Based Tracking Measurements

Linearized System State and Measurement BEquations
Systam State Partial Derivatives

Measurement Partial Derivatives

Additionzl Parameter Partial Derivatives

Center -of -Gravity

Moments of Inertia

Wind Velocity

Inertial Platform Tilt

Aerodynamic and Flume Parameters

Propulsion Parameter States and Measurements
SSME Propulsion Parameter Model

SRB Propulsion Farameter Model

Vehicle Mass State Variable

PROJECTED ACTIVITIES DURING UPOOMING MONTH
APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

REFERENCES




1.0 INTRODUCTION

The fifth monthly progress report includes corrections and additions
to the previously submitted reports. The addition of the SRB propellant
thickness as a state variable is included with the associated partial
derivatives.

Iuring this reporting period, preliminary results of the estimation

program checkout was presented to NASA technical personnel.




The system described by equation (1) is ohserv/ed at discrete times, tk’
with not all states being directly measured. Some measurements are non-
linear functions of the elements of the state vector x(t). In general

the measurement process is described as

Z = gk(gjtk)) + v (2)
where
Ek = m~-dimensional observation vector
Ek = functional representation of the measurements in terms of
the states
!k = m~dimensional, zero-mean, while Gaussian noise sequence with

covariance

Elv, v?] =R, 6. .
-1 =~ i i,3

Examples of the elements of the observation vector 2 include radar
measurements of range, azimuth, and elevation from the radar site to the
vehicle.

It is assumed that the system process noise vector w(t) and the

measurement noise vector are uncorrelated. Also, the system state

%

initial condition vector is not correlated with either of these two

X
)

noise vectors. Therefore

T
Elw(t) y.1 = 0, EMW(t) x°1 =0, Elx vl=0

where the superscript T denotes transpose. For later reference, the

following matricies are defined




2.0 FILTERING AND SMOOTHING ALGORITHM

The Space Shuttle Parameter Estimation Program utilizes optimal
estimation techniques to provide estimates of the propulsion system
parameters. The technique selected is the extended Kalman filter and
the modified Bryson-Frazier smoother. By modeling the propulsion system
parameters as time correlated random variables, improved estimates of
ty se parameters ave obtained and are properly time phased by removing
the filter induced lag by using the combined filter/smoother. The
smoother also provides improved estimates of the initial state estimates.

The system, in state-space notation, is modeled as the continuous

dynamical system disturbed by additive Gaussian white noise
x = f£(x(t), t) + G(t) w(t) + u(t), x(o0) = X, (1)

where
X = n-dimensional state vector

= Gaussian initial condition vector with covariance P

JX

(t) = p-dimensional white, zer>-mean white Gaussian noisa with

1€

covariance
T
Elw(t) w ()] = Q(t) &6(t - 1)
u(t) = n-dimensional control vector.

The elements of the vector x(t) represent vehicle position, velocities,
attitudes, angular rates, aerodynamic and propulsicn parameters, measure-
ment biases, etc. Elements of u(t) include known control inputs such

as SSME power level commands.



of (x(t), t)
Flx(t), t) = = (3)

ax(t)
and

ag(ytk) )

R (4)

H(x (-)) =

YZese matricies are linearizations of the dynamics and measurenent models
respectively, evaluated about either a nominal or reference value of the

state, or about the state estimate.

2.1 Extended Kalman Filter Algorithm

The extended Kalman filter algorithm is in essence a conventionai
linear Kalman filter algorithm applied to a mathematical model resulting
from the linearization of the system model equation (1), and measurement
procese, equation (2), about a current state estimate. The filter yields
optimal estimates if the linearization is accurate, i.e., the state esti-
mate closely approximates the trie state. The derivation of the algorithm
can be found in reference [1].

The algorithm proceeds as follows. After initialization of the state
estimate and covariance, the state estimate and covariance are propagated

forward in time until a measurement update is available, by
£ = £(k(t), t) , t, L <t<t (5)

and

B(t) = F(x(t), £) P(t) + P(t) F(x(t), )T + G(e) o(t) )T (6)



E
z

At the measurement time, the state estimate and covariance are updated

by

3k(+> = 3k(-) + Kk(_z_k - gk(gk(-))) (7)

and
Pk(+) = (I - Kk Hk(gk(-))) Pk(') (8)

wrere the (-) and (+) represent the appropriate values just before
and just after the update. The updated values are used to reinitialize

the time propagation equations (3) and (4) for integrating up to the next

measurement time. The Kalman gain matrix is computed as

A T - - T -1
K = Pk(—) Hk(gj(—)) (Hk(ﬁk(-)) Pk(—) Hk(ﬁk(—)) + Rk) (9)

This algorithm is repeated until the last time point, t is processed.

N’
For later use in the smoother algorithm, various combinations of the state
estimates (g), measurements (z), linearized dynamics matrix (F) and
measurement matrix (H), measurement noise covariance (R) and estimation

error covariance matrix (P) must be stored for each time instant to be

processed by the smoother algorithm.

2.2 Modified Bryson-Frazier Smoother Algorithm

The operation of the smoother algorithm is similar to the filter
algorithm except in reverse time. The derivation of this smoother algorithm
is found in reference [2). This fixed interval amoothing algorithm pro-
vides optimal estimates given all the measurements in comparison to the

filtering algorithm providing optimal estimates given the previous




measurements processed. Therefore the smoother provides improved estimates

in ad'ition to removing the time lag induced by the filter algorithm.

The smoothing algorithm adjoint variables, A and A are "initialized"

at the final time processed by the filter, T,

T T -1 -~
AT = HyCy By By v BT (2 - By Gy (D) 8, (10)
and
A(T-) = H (H. P. H. + R H_ & (1)
=7 = NN PN N Y RN N e o
»

-

If T is not an observation time, A and A are zero. The adjoint

variables are propagated in reverse time to the next previous measurement

time by
A= - F(&(E), )2 ,otg st (12)
R =-r&e), 0T A -AFG®), t) (13)

At the time of an available measurement, t the adjoint variables

k.
are updated by

T T -1
A=) = A(+) - Hk(Hk Pk Hk + Rk) ((gk - Ek(gk(-)))

+ (H B H +R) K A(+) (14)

and

1

T T T -
Al(-) = (I - Kk %() A(+) (T - Kk “‘)-rl&(ﬂk Pk Hk + Rk) q( (15)




The smoother state estimate and error covariance are obtained using the

filter estimate and covariance and the adjoint variables by
x (t) = &(t) - P(t) A(E) (16)
and
P'(t) = P(t) - P(t) A(t) P(t). an
Due to the potential number of time points to be processed, smoother

estimates may only be computed at the discrete measurement times. For

this approach the propagation equations (10) and (11) are replaced by

T
A (+) = & A(=) (18)
and
A(+) =0T A (=)0 (19)
k k “k+1 " k

vhere 0: is the state transition matrix formed with the linearized

dynamics matrix F to propagate the adjoint variable from time tk+1

to time tk. The algorithm continues in reverse time until the initial

time is reached.

2.3 Iterations with the Filter/Smoother Algorithm

The performance of the filter/smoother algorithm is a direct result
of the accuracy of the linearization. Repeated operations of the algorithms
with adjustments in initial state estimates and covariance in each cycle

can yield improved estimates. This technique is known as global iterated



tiltering as defined in reference [3]. Each cycle of operating the
algorithms would yield increasing improvements in the state estimates.
This feature of the algorithm operation is of special interest to
the propulsion parameter estimation problem using the NASA predictive
models. 1Initial, or nominal, values of the parametars of interest can
be used to obtain the necessary partial derivatives indicated earlier.
From operating the algorithm improved estimates of those parameters are
obtained. Using these improved estimates, more accurate partial deriva-
tives are obtained for use in the algorithms. This process is continued
until there is in essence no change in the partial derivatives or quality
of the state estimates. If the linearization is accurate, the measure-

ment residual should be a white noise procass with known covariance.



3.0 FILTER/SMOOTHER ALGORITHM SYSTEM AND MEASUREMENT MODEL

The usefulness of the filter/smoother algorithm is to provide esti-
mates of the system states from the observed motion and dynamics while
the system is driven by known and unknown elements. These unknown elements
are elements of the system state vector to be estimatecd. The evolution of
motion resulting from these known and unknown elements is asgumed to be
suitably represanted for this study by a six degree-of-freedom (6 DOF) rigid
body equations of motion. These equations are presanted and discussed in
section 3.1.

To implement these equations into the filter/smoother algorithm
presented in section 2.0, a linearization of the system state and measure-
ment models is required. These linearized equations are presented in

section 3.2.

3.1 Equations of Motion and Measurement Equations

3.1.1 Rigid Body Equations of Motion

The rate of change of vehicle velocity in body coordinates, X(B),

as a result of external forces acting on the wvehicle is described by

sz f(B) f(!3)
2(B) _ PAVa e 4 Bl (D, (B P (20)
A4 m < a = —eaxy m T m

where

. ol 5 T

p = atmospheric density
A = aerodvnamic coefficient referenced area
Vi ™ magnitude of vehicle velocity relative to the surrounding air

mass




i

m = vehicle mass

= aerodynamic force coefficient wvector

S
(1) (1) : . .
q (r'"") = gravity vector in inertial coordinates

w = angular rotation of the body relative to the inertial frame

548) = resultant thrust force vector in body coordinates

f(B) = resultant pluae force vector in body coordinates

b

(1)

The rate of change of vehicle position in inertial coordinates, r ,

is then obtained hy -

é(I) - ICB v(B) (213

whare ICB is the transformation matrix from body coordinates to

inertial coordinates. The elenents of the ICB transrormation matrix

are obtained from the resulting Eule:. «:7les defined by

o Tr

9| 1 singtané® cesptans p

6l={0 cos9 -8ing q
L& 0 singsech cos¢secd | |r
L

where ¢, 6, and ¢ are roll, pitch and yaw attitudes respectively.
The rcll, pitch and yaw rates of the body relative to inertial coordinates

are p, q, and r respectively. Finally, the rate of change of the body

rates relative to inertiil is given by




-

ORIz
OF pr=o

Psz Psz
m

L2c + -———-(r(B) - r(B)) X C
—m

=t

i€
H

.
PO |

——
[ -

" Qe

. (B) (B) ”
-gx(.-g)+3r +'1‘P ] (23)
where
I = vehicle moments of inertia matrix

£Em = aerodynamic coefficient referenced length and moment

coefficient vector

Eé:) = vehicle center-of -gravity vector in body coordinates
5;8) = aerodynamic coefficient reference position in body coordinates
I;B) = resultant thrust torque vector in body coordinates
(B) o .
Ip = resultant plane torque vector in body coordinates

The equations of motion represent the first twelve elements of the system
state vector. These equations are summarized in Table 3.1.1-1,

The moment of inertia matrix I in general is given by

I -I -1
x Xy zx
I =1-I I -I (24)
Xy y yz
-1 -1 I
zx vz z

for the moment axis terms, i.e., Iy’ and the product of inertia terms,

ie., I .
zX
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The aerodynamic force and moment coefficients and plume forces are
defined as functions of angle-of-attack, a, and angle-of -sideslip, B, as
shown in Figure 3.1.1-1. The body referenced relative velocity vector,

removing the wind velocity, LA from the vehicle wvelocity, is given by

-v® B, B _BLL ziLL) (25)

v
— ekl

where !‘:LL) is the local-level referenced wind velocity vector. The
following equations define & and B in terms of the components of v.

v
r

13 } (26)

-1 =2 (27)

where

2 2,2 (28)

The resultant thrust force f(B) is expanded as

—T
g -
fT.
n Q 1 n g (g)
(B) B A B
= - f N (29)
£ iZ1 6|0 iZH G =T,

0

where the transformation matrix BCE’ transforms the magnitude of thrust

for each thrusting device, fgﬂ from its center-line to the body
i
coordinates. The general equation for fT is
i

o O SRR
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where
fT = vacuum thrust
ivac
F; = atmospheric pressure at motor exit

Ae = motor exit cone area

¢
The matrix BCi is different for the SSME's and SRB's and is given Ly

M
(‘BCMP PG GCCL SSME
Q.
Be * = (30)
BCQ‘ SRB
where
B _MP . .
(o] = transformation from the engine mount plane to the body
coordinates
MP_G . . .
C~ = transformation from the gimbal reference plane to mount plane
(structural deformation)
G 4 . . .
C = transformation from enterline to the gimbal reference plane
B % . .
C = transformation from SRB nozzle centerline to the body

coordinates (gimbal angles).

z
z
H
2




The resultant thrust torque is the summation of the torque contribution

from each thrusting device and is given by

o N
3
. fr, (31)
(B) (B) (B) B &
Zp 'i}=:1(5-rri TLg )X G |0
0
where
EéB = body coordinates of the thrust reference point for the
i

ith thrusting device.

3.1.2 Measurement Equations

The measurements assumed available for the filter/smoother algorithm
include inertial platform acceleration and attitudes, ground based radar
tracking, SRB's head pressure, SSME's chamber pressures, liquid H2 flow
rates, pressurant flow rates. The ET volumetric levels are available;
however, due to their limited number (4), they may only be used for
alternate checks of the filter/smoother algorithm‘performance.

The propulsion related measurements will be treated in a separate
section. In the following, the inertial platfcrm acceleration measuremerts,
attitude measurements and ground based tracking measurements models will

be described for later linearization.

e

i e R

T

ey

s ol




3.1.2.1 Platform Acceleration Measurements

Accelerometers mounted orthogonally on an inertially stabilized
platform,not located at the vehicle center of gravity, sense externally
applied special forces and accelerations due to body rotation. The

accelerometer measurement is modeled by

2 (B) (B)
a(S) _ S.P PP P! B ["A"m . L . L
“m 2Zn =< m m
+mxwx(#B)-Hm)+dx(rm)-rmhl+bm)+vm) (32)
- - -6 g - -8 —g -a -a
where
sCP = transformation from platform coordinates to sensing coordinates
PCp = transformation from misaligned platform coordinates to
platform coordinates
P CB = transformation from body to misaligned platform coordinates
(B) .
I = body coordinates of the platform center
(s) .
Ea = accelerometer bias vector
X;S) = accelerometer measurement noise vector

3.1.2.2 Platform Attitude Measurements

The inertially stabilized platform for the STS is a four axis IMU
with a redundant roll axis [4]. Vehicle body attitudes zre generated

via quaternions [5}. It is assumed that an equivalent representation



can be made to obtain vehicle attitude by a three rotation sequence of
roll, pitch, yaw to transform from inertial to body coordiantes. This
approach has been used in reference [6].

The attitude angle measurement model is given by

(s) (s) (s)

gm =9 + 96 + Vo (33)
where

29 = platform misalignment bias vector (used to formulate PCP')

!és) = attitude measurement noise vector.

The transformation matrix used to transform from body to inertial

coordinates in terms of the elements of the 6 vector is given by

cosBcos¢ singpsinBcos¢ cosrpsinecosq'T
-cos@sing +singsing
IB cosOsing singsinBsing cosPsinbsing
c = . (34)
+cospcos¢ -singcos¢
-sin® singcos® cospcos6

3.1.2.3 Ground Based Tracking Measurements

Ground based radar tracking devices can provide measurements of
range, azimuth and elevation from the radar sight to the wvehicle. Azimuth

and elevation are established relative to the sight's local level. If




ORIGHNAL ¥aiis B

the tracking device is a passive optical tracker (not laser) then only
azimuth and elevation measurements are available requiring more than one
to establish position information.

Defining x, y, and z as the local east, north and up position of the
wehicle relative to the ground based tracking device, the radar measurement
equations are given by

b

p=(x2+y2+zz) +b +v (35)
PP
-1 x
A = tan ()7)+bA+VA (36)
1 z
E = tan ¢ ) +b_ + AE + v (37)
E E
2 2
X +Yy

where

bp, bA’ bE = range, azimuth, elevation biases

AE = atmospheric refraction correction

Vo,V

o’ Var Y

g = range, azimuth, elevation measurement noise.

The position vector of the vehicle relative to the tracking device is

given by
x
A (LL) LL ECF _ECF _ECI _(I) (ECF)
y| = b, = " C (- ¢ r 'ERDR] (38)
z
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where
LL_ECF . e
(o] = transformation from earth center fixed to local level
ECFCECI = @a:. -h centered inertial to earth centered fixed
(ECF) . . . . R
ERDR = position vector of tracking device in ECF coordinates.
The transformation matrix LLCECF is given by
- 7
" -ginA -sinLcosA cosLcosA -
LLCECF = ; cosA -ginLsinA cosLsinA% (39)
! 0 cosL ) sinlL J

where L and A are the geodetic latitude and east longitude of the

device. The transformation matrix ECFCECI is given by

cos[wB(t -t )] sin[wg(t - tRNP)] 01

RNP

ECF _ECI .
c = -31n[wE(t - tRNP)] cos[wE(t - tRNP)] 0| [RNP] (40)

0 0 1

where

wB = earth rotation rate

tRNP = time tag for RNP matrix

The position vector, r(ECF)

Y2DR of the tracking device is given by




r(ECF)
=RDR

where

:U
L}

o
]

o
N

f
[

ORIGA™ "Lt 7l Ty
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Re

(

\/ coszL + (1 - e)2 ainzL

R
( E

d coszL + (1 - e)2 sinzL

2
RE(l -e)

(

d coszL + (1 - e)2 sinzL

flattening of Fisher ellipsoid

-

+ h) coslcosa

+ h) cosLsin)

+ h) sinlL

equatorial radius of Fisher ellipsoid

altitude of the device above Fisher ellipsoid

(41)



3.2 Linearized System State and Measurement Equations

The vehicle equations of motion are nonlinear fur:tions of their
motion variables and are implicit functions of other iements of the
system states. The measurement equations involve similar function rela-
tionships. The linearizations for the filter/smoother algorithm require
partial derivatives with respect to the motion variables, i.e., !(B) and
©, and « 'th respect to otaer elements of the state vactor, yielding
explicit functional relationships for the elements of interest.

For system state equationa the partial derivatives will be presented
in section 3.2.17 for the state elements in order of occurrence for the
first twelve states. Other partial derivatives for candidate scate ele-
ments will follow in section 3.3.1. The measurement equation partial
derivatives for the first twelve states will be presented in section 3.2.2.
Partial derivatives of the measurement equations for other candidate states
will be presented in section 3.3.2.

The resulting partial derivatives are imbedded into the linearized
system state matrix, F(x(t), t), as shown in Figure 3.2-1 . A corresponding
linearized measurement matrix, H(5K). is similarly formed with the

measurement equations' partial derivatives.

3.2.1 System State Partial Derivatives

Partial derivatives of each of the equations listed in Figure 3.2-1

are developed in their order of occurrence with respect to the order of
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the corresponding atates. Partial derivatives of thrust terms are prusented

as though for a single device.

Inertial Position Rate Egquation

()

e first nonzero partial derivative of the é. equation is with

respect to !(B):

3 *(I) I B
v(B) (r'™") = “C. (42)

The second nonzero partial derivative is with respect to 8. This partial
derivative results in a third order tensor and occurs frequently in later

developments. The generalized form is presented in Appendix A.

Body Velocity Rate Egquation

The partial derivative of i(a) with respect to Efl) is given for

altitude terms approximately as

[}
i

(1)

8

0
= — - (43)
°£(1) 3 liu)l
where
*(B) 2 2 2
ov Av 5 pAvm dv pAV_ dg{ % pAvm ng 8
oh -ma-]hisf+msfah+2maadh+2xn086h
(@) (B) (B) (B)
or op of of of
1,BL =1 s - 3 8 - 8
+al 5 3h * T on * ~8a on * 38 (44)

§
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dv ov

. . . m 8a )] [+ ] 08 m

The partial derivatives of ——a B) ° ®) ° By ' an ' ®h and TS
v oy oy

occur frequently and are given in Appendix B.

The gravity vector B(‘:I 2(1)(£ (I)) partial derivative with respect
to E(I) is
[_ r2 r.r r.r T
3 ! > - 1 ! g 3 ! i
Izl |z |z
(1), (1) 2
B I 8 =) _B.JI __u St 32 _ 4 323
(1) (1);3 |72 2 - 2
ar Iz "] Iz || |z|
r.r r.r r2
3 1 ,’; 2 3 32 -1
=] |z el
- -
where

B = gravitational constant.
al.’.(B)
The partial derivative, 0’ is the sum of the matricies in equations
or

43 and 45.
. . . *(B) . (B) . .
The partial derivative of v with respect to v is given by
*(B) o2 2
av. ) pAvm . avm . p»\..m asf 3 . pAvm ?Ef o8
GZ(B) m = aX(B) 2m Ou a.‘.’.(B) 2m 098 a.‘L(B)
of of
1 . =p B8a ag
. tnlm e e e (46)

(45)
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where

{g‘} = gkew symmetric matrix made from the elements of the vector w
and equivalent to the cross product operator wx ().

The partial derivative of i_(s) with respect to 8 is

* (B) 2
v ) pAvm - dv_ dv pl\vm agf 3a axr
% " m %3y ' 2m o dy_ 00
Av 2 dc ov
P Zeos I 3_(B.I (1) (1),
m ooy o T - L =

v
p__ 08 x (47)

The partial derivatives of -é—‘a,— are given in Appendix B and the partial
1‘
av

—% is given in Appendix A. The last partial derivative

derivative

is given in Appendix C.

The partial derivative of _\Z(B) with respect to w is
*(B) 2
ov pAv dc
- m —£ + {-V(B)-} (48)

o 2m ) -



Euler Angle Rate Equation

The Euler angle rate equation is a function of both the Buler angles

and the inertial rates. The linearization will yield the two associated

matricies.

First with respect to the vector g, the following matrix results

p—

. gcosptanf~ rsingtan® qsinvsacze + rcosvsecze 0
00
ﬁl = | -qsing - rcose¢ 0 0
qcos9secd - rsingcosO gsingsecOtan® + rcosgsecOtand 0
. -

The partial derivative of é_ with respect to w

is
. 1 sinptan® cosoptan®
%
EE =10 cosg -sing (50)
0 singpsec® coswsecBJ

Inertial Angular Acceleration Equation

The first partial derivative of this equation is with respect to the

(1)

vector r ~'. Using the approximation indicated in equation 43, this

partial derivative is

(49)
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Adv dv
- -1 m_% (B) _ (B) m
ar(n = [I] { 5 8n Sm T (pv Adc + (r -cg ) x meAgf) T
v 2Ad ac v 2A 8c
e M NP R P Nl A ')
2 oda T ‘I “cg 2 Ba’ dh
(51)
2 2
. M % N R i ———agf) 8
2 9B g 2 98" 8h
T
(@) (1)
af 0 0T arT aT
+((r(B)-r(B)) Bq‘ ps+ L, P —pas)}r
-~T g ap oh dh da oh 98 oh Ir(I)‘
Next, with respect to the vector y_(B), the partial derivative is
X av
- (B} (B) m
@ (1] {(pvad e, * (r, Teq ) x py A’ 53
A4 oy
2
R Magm+( ® _ ), "t ¢  a
2 da a2 =g 2 au'av(B)
- (52)
2
. (p" “2a _ai_+ (! (B) _ (B), Py A a‘—’f) 28
2 a8 —g 2 a8 a (B)
v
aT aT
2 =p 08
Oa 3 (B) o8 (B)" °
v dy
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The partial derivative with respect to the vector 6

is
a& av
= -1 (B) (B} _m
ﬁl-[z] {(vadc + (g, '-cg)xPVA-f)a_e_
2
(""mmi-ci B _(B), ""m“fgf_) B
+ 2 oA TLg '*T2 Ta’
(53)
2
PV Ma?m (8) (),  P'n PO o
+ ( 3 —5—4-( r ) X —— ) e
B g 2 9B 98
orT oT
4 —p8%&  -p38,
3a 30 * OB 26

The final partial derivative for the first twelve states is with respect
to the vector w.

This operation yields

+ £} - fwi 1}

(54)




3.2.2 Measurement Partial Derivatives

The measurements assumed to be available, as discussed earlier, include
ground based radar tracking, inertially stakilized platform attitudes
relative to the vehicle body, and stabilized platform mounted 3 axis
orthogonal accelerations. As with the state dynamics matrix, the measure-

ment equations are linearized about the best state estimates.

Radar Track Measurement Equation

Referring to the radar track measurement equations, the required

partial derivatives are

\
aAr(LL,
LB (55)
a£(I) aAr(LL) a£(I)
(LL)
da aa aA{v (56)
ar(I) aAr(LL) ar(I)
— q —
(LL)
8E_ _ __8F OAr, 57)
ar(I) aAr(LL) ar(I)
— w —
aA££LL)
The last partial derivative in each of these equations, T is
or
(LL)
OAr
—y - LLCECF ECFCECI. (58)

ar(I)



The rest of the required partial derivatives are

T
9 (LL)
= Ar /lac | (59)
aAr(LL) - -
—v
n__ =, X, 0] . (60)
aAr(LL) x2 + y2 x2 vy
w
OE -X2Z -yZz V x2 + y2
(LL) = [ ’ N H 2 ] (61)
aAEv pz\/x2 +y2 pz\/ x2 +y2 P

Inertially Stabilized Platform Attitude Equation

The inertial platform is assumed to provide attitude angle measure-
ments of the true attitude plus an attitude bias plus measurment noise.
The partial derivative of the measured attitudes with respect to the

vector 6 yields an identity matrix.

Accelerometer Measurement Equation

The accelerometer senscs specific body forces excluding gravity along

the sensing axes. With reference to the accelerometer equation, the

partial derivative with respect to EfI) is




a s B A%“ % pAvh avh
= C [ c,. + c, ——
(1) 2n dh =€ m =€ 8&h
o
A 2 8c Av 2 B¢
+ P — %, . S 2 (62)
2m 8 Oh 2m 8B 8h
st ®) o ae'® o (B e
18322r P p 8 =» a.%
ap ah 8« oh 88 oh (1)
s F
. . . . (B) .
The partial derivative with respect to v yields
(s) 2 2
82 _ SCB[pAWn c avh ‘ pAﬁn agf da . pAvh asf (o]
al(B) m = OXFB) 2m Oa al(B) 2n 98 X(B)
+1_["’f—p a  Ip op : 63)
m 8 , (B) ' 8B o (B)
v av

For the partial derivative of the accelerometer wit! respect to

the vector 6,

(s) (s)
+Db + Vv
-a —-a

a(S) _ ScP' P'B s(B)
m —

(B)

where the vector s
plume and rotational coupling terms.

matrix as ICB.

. P
The matrix CB

The required partial derivative results from

the measurement equation is temporarily rewritten as

(64)

represents the sum of the aerodynamic, thrust,

is the same
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ba(S)
-m s P 93 I B (B)
% a  C —09- c' s . (65)

The partial derivative on the right hand side is developed in Appendix A

(B)

with the vector s repregenting the sun of the terms indicated above.

The final partial derivative for the accelerometer measurement is

with respect to the body rotation vector w. Defining

Ar‘l
8
ar & |ar = (B _ (B (65)
~s 28 -8 =g
Ar3
8
- 4
and denoting w, as the ith element of the vector w, the resulting
matrix is
szrz + w3Ar3 4‘01Ar2 - 2w2Ar1 w1Ar3 - 2m36r1
aam S B
_&n: = C mzAr1 - 2m1Az2 m1Ar1 +mJAr3 szr3 - 2m3Ar2 (67)
m:‘,/.‘\r1 - 2«:»)1L\r3 m3Ar2 - 2w2Ar3 m1Ar1 + uuzAr2




3.2.3 Additional Parameter Partial Derivatives

The mathematical developments are presented in this section for the
partial derivatives of the system and measurement equations to allow for
additional candidate parameters to be included in the estimation algorithms.
These parameters include center-of-gravity, £cg’ moments of inertia, I,
wind velocity, v, and inertial platform tilt errors. Aerodynamic and
plume parameter partial derivatives are also presented.

The computer program is being structured to permit these parameters

to be easily incorporated without significant impact on the program code.

3.2.3.1 Center-of-Gravity

From equation 23, the partial derivative of angular acceleration with

respect to r is
-<g

- -
2
aé -1 pAvm2 n B g, 1
- - [1] [—2— {-ng» + 121 £ Ci 0 3] (68)
—g
0
.

From equation 32, the partial derivative of the measured acceleration with

iespect to r is
—<g

da
= 5¢® fw x w (69)

g
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3.2.3.2 Moments of Inertia

The moments-of-inertia are grouped into "principal" terms, ip, and

cross product terms, icp' From equation 24, these vectors are defined as

™ h
I
X
i, = |1 70
=P y (70)
I
— z-i
and
- -
I
xy
1op = | Tax (1)
I
yz
With these definitions, equation 23 is rewritten as
f"
r -
w, 0 0
. -1 .
w=[I] [IT - {—g-}< 0 w, 0 i, (72)
0 0 m3.j
\
- . -
Wy Y5
+ -0, 0 -w3‘ icp ]
0 -w1 -w2
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where IT rep: :ents the sum of the nonrotational torques in equation 23.

Defining an intermediate vector a as
a=IT-wx (Iw (73)

the partial derivatives of the angular acceleration with respect to

i and i are
ﬁ -c

. 0 -w2m3 m2m3
3w
— = L (I-1 a) - (I)-1 W, w 0 -, w (74)
8i [ - 173 173
-’ e a-fixed w,w w, W 0
12 172
- -
and
2 2
. w,w, ~w,w, vy - w,
8w -1 -1
aic = aic (I ?_) - [I] -w2w3 (I)? - w§ (D10)2 \75)
P P i—fixed 2
Wy Ty Wl Bt Tk
- -

where
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i 0 Iza1 + sza3 I
Izaz + Iyza3 0 1
Iya3 + Iyzaz Ix°3 + sza1

- Iyzz)a1 (rr - ;xz)a1 (I 1
. )az ( " )a2 (
voay (o ay

I a; + Iyz 2 -21I

Iyz°1 - Zsza2 + Ixya3 I

21xya3 Iya1 + Ixya2 I

(76)

A el st il




~2(I 1 +
Z Xy
-1 1 "
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~2 ( "
L
and
A =111 -
xX'y'z

3.2.3.3 Wind Velocity

I 1 1 -
Xy yz zx

ORIGH o ,F.,,r’ |
OF POOR Quw. 1+~

)a1 -2(IyIzx + Ixyxyz
)52 =2 “
)a3 -2 "

2

-I1 -IT1
z'xy

I 1 1
zx xy'yz y z2x

la

Ja

)a

-2(1
x
-2

-2

I

yz

+ I

From equations 20 and 25, the partial derivative of the vehicle

acceleration with respect to !w is

«(B)
Ol A v

ga
v 2m € 9
—q

The first of the partial derivatives in squation 79

from the following equation

From equation

2
ovm TB
—— -2y
v -

80, the following is obtained

2 2
i n acE a . PAvm acE 28
v 2m & Ov m 88 Odv -
— — —

can be obtained

xy xz 1

)a

Ja

(79)

(80)

(81)
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Denoting the elemepts of the matrix BC a c11, c12, etc., the following

aquations are obtained for the partial derivatives of a and B with

respect to v ;
-

T
(v ¢ - v c,..)
] 31 r3 11
da -1 .
= - (82)
3v 2 2 (v €35 = Y ©qp)
— v + Vv 1 3
r r
! 3 (v ¢ v c..)
; 33 - r, 13
L J
and
-T
F v
r
Y21 T T e S11 Ve S * Ve G
m 1 2 3
0B -1
av_ [ Vr
- / 2 2 2
- — 83
¥ Ve vy V€22 = v Ve S1p * Ve Cpp * Vp ©3p) (83)
2 3 m 1 2 3
v
r
ViCa3 T (v ci3 + vr Chy + V. c33)
m 1 2 3
- -

3.2.3.4 Inertial Platform Tilt

Temporarily rewriting equation (32) as

a®) 8P 460 x) s 84)
m — ——

R Y s

s g



where

o
[<+}
L[}

vector whose elements are the axes misalignments

sum of the bracketed terms in equation 32 multiplied by P CB.

The following partial derivative of the measured acceleration with

respect to 68 is obtained

9a (8)
-m S p
-5_6-2-_—_= C Lg}. (85)

3.2.3.5 Aerodynamic and Plume Parameters

A linear model for the aerodynamic and plume characteristics is

used. This model is expanded as

E-f=5fo+gfua+gf83+"' (86)
andc:g:_mo+c a+gmBB+ . - (87)

f =°f f o +f B + ., ..

» " " pa -pB 88)

where additional terms to represent rates, cross couplings, and controls
can be included.

The basic approach of establishing the partial derivatives will be

illustrated for a couple of terms, sfa and Sma' Using these example




illustrations, the rest »f the candidate parameters can be similarly

obtained. Frcm equation 20, the following partial derivative is obtained

GG(B) av(B) oc pAv 2
—— = = af - —= alul (89)
¢ ¢ ¢
a [
where

{U] = unit 3 x 3 matrix with one's (1) on the diagonal and zeros

off the diagonal

From equation 23, the partial derivative of angular acceleration with

respect to c¢ is
pe -m

a
L ] L] 2
6% s, emy,
3 = 3 Bc - 1 ——elul (90)
~m
(1 a
The corresponding partial derivative with respect to Ce is
o
O S  Bc, -1 PAY (B) (B)
% " 3 a5 < [1] 5 LEA - r, } afU]. (91)
€ = S d

The static aerodynamic coefficient model has been obtained by a multiple

regression analysis of the current aerodynamic tabular data. This model

is presented in Appendix D with the associated regression coefficients.
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3.3 Propulsion Parameter States and Measurements

A candidate approach for incorporating the NASA propulsion model's
capabilities has been identified. This apprcach utilizes nominal pre-
dicted values of thrust, pressure, propellant and pressurant mass flow
rates, and utilizes sensitivities or partial derivatives of these
variables with respect to the independent parameters selected for esti-
mation by the algorithm.

The approach is to include deviations f:'om nominal values of
measured chamber pressure, power level, pcropellant and pressurant mass
flow rates as states. 12 models ass. «€d for these deviations are time
cérrelated random processes. Then as states, partial derivatives of
the first twelve states with -espect to these variables will be required.

For the SSME and SRB, this modeling approach is discussed in the
following. Additionally, the necessary partial derivatives of the first

twelve state variables with recepct to the additional states are presented.

3.3.1 SSME Propulsion Parameter Model

For the SSME, the total actual values of vacuum thrust and oxidizer

mass flow rates are modeled by

f_ =1 + Af (92)

and

m. =m + Am_ . (93)




The measurements of fuel mass flow rate, pressurant mass flow rates and

power level are modeled as

m =m + Aﬁ + be + 8°* (94)
H2 H2 H2 mH mH
nom 2 2
ﬁ = ﬁ + Am + be + 8° (95)
H, H, H, H, H,
P Prom P p p
m. =m +An_.  +be 4 se (96)
O2 02 O2 m02 mo2
o Prom P p p

and

. (97)

PL = PLnom + APL + bPL + sPL

These measured quantities include measurement noise s( and potertial

)

bias states b( ) modeled as random constants. In these measurements,
the A‘'d variables are to be included as states in the estimation
algorithm. If the nominal values are zero or unknown, then the A'd
variables absorb the entire estimate. Where required, the estimate for
the variables used in the estimation algorithm is formed using the

nominal and the estimate of the deviation, etc. In example, thrust and

fuel mass flow rate estimates are formed as

f_ = fT + Af (98)




and

m., =m +8n, 4 be . (99)

The deviation or A'd measurement variables are modeled as time
correlated random variables. This permits these variables to vary within

a band of frequeacies. The typical model is then given as

d_A()=- } AC)Y + L s (100)

dt () Ty )

where the parenthesis ( ) would be replaced by the variables, i.e., ﬁH .
2

*
For the SSME, an additional variable Ac is modeled as in equation

mult
100 and included as a state v-uriable with the A'd measurement
variables.

The thrust deviation is expanded as in the following truncated Taylor

series as a function of the independent parameters.

afT . of . of .
Af = Am + Am + Ac
T amuz H2p arflo2 °2p aac”
P p
of of
T T
+ 35 APL + MR AMR. (101)
*(B) . . . . .
In the v and W equations, with equation 101 replacing fT ,

i

the partial derivatives of fT with respect to the A'd variables are

obtained directly from equation 101.




It is desirable to include vehicle mass bias as a state. The SSME's
system contribution to the mass deviation is given by

Amssm_:,s=)i:(AmH +8my  -Mmg -amg ). (102)

In equation 101, the Amo contribution to the mass deviation is not
> .
available from measurements. As with the thrust deviation, this quantity

is formed as

. anoz . &noz . &noz *
Am = Am + Am + Ac
%, a'“uz Hzp al‘ﬂoz °2p anc”
P p
&noz &noz
+ I APL + 3MR AMR. (103)

which is in terms of other estimated state variables. In equations 101

and 103 the deviation in mixture ratio, AMR, is obtained algebraically

from
m -m
H, i H, |
R - — (104)
om
2
OMR

The partial derivatives for the SSME above have been incorporated into

the estimation algorithm as functions of engine power level.

R i - o e eesmemer s o e e




3.3.2 SRB Propulsion Parameter Model

The approach for the SRB modeling follows closely that used for the
SSME. Candidate independent parameters include propellant burn rate
exponent, a, and motor efficiency coefficient, c. - Others can be added
using this technique.

The actual value of vacuum thrust is given by equation 92. The
only measurement available for the SRB is the total pressure at the

forward head end of the motor case and is modeled as

P =P +AP_ +b 4+ s (105)
% % % Po. Po
nom H H
where b and s represents a bias and me- surement noise respectively.

() ()

The independent parameters, Aa and Acm, are included in the
model as states. The model assumed can be as given by equation100 or
another suitable dynamical process, i.e., random constant.

The thrust deviation is given by the following truncated Taylor

series as a function of the candidate independent parameters.

of of
T T
AfT = %a Aa +_é;; Acm + e e . (106)

(8) and é equations with respect to

The partial derivatives for the i
the independent parameters are obtained directly from equation 106 . The

mass deviation equation for the SRB is given as

Amopg = Z(Am) (107)
1 1




where
« am
Ami ™y Aa + . . . (108)
The head pressure deviation, APO s 1is expanded similarly
H
aPOH
AP0H=—a—a— Ma o+ . .. ‘ {(109)

A simplified model for the SRB's thrust, head pressure and mass flow
rate has been developed that can be directly incorporated within the filter
algorithm for estimating burn rate coefficient, nozzle coefficient, mass
flow rate, etc. This model, to be described below, uses apriori specified
burn area and port volume as a function of burn depth into the propellant
grain. From this simplified model analytical partial derivatives required
by the estimation algorithm can be obtained.

Tre thrust is given by

f =¢c c_c m (110)

where

Q
n

nozzle coefficient

Cop = thrust coefficient

*
¢ = characteristic exhaust velocity
m = mass flow rate

Two of the required partial derivatives with respect to mass flow rate

and nozzle coefficient are easily obtained, vis




oﬁ T
and
afT w o
oc cT ¢ m
m

The partial derivative with respect to burn rate coefficient is

afT ) [acT SPG ﬁ Qé-c : «
da aPO da + da T ¢ cm

"ideal " expression for o {71

where

? Yy = ratio of specific heats

P_ = motor nozzle exit pressure

e
Pa = ambient atmospheric pressure at nozzle exit
Aé = motor nozzle exit area

A_ = motor nozzle throat area,

the first partial derivative in equation 113 is

*
where it has been agsumed that c¢ is not a function of a. Using the

(11)

(112)

(113)

(114)




P

-y —'-‘:,“
R P

OF POOK QuUALIYY

I+ -
8 22 2 1=t
Ry = =k [~ (;-;-T) -1 pe N 1 pe B pa Ae
8P, (=) (=) 1 - = = (115)
y=1 Y 0 o LI
P, "7
(1 = (=) ]
Pe

To evaluate the second partial derivative in equation 113, the following

equation for pressure [8] is used:

c p_a —
S all N B (116)
o) A
t
where
p. = propellant density

T

propellant burn area

o

=]
0

propellant burn rate exponent

Te following partial derivative is then obtained

* 1-n 1
> I Ab) ) ' 117)
da At 1-n

The last partial derivative in equation 113 is obtained from

L
. c*p a Ab 1-n
m = pp 2% Ab = pp a(——-;:———) Ab. (118)

The resulting partial derivative is

* L

* 1-n
Ou ¢ pE a 1 1-n
% " pp( At ) ‘1-n) Ab (119)

S
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To utilize the head pressure measurement and its sensitivity to

parameter variations, the following equation ([7] is used

P -i‘2 1+ ‘r1 +4nr(crbp - )] (120)
o, 2 V A, P
where
R = gas constant
T = gas absolute temperature
¢ = port circumference
Ab = port cross section area
r, = propellant burn rate

.3
[}

distance from motor nozzle to pressure measurement point

This equation assumes a cylindrical p~ ¢ with an approximately constant

cross sectional area.

The partial derivatives with respect to burn rate coefficient and mass

flow rate are

T A 2 op
=4 [ +\/1+1e:n'r%—( £ty =2

e

2|

121)

*

Pc A

2|

Bl o T i




and
e 2
9%, ; op, 4RT VTF;
—_—a {1 + ] + P } (122)

o 2 at 2
‘/1 + 4R’I‘(—ﬂ-l-) J1 + 4R’I‘(-—'§l-—-)

VP VP

p O p o

In equations 121 and 122 a cylindrical port has been assumed in determining
the port volumn Vp. Equation 122 was obtainaa from equation 120 by

replacing the term c r pp £ by m. The partial derivative of P

b 0

H
with respect to cn is obviously zero. 1In using these analytical

partial derivatives, the basic performance measures of thrust, mass flow
rate, head and nozzle pressures, etc. are matched between this model and
the NASA SOBER internal ballistics routine results. The burn area and
port volume are adjusted in the simple model to obtain the agreement.
Then using the adjusted area and volume as a function of burn depth, the
| partial derivatives are evalauted.

The inclusion of solid propellant thickness, t, as a state variable
necessitates the development of the partial derivatives of 1t with respect
to the solid propuls.on parameters and the partial derivative of the

measurement Po with respect to 1. These partial derivatives are given

H
as
U
* 1-n
LAd ! (c pAba) (123)
8 1 -n A

t
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and
”oH 3 A 2 o,
—01—-'![(1 + 16:R‘1‘v—‘(* ) ]_517
p C Ab
3 A A
8xRT £- P - (—5)
0 31 c'
. P A (124)
3 A 2 ‘
161RT‘——(~-—t—-)
v *
P C Ab
where
o
?_P_Q,[gih_b_gﬂ_:*‘i:tia_kb.,,,c*a _‘.‘E] (125)
Y A, ot A, ot pak, 3 -

k7

Here, the partial derivatives of < ', Ab’ and At with respect to t are

evaluated numerically.

Finally, the partial derivative of thrust with respect %o 1 is

given by
aAf P A
T O t
3t CT ot A1: * CTPO at (126)
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3.3.3 Vehicle Mass

The total rate of change of vehicle mass is given by

[ ] [ ] [ ] L ] [ ]
ac™) =Mgoup  *Mgpg  t Afggup + Mgy + MyoN. CONSUME
nom nom

(127)

Te first two terms in this equation are the apriori assumed nominal
values. The third and fourth terms were discussed earlier. The last
term should be zero; howover it can include a mass bias uncertainty Amb.
The equations, state and measurement, in which mass occurs are the
*(B)
y

and a, equations. Assuming eguation 123 can be summarized as

ﬁ + Aﬁb then the mass can be written as m + Amb. Replacing this

expression for the mass in the two indicated equations yields the

following partial derivatives with respect to the Nnb.

(B) 2
o vy A
— .. 1 M. R (B, 3% EJ;%)) (128)
b (m + Am) P i
and
{s)
6a pv_ A
1 s B 'm () BS _(§)
A = - c ( > S + £p + C ET, ) (129)

b (m + Amb)2 i
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4.0 PROJECTED ACTIVITIES DURING UPCOMING MONTH

During the upcoming month the computer programs will be exercised
on the NASA computers, and documentation of the computer routines will
be developed.

Due to minor delays, SDI is requesting a one month extension at no
cost to the government to maximize the capabilities of the computer

routines developed.
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APPENDIX A

IB

PARTIAL DERIVATIVE OF THE VECTOR "C v wrt

8

This partial derivative is one of several that occurs frequently in
the formulation of the linearized system state and measuremetn eqautions.

The desired partial derivative is

singsinBcosd

coswsinecos¢) v

(cosecos¢)v1 + (-cosvsin¢ )v2 + (+sinvsin¢ 3
0 . singsin®sing cospsinBsing
a8 (c°5651n¢)v1 + (+coswcos¢ v, -sin@cos¢ V3 ) A-1

(-—sinB)v1 + (sin«pcose)v2 + (cospcos®) v,

o -

The resulting matrix is given in Table A-1.
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APPENDIX B

v v
Ba 3 da 2] m ,
n(‘a) s B’ (:) * 3R’ —a: and Y Expressions
v v av

These partial derivatives occur frequently and will be developed

in this appendix. The equation for v, is

(B) B LL (LL)
= Vv - C v
— w

"l<

B-1

(LL)
v
-

Since the wind velocity, , 1s only a function of altitude then

i) <]
v - (B B-2
- al
avm
The first partial derivative, L is
8
T
-
-
1
avm ]
= — v - 5—3
al(B’ Vm : r2
Vr
3

The second, ae(‘B) , 1is given by

8y

:




The equation for
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The following equations define the last three required partial derivatives

av(Lt..)
%a _ da B_LL - B-6
dh (B) dh
dy
ay (LL)
% __ 88 _ BLL B9
oh (B) dh
4
(LL)
ov, _ o8 BLL v, B8
8h av(B) oh
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APPENDIX C

PARTIAL DERIVATIVE OF THE VECTOR

The third of the frequently occurring required partial derivatives

is
cosBcos¢ v, + cosBsing v,

[ sin¢sin6cos¢)v simpsinesimb)v

86 -cos@sing 1 +cos@cos¢ 2
cos¢sin0cos¢)v cosvsinﬁsin¢)v
+singsing 1 ~-singcos¢ 2

The resulting matrix is given in Table C-1.

8inB v

singcos® vy

cospcost V3

.J

-t ot
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APPENDIX D

AERODYNAMIC MODELING REGRESSION ANALYSIS AND RESULTS

The aerodynamic data tables provided as IVBC3 data has been incorporated
into an aerodynamic coefficient polynomial model. This modeling effort
reduces the dimensionality of the numerical tables to one and reduces the
storage requirements for the aerodynamic model.

The coefficient model used for the two stages diifer sliightly as a
result of the available data. The regression analysis led in the selection
of the form of the aerodynamic model. Terms with insignificant correlation
were eliminated from the model.

In equation form, the first stage static coefficients of axial force,
CA7 normal force, CN; pitching moment, Ch; rolling moment, Cz; side force,

C .

v and yawing moment, Cn; are given below

2 2 2
CA = CA + CA a + CA 2 o+ CA 2 aB” + CA 2 B D-1
o a a af 8
C.=C +C. a+C a82 D-2
N~ N N N .2
o) [ 8
C =2¢C +C a + C 082 D-3
m m m m .2
o a af
C, = C +C, B+ C aB + C azB D-4
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2
CY = CY + CY B + CY al + CY 2 @ ] D=5
) 8 af a B
2
Cn'cn +CnB+Cn qB+cn a’B D-6

2 .
CA-CA+CAG+CA2u D=7
o [} a
C C C [+ (o 2 D-8
NN YN *tEyo ®
o) o
2
C = C + C a + C a D-9
m m m m 2
() a a

2
C2=C£+C28+Cl °B+C12°B D-10
o 8 af a B
c,=C, +C_ B+C aB + C 528 D-11
Y Y Y Y Y 2
o 8 aB B
2
Cn=Cn +CnB+Cn u8+cn208 D-12
o B af a B

For the first stage, data from an angle-of-attack range of -6 to +6 deqrees
was used in the regression analysis. Data from a range of -8 to +4 degrees
was used for the sec- id stage. The results, TCXX..., from the regression

analysis is presented below for each of the coef{ficients, C , above.

XX...




ALi'i;Y

taw

ORiGh_\"r-.i. i
OF POOR qu

L£O-30BOVIYHFTO

€O-49CEOIZTIT*D

F0-320LBEVFICO

CO-3CLILLECT 0
FO-3FTIPLOLESLL 0~
£0-348144300C¢°C~
£O0-351L4LBLYT0-
FO-10v¥Y9919C°0 -
£0-30108B0LEC° 0~
£0-30009Z182°0~
£0-3160E11CE° 0~
£0-37+/£08I08°0-
£O-3LLE6SLRLYVO-
FO-3ILTLUROLZ 0~
CO-3IVTLBLLFEO-

I 1

£O-3ILFLLEES6UT 0

£O-3+2045928FY°0

vO-38LLENVRBYE 0~
VO-488894+ 1480~
FO-319vi6IgyY*0-
£0-3048EVPYT 0~
FO-ABVVIEYAT 0~
FO-49I0FEVCT 0~
£O-346¥B1CCY 10~
fo-3voLcitiyo-
£O-3Lv18L0C°0-
FO-3I88E.8800° 0~
YO0-3/086080Y°0-
FO-IEP9997GT 0
FO-3BRBETLSY "0~

£dwil

JueTdT3iec)y 80104 Teixy 8beys 3saty

PO-3u9bVEIET O~
+0-30700L%8T1° 0~
PO-3bA65L2VTI0-
PO-36T15C0001° 0~
FO-3L0RACTLTISLO
P0-3LLUTLI0E O~
L0-3004£4058°0 -
GO-3LL08EL2T1° 0~
L0-30488489V 0~
C0-3008C.VIEO
LO-JLBOCLESBT O
CO-3IvLBLIBLSE O
CO-3ATEETVESLL 0~
S0-300T11EVO8B O
CO-3A9EL0N6LN0
24%901

CO0-3LvRIVYTI0Y ° 0~
€0-3LE8L93LE° 0~
c0-3¥1685C21° 0~
£0-3LL6PCVLE O~
CO-APVEOEEIT " (-
£O-4LUEESYBIG O~
£0-38Y¥9L0EES O~
£0-38L8L9C L0~
£0-368L8L60L8°0-
£O0-39CH66VLES0-
fO-3LIRLTEBY*O-
£O0-3iEEYV 608 0~
£0-3¥0CBLILB O~
€0-3861L2091° 0~
CO-A/9C686VI0-
AR Y

T i-d 349Vl

B . L\ it

rorioose!

L0C65082°0
VOS0LE¥REO
£2019£8Z°0
TFVLYLONO
CEVLGBOTE O
VOFT1IVOE* O
8Y991£8I°0
LEBL66YCO
{85860

1E6TEVR O
12604581°0
YOLUeBL1°0
F1L940¢1°0
covBBEYPILO

oval
v4¥d 113§

. « o e
v vt v et e e et (O YT

5
P
-
-~
-4
-
[
e

[

D =0T

'] I

-
-

F\J.
$ HOYW
H3T10N4




L LA 24

-

ORIGIN..L [~

OF POOR GQUALTY

FO-3085CLTFYVO
FO-3649085E7°0
VO-3VLSLEOLY O
GO-4EC08ECE8 0

PO-3TLBLLIFT O

vO-3¢435748¢2°0
to-3vcesvedv o
VO-47LFELLET°0
C0-3LB06LEALY O
VO-3CL946F/81°0
YO-40768£0T1L°0
YO-368585¢8C1°0
L0-4l460REVZLE°0

VO-48TT1L6EC° 0O~
Q0-38LECNEVE O

ZYYNIL

FO-30054EV98°0
T10-34L55068E°0
10-318vE115°0
10-3L6C2T9C0°0
10-36E 3 VESL5°0
10-38LcvC8BYL° 0
10-35E5565655

10-3842vCBPL0
10-4LB6VY L9140
To-3C0LETVP8EO0
10-32LE5CEL0°0
1o-3crorasus”

TO-34P 6210450

to-3cvaseein e
1C-2L1EL1IELYV O

YNIL

PI9LEE20°0-
VILL?4%%0° 0~
(BEFQPL0 0~
98£8L€00° 0~
000££0C0"0
LPIE8LY0°O0
LFEBOL50°0
161238C90°0
£5642£50°0
SI96ZYE0°0
506081400
S5YSV0EYOTO
5046088500
(61502800
161521900
ONJ1L

Y4AND 1135

JUSTOTIIBOD @daqy TewroN abels 3saty  -g-q IQVL

..‘
‘i

. e
[ 93

T
<.

I
ooty
bl

6ee

(SR B
£
0°1

5s°
6°
m.
Q.

t HIYH
W3 044

CLW LS WD

[oe}




pe
[y

ORIGINAL FACH
OF POOR GQUALITY

bO-4ev0enLLe 0~
YO-318392/732608 0~
YO-340894 488G 0~
PO~ ERUESET O~
GO-3R0LTTLCH O
CO-HL0467 6T 0
¢o:m}mmﬁcc\ﬁ.on
PO-ArSLVECLSE 0~
noa;vﬁﬁrmm 190
YO~-3P1CLE82E8° 0~
SO-3TL10¢CTZ*0
FO-IJTOPLL92G580
GO0-35eC8LEYY 0
bO-3LE22800F2°0
GO-31095 69910
SHYMIL

jueToTyyecy Juswoy HButyolzte obels 3ISAYY

10-HETyTEs1T 0=
TO-38TL08LET°0 -
TO-3BLLT6681 ' 0=
YO-ABETTOLSE 0O
TO-3BLELVTEE 0
FO-3/B6¥8BL0T* 0-
10-31509 1108 0~
T0-38ZVEYEOE O
10-3L6665902° 0-
TO-3L09TE608° 0~
TO-3BTELE6LE 0
TO-35VOEBLOT* O~
10-30£T0%661*0-
TO-30EE0008F 0~
T0-30LLEVEGT 0=
WML

-

.

(9995100

160820100

61958 C000

8Y06L0C0 0~
CHEBPTLO 0~
L58298920° 0~
VIL2T1440°C-
LECLREL0 0~
bOLELELO® O~
IR6EP820° 0~
CFPLOETLO O
£S68V580° 0~
BECTSHL60°0-

e o & o
Mo

L2
-

-~
RS ™SI LLW
.

PP Y

.« o @

>
o vt vt v et e O

[}
* -

DTL98L0T° 0~ a°

4948LEBC O~ 9
OWIL f HOVMW
4RI 1135 NWITHO0NA

cd d1EYL

o AR

L




"
3

Qs
Y TR

ORIGINAL F:

H

h

OF POOR Q15

S0-3000650458°0-
CO=-4020040846°0-
GO0-3LBLE0ECE 0
PO-41/680331°0
GO0-3d4%00%0GV L0
CO-HUEETAVIC* O
FO-AVS1L9408 0
CO-39LTL?092°0
PO-346L08961°0
FOo-3eeIverTd o
GO-F4189181(L°0
SO-4LEV00Y P20
FO-ALPLEIFOV O
LO-3LE(VLOLV O~
CO-31£20e0L8°0

4IU1101

bO-3RELRL009 0
rO-34908EvaE0-
PO-3LCLEG99Y° 0
YO-38981r0R?485° 0~
LO-3F&6L488/ 8LT° 0~
£0-3988L0L08° 0~
£O-44980780¢ 0~
CO-F4T29RELT O~
LO-3T0V60L0T*O-
LAVEE ) AN WA NN

ZO-FOPTLELELTC O
£0-38EL8048T1°0-
CO-ATLTNTIL LT O
CO=-FVEELPOVC O
CO-HVOLVIERT* O~

AVIT0L

JUSTOTJJOO0D JusUOW

AR RN Sl €300 Vv A

C0-4£L0LLECE O
Z0-A0Y0RTYHE O~
CO-39ETLE09 0~
ZO-A8ELLOLED O~
CO-ASTLEL VLG O
C0-40T8ENTLE 0
C0-308LE09E09 0
C0-36£468v8T9°0-
CO-FTLEEOEES 0=
. TO-3LYCPOLEL O~
CO-ABBOYVOLT 0=
C0-3T/4000L54 0~
CO-3B99EL0L5°0-
£0-389¢09FTL " 0-

001T6TT00'0
QOY00T00° 0~

-

005520000~ S'v
005820000 o't
004541000 5°C
QLEPZTO00°0 ¢
057041000 el
008EPT00°0 LA §
LYE7100%0 1
056880000 VR |
0512¢100°C 51°1
0L85LE0000 11
002201000 0o°1
QOLETI00*0 6é”

5

8

7

CO-320980 TG0~ 00860000°0 .
41191 01104 1 HOWN
M0 1138 HA1H0Y A
butitoyg ®beas saty  “y-a I1GVL

GRS M RPN . < 1




5

OF POUR QuALI«i

L ik R e
"
i NS P

L

Oh

LO~ALTELLLET O
FO-ILINELLVE O
FO-HSTL66605° 0
PO-HLIEBELUT 0
PO-HE90FELLIT O

PO-3Z0TLILRG O
FO-A6EBLILVE " O
PO~ 3496622040 0
vO-3£06L0£94° 0
PO-308565V 4900
FO-ARGOLES TS 0
bO-31626 uh;,.c'
VO-AL0LSLVLT 0
FO-349904889° 0-
CO-F0CTFV LYY 0=

£9A0L

F£O-IFKTVLRNLO
FO-3TI89¢5L69°0

10-34TREBLOL
10-3TIEb SV EE

mcnl~ww#orx%.c 10-30606008%° 0~ 5006100°0
TO-3L6LEEECT TO-3¢TRESLLE O~ 0CECIZO0° 0O~
£0-38989%05C°0 T10-360812648° 0~ 04L€2e100' 0
CO-AFATIPYITIC O~ T10-38126899L° 0~ 058¥8%00°0
F£O-3VOvh9408° 0~ T0-3555088¢2 0~ 00556800°0
FO-FEVLOOTEE O~ 10-3EEPEVREL O~ 0096460100
FO-ACTLRBTOT 0= LO-39485VVE"* 0~ oomnmmoo.o
VO-3495849L9 0~ TO~-3958L0L8LL 0~ 0G5C68E00°0
FO-ABVILLVBE 0= TO-3LVEVvELLN O cncatsoo 0
FO-465CF0971°0~ | TO-3I8891SL8° 0~ 007005000
PO-ALCT00296° 0~ TO-4eBrLovLE 0 0L080C00°0
FO-FLEEEVI&T O~ T10-3L6ttcyue0- OLLTTIR00 0
LO-ABLEPERVE 0~ TO-3T1998LY5 0~ 055040000
HYAOL 14,01 0,31
L0

juc 0T JJO0D 8da04 opIs @beis 3sata

o~ 0045000000
‘0~ 00LEV700° 0

*g—d J14YL

e
-2

é
.

L2
TN e

.

e

R oo s N N TR o T o N O BER - ol

-

ot vt v w0 O YT

"]
. .

-

+ HIYH
135 W3TI044



i AL

OF POOR QUALITY

wotmﬁhmhmﬁcm.cl
CO-344468LT/¢°0
tO-3LLPBEOYE O
vO-3EL904501°0
SO-39Y&6L868C°0
FO-3E.83006E8°0
PO-38V02L62655°0
PO-3460426708°0
VO-3BL&B8IL6TO
vO-3TV0LT8BEO
SO-ARVBLILLL0
FO-39E094TE°0
FO-ABVT06&L9E°0
FO-A%46002208°0
S0-487v546618°0
HIYNTOL

CO-AbLAERBIGV O~
CO-ATE20848 b 0-
PO-AIL TR LRG0~
LO-ALLOTILTE0
£0-34L5068T2°0
£O-30i8VVLEC O
CO-HZBLLBLERO
LO=-FL9PLELLT0
PO-ALTLE8LOV 0
FO-APLANELTTYO
PO-AB0LBISET O
LO-4UBC068 Y 0~
PO-HC0LTLECT O
$O-3983VEATTO
PO-HEL900 6950
HYNTDL

JUSTIOTIIDOD Juauwcoy DBuimer ebejs sati

TO-3606LEVTITEO
T0-3498CC8LE1°0
TO-3£1890¢91°0
10-34065240811'0
10-3/02283L1°0
TO-3EP5T9LLT 0
T0-38IBEEBVI* O
TO~-JLP0TLINE0
T0-398009v LT 0
TO-JLALECEFLTC0
TO-32ETL9691°0
10-30885E9C921°'0
TO-3IROLTTHLTO
T0-3CP0LSECT O
TO-4RBELLILVT O
47101

PR _.:\,6;2.};%‘;%34, ¥

00026000°0
008L5C00° 0~
059845000~
056E2000°0-
006£6200°0-
00856£00° 0~
05045000~
0L95TV00° 0O~
00££5£00° 0~
054950000~
00600100 0-
0STEE000°0-
004500000
004961000~
00&6T0100°0
ONTI1
YN1D 1138

‘9~ d18YL

]

e o o

5]
.

'l !
VWS =T ITRCHDL

-

v ot vl i v o oed 8

L=
s s e »

1 HOWH
HI {04




Ty
v

wer
i

- 5§
At

OF POOR QU

| AR

ZO-ALELGOETT O
F0-3£49L8E88°0
PO-358VL0EF80
£0-342LV06TT°0

bPO-36LTL58LT°0-

fA-FATMe N

GO-FLELTRLELE 0O~
t0-34208EL8E° 0~

vO-31.980678E°0

£0-3TLLECLV8T 0

£0~-3JLBLOFrEVE O
CYZNIL

£0-310E9CEVTO
£O0-36L99T+0T°0
£0-3008£C0CT0
FO-3CTLOPYRT*O
£0-3LLVSIBTIT0
&veval

S3U9TOTII90D Teurpnltbuo] abejs puoosg

CO-3BETLLE05°0-
CO0-3TCPTL095°0-
C0-31EBE6EBY 0~
C0-3LTLL8L98° 0~
10-3£8VvT1E80T 0

VEN3L

TO-3LVvITLC02°0
TO-3BEYPV460E°0
T0-30005/81L°0
10-3¢8Ev IO
FO-3EFV6LELE 0
YINIL

co-30ev1i0LV 0~
CO-30vTL8E9F 0~
CO-3&6LEVTILEY O~
C0-3IPLBLPCEV O~

20-304585088° 0~

vewal

LY061450°0 0‘o0

1
00000520°0 0°'8
T619LEV0°0 09
0I82CLP0° 0 ISR 4
FREYINE0* O 5°¢

0CHIL F HIYH
C4dWJ 1138 W3doMd

5C5606%0°
C6TPLE90°
LLVOLLTO?
15608240°

0~ o*'o01
0- 08
0- (LY
0- oe

bv1E8L80° 0 1
0ENDL ¥ HIYHW
C4AND 1138 W3Tq0Md
TLE0F59T 0 00t
STPLTELTO 0°'8
FLYOBBYT O 0°*'9
45898910 St
LITIBLLLO 5°F
0Ewal t HOYH
<4¥d 1138 HIMOMA

*L-Q 31av¥L



VO-FLBS66VETTO0

PO-34B66VBYT O

—4666LECL 0~ £E199C00°0- 0°'0¢
FO-HUTLB46V4° 0~ PO-3848666597° 0 rOIchcomrmm 0- 00t EveEN0* 0~ 0°'8
tO0-3CY00TTIE* O £0-300045E8TT*0- C0-36000448% 0~ (9ETEYT100 0~ 0'9
PO-3ATITIOELEY O~ £O-34005LLTT%0 CO=-3VLBEELLIY O~ L99221E00° 0~ o'y
vO-30L66VVET 0~ £O-ALAAVY0OTLTO CO0-3L00U94L5%° 0~ £E5646000°0- o'
qEHETIIL HYZ 1101 471731 0&T11IL + HIOVH
<11 $13S W34 0Md
Chet aer . . -
DT rOo-3LC00L8EC 0~ £O-3TONVSLE O~ CO-Ave0a58TL O 00E8LL00°0 0*0T1
i SO-3LETI046EC 0~ £0-3C005808E 0~ CcO-3uT009ELL°0 £EXLLEE00°0 0*'8
mww‘ GO-ABLEVONE 0O CO-AC 0056515 O~ CO-3C5660006°0 00EBEL000 0o°*?
ol FO-3AREBLLLEV O~ £0-4£000% 840~ TO-376VvELBTT 0 fFETIECVOO O o'y
Mmo YO-39C661548°0- £0-32000C8TH O~ TO-30008EEP 0 £LETO0TE0Q0°0 5°E
M.im DO. AEVEM12L HYZNTIL HENTTDL 0ENTDL ¥ HOVH
T uw SNTD 1135 H3T190M4
(o Ne

vO-30L&6LTEC0 £0-30 666818V 0 ﬁC|u$m¢% CEC*O

00V 655100~ o'0ot
bO-3E6L6F910T°0- £O-3200824800 =35T509ELE 0~ 0090<v10° 0~ 0°*'8
GO-3ALTOLOVIV®O £0-3Y1005609°0 ﬁo 3666VELBE 0 £E£1C9800°0- 0*9
VO-394961ECE° 0 $£0-3884660.59°0 10-3966TYIVFCE O~ LI90FLVO0 O~ L 4
F0-38EEL6LTIV O £0-36000£49£9°0 T10-3LB60TELE* O~ 00ve8200° 0~ o't
Py R B S qH¥CA01 4SA01 0CADL ¥ HOWH

M cAd

, 83U8TOTJ3200) Tedele] abejs puooag

+13S8 W3130Md

*g-d 314Vl




	GeneralDisclaimer.pdf
	0046A02.pdf
	0046A03.pdf
	0046A04.pdf
	0046A05.pdf
	0046A06.pdf
	0046A07.pdf
	0046A08.pdf
	0046A09.pdf
	0046A10.pdf
	0046A11.pdf
	0046A12.pdf
	0046A13.pdf
	0046A14.pdf
	0046B01.pdf
	0046B02.pdf
	0046B03.pdf
	0046B04.pdf
	0046B05.pdf
	0046B06.pdf
	0046B07.pdf
	0046B08.pdf
	0046B09.pdf
	0046B10.pdf
	0046B11.pdf
	0046B12.pdf
	0046B13.pdf
	0046B14.pdf
	0046C01.pdf
	0046C02.pdf
	0046C03.pdf
	0046C04.pdf
	0046C05.pdf
	0046C06.pdf
	0046C07.pdf
	0046C08.pdf
	0046C09.pdf
	0046C10.pdf
	0046C11.pdf
	0046C12.pdf
	0046C13.pdf
	0046C14.pdf
	0046D01.pdf
	0046D02.pdf
	0046D03.pdf
	0046D04.pdf
	0046D05.pdf
	0046D06.pdf
	0046D07.pdf
	0046D08.pdf
	0046D09.pdf
	0046D10.pdf
	0046D11.pdf
	0046D12.pdf
	0046D13.pdf
	0046D14.pdf
	0046E01.pdf
	0046E02.pdf
	0046E03.pdf
	0046E04.pdf
	0046E05.pdf
	0046E06.pdf
	0046E07.pdf
	0046E08.pdf
	0046E09.pdf
	0046E10.pdf
	0046E11.pdf
	0046E12.pdf
	0046E13.pdf
	0046E14.pdf
	0046F01.pdf
	0046F02.pdf
	0046F03.pdf
	0046F04.pdf
	0046F05.pdf
	0046F06.pdf

