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NEW DISCRETIZATION AND SOLUTION TECHNIQUES FOR 

INCOMPRESSIBLE VISCOUS FLOW PROBLEMS 

* * M. D. Gunzburger and R. A. Nicolaides 

Carnegie-Mellon University 

Pittsburgh, PA 15213 

C. H. Liu 

NASA Langley Research Center 

Hampton, VA 23665 

Abstract 

This paper considers several topics arising in the finite element 

solution of the incompressible Navier-Stokes equations. Specifically, the 

question of choosing finite element velocity/pressure spaces is addressed, 

particularly from the viewpoint of achieving stable discretizations leading to 

convergent pressure approximations. Following this, the role of artificial 

viscosity in viscous flow calculations is studied, emphasising recent work by 

several researchers for the anisotropic case. The last section treats the 

problem of solving the nonlinear systems of equations which arise from the 

discretization. Time marching methods and classical iterative techniques, as 

well as some recent modifications are mentioned. 

* Research reported here was suppported by the National Aeronautics and Space 
Administration under NASA Contract No. NASl-17130 while the authors were in 
residence at The Institute for Computer Applications in Science and 
Engineering, NASA Langley Research Center, Hampton, Va 23665. 
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Discretization 

Continuous Problem 

Let n be a bounded region of or JR3, the flow region, and let 

u and p denote the velocity and pressure fields, respectively and v the 

kinematic viscosity. Normalizing the pressure by the constant density, the 

stationary Navier-Stokes equations take the form 

vllu + f in n (1) 

divu = 0 (2) 

on an (3) 

where f and ~ are given functions and an denotes the boundary of n. 

In conservation form (1) may be written 

vllu + f (4) 

where Div denotes the tensor divergence operator and the equivalence of (1) 

and (4) is shown using (2). Equation (2)-(4) are the equations to be solved. 

The standard weak form of (2)-(4) is: 

2 
p£LO(n) such that 

- f pdivv = f f·v 
n - n--

fqdivu = 0 
Q -

-1 
find ~£H (n) satisfying (3) and 

(5) 

(6) 
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-1 
In the above formulation, H (n) is the usual Sobolev space of functions with 

-1 1 
one square integrable derivative, HO(n) is that subspace of If (n) whose 

elements are zero on an and L~(n) consists of square integrable functions 

with zero mean over n. 

A slightly different treatment of the convection term is given in the 

following weak form of the momentum equation1 

vJ'V~:'V:: _1/2 J (~.'V~.::-~.'V::.~) 
n n 

- J pdivv 
n -

(7) 

Again, in view of (2), this formulation is equivalent to (5); however for 

computations, the form (7) possesses certain advantages, 1 and thus is 

recommended. 

Discrete Problem 

Proceeding in the usual way, one chooses finite dimensional subspaces 

and h Sh P £ such that 

h Vh u E: satisfying 

h u 
h 
~ on an 

J h h 1 J( h h h h h h) v 'Vu :'Vv - /2 u .'Vu .v - u .'Vv .u 
n- - n- -- ---

J h h - p divv 
n -

(8) 

(9) 



(10) 

In (8) ~ denotes an approximation, in Vh restricted to aQ, to ~ 

(e.g., an interpolant). v~ is the subspace of Vh of trial functions which 

are zero on aQ. Strictly speaking, this formulation is valid for polygonal 

domains but may be easily extended, e.g., by isoparametric techniques, to more 

general domains. 

Unlike the standard positive definite elliptic case2 ,3 mere inclusion of 

and is not sufficient to ensure convergence (or even 

existence) of the discrete solutions. In fact, the spaces vh and 

cannot be chosen independently of each other. Mathematically, the following 

condition is required4 

J h h h q div.! ) yllq II (11) 
Q 

1 

where y > 0 is independent of the discretization parameter h. Here, the 

norms used in (11) are defined by 

Ivl 2 
JV.!:V~ 

1 
-V ~HO(Q) 

Q 

IIql12 Jq2 2 
-V q£LO(Q) • 

Q 

There are other mathematical conditions on the discrete spaces which must be 

imposed in order to guarantee convergence,4 however it is (11) which can fail 

to hold in general, and anyway offers substantial difficulties in its 
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verification. Equation (11) is referred to as the condition of 

"di v-stability" • 5,6 

Note that the analogous condition 

sup Jqdiv~ ) yllqll 
n 

is necessary to guarantee the existence and stability of the solution of the 

continuous problem, i.e., the Navier-Stokes equations. 

easily verified since it is well known that the problem 

A -1 
has a solution ~£HO(n) 

divv = q in n 

v = 0 on an 

for any which satisfies 

A 

ylvl ( IIqll 

for some constant y > O. Then 

sup 
A A 

Jqdiv~ ) Jqdi~ / Ivl 
n n 

= fq2 / 1;1) yllqll. 
n 

This condition is 



diy-Stable Elements 

In practice, one would like to use low degree piecewise polynomial trial 

spaces Vh , Sh. Unfortunately these are the spaces which encounter the most 

difficu1 ty in satisfying (11). For the higher order cases, a reasonably 

efficient test for showing that an element pair is div-stable is known. S No 

such simple test is known for the low order cases. This is discussed further 

below. 

Perhaps the 

velocity/piecewise 

best known low order pair is the piecewise bilinear 

constant pressure combination defined on a quadrilateral 

subdivision of n. This pair has been extensively used in engineering 

computations and been the object of much theoretical work. In particular, the 

checkerboard pressure mode is well documented. 7 The effect of this mode is to 

make y in (11) zero, so (11) is caused to fail in this case. Less well 

known8 is the existence of a mode such that y = O(h). This causes the 

pressure approximation to fail to converge in general, even when the standard 

checkerboard mode is filtered out. This is proved in Boland and Nicolaides6 , 

where also a filtering technique applicable to many cases is given. Use of 

this filter enables the pressures to converge optimally. 

Unfortunately, for arbitrary elemental subdivisions of n, the 

appropriate filters are not known. Therefore, it seems advisable to use 

element pairs known a priori to be div-stable. Here are presented two element 

pairs which have been used in practical calculations and have been shown 

rigorously6 to be stable. 

For the first of these, let n = {(x,y) ,O(x,y(l} and subdivide n by 

lines X" ih, y" jh, i,j=O,1, ••• ,2n, so that h = 1/2n. For Vh one may 

use continuous piecewise bilinear vector fields, bilinear in each subsquare. 

The pressure field is a subspace of all piecewise constants with zero mean on 
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n, defined as follows: on the coarser grid h" = lIn whose subsquares each 

contain four of the smaller subsquares, one merely imposes one constraint on 

the four scalars. For example, referring to Fig. 1, one imposes the 

constraint sl + s2 s3 + s4· For the general case, isoparametric mapping 

onto this macroelement is used. The resulting pair is div-stable, requires no 

filtering and gives convergent approximations. 6 

Another stable pair, not requiring the use of isoparametric methods is 

the following. Let n be triangulated regularly and let Ti be an arbitrary 

element of the triangulation. In h 
p is taken as a piecewise constant. 

h 
~ , Ti To define is further subdivided into four similar triangles and 

is then defined to be all continuous piecewise linear fields on the finer 

triangulation. This element pair is also div-stable and convergent without 

filtering. Fig. 2a shows a typical T. 
1 

in the pressure triangulation and 

Fig. 2b depicts the resulting velocity elements derived from Ti • 

Since it is known that these elements are div-stable, i.e., (11) holds, 

then one may use finite element theory1,9 to obtain the following estimates: 

h .. c1 h II~-~ II 1 
H (n) 

(12) 

h 
" c2h IIp-p II 2 

L (n) 

where cI and c2 do not depend on h. The duality method then shows that 

(13) 



Thus, the methods are second order, in the root mean square sense, for the 

velocities and first order for the pressure. These are the best possible 

rates obtainable with these elements. 

Upwinding 

Since Vh and Sh are used as both test and trial spaces in (8)-(10), 

the discrete equations will be of centered type. Thus, for fixed h as \l+0 

one has to expect the numerical solution to develop increasingly large 

oscillationslO ("wiggles"). These can of course be eliminated by use of any 

of the numerous upwinding/artificial diffusion methods. 11 However, the very 

idea of letting v+O while keeping h fixed precludes the possibility of 

accurate computation of viscous effects. For this one must, at the very 

least, permit h to go to zero with v. The precise dependence of h on \l 

depends on what viscous phenomena are to be accurately simulated. 

For example, simulation of shear or tangential boundary layers certainly 

will require h = O( v
1
/2 ) in the neighborhood of these layers. Concei vably, 

especially at outflows, there may be other kinds of layers, maybe induced by 

numerical boundary conditions, requiring the more onerous (and less practical) 

restriction h = O(v). Usually the latter layers appear not to be of physical 

interest and may therefore be smoothed by use of anisotropic artificial 

diffusion, chosen so that tangential layers are not smoothed. Such methods 

have recently come into prominence. 12 , 13 Specifically these methods attempt 

to add diffusion only in the streamwise direction. One must emphasize that 

h = O( JIz ) is still an essential requirement for resolution of physical 

layers and hence, convergence. 
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One streamwise artificial diffusion method is now presented. First, 

observe that (4) may be written in the form 

T 
Div[~ ~ +pI-vV~J = f (14) 

where I is the identity matrix. The quantity in the brackets is the 

momentum flux density. To this one adds the term 

(15) 

where A is a mesh dependent parameter tending to zero with h. Then (14) 

becomes 

(16) 

In the form (16) one may interpret (15) as an anisotropic perturbation of the 

viscosity tensor (vI). Clearly the effect of this perturbation vanishes in 

directions normal to the velocity vector, and hence to streamlines. 

Alternately, by associating the perturbation with the convection term a 

connection may be made, in transient cases, with the method of 

characteristics .14 This is not pursued further here. Equation (16), along 

with (2)-(3), may now be discret~zed in the usual manner using the same test 

and trial spaces. Generally, in order to achieve the desired stabilizing 

effect, A should be O(h). The effect of such a choice of A on the 

estimates (12)-(13) is not fully understood. When using higher order elements 

it is reasonable to expect that the accuracy would be degraded by this crude 

approach. Therefore it is of interest to note that a similar effect may be 

achieved by appropiate choices of distinct test and trial spaces. 13 



Normally, for internal flows, e.g., cavity flows, and for good choices 

for numerical outflow conditions,lS O(v) layers are not present in the flow 

field. In such cases, the use of artificial streamwise diffusion methods is 

not necessary. 

One is still left with the task of resolving tangential layers. If a 

uniform mesh is used throughout the flow field, the h = O( v1h ) restriction 

results in an unacceptable number of degrees of freedom. However such a 

small h is needed only in the neighborhood of the layers themselves. Thus 

it is advantageous, in the sense of reducing the number of degrees of freedom, 

to use nonuniform grids. As an example consider the driven cavity problem. 

Here Q is a unit square, the upper end of the cavity moves with velocity 

u = (1,0), and v = 1/3200. The results of three calculations are reported. 

The first16 uses an upwind finite difference technique, on a uniform mesh, for 

a streamfunction - vorticity formulation of (1) - (3). The second 17 again 

solves the streamfunction vorticity formulation by a finite element 

technique using a nonuniform grid. The grid spacing is determined by the 

functions 

2 -x = sin (nx/2) 

(17) 

2 -
y = sin (ny/2) 

with a uniform grid spacing in the x and y coordinates. The third 

calculation uses the element pair of Fig. 2 in conjunction with the primitive 

variable formulation and a nonuniform grid again determined by (17). In 

neither finite element calculation were artificial diffusion/upwinding 

techniques used. In Fig.3 is given the y-component of velocity v at 

y = 1/2 as a function of x. The uniform grid calculation used a 

9 
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(129 x 129) grid so that h = 0.0078. The nonuniform grid calculations used 

a (19 x 19) grid. With the spacing determined by (17), the minimum 

h = 0.0076 which is comparable to the uniform h of the calculation of Ghia, 

16 et. a1. • Clearly, one can achieve the same accuracy at a greatly reduced 

cost by using nonuniform grids. 

Solution Technique 

Whatever method is employed for discretization, the outcome is a large 

system of nonlinear equations which must be solved for the approximate 

solution. Concerning the solution of this system by some classical technique, 

such as Newton's method, one must first observe that the Jacobian of the 

system requires a remarkably large amount of storage, if the usual band 

storage scheme is adopted. For example, it is easy to verify that a driven 

cavity calculation on an n x n grid requires 27n3 words of storage (for the 

bilinear/constant element). Thus, even with n = 20, a rather large storage 

requirement is apparent. In 3D, the situation is catastrophic. Hence, the 

classical techniques may be of limited value (although some fairly fine mesh 

calculations have been reportedll ). Anyway, it is evident that alternative 

techniques are of interest. Of course many have been proposed. They fall 

into the two natural classes of "false transient" or time marching algorithms 

on the one hand and general nonlinear equation solvers on the other. 

Here is an example of a time marching technique used successfully by the 

authors. Let U, P denote the unknowns and the k-th approximations 

to U and P, and consider 



(18) 

k 0,1,'" 

(19) 

k = 0,1,'" 

where N(U) represents an approximate Laplacian plus convection terms and 

B an approximate gradient operator, generated by the particular finite 

elements used. au The first term in (19) is a discretization of at' forward in 

time from the kth time level. is arbitrary, and is not required to 

satisfy (18). In the steady state limit, Uk+1 = Uk and one recovers the 

solution of the original problem. To get Uk+1 , given Uk, multiply (18) by 

BT and use (19) to get 

k ;. 1 (20) 

which must be solved for Bpk+1, so that then 

(21) 

If k 0, a term 

is added to the right hand side of (20). Notice that (20) is the usual 

"Poisson" equation for the pressure, but with the crucial feature that 

boundary conditons do not need to be supplied externally. They are 
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automatically present in Notice also that in (21) not but 

Bpk+1 is required. This is the least squares solution of the equation 

(22) 

where 

which may be found by any of numerous techniques, direct or iterative. The 

following iterative method, a generaliztion fo a method of Kacmarcz which may 

be called the row projections method, was used by the authors. For solving 

this method is the following: 

BE,; , arbitrary, t=1,2,··· 

where B
t 

denotes the tth column of B (taken cyclically), W is a 

relaxation parameter and a a number chosen so that when w = 1, the t th 

component of the residual rt+1 = L - BTVt +1 is zero, thus, 

where P~ is the sum of the squares of the elements in row t of B T. 

G i 11 h (V_vt+1) eometr ca y, t e error is projected orthogonally in succession 

onto the planes whose normals are the rows of BT. w effects a kind of 



overprojection. Generalization to projection onto the planes normal to 

several rows (corresponding to line, etc., relaxation) is straightforward. 

Returning to (20), note that only few iterations of (22) are required for 

each time step, due to the availability of the solution from the earlier time 

level. 

The problem with time marching based on first order time derivatives is 

the large number of time steps (regardless of the size of v) needed to reach 

the steady state. Generally, several thousand steps are needed for each digit 

of accuracy required, for the kind of grid sizes encounted in practice, and 

the number of steps rapidly increases as the latter approach zero. Using 

higher order time derivatives would give considerable improvement, but does 

not appear to be a common idea. Among the other methods, great promise is 

shown by the reduced basis - continuation techniques .17 ,18 A nonlinear 

conjugate gradient method is used by Glowinski, et.al. 19 , although it does not 

appear to function well in all cases. Various iterative techniques have also 

been applied with mixed success by the authors. 

elsewhere. 

Conclusions 

In connection with the incompressible 

These will be reported 

Navier-Stokes equations 

discretization techniques via finite elements, accuracy questions, and methods 

for solving the algebraic systems of nonlinear equations, all for the ~,p 

(primitive) variable case, have been discussed. It is fair to say that the 

first topic is by now reasonably well understood. The main difficulty 

concerned the discretization of the incompressibility condition, and this 

topic now has a variety of theoretical analyses and tests whereby the 

13 
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stability of the discretization can be verified before calculations are 

performed. 

Less satisfactory is the state of affairs relating to solving the systems 

of nonlinear equations. Here, there are many problems still to be overcome, 

mostly concerning the efficiency of the solution procedures. The time 

marching method discussed, along with similar methods based on first order 

time derivatives really is too inefficient, requiring of the order of 103 -

104 time steps to obtain each digit of the solution. On the other hand, the 

direct solution methods encounter problems caused by the large storage 

resources necessary for carrying out the matrix manipulations as well as 

domain of convergence problems as v -+- O. In the latter case, the starting 

approximation has to be closer and closer to the exact solution being 

computed, as v becomes smaller. Continuation techniques are naturally 

suggested for dealing with this latter issue, as stated in the text. 
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