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A detai led XPS analysis has been made o f  fractured, t h e m 1  l y  aged lap  

shear samples where the T i  6-4 adherend was pretreated by both Pasa-Jell etch 

and chromic acid anodization before bonding w i t h  NR 056X polyimide adhesive. 

< i  f fe ren t ia t ion  between cohesive and i n te r f ac ia l  f a i  1 ure was oased on the 

absence o r  presence o f  a T i  2p XPS photopeak. The Pasa J e l l  pretreated T i  6-4 

adherends gave consistently 1 ower 1 ap shear strengths u l  t imately resul ti ng i n  

i n te r f ac ia l  f a i l u r e  a f t e r  aging 10,000 hrs a t  450°F. 

I NTROOUCTI ON 

There i s  continuing i n te res t  i n  the development o f  high temperature 

structural  adhesives (1-3) and i n  improving the durabi 1 i t y  o f  adhesively 

bonded conponents (4,s). Recent studies (6) have shown t h a t  the propert ies o f  

the surface oxide layers on T i  6-4 may play a key ro l e  i n  the understanding o f  

bond durab i l i ty .  The object ive o f  the present research i s  the SEM/XPS 

analysis o f  f ractured T i  6-4 lap  shear coupons bonded wi th  NR 056X adhesive 

and thermally aged for up t o  10,000 hours. The lap shear strengths o f  these 

samples have been reported (1 1 . 



EXPERIMENTAL 

Fractured T i  6-4 lap shear samples were sent from the Boeing Aerospace 

Company and these panels were used as received. A detai led microscopfc/ 

spectroscopic study o f  sfmi 1 a r  samples including crack extension measurements 

has been reported (1,7). The samples used i n  t h i s  study are described i n  

Table I. It i s  noted t ha t  these samples are qui te in terest ing because few 

bond du rab i l i t y  studf es (8) have extended t o  10,000 hrs a t  450°F. The T i  6-4 

adherends were pretreated by both 10V chromic acid anodize and the Pasa-Jell 

process. The Tf 6-4 panels a f ter  pretreatment were bonded wi th  NR 056X. This 

polyimide i s  formed by reaction i n  diglyme o f  2,2-bis(3' ,4'-dicarboxyl phenyl 

hexa-fl uoropropane wi th  a mixture o f  4,4'-di ami nodi pheny! ether (60%) and 

p-phenyl enediami ne (40%). The fractured T i  6-4 surfaces were categori zed as 

cohesive o r  i n te r f ac ia l  f a i l u r e  based on XPS analysis. A 3/8" diameter 

sample was punched a f t e r  visual examination o f  both f racture surfaces. These 

punched samples were then assigned t o  the fo l lowing groups: metal f a i l u r e  

surface (MFS) , adhesive fa i lu re  surface (AFS) , metal substrate surface (MSS) , 
and adhesive substrate surface (ASS). A Bausch and iomb stereo-zoom opt ica l  

microscope (OM) was used t o  photograph each punched sample a t  20X. 

The samples were mounted wi th copper tape on an aluminum stub. These 

samples were go1 d coated and photomicrographs o f  these specimens were obtained 

using a JEOL JFM 35c scanning electron mfcroscope. 

The XPS studies of the fractured samples were done using a Physf cat 

E l  ectronf cs ESCA/SAM Model 550 electron spectrometer. Data acqui sf ti on was 

accompl i shed using a SAM 550 data system and a D i  g i  t a l  PDP-1104 computer. The 

punched samples were mounted wi th  double sided s t i ck  tape. The binding 

energies were referenced t o  the C I s  photopeak a t  284.6 eV. Wide scan (0  t o  

1100 eV) spectra were used t o  i den t i f y  the major elements present on the 



surface o f  the samples. Samples were scanned repe t i t i ve l y  t o  obtain the 

atomic f rac t ions o f  elements present i n  the sample surface. 

RESULTS AND O I SCUSSI ON 

X-ray Photoelectron Spectroscopy (XPS 1 

The XPS resu l ts  f o r  the f ractured lap shear samples where the T i  6-4 

adherends were pretreated by the Pasa J e l l  process are summarized i n  Table 11. 

The values of the binding energy (B.E.) i n  eV and atomic percent (A.P.) f o r  

each photopeak are 1 isted. Sample Nos. 056-P-32, 47 and 49 f a i l e d  cohesively. 

The 'A '  and 'B '  designation i n  Tabla I1 re fers  t o  the two f racture surfaces 

f o r  each o f  these samples. Since the samples f a i l e d  cohesf vely, the XPS 

resu l ts  f o r  the two surfaces should be qu i te  similar. Indeed, t h i s  i s  the 

case as judged by the agreement between the atomic percentages. 

The F 1s photopeak a t  an average value o f  688.3 ev seen i n  a l l  samples i s  

a t t r i bu ted  to  the f luor ine content o f  the adhesive. The 0 1s photopeak a t  an 

average value of 531.6 ev i s  seen on a1 1 surfaces and i s  a1 so due t o  the 

adhesive. The lower binding energy component a t  529.2 ev on the metal fa i lu re  

side (MFS) o f  Sample No. 056-P-37 i s  assigned ( 9 )  t o  oxygen i n  the t i t a n i  um 

oxide surface layer. I n  agreement wi th  t h i s  assignment, a s ign i f i can t  amount 

o f  Ti  was present only on t h i s  same surface which i s  evidence f o r  i n te r f ac ia l  

fa i lu re .  It i s  important to note t ha t  no s ign i f i can t  T i  photopeak wss found on 

the surfaces o f  the other three samples which had been aged f o r  500, 1000 and 

5000 hrs. This r e s u l t  i s  evidence o f  a residual adhesive f i l m  on the f racture 

surfaces th icker  than the XPS sampling depth (5 nm) f o r  those samples aged up 

t o  5000 hrs. The N 1s photopeak present a t  an average binding energy 400.0 ev 

on a1 1 samples i s  due t o  the adhesive. There were no s i g n i f i  cant amounts of 

C r  o r  Ca present on these samples, i n  contrast  to the presence o f  these two 



elements on Pasa-Jell pretreated T i  6-4 adherend prSor t o  bonding (10). 

The XPS resu l ts  of fractured Ti  6-4 adherends which had been pretreated 

w i t h  10V chromic acid anodize are summarized i n  Table 111. The binding 

energies of the fluorine, oxygen, t i tanium and n i  trogen photopeaks are s im i la r  

t o  those reported i n  Table 11. T i  was observed on the adhesive substrate 

surface (ASS) c f  Sample No. 056-10-65 which had been thermally aged a t  450°F 

f o r  10,000 hrs. The presence o f  T i  on the (ASS) could have resul ted from 

punching o r  a weakening o f  the surface oxide layer  caused by long term thermal 

aging. 

Lap Shear Strengtn 

The lap  shear strengths o f  T i  6-4 adherends pretreated by the Pasa J e l l  

process and by 10V chromic acid anodize, bonded w i th  NR 056X and then aged a t  

450°F from 500 t o  10,000 hrs are shown comparatively i n  Figure 1. The 

consistent ly lower lap  shear strengths f o r  the Pasa-Jell pretreated T i  6-4 

adherends may be due t o  the diminished mechanical in ter lock i n  a thinner oxide 

layer  as reported (11) f o r  t h i s  par t i cu la r  pretreatment. Indeed, a f t e r  10,000 

hrs a t  450°F, the 10V chromic ac id  anodized sample No. 056-10-65 s t i l l  f a i l e d  

cohesively whereas the Pasall e l  1 sample No. 056-P-37 f a i  1 ed i nter fac i  a1 l y  . 
Scanning Electron Microscopy (SEMI 

The SEPf photomicrographs o f  the two substrates (ASS and MSS) o f  Sample 

No. 056-10-65 which f a i l e d  cohesively are shown i n  Figure 2 and are 

superimposable. The ASS o f  t h i s  sample appears t o  consist  o f  only adhesive 

w i th  a few cracks on the surface through which the scrim c lo th  i s  v is ib le.  As 

reported i n  the XPS resul ts,  t h i s  surface gave a s ign i f i can t  T i  photopeak 

a f t e r  aging f o r  10,000 hrs a t  450°F which may be due t o  a weakening o f  the 

surface oxide layer. Patches o f  residual adhesive are seen on the MSS. I n  



contrast a SEM photomicrograph o f  the fracture surface o f  a representative 

cohesively f a i l e d  sample (No. 056-10-60) i s  shown i n  Figure 3. It i s  obvious 

t h a t  fracture occurred w i th in  the adhesf ve exposf ng scrim cloth,  some areas o f  

whfch appeared not to have been wetted by the adhesive. 

SUMMARY 

The appearance of an XPS T i  photopeak i n  fractured lap shear samples 

whfch had been thermally aged was used t o  assign the f a i l u r e  mode. The lap 

shear strengths were consistently higher f o r  the chromic acid anodized (10V) 

T i  6-4 adherends than f o r  the Pasa-Jell pretreatment. I n te r f ac ia l  fa i  1 ure was 

observed only f o r  the Pasa-Jell pretreated T i  6-4 which had been aged f o r  

10,000 hrs a t  450°F. 
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TABLE I 

DESCRIPTION OF BOEING T i  6-4 FRACTURED LAP SHEAR SAMPLES 

Surface Lap Shear 
Sample No. Pretreatment T i  me (hrs)[Temp] Strength( ps i  ) Fai 1 ure Mode* 

056-10-60 1OV CAA 50O[45O0] 1590 Cohesive 

056-10-20 10V CAA 1000c450°] 1830 Cohesive 

056-10-63 10V CAA 5000C450°1 2220 Cohesive 

056-10-65 1OV CAA 10000[450° 1 1760 Cohesive 

056-P-32 PASA JELL 500[450°] 1220 Zohesi ve 

056-P-47 PASA JELL 1OOO[45O0] 1250 Cohesive 

056-P-49 PASA JELL 5000[45O0 1 880 Cohesive 

056-P-37 PASA JELL 10000[450° 1 540 I n te r f ac i a l  

* 
based on XPS analysis o f  T i  2p3 photopeak. 



TABLE I 1  

XPS ANALYSIS OF FRACTURED BOEING T i  6-4 LAP SHEAR 

SAMPLES BONDED WITH NR 056X 

Sampl e Nc . 056-P-32( A) 056-P-32 ( B) 056-P-47(A) 056-P-47 ( B ) 
P hotopeak B.E. A.P. B.E. A.P. B.E. A.P. B.E. A.P. 

F I s  688.4 11.3 688.2 12.3 688.2 10.9 688.2 12.4 

0 I s  532.0 8.7 531.6 9.8 531.8 11.2 531.6 10.6 

T i  2p3 NIP NSP NSP NSP 

N 1s 400.2 3.8 400.2 4.2 400.2 3.3 400.0 4.2 

C IS 284.6 75.7 284.6 73.2 284.6 73.6 284.6 72.1 

Sample No. 056-P-49( A )  056-P-49( B) 056-P-37 ( AFS) 056-P-37 (MFS) 
P hotopeak B.E. A.P. B.E. A.P. B.E. A.P. B.E. A.P. 

T i  2p3 NSP tJSP NSP 457.6 1.7 

N 1s 400.0 4.4 400.0 4.3 400.0 2.7 399.8 2.9 

C 1s 284.6 73.1 284.6 73.4 284.6 82.1 284.6 64.2 

NSP - no s i g n i f i c a n t  peak 



TABLE I11  

XPS ANALYSIS OF FRACTURED BOEING T i  6-4 LAP SHEAR SAMPLES 

BONDED WITH 056 

Sample No. 056-10-60( A)  056-10-60(B) 056-10-20 ' 
pho topeak B.E. A.F. B.E. A.F. B.E. A.F. - 

T i  2p3 NSP NSP NSP 

Sample No. 
P hotopeak 

056-10-63A) 056-10-65( ASS) 
B.E. A.P. B.E. A.P. 

NSP 458.6 0.5 

400.0 3.7 399.8 4.5 

056-10-65 ( MSS ) 
B.E. A.P. 

NSP - no s i gn i f i can t  peak 
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Chemf s t r y  Department 

Cznter f o r  Adhesion Science 
Polymer Material s and Interfaces Laboratory 

V i  r g i  n i a  Polytechnic I n s t i t u t e  and State University 
Bl acksburg , VA 24061 

I NTRODUCTION 

The devel omen t o f  high temperature structural  adhesives w i  t h  improved 

strength and durab i l i t y  f o r  adhesive bonding o f  Ti  metals i s  an important 

study f o r  the advanced a i r c r a f t  industry i n  the U.S.A. Previous studies have 

indicated the importance o f  the surface oxide layer on Ti 6-4 f o r  bond 

du rab i l i t y  (1,2). A review o f  the surface oxide layer on Ti 6-4 have been 

reported (3). 

Most comnercial l y  avai lable high temperature adhesives such as FM-34 and 

NR15082G are good f o r  short term small area bonding a t  600°F ( 4 ) .  However 

good processing, mechanical and thermal propert ies have been shown by PPQ 

( polyphenyl qui noxal i ne) adhesive a t  600°F. Furthennore, the trace amounts o f  

solvents l e f t  on the PPQ serve as a p las t i c i ze r  to  enhance the i r  

processi b i  1 i t y  (4 1. 

The objective o f  t h i s  research i s  the characterization o f  the f racture 

surfaces of Ti  6-4 lap shear coupons bonded wi th PPQ adhesive and thermally 

aged up t o  10,000 hours. The lap shear strength of these samples have been 

reported (5  1. 



EXPERIMENTAL 

Sampl es 

Fractured Ti 6-4 lap shear samples were sent from the Boeing Aerospace 

Company snd these panels were used as received. A detai led microscopic/ 

spectrosfooic study of sirni 1 a r  sarnpl es i n c l  uding crack extension measurements has 

been reported (6). The samples used i n  t h i s  study are described i n  Table I. It 

i s  noted tha t  these samples are qu i te  in terest ing because few bond du rab i l i t y  

studies have exsnded t o  10,000 hrs a t  450°F. The Ti  6-4 adherends were 

pretreated by both 10V and 5V chromic acid anodize (CAA) and by a Boeing 

phosphate-fluoride (PF) etch. The Ti  6-4 panels *re bonded wi th PPQ 

( polyphenyl quinoxal ine). The polyphenyl quinoxal ene (PPQ) i s  formed by react ing 

3,3' ,4,4'-tetraaminobf phenyl w i th  1,3-Bi s( phenyl glyoxalyl ) / benzene i n  a 1: 1 

mixture o f  m-cresol and xylene a t  298'~ (77'F). Furthermore, t h i s  h i ~ h  molecular 

weight-high temperature thermoplastic does not undergo a chemical cure reaction 

(7.8). 

The fractured Ti 6-4 surfaces were categorized based on XPS analysis as -- 

cohesive o r  i n te r f ac ia l  mode f a i l u r e  as l i s t e d  i n  Table i .  A 1/4" diameter 

sample was punched a f t e r  visual examination o f  both f racture surfaces. These 

punched samples were then assigned to the fol lowing groups: metal f a i l u r e  

surface (MFS) , adhesive f a i  1 ure surface ( AFS) , metal substrate surface (MSS) , and 

adhesive substrate surface (ASS ) . These four surfaces are shown schematical ly i n  

Figure 1. A Bausch and Lomb stereo-zoom opt ical  microscope (OM) was used t9 

photograph each punched sample a t  20X. 

Scanni ng Electron Microscopy (SEMI 

The samples were mounted wi th copper tape on an aluminum stub. One set 

o f  samples was coated wi th a gold/pal ladium a l loy  and photomicrographs a t  

varfous magnifications were obtained on an AMR (Advanced Metal Research 



Corporation: Model 900) scanning electron microscope. A second set o f  

samples was go1 d-coated and photomicrographs o f  these specimens were obtained 

us i  ng a JEOL JFM 35c scanning electron microscope. The surface o f  some o f  the 

sampl es were coated w i  t h  carbon and were examined by EDX (energy dispersive 

x-ray analysis) i n  order to  i den t i f y  the elements present i n  tha t  par t i cu la r  

surface. 

X-ray Photoelectron Spectroscopy (XPS 

The XPS studies of the fractured samples were done using a Physical 

Electronics ESCWSAM Mode; 550 electron spectrometer. Data acquis i t ion was 

accmpl i shed using a SAM 550 data system and a D i  g i  ta t  PDP-1104 computer. The 

punched samples were mounted w i t h  double sided s t i ck  tape. The binding 

energies were referenced to the C 1s photopeak a t  284.6 eV. Wide scan (0 t o  

1100 eV) spectra were used t o  i den t i f y  the major elements present on the 

surface o f  the sampl es. Sampl es were scanned repet i  ti vel y t o  obtain the 

atomic fract ions o f  elements present i n  the sample surface. 

RESULTS AND DISCUSSIOM 

Scanning E l  ectron Microscopy/Optical Microscopy( SEM/OM) 

Extensive microscopy work was done on the samples 1 i s t ed  i n  Table I. 

However, microscopy i s  reported f o r  only two samples representative o f  

cohesive and in te r fac ia l  fa i lure.  A photograph o f  the fractured lap shear 

Sample No. PPQ-10-46 which fa i led cohesively i s  shown i n  Figure 2A. An OM 

photomicrograph of a sample punched from the indicated region o f  Side I i s  

shown i n  Figure 28. An SEM photomicrograph o f  the same sample i s  shown i n  

Figure 2C. The cohesive f a i l u r e  o f  t h i s  sample involved extensive disrupt ion 

o f  the glass scrim cloth. No features character ist ic  o f  the Ti 6-4 adherend 

are seen i n  the SEM photomicrograph. EDX analysis o f  t h i s  sample showed only 

Ca and S i  signals character ist ic  o f  glass. 



I n  contrast, SE!4 photomicrographs f o r  Sample No. PPQ-D-5 which f a i l e d  

i n t e r f a c i a l l y  are shown i n  Figure 3. The adhesive f a i l u r e  surface (AFS) and 

the metal f a i l u r e  surface (MFS) are shown i n  Figures 3A and 38, resp. 

Features characteri s t i c  o f  the acid etched phosphate-fl uo r i  de pretreated Ti 

6-4 surface ( 9 )  are seen i n  Figure 38. Imprints of the 8-phase of the a1 l oy  

are c lear l y  seen i n  the adhesive o f  the adhesive f a i l u r e  surface (AFS) i n  

Figure 3A. The metal substrate surface (MSS) i s  shown a t  higher magnif icat ion 

i n  Figure 3D. Again the impr in t  o f  t h i  s surface i s  seen i n  the adhesive on 

the adhesive substrate surface (ASS) i n  Figure 3C, as evidenced by the voids 

l e f t  by pul l -out  o f  the p-phase. 

XPS Analysis 

The resu l ts  o f  an extensive XPS analysis o f  the d i f f e ren t  fractured 

surfaces are shown i n  Tables 11-IV. A few general comments on the XPS resu l t s  

are appropriate. A N I s  photopeak a t  an average binding energy o f  399.0 + 0.1 

ev was observed on a1 l samples. The Ca and S i  photopeaks observed on a number 

o f  surfaces probably resulted from exposed scrim c l o th  (see Figure 2) .  

However, there i s  some evidence t o  suggest tha t  the s iz ing on the scrim c l o tn  

i s  thermal l y  degraded on aging and may i n  f a c t  migrate i n t o  the interphase 

region. The evidence i s  tha t  a S i  photopeak i s  observed on some metal 

surfaces, f o r  example, PPQ-10-36, where no glass f ibe rs  are seen i n  the SEM 

( see Figures 38 and 3D) and where no Si  :ignal i s  observed i n  the EDX 

spectrum. A recent repor t  (10) notes evidence f o r  glass wool bleed i n  gas 

chromatographic col umns. Additional experiments are needed t o  determine i f  

indeed the scrim c l o th  s iz ing i s  degraded on thermal aging which i n  turn  

resul t s  i n  dimi n i  shed bond durabi 1 i t y  . 
The Pb photopeak noted on nine surfaces i s  associated wi th the 

polyphenylquinoxaline adhesive. Lead i s  not present on the surface o f  neat 

PPQ f i l m  but appears i n  the fracture surface( s )  of  a number o f  thermally aged 



samples bonded wi th PPQ. Lead f s  not  observed on the pretreated Ti 6-4 surface 

p r i o r  to bondfng o r  on any fracture surfaces bonded wi th e i ther  NR-056 or 

LARC-13. 

C r  2p and F 1s photopeaks were observed on chromfc acid anodized Ti  6-4 

adherends p r i o r  t o  bondfng; further, P 2p and F 1s photopeaks were observed 

on phosphate-fl uoride pretreated M 6-4 adherends p r i o r  t o  bonding (9 ) .  It i s  

s ign i f i can t  t $ a t  no C r ,  F o r  P photopeaks were observed on any o f  the f racture 

surfaces analyzed. This r e s u l t  i s  expected for those samples which f a i l e d  

cohesively. However such photopeaks were expected to be present e f ther  on the 

metal f a i l u r e  surface (WS) o r  on metal substrate surface (MSS', o r  both. The 

f a c t  t ha t  these photopeaks were not observed on e i ther  metal surface suggests 

migration o f  these residuals i n t o  the adhesive o r  fur ther  i n t o  the oxide layer. 

Sf nce the ef fec t f  ve XPS sampl fng depth i s  only about 5 m, s ign i f i can t  

migration has occurred to a t  l eas t  t h a t  extent. There i s  a d i f f i c u l t  question 

t o  answer corcernfng trace residuals and tha t  f s the e f fec t  ( i f  any) t ha t  such 

residuals play i n  determining the durabfl Sty o f  t i tanium adhesf ve bonds. It 

has been reported (11) t ha t  the presence o f  f l uo r ine  i s  detrimental t o  adhesf ve 

bondf ng i n  a1 umf nun. No such concl usion has been made about Ti bonding. For 

example. i s  the presence o f  S i  , Pb, F and other trace residuals detrimental t o  

the durabil i t y  o f  Ti bonds? De f i n i t i ve  experiments are needed i n  t h i s  area 

which i s  d i f f i c u l t  since i t f s  hard t o  s i gn i f i can t l y  a l t e r  residual 

concentrations without a t  the same time a l te r ing  other propert ies o f  the 

adherend surface. 

Sampl e Nos. PPQ-10-67 and PPQ-10-14 - These 10 vol t chromic acid anodi zed 

samples therma; l y  aged a t  120°F f o r  500 and 5000 hrs respectf vely f a i l e d  

cohesf vely w i t h  high lap  shear strength (see Tab1 e I ) .  An 0 1s photopeak from 

the polymer i s  seen a t  an average bf ndi  ng energy o f  532.4 ev which i s  



character ist ic  o f  the PPQ adhesive. A t race amount o f  Ti i s  present on Sample 

No. 67 but  was not  observed on Sample No. 14. 

Sample No. PPQ-10-46 - This 10 vol t chromic acid anodized sap1  e was 

thermally aged a t  450°F f o r  500 hrs  f a i l e d  cohesively. Again, only a trace 

amount o f  Ti was present on the fracture surface, 

Sample No. PPQ-10-36 - The adhesive f a i l u r e  surface (AFS) gave only a 

trace Ti signal f o r  t h i s  low strength sample (910 ps i )  af ter  thermal aging a t  

450°F for  10,000 hr. The metal f a i l u r e  surface (MFS) contained a f a i r  amount 

o f  PPQ adhesive as evidenced by the doubi e t  oxygen 1s photopeak. The XPS 

resu l t s  f o r  the adhesive substrate (ASS) and metal substrate (MSS) surfaces 

para l le l  those f o r  the f a i l u r e  surfaces. A s i gn i f i can t  Pb photopeak i s  noted 

on three of the f racture surfaces o f  t h i s  sample. The f ac t  t ha t  Pb i s  observed 

on the metal f a i l u r e  surface (MFS) suggests a t ransfer o f  Pb from the adhesive 

to the interphase. 

Sample No. PPQ-A-7 - This unaged sample f a i l e d  cohesively having a high 

l a p  shear strength o f  4650 psi. The XPS analysis o f  t h i s  sample gave a s ingle 0 

1s photopeak a t  532.6 ev character is t ic  o f  PPQ. 

Sample No, PPQ-5-28 - Thi s sampl e was thermally aged a t  120°F f o r  5000 

hrs. and f a i l e d  i n te r f ac ia l  l y  w i th  a 1 ap shear strength o f  1780 psi. An 0 I s  

photopeak a t  532.1 ev due t o  the polymer i s  seen for  both MFS and AFS. However 

a lower binding energy unresolved 0 1s photopeak on the MFS i s  evidence for  the 

surface oxide covered by a t h i n  adhesive 1 ayer. Thi s assignment i s  supported 

by the presence o f  Ti 2p3 photopeak i n  the MFS. 

Sample No. PPQ-5-18 and PPQ-5-8 - These samples were thermally aged a t  

4504F f o r  500 hrs.and 10,000 hrs. respectively. The Sample No. 8 aged f o r  

10,000 hrs. f a i l e d  in te r fac ia l  l y  and has a low lap shear strength o f  420 psi.  

As expected a strong Ti photopeak i s  shown on both MFS samples. However, a 
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s igni f icant  amount o f  Ti was a1 so present on the AFS f o r  the Sample No. 8 tha t  

was thermally aged t o  10,000 hrs. This i s  an interest ing f inding because the 

sampl e themal 1 y aged a t  120°F I ar  5000 hrs showed no trace o f  Ti on the AFS. 

This resu l t  suggests the cracking o f  the oxide layer on the Ti 6-4 adherend and 

transfer o f  the metal o ~ f d e  t o  the AFS wf th long term aging a t  450°F. 

Furthermore, only a trace amount o f  S i  i ; present on the WS o f  Sample No. 

28 [120°F, 5000 hrs]. However a s ign i f icant  amount of S i  i s  present on the MFS 

side fo r  both Sample Nos. 18 and 8. No s ign i f icant  peaks of S i  are found on 

any o f  4FS o f  the above samples. This suggests a transfer o f  S i  from the glass 

c lo th  t o  the metal surface w i t h  themal aging a t  higher temperatures. A 

s igni f icant amount o f  Pb i s  found on a l l  the samples including those discussed 

above and presumably i s  introduced i n  the polymer synthesis. 

Sample No. PPQ-0-5 - This phosphate f luor ide pretreated sample was 

thermally aged a t  2S°C and fa i led  i n te r fac ia l l y  with a lap shear strength o f  

1950 psi. A strong 0 1s photopeak from the polymer i s  seen fo r  both AFS and 

ASS a t  an average binding energy of 532.5 ev. The lower 0 Is photopeak a t  an 

average binding energy o f  530.0 ev i s  due to  the surface oxide layer on MFS 

and MSS. l h i  s i s  also supported by a s ign i f icant  Ti 2p3 photopeak a t  an 

average binding energy o f  458.7 ev on these same surfaces. Again a 

s ign i f icant  amount o f  Pb from the adhesive i s  present on the ASS and the MSS. 

Sample No. PPQ-0-4 - This sample has thermally aged a t  450°F and fa i l ed  

cohesively with a high lap shear strength. As mentioned i n  the previous case, 

the higher energy 0 1s photopeak from the polymer i s  seen on a l l  surfaces whereas 

the lower binding energy 0 1s photopeak from the surface oxide i s  present only on 

MSS . 
Effect o f  Pretreatment, Aging Temperature and Aging Time on Fai lure Mode 

The e f fec t  o f  pretreatment a t  constant aging time and temperature may be 
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seen on capar ison  o f  Sample Nos. PPQ-10-14 and PPQ-5-28 and of Sampl e Nos. 

PPQ-10-46 and PPQ-5-18. The 10V CAA pretreatment leads t o  cohesive f a i l u r e  i n  

both cases whereas the 5V CAA pretreatment resul t s  i n  i n te r f ac ia l  f a i l  ure. 

The e f f e c t  o f  aging temperature f o r  10V CAA a f te r  500 hrs  a t  120°F and 450°F 

i s  seen on comparison o f  W p l  e Nos. PPQ-10-67 and PPQ-10-46. Af ter  t h i s  

r e l a t i v e l y  short  exposure, there i s  no s ign i f i can t  e f f e c t  o f  aging temperature 

on fa i lu re  mode. The e f f e c t  o f  aging time f o r  l0V CAA a t  12Q°F i s  seen on 

comparison o f  Sample Nos. PPQ-10-67 and PPQ-10-14; there i s  no di f ference 

between 500 and 5000 hrs. However, a t  450°F, the f a i l  ure mod? shi f t s  from 

cohesive to in ter fac ia l  f a i l u r e  f o r  aging a t  500 versus 10,000 hrs f o r  the 10V 

CAA Sample Nos. PPQ-10-46 and PPQ-10-36. Summarily, 10V CAA pretreated Ti 6-4 

l ap  shear Samples aged for 5000 h rs  a t  450°F s t i l l  show cohesive fai lure. 

However, longer term aging to  10,000 hrs  resul t s  i n  i n te r f ac ia l  fai lure. 

SUMMARY 

SEM/XPS analysis of fractured PPQ bonded T i  6-4 lap shear samples i s  

useful i n  establ ishing the f a i l u r e  mode. The 10V CAA pretreatment i s  superior 

to the 5V CAA based on f a i l u r e  analysis o f  samples aged f o r  times up t o  10,000 

hrs  and a t  temperatures up t o  450°F. The XPS resu l ts  suggest a weakening of 

the surface oxide layer wi th  long term thermal aging. The ef fec t ,  i f  any, o f  

s i  1 icon and 1 ead observed as t race residual s on the f a i l  ure mode i s  

uncertain. 
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TABLE I 

DESCRIPTION OF BOEING T I  6-4 FRACTURED LAP SHEAR SAMPLE: 

Surface A 9 l n q  Lap Shear 
Sample No. Pretreatment Time( hrs [Temp] Sb.rength, psi  F a i l  ure mode 

PPQ-10-67 10 Vo l t  CAA 500 [120°F1 2850 Cohesive 

PPQ-10-14 10 Vo l t  CAA 5000 [120°F] 2920 Cohesive 

PPQ-10-46 10 Vol t  CAA 500 [450°F] 2560 Cohesive 

PPQ-10-36 10 Vo l t  CAA 10.000 [450°F] 910 I n te r f ac i a l  

PPQ-A-7 5 Vo l t  CAA 4650 Cohesive 

PPQ-5-28 5 Vol t CAA 5000 [120F01 1780 I n te r f ac i a l  

PPQ-5-18 5 Vo l t  CAA 500 [450F01 2030 In ter fac f  a1 

PPQ-5-8 5 V c l t  CAA 10,000 [450°F1 420 I n te r f ac i  a1 

1950 I n te r f ac i a l  

3000 Cohesive 



Table I1 

XPS ANALYSIS OF FRACTURED BOEING T I  6-4 (1OV CAAI LAP SHEAR SAMPLES 

BONDED WITH PPQ 

Sample No. PPQ-10-67 PPQ-10-14 PPQ-10-46 
Photopeak - B.E. A.F. - B.E. P..F. - - - - B.E. A.F. 

Ti 2 ~ 3 / 2  458.6 0.001 NSP 458.4 0.001 

Ca 2 ~ 3 / 2  NS 348.2 9.008 NS 

Pb 4f7/2 NS NSP NS 

Si  2p 102.4 0.040 103.0 0.049 102.8 0.046 

Sample No. PPQ-10-36 ( AFS) PPQ-10-36 (MFS) PPQ-10-36 (ASS) PPQ-10-36 (MSS) 
Photopeak - B.E. A.F. B.E. - - - - - - A.F. B.E. A.F. B.E. A.F. - 
0 IS 532.2 0.15 531.8 0.33 532.4 0.14 532.ZD 0.28 

D 
T i  2 ~ 3 / 2  458.6 trace 458.2 0.028 NSP 458.4 0.03 

Ca 2 ~ 3 / 2  NSP NSP NSP NSP 

Pb 4f7/2 138.6 0.005 138.1 0.017 138.8 0.005 NSP 



Table I11  

XPS ANALYSIS OF FRACTURED BOEING T I  6-4 (5V CAA) LAP SHEAR SAMPLES 

BONDED WITH PPQ 

Sample No. PPQ-A-7 PPQ-5-28( AFS) PPQ-5-28( MFS) 
Photopeak B.E. - A.F. - E.E. - A.F. - B.E. - A.F. - 

T i  2~312 NS NSP 457.8 0.017 

Ca 2~312  NS MSP NSP 

Sf 2p 103,2 0.059 102.4 0.015 102.6 t race 

Srrmpl e No. PPQ-5-18tAFS) PPQ-5-18(MFS) PPO-5-8(AFS) PPQ-5-8 (MFS) 
P hotopeak - B.E. A.F. B.E. - - - - - - A.F. B.E. AeF- BoEe A.F. - 
0 1s 532.3 0.310 532.6 0.147 532.2 0.085 530.2D 0.167 

T i  2p3 NSP 458.9 0.007 458.8 0.003 458.2 0.026 

ca 2~312 NSP NSC' NSP NSP 

Pb 4f 7/2 138.0 0.003 138.8 0.005 138.8 0.004 138.4 0.017 

Sf 2p NSP 102.8 0.019 NSP 102.2 0.018 



Table I Y  

XPS ANALYSIS OF FRACTURED B E I N G  T I  6 4  (SOEING PF) LAP SHEAR SAMPLES 

BOMUED WITH PPQ 

Simple #o. PPQ-0-5 ( AFS ) PPQ-O-5 ( WS ) PPQ-0-5 (ASS 1 PPQ-0-5 (MSS 
Photapeak B.E. - A.F. B.E. - - A.F. B.E. - - A.F. B.E. - - A.F. - 

Sa~ple No. PPQ-D-4 PPQ-D-4 f ASS) PPQ-D-4 1 MSS 
Photopeak - B.E. A.F. - B.E. - A.F. - B.E. - A.F. - 
0 1s 532.6 0.14 532.9 0.33 530.2~ 0.28 

D 

* lower B.E. peak predosbinates. 



oR?mRi P , r Z  7 
OF POOR cL;r;-!-:': 

C 

flETAL FA1 LURE SURFACE(fiFS> 

r-- ADHESIVE FAILURE SURFACEMFS) 

ADWIVE SUBSTRATE SURFACE(ASS) 

7- METAL SUBSTRATE SURFACE( rlSS) 

Figure 1.  Schematic o f  fractured l a p  shear specimen. 







SEMIXPS ANALYSIS OF FRACTUREC ADHESIVELY BONDED Ti 6-4 SAMPLES. 
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INTRODUCTION 

The development o f  high temperature durable adhesive f o r  jo in ing  metal s, 

f i  ber-rei nforcedlpol per -mat r i x  composi tes, metal Icomposi tes and f i lms have 

become increasing'ly important research areas for the aerospace industry. 

Research workers a t  NASA Langley have been studying 1 inear aromatic 

condensation polyimides t h a t  are good candidates f o r  aerospace adhesives 

because o f  thei  r remarkabl e thermal and thermooxidati ve stabi 1 i t y  , toughness 

and f l e x i b i l  i ty, rad ia t ion and sol vent res i  stance, low density, and excel l e n t  

mechanical and e lec t r i ca l  propert ies (1 1, 

However, i n  recent years the LARC family o f  addi t ion polyimide adhesives 

have been eval uated f o r  bonding ti tan i  urn and polyimidelgraphi te composi tes. 

LARC-13 polyimide has a high crossl ink density and can be used a t  temperatures 

higher than i t s  g l  ass t rans i  ti on temperatures o f  270°C (1 1. Furthermore, 

LARC-13 adhesive has been shown t;, be useful i n  the bonding o f  honeycomb 

sandwich structures which require low bonding pressures and very short bonding 

times a t  the bonding temperatures (1,2). 

The objective o f  the present research i s  the SEM!XPS analysis o f  

fractured Ti  6-4 lap shear coupons bonded wi th LARC-13 adhesive and thermally 

aged f o r  up t o  10,000 hrs. The lap shear strengtrhs o f  these samples have 

been reported (3 1. 



EXPERIMENTAL 

Sampl es 

Fractured Ti 6-4 lap shear samples were sent from the Boeing Aerospace 

Company and these panels were used as received. A detai led microscopic/ 

spectrvscopic study o f  simi 1 a r  sampl es i ncl  udi ng crack extension measurements 

has been reported (4). The samples used i n  t h i s  study are qu i te  in terest ing 

because few bond du rab i l i t y  studies ( 5 )  have extended to 10,000 hrs a t  4 5 0 ~ ~ .  

The Ti 6-4 adherends were pretreated by 10V chromic acid anodize, Pasa J e l l ,  

phosphate f luor ide,  (Picatinny and Boeing) and a lka l ine peroxide etch. The 

T i  6-4 panel s were bonded w i  t h  URC-13 ( polyi"ide) . 
The LARC-13 polyimide i s  synthesized by the fol lowing general procedure: 

A mixture o f  m,m' -MDA (m,mS-diami nodi phecyl methane) , NA ( nadic anhydride) and 

BTDA (3,3' ,4,4'-benzophenone tetracarboxyl i c  aci a anhydride) monomers are 

reacted i n  DMF a t  20°C. The resu l t ing  amic acid prepolymer i s  cured a t  lW°C 

t o  form the imide prepolymer tha t  i s  fur ther  heated a t  300°C t o  prepare the 

:ARC-13 cross1 inked polyimide (1,2,5). 

The fractured Ti  6-4 surfaces were categorized e i ther  cohesive o r  

i n te r f ac ia l  f a i l u r e  based on XPS analysis [see table I]. A 3/8" diameter 

sample was punched a f t e r  visual examination o f  both fracture surfaces. These 

punched samples . e r e  then assigned to  We f o l l  owing groups: metal fa i lu re  

surface (MFS) , adhesive f a i l  ure surface (NS)  , metal substrate surface (MSS) , 

and adhesive substrate surfass (ASS). A Bausch and Lomb stereo-zoom opt ical  

microscope (OM; was used to photograph each punched sample a t  20X. 

Sccnning E l  e c t r o ~ l  Microscopy (SEMI 

The samples were munted wi th copper tape on an aluminum stub. One set 

o f  samples was coated wi th a gold/palladium a l loy  and photomicrographs a t  

various magnifications were obtained on an AMR (Advanced Metal Research 
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Corporation: Model 900) scanning electron microscope. A second set  o f  

sampl es was go1 d-coated and photomicrographs of these specimens were obtained 

using a JEOL JFM 35c scanning electron microscope. The surface o f  some o f  the 

samples were coated with carbon and were examined by EDX (energy dispersive 

x-ray analysis) i n  order t o  i den t i f y  the elements present i n  that  par t i cu la r  

surface. 

X-ray Photoelectron Spectroscopy (XPS) 

The XPS studies o f  the fractured samples were done using a Physical 

E l  ectronics ESCWSAM Model 550 e l  ec t ron  spectrometer . Data acqui s i  ti on was 

accomplished using a SAM 550 data system and a D ig i t a l  POP-1104 computer. The 

punched samples e r e  mounted w i t h  double sided s t i ck  bpe.  The binding 

energies were referenced t o  the C 1s photopeak a t  284.6 eV. Wide scan (0 to 

1100 eV) spectra were used to i den t i f y  the major elements present on the 

surface o f  the samples. Samples were scanned repe t i t i ve l y  to obtain the 

atomic fract ions o f  elements present i n  the sample surface. 

RESULTS AND DISCUSSION 

Scaning El ectron Nicroscopy/Optical Microscopy (SEMIOM) 

Extensive microscopy work was done on the samples 1 i s t ed  i n  Table 1. 

However, microscopy i s  reported f o r  only two samples, representative o f  

cohesive and i n te r f ac ia l  fa i lu re .  A photomicrograph o f  the fractured lap 

shear Sample No. L13-10-53 which f a i l ed  cohesively i s  shown i n  Figure 1. The 

cohesive f a i l  ure of t h i s  sample involved exuns ive disrupt ion o f  the glass 

s c ~ i m  cloth. No features character ist ic  o f  the Ti 6 4  adherend are seen i n  

the SEM photomicrograph. EDX analysis o f  t h i s  sample showed oniy Ca and S i  

signal s character ist ic  o f  the glass. 

I n  contrast, ;EM photomicrographs f o r  Sarnpl e No. L13-P-"6 are shown i n  

Fisure 2. The adhesive f a i l u r e  surface (AFS) i s  shown i n  Fig. 2A. Adhesive- 
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coated scrim c l o th  i s  v i s i b l e  i n  the large void. A number o f  alumina 

par t i c les  contained i n  the L13 adhesive are seen i n  the center o f  the 

photomicrograph. The same metal f a i l u r e  (MFS) a t  f ncreasi ng magnification i s  

shown i n  Figs. 20-2D. Arrows indicate areas which appear a t  higher 

magnification. Patches o f  adhesive are seen on the Ti  6-4 adherend o f  the 

MFS (Fig. 28). The alumina par t i c les  i n  an L13 adhesive patch are seen i n  

Fig. 2C. Features of the Ti 6-4 adkrend surface are seen i n  Fig. 2D. I n  

addition, there i s  a smooth adhesive layer covering a large area and the 

larger  alumina par t i c les  stand i n  contrast to the smaller @-phase o f  the a l l oy  

produced by the Pasa-Jell process. 

XPS Analysis 

The resu l ts  o f  an extensive XPS analysis o f  the d i f f e ren t  fractured 

surfaces are shown i n  Tables I1  and 111. A N 1s photopeak a t  an average 

binding energy o f  400.0 2 0.1 eV was observed on a l l  samples and i s  not 

included i n  the tables. C r  2p and F 1s rhotopeaks were observed on chromic 

acid anodized Ti 6-4 adherends p r i o r  to bonding and further, P 2p and F 1s 

photopeaks were observed on phosphate f luo r ide  pretreated Ti 6-4 adherends 

p r i o r  t o  bonding (6). It i s  s ign i f i can t  tha t  no C r  photopeak Has observed on 

any o f  the fractured surfaces analyzed where the adherend had been chromic 

acid anodized; s imi l  a r l  y , n3 P photopeak was observed f o r  phosphate- fl uor i  de 

pretreated Ti 6-4 adherend. This r e s u l t  i s  expected f o r  those samples which 

f a i l ed  cohesively. However, such photopeaks were expected t o  be present 

e i ther  on metal f a i l u r e  surfaces (MFS) or on the metal substrate surfaces 

(MSS) or  both. 

Sample Nos. L13-10-53, L13-10-41 and L13-10-28 - A1 1 these 10 v o l t  

chromic acid anodized samples were thermally aged a t  b2C°F from 5C0 t o  5000 

hrs and fad l e d  cohesively wi th  high lap shear strengths as 1 i s t ed  i n  Table I. 
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As reported i n  Table 11, a 0 1s photopeak from the polymer a t  an average 

binding energy o f  531.8 ev i s  seen on a l l  the samples as expected f o r  cohesive 

fa i lure .  A trace amount o f  Ti i s  present on Sample No. 53. However, there i s  

no s ign i f i can t  Ti  photopeak from the r e s t  o f  the samples which was expected, 

because f a i l u r e  i s  wi th in  the adhesive. A s ign i f i can t  concentration o f  Si and 

Ca i s  present i n  these samples due t o  exposed scrim cloth. The appearance o f  

a s ign i f i can t  F 1s photopeak I n  Sample Nos. 41 and 28 i s  surprising, 

especial ly  since no Ti photopeak was observed. This r e s u l t  suggests possible 

migration of F fm the in ter face i n t o  the adhesive on long term ( >  3000 hrs.) 

even a t  120°F. 

Smpl e Nos. L13-10-60, L13-10-33, L13-10-6, L13-10-21 and L13-10-50 - 
These samples were thermally aged a t  450° from 500 to 10,000 hrs. The two 

sampi es aged for 500 and 1000 hrs (Nos. 60 and 33) f a i l  ed cohesively wi th  high 

l a p  shear strengths. Similarly, the samples aged fo r  5000 and 10,000 hrs 

(Nos. 21 and 50) f a i l e d  i n t e r f n c i a l l y  wi th  lower lap shear strengths. As 

mentioned before the higher binding energy 0 1s photopeak a t  about 532 eV i s  

character is t ic  o f  the L13 adhesive on the MFS o f  sample and suggests a t 9 i n  ( <  

5 nml residual layer o f  adhesive on the oxide surface. 

A more detai led analysis o f  the F 1s photopeaks demonstrate the mobil i t y  

o f  F i n  the interphase. For example, no F was abserved i n  Sample No. 60 wnich 

was aged for  only 500 hrs a t  450°F and which faf  l e d  cohesively. However, a 

F 1s photopeak was observed on cohesively f a i l ed  sample aged f o r  3000-5000 hrs 

a t  120°F. F 1s photopeaks were observed on the fractured surfaces o f  Sample 

Nos. 33 and 6 which were aged f o r  1000 and 3000 hrs., respectively. F ina l ly ,  

no s ign i f i can t  F 1s photopeak was observed on any o f  the four fractured 

surfaces o f  sample NOS. 21 and 50 which has been aged f o r  5000 and 10,000 hrs. 

respectively. It i s  c lear then tha t  I' i s  l a b i l e  and i s  migrating out o f  the 



i n te r fac ia l  region and i n t o  the adhesive during thermal aging e i the r  over 

1 onger times a t  120°F o r  shorter times a t  450°F. 

Sample Nos 33 and 6 gave a higher binding energy F 1s photopeak a t  688.7 

ev compared t o  the more common F 1s photopeak a t  685.6 ev. The assignment o f  

both o f  these two F 1s photopeaks i s  uncertain. The lower binding energy peak 

i s  probably due to f luo r ide  ion. However, the higher binding peak i s  y e t  

unassigned. 

As expected a s i gn i f i can t  amount o f  Ti i s  present on a1 1 MFS samples. 

However a s igni  ficane amount o f  Ti i s  present on the AFS o f  Sample NO. 50 t ha t  

was aged a t  450°F f o r  !..3,000 hrs. Thi s i s a surpr is ing resul t since no 

t i tanium woul be expec-r! on the adhesib2 side. These resu l t s  suggests the 

cracking o f  the oxide surface w i th  long term aging a t  higher temperatures. 

Furthermore, these resul t s  are supported by the presence o f  a 1 ower binding 

oxygen photopeak a t  529.8 ev on t?e AFS i s  assigned to the surface oxide 1 ayer 

(7). I n  contrast, only a t race amount o f  Ti to no s i gn i f i can t  amount i s  

present on these samples aged a t  120°F. 

Sample No. L13-P-25 - This sample was thermally aged a t  120°F f o r  500 hrs  

f a i l e d  i n  the mixed mode w i th  a hish l ap  shear strength of 2640 psi.  No 

s i gn i f i can t  amount o f  e i t he r  F o r  Ca was found on t h i s  sample. However, an 

intense higher binding energy C 1s photopeak i s  seen on both AFS and MFS. This 

suggests a t h i n  layer o r  patches o f  adhesive on the MFS and i s  supported by the 

presence o f  a Ti  2p photopeak on MFS and a1 so by a 1 ower binding energy 0 1s 

photopeaks. Furthermore, no s i gn i f i can t  amount o f  Ti i s  present on the AFS b u t -  

a strong S i  2p photopeak i s  evident on both AFS and MFS and i s  due to  exposed 

scrim cloth. 

Sample No, L13-P-46, L13-P-35 2nd L13-P-36 - A l l  these samples were 

thermally aged a t  45Q°F f o r  , 10, 5000 and 10,000 hrs respectively. Sample No. 

46 fa i l ed  i n  the mixed mode wi th  a high l ap  shear strength of 2280 psi whereas 



7 

both Sample Nos. 35 and 36 fa i led  i n te r f ac i a l  l y  wi th moderate t o  1 ow 1 ap shear 

strengths. A trace t o  s ign i f i can t  amount o f  F and Ca are pressnt on these 

samples even a f t e r  aging f o r  10,000 hrs  a t  450°F. A1 so a s i gn i f i can t  amount of 

S i  i s  present on most o f  the fractured surfaces. 

Furthermore, a higher binding energy 0 1s photopeak i s  seen on most MFS, 

AFS and ASS surfaces. This suggests the presence o f  a t h i n  layer o r  patches of 

adhesive on the MFS. Also i t  i s  in te res t ing  t o  note tha t  no s i gn i f i can t  amount 

o f  Ti i s  present on any o f  the AFS which does co t  support the cracking o f  the 

oxide layer  as i n  those samples pretreated by anodization. 

It i s  s ign i f i can t  t h a t  the Pasal le l l  pretreated Ti 6-4 adherends give only 

a small 0 1s photopeak a t  the lower binding energy even on the MFS and M S  

samples. This r e s u l t  i s  consistent w i t h  the low i n tens i t y  Ti 2p phot~peak on 

the same surfaces. These two resu l t s  together suggest a r e l a t i v e l y  th i ck  

adhesive layer l e f t  on the Pasal le l l  treated surface. 

Effect o f  Pretreatment, Aging Temperature and Aging Time ell Fai lure  Mode. 

The e f f e c t  o f  pretreatment a t  a constant aging time o f  500 hrs  and an 

aging temperature o f  120°F may be seen on comparison o f  Sample Nos. L13-10-53 

and L13-P-25; again, a t  C:;O hrs  a t  450°F, a comparison i s  made o f  Sample Nos. 

L13-10-60 and L13-P-46. The di f ference i s  marked i n  tha t  i n  both sets o f  

samples, the 10V CAA pretreatment resul ted i n  cohesive f a i l u r e  whereas the 

Pasa J e l l  pretreatment resul ted i n  i n t e r f ac i a l  f a i l  ure. Both pretreatments 

r e s ~ l t e d  i n  i n t e r f ac i a l  f a i l u r e  a t  450°F a t  aging times > 5000 hrs. 

The e f f e c t  o f  aging a t  120°F versus 450°F for 10V CAA pretreated Ti 6-4 

adherends i s  minimal up t o  1000 hrs. However, cohesive fa i lu re  was s t i l l  

observed a t  both 3000 and 5000 hrs a t  120°F whereas i n te r f ac i a l  f a i l u r e  

occurred a f t e r  3000 hrs a t  450°F. 
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The e f fec t  o f  aging time f o r  10V CAA pretreated Ti 6-4 adherends can be 

gauged a t  both l2O0F and 450°F. Only cohesive fa i lupe  i s  observed a t  120°F on 

aging from 500 t o  5000 hrs. However, the onset o f  i n t e r f ac i a l  f a i l u r e  a t  450°F 

i s  noted between 1000 and 3000 hrs. 

Comparison o f  Ti  6-4 Adherend Pretreatments 

The resu l t s  o f  5V CAA, 1OV CAA and Pasa-Jell pretreated Ti 6-4 adherends 

can be compared f o r  three d i f f e r e n t  adhesive systems, namely NR 056, PPQ and 

LARC 13. A consistent pat tern emerges from an analysis o f  the XPS data f o r  

thermally aged lap shear samples. The 10V CAA pretreatment appears t o  be 

superior when carpared t o  5V CAA and to the Pasa-Jell process. XPS evidence 

has been presented to  support the "cracking" o f  the surface oxide 1 ayer during 

1 ong term thermal aging > 3000 hrs  a t  450°F. Siriwardane and Wightman (8 )  have 

reported calor imetr ic  evidence on wett ing by primer sol ut ions and sol vents o f  

T i  6-4 powders evacuated to d i f f e r e n t  temperatures f o r  a cracking o f  the surface 

oxide layer. Venables and co-workers ( 9 )  have reported the conversion o f  an 

i n i t i a l l y  amorohous Ti02 layer f o l l  owing CAA t o  an anatase Ti02 layer under 

re1 a t i ve l y  m i l d  conditions. 

There i s  no d e f i n i t i v e  f ind ing concerning the r o l e  o f  any t racq  surface 

residual s on bond durabi l  i t y  i n  any o f  the systems. However, several questions 

need to be addressed, namely ( 1  ) whether the s iz ing on the scrim c l o th  i s  

thermally d~~grading,  (2) whether the presence o f  Pb i n  the PPQ system i s  

detrimental , ( 3 )  whether the 1 ab i l  e f l uo r ine  observed i n  the LARC-13 adhesive 

i s  a problem. 
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TABLE I 

DESCRIPTIObl OF BOEING T I  6-4 FRACTURED LAP SHEAR SAMPLES 

Aging Time,hrs Lap Shear 
Sampl e No. Pretreatment - [Temp. 1 Strength, bsi Fa i lure Mode 

L 13-10-53 1OY CAA 500 [ i z o O ~ l  3030 Cohesive 
L13-10-54 1OV CAA ZOO0 [120°F] 3230 Cohesive 
L13-10-41 1OV CAA 3000 [120°F1 2900 Cohesive 
L13-10-28 1OV C;AA 5000 [120°F1 2810 Cohesive 

L13-10-60 1OV CAA 500 [450°F] 2540 Cohesive 
L 13-10-33 10V CAA 1003 [450°Fj 2060 Cohesi ve 
L13-10-6 10V CAA 3000 [450°F] 1250 In te r fac ia l  
L13-10-21 10V CAA 5003 [450°F] 1180 In ter fac ia l  
L13-10-50 10V CAA 10,000 [450°F3 300 In te r fac ia l  

L13-P-25 Pasa J e l l  500 [120°F1 2640 In te r fac ia l  
L 13-P-46 Pasa J e l l  500 [450°F1 2280 In ter fac ia l  
L13-P-35 Pasa J e l l  5000 [450°F] 1200 In te r fac ia l  
L13-P-36 Pasa J e l l  10,000 [450°5] 700 In te r fac ia l  



TABLE I1 

XPS AHALYSIS OF FRACTURED BEING T I  6-4 ClOV CA4l LAP SHEAR SAMPLES 
BONDED UITH LARC-13. 

Sample No. L13-10-53 L13-10-54 L13-10-41 i13-10-28 
P hotopeak B.E. A.F. - - B.E. A.F. - - 7 - B.E. - B.E. A.F. 

F 1s NS NSP 685.6 0.008 686.2 0.007 
0 I s  531.9 0.13 531.8 0.i81 531.8 0.2C7 531.8 0.189 
T i  2p3 458.2 0.001 NSP #SP NSP 
Ca 2p3 NS 347.6 0.007 347.6 (1.005 357.8 0.002 
S i  2p 102.6 0,036 102.6 0.027 102.2 0.022 102.2 0.009 

Sample W. L13-1040 L13-10-33 L13-10-6 
Photopeak B.E. A.F. - - - U_ 

B.E. A.F. - - B.E. A.F. 

531.8 0.22 531.8 0.216 531.20 0.249 
MSP NSP 458.6 0.024 
WSP NSP NSP 

102.6 0.02 102.4 WSP NSP 

Sanple No- L13-10-21( AFS) 
Photopeak - B.E. A.F. -- 
F I s  NSP 
0 I s  

532.0 0.191 
T i  2p3 458.8 0.004 
C3 2p3 NSP 
S i  2p 102.0 0.035 

L13-10-21 (MFS) L13-10-50( AFS) L13-10-50(WS) 
B.C. A.F. - -  B.E. A.F. - - -- - 6.E. A.F. 

NSP 685.0 trace NSP 
531.8 0.237 531.2 0.33 

531.6~ 0.237 529.8 
458.2 0.036 458.2 0.009 458.0 0.08 

WSP 347.6 0.003 346.8 0.008 
101.8 0.023 102.0 0.004 101.6 J-014 



XPS ANALYSIS OF FRACTURED BOEING T I  6-4 [PASA-JELL] LA? SHEAR WPLES 
BONDED UITH LARC-13 

Sample Mo. L139-25(AFS) L13-P-25(MFS) L13-P-46(AFS) L13-P-46(FIFS) 
Photopeak P .E. A.F. - - - - - - B.E. A.F. B.E. A.F. B.E. - A.F. - 
F 1s HSP NSP 0.006 NSP 

Tf 2 ~ 3  NSP 458.4 0,008 NSP 457.6 0.009 

Ca 2 ~ 3  WSP NSP NSP NSP 

S a p l e  t40. L13-P-35(AFS) L13-P-35(WS) ~13+-36(AFS) L13-P-36(#FS) L13-F-36(ASS) 
Photopeak - B.E. A.F. - B.E. A.F. B,E. A.F, B.E, A.F. B.E. - - - A.F. - 
F 1s NSP 688.4 trace NS P Trace WSP 

T i  2p3 NSP 457,8 0.008 NSP 457.6 0.012 NSP 

Ca 2p3 NSP MSP NSP 346.8 NSP NSP 

S i  2p lrSP 102.2 0.024 NSP 101.6 0.022 103.0 0.023 







A CRITICAL REVIEN OF THE SURFACE OXIDE LAYER ON Ti - ( S A l d V  ) ADHERENOS. 

J . A. Skiles, J. F i l  bey, K. Sanderson and 3. P. Uightaan 

ABSTRACT 

TI-(6AldV ) oxide characterization, bond strength, and durabil i t y  are the 

subjects o f  th i s  1 i terature review. Bond durabi l i ty i n  various enviromental 

conditions i s d i  scussed. 

INTRODUCTION 

Ti  tan im and i t s  a1 loys have excel 1 ent corrosion resistance, a high 

strength to  weight ratio, and d high melting point (181Z°C). Because o f  these 

characteristics and the abundance o f  ore, i t i s  the material o f  choice for  

certain current engineering designs, such as high speed aircraft. Current 

engineering designs a1 so re ly  upon structural adhesives. Consequently, i t has 

becane important to naximize ti tanila-adhesive bond strength and bond 

durability, i n  particular. 

m e  strength and durabi 1 i t y  o f  an adhesive j o i n t  are influenced by laany 

pa ra te r s .  The choice of adhesive, the j o i n t  design and geometry, and 

induced loading stresses a1 1 af fect  bond strength. The adherend mrphol ogy 

and surface chenistry are a1 so c r i t f ca l  parmeters. Current research i s  

directed towards the production and characterization o f  a ti tan im oxide 

surface a i c h  maximizes bond strength. The influence o f  several factors upon 

the oxide rJhich w i l l  af fect bond durabi l i ty such as aging, temperature, 

h u i d i  t y  and other envi romental conditions, are a1 so being investi gated. 

This paper 1s a review of  current, pub1 ished l i te ra ture  which describes: 

1) T i  taniua-6% A1 uainm4% Vanadim (Ti-6A14V) oxides formed by 



corrosion, cheuical treatrent, anodi zation, heati ng i n  vacum and 

electron i rradiat ion; 

2) Ti-6A1-4V surface oxide cheaistry and lorphology a f te r  chemical 

~~~~~~~t o r  anodization, and adhesion bond pu l l  strength data and 

3)  preferred oxide mrphology and s t r u c t ~ r e  to  maximize bond strength and 

durabi 1 i ty . 
T i t a n i m  oxides can be anorphous and/or crystal 1 ine. If crystal  1 ine Ti02 

i s  fonmed, three structures are possible: anatase, brookite o r  ru t i l e .  

Rut i le  has a greater entropy and a greater ra te o f  formation than anatase(1). 

Oxides Fomed by Corrosion 

Fraker and ~ u f f ( 2 )  reported Ti02 anatase formed on f i v e  t i t a n i m  alloys 

exposed to a 3.5% NaCl solution a t  100-200°C and pH = 6.8. I n i t i a l l y  Ti0 and 

Ti203 formed and became Ti02 a t  150" - 200°C. The electron d i f f rac t i on  data 

supported the surface oxidation sequence(3): Ti + 0 + Ti(0) + Ti60 4 Ti30 + 

Ti20 r T ~ O  + Ti203 + T i N 5  + T102. Fraker and ~ u f f ( 4 )  0 b ~ ~ e d  that  increased 

saline solution ac id i ty  ( w i t h  e i ther  HC1 or  HPSO~) - increased Ule -unt o f  

Ti02 anatase fomed. Anatase d id  not form i n  corrosive saline solutions w i t h  

NaOH. I n  a 12.5 pH solution, the d i f f rac t i on  pattern indicated the presence 

of Ma20 5 Ti02. 

K o i z u i  and Nakayaa(5) reported that  r u t i l e  Ti02 i s  foned i n  a 

corrosive acid solution and was deposited on the surface. 

Natan e t  a l (6)  reported that  anatase formed on t i t a n i t s  surfaces stripped 

of the natural oxide and then exposed t o  water f o r  24 hours a t  9S°C. Anatase 

was fomed by a corrosion process and not by a surface oxide transformation. 

Furthemre, the i r  data indicates tha t  t i tan iun can corrode i n  water a t  

< 1oO0C. - 



Oxides Fotwd By Vacuu Heating or Electron Irradiation. 

The aorphous oxide can be transfomed to  small r u t i l  e crystal s surrounded 

by larger anatase crystal s (grain size -1Op either by heating i n  vacuu (5W0C 

10-6 tory) or by electron i r radiat ion (10-100 a h p e r e s / d )  .(7) Since both 

trertrcnts produced the same crystal 1 ine structure, the transfotuation was 

attr ibbted to thermal effects, i .e., sol i d  state crystal 1 ization. 

Oxides Fonnd by Chemical Pretreatments and Anodization. 

TibA1-4V surface oxides produced by chemical pretreatmentr or  

anodization(8-17) are described i n  Table I. The reported surface contaminants 

1 isted i n  Table I could be deleterious t o  t i taniun bond strength. Roche e t  

al(14) reported that non-t i taniu compounds o f  f luorine and water contaninants 

(i.e. WaF, CaF, KF,) m y  be formed on the Phosphate f luoride (PF) etched 

surface. These coapounds are easily hydrolyzed and can be reroved by a water 

rinse i n  the Pf process. As a result, the PF treated surface nray have a 

nonhomgeneous surface topography. Chen e t  a1 .(18) reported that approximately 

0.2 o f  a f luorine monolayer chemisorbed on FPL etched alucinlra resulted i n  

adhesive/oxide interfacial  f a i l  ure. fl uorine atolns bere weakly chemisoFbed to  

the alumina rather than i n  the stable form o f  AlF3, as indicated by the 

decreased fl uorine concentration with Auger measurements. There was a 1 inear, 

inverse relationship betwen d m  pl strength and fluorine surface 

concentration]. 

Oitchek e t  a1 .(I31 have reported that -65' wawr rinses after a phosphate 

f luoride treatment removed KF and Nap04 contaminants. Otherwise, no other 

method to reduce pretreatment surface contaminants e r e  noted i n  the 

1 iterature. 

Chemical Pretreatment and Anodized Ti-6 A 1 4  Bond Strength and Durability Data 

Table I1 i s  a canpil ation of  bond strength and durabil i t y  data for 



chemically pretreated and anodized T i 4  A l d V .  Two tests are caraonly r e p o m :  

wdge crack extension and tensi 1 e lap shear strength. It can be seen that bond 

strength and durabi l i ty i s  r f fectcd by adhesion, terperature, re lat ive h r r i d i t y  

and the exposure tfm. 

O i  tchek e t  a1 (13.19) suggested that the bond strengths can be correl atcd 

w i t h  the surface oxide mechanical interlocking abi l i ty .  The greater the degree 

of oxide micro-roughness (< - O,lrm). the greater the adhesive mechanical 

interlock, the M g k r  bond strength and the greater durability. The pretreated 

surfaces were categorized into 3 groups according to micro-roughness, there Group 

I represents smooth oxide surfaces and Group I11 represents the most micro-rough 

surfaces (8). These categories are: Group I: PF, IOF; Group 11: DA. N, LP, 

DP; and Group 111: CAA, AP. It i s  interesting to note that N and V treated 

adherends w r e  similar i n  micro-roughness, ye t  only the TU treated adherend 

exhibited some interfacial  fa i lu re  i n  the wedge test results. Oitchek e t  a1 .(13) 

suggest that fa i lure occurred along the Fe particles, which bere present on both 

f a i  led surfaces. These particles ryy represent stress r isers A i c h  mechanically 

weakened the interface. 

Hergenmther(20) reported that a 3 day water boi l  severely degraded the 

adhesive bond of  a treated PF adherend, mereas, the CAA with ammnirn 

fluoride(21) maintained good bcnd strength. This i s  supportive o f  D i  tchek's 

categorization o f  the surface oxides from pretreataent, The bond strength for  

the PF (Group I) adherend i s  primarily dependent upon Van der Waal s forces, which 

were wakened by water. The CAA (Group I11 ) adherend bond strength, with i t s  

high degree of  micro-roughness, i s  primari 1 y bonded through lllechanf cal 

inter1 ock. 

Integral to bond durabil i t y  i s  the oxide stabil i ty. Amorphous Ti02 

transformed to anatase Ti02 under hydrothermal conditions may decrease bond 

strength(25). If the aorphous t o  crystal 1 ine transformation occurred fn  the 



adhesive jo int ,  the result ing stress could pnrnote interfacial  failure. To 

prevent this, the a rphous  oxide could be precrystall ized to anatase before 

bonding.(g) This m u l d  be advantageous since: 

1) morpbus oxides have #re oxygen vacancies than crystal 1 ine 

oxides(26). Oxygen aif fusion fror tk interface, base metal 

corrosion, and structural oxide rearrangements are more l i k e l y  fo r  the 

a~orphous oxide a t  elevated adhesive j o i n t  operational temperatures. 

2) The T i 4  bond for the mrphous oxfde i s  weaker than for the 

crystal 1 ine oxide as confi mel by MS sputtering(9 ) 

Based upon Ditchek's e t  a1.(13,19) data, the CAA oxide, precrystallizc! to 

anatase and free o f  contaminants, would be the opt imu pretreatwent fo r  adhesive 

bonding. 

Both water and elevated temperature(6) are important for  ttte morphous t o  

crysta l l ine anatase transformation, I n  vacuum, CAA oxide heated a t  - < 250°C for 

one hour or  100°C for 24 hours d id not transfonn.(6) As previously stated, 

treatment a t  5W°C i n  vacuu transformed the surface. Muever a t  93OC i n  air, 

cubic Ti0, a possibl e anatase precursor, was formed(25). Ti-6AldV pretreated 

oxides (PF, WF, DA, DP, LP, TU, CAA-5V or CAA-1OV 1 did not undergo morphology 

changes Men exposed to the following: 1) 7g°C water imtnersion for  16 hours, or 

2) 60°C 10% R.H. f o r  10 days.(19) However af ter  9g°C water inmersion for 210 

hours, the i n i  t f  a1 anorphous oxide produced by PF, fU, CAA, or AP-9 was 

converted to  Ti02 anatase.(25) After water innersion for  24 hours a t  95'C, 

anatase was evident on CAA(~) .  The CAA surface, which has a thick and porous 

oxide, more rapidly transfornted t o  anatase.(25) This change was temperature 

dependent; i t occurred after 4 hours water ilnnersion a t  140°C but did not occur 

af ter  400 hours a t  60°C.(25) Although unexplained, the CAA oxlde fs  more stable 

i n  sa l t  water (3.5% wt NaC1) than pure water a t  < 100'~(9). 



Given hydrothermal conditions a t  the oxfde surface, oxide transformation 

mechanis~s are suggested by Natan e t  al(6.9). Anatase nucleation from 

amorphous Ti 02 may be dw to structural rearrangement, i .e. cubic Ti 0  lay be 

an anatase precursor. The anatase gi3wth i s  at t r ibuted to a dissolution- 

precipi tat ion #chanim i n  water. 

Contaminant d i f fus ion to the substrate may resu l t  i n  base metal corrosion 

and represents another mechani sat f o r  oxide transformation(6 1. The oxide 

transfomation rate i s  increased by localized ac id i  ty(27). For eximpl e, 

increased ac id i ty  due to  f luor ine contaminants(27) m y  cause the Ti02 oxide to 

corrode. Both increased oxide porosity and f luor ine concentration have 

increased oxide transfonnation rates.(g) The porous CAA oxide transformed more 

rapidly than the nonporous oxides and even the porous, AP oxide, i .em, CAA > PAA 

> TU > AP. While CAA and AP oxides are both porous the CAA higher oxide 

transfonnation rate was at t r ibuted to the presence o f  f luor ine on CAA (A!' i s  

f luor ine free) . 
Iron contaminants i n  the pretreated oxide may influence the rate o f  oxide 

transformation fram aaorphous to r u t i  1 e.(28) Conversely incompl ete oxide 

transformation has been observed on N, and attr ibuted to  i ron contamination. 

The i ron (calcium and magnesi m, too) was deposi ted on the Ti-6A-4V surface 

a f te r  hot tap water rinses(29) . 

It should be noted that  these hydrothermal, oxide transfornations were 

reported fo r  the pretreated, unbonded Ti-6A-4V surface, The mechanism i s  unknown 

which decribes how water could penetrate the bondl ine and cause an interfacial  

oxide transfomation a t  high hunidity, and d e n  the adhesive j o i n t  was exposed 

to high temperatures (260-31S°C). Data suggest that  water i s  transported along 

the bondl i ne interface rather than through the adhesi ve(29). 



COKLUSIONS 

Current reported l i t e r a t u r e  ind icate  t ha t  the chromic acid anodizatfon of 

ti tanf u ~ l  a1 toy Ti-6A1-4V produced optimum bond strength and durabi l  i ty. It has 

been suggested tha t  p rec rys ta l l i za t ion  o f  the amorphous CAA oxide p r i o r  to 

bonding, without changing i t s  morphology, may maximize oxide propertf es f o r  

bondi ng . 
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TABLE I. A Description o f  Ti-6A1-4V Oxides Produced By Chemical Pretreatments or Anodization 

Method 

1. Phosphate Fluoride (PF) 

Oxide 
Thi chess ( A) 

2. Modified Phosphate f luoride 80 
(MPF) 

3. Phosphate Fl uoride-3 (PF-3) NR 

4. VAST (VA-7) NR 

5.  D r y  hone/PASA JELL 107 100-200 
(DP) 

Surface Contaminants 

F 

Ca, P,N 

Oxide Structure, Morphology and References 
Chemistry 

1. re lat ively smaoth surface, (8.9) 
amorphous Ti 02 

(1 7) 

2. cubic Ti0 (9 

3. Ti02 anatase 

4. Ti02 w t i l e  

5. ph 5.4-7.3 

6. surface enriched B phase (11) 
(vanadirrr, enriched and bcc) 

7. Ti02 + TiFq (14) 

1. re1 at ivel  y smooth surface (8,9) 

1. re la t ive ly  timoth surface (9 

1. re la t ive ly  smooth surface (9) 

2. Ti02 anatase (10) 

I .  macro-rough ( protrusions (8) 
> lfl 

2. Ti02 r u t i l e  + Ti02 amorphous (10) 

macro-rough: protrusions - > 1 pn micro-rough: protrusions - < 1pm NR: not reported 
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able 11 (Continued) 

Test - Adhesi ve Ad herend Pu1 ie;;;;;g t h  Fa1 1 ure Anal y s l  s Beferences 
P r m n  t 

Tensile Lap Shear FM-34 Adherend underwnt n = 16 95% cohesive 
Pol yimide the f o l  1 owl ng : RT(3081 k 138 ps l )  (22 

a. MEK degrease 
b. TURCO etch a t  

66. 15 min 
c. Water r inse (60°C) 
d. D i s t i l l e d  water 

r inse a t  RT 
e. Dry w i  t h  nitrogen 
f . Sandblast 80 g r l  t 

sand 60 P S I  
g. Dry wi th  nitrogen n = 12 
h. Brush wi th  Pasa 316'C(1675*85 ps i )  100% cohesive 

J e l l  paste 107 f a i l u r e  
1. Repeat (c)-(el  

Tensile Lap Shear L-13 
pol y imi de 

CAA 10V 232'C f o r  5000 hrs i n te r fac ia l  
(1180 ps i )  

232'C f o r  500 hrs cohesive 
(2280 ps i )  

232'C f o r  10,000 hrs In te r fac ia l  
(300 ps i )  

49'C f o r  500 hrs cohesive 
(3000 ps i )  
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