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Abstract 

The fatigue crack growth and lQW cycle fatigue behavior of two P/M 

superalloys, Ren~ 95 and Astroloy, in the HIP condition, has been determined. 

Test vat'iables included frequency, temperature, environment, and hold times 

at peak tensile loads (or strains). Crack initiation sites were identified 

in both alloys. Crack growth rates were shown to increase in argon with 

decreasing frequency or with the imposition of hold times. This behavior 

was attributed to the effect of oxygen in the argon. Auger analyses was 

performed on oxide films formed in argon. Low cycle fatigue lives also 

were degraded by tensile hold, contrary to previous reports in the literature. 

The role of environment in low cycle fatigue behavior was discussed. 
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CREEP-FATIGUE INTERACTIONS IN NICKEL-BASE SUPERALLOYS 

I • I NTROOUCTI ON 

New turbine disk materials with higher strength and higher temperature 

capabilities permit achievement of improved efficiency and superior performance 

from aircraft engines. Hot isostatically pressed (HIP) alloys prepared from 

powder offer good potential for cost reduction as forging operations can be 

eliminated and material losses are reduced. However, powdered materials often 

suffer from premature failure associated with non-metallic inclusions. Further, 

the extent to which fatigue lives and c~ack growth rates of P/M superalloys May 

be affected by creep-fatigue-environment interactions has not been well 

established. This investigation deals with assessment of the cyclic crack growth 

behavior of two P/M Ni-base superalloys, primarily in an argon atmosphere. Two 

representative turbine disk materials were chosen for study. Rene 95 and 

Astroloy. In the aircraft gas turbine, disk alloys have to sustain high stresses 

at temperatures around 650°C. Life may be limited by fatigue crack growth 

(FCG) from an existing flaw, or by low cycle fatigue (LCF) behavior. Therefore, 

both FCG and LCF experiments were carried out at several temperatures in the 

same range, 575-725°C. 

II. PURPOSE AND SCOPE 

The aim of this study was to determine the influence of environment, 

frequency, hold times and temperature on FCG and LCF behavior of two P/M 

Ni-base superalloys. The prevailing materials degradation mechanisms were to be 

explored and appropriate life prediction methods were to be developed. 

III. EXPERIMENTAL PROCEDURE 

Table I describes the composition, mechanical properties and microstructures 



of the alloys selected for this program, while Figs. 1 and 2 show the micro-

-t~ structures of Astroloy and Rene 95. respectively. All material was received 

from NASA-Lewis. Pri or to heat treatment. 25l1li (1") th1 ck disks were cut 

from as-HIP cylinders. Compact tension and cylindri(al low cycle fatigue 

specimens were machined from the centers and peripheries of the disks, 

respectively. 

2. 

Fatigue crack growth tests were conducted on a closed loop servohydraulic 

MrS machine with load capacity of 10 tons, temperature capability up to 10OO°C 

and vacuum capacity with a diffusion pump up to 5xlO-5 torr. These tests were 

performed at S75°C, 6S0°C and 725°C respectively with R ratio (~in/Kmax) equal 

to O.OS. All tests were performed under ramp waveform, load-controlled condi

tions. A dc-potential drop technique was used to monitor crack length at the 

high temperatures. In this technique, a constant current is passed through 

the specimen (S-7 Amos) and the voltage is measured from probes attached on 

either side of the crack. As the crack grows, higher resistance due to the 

increased current path causes an increase in potential drop. Actual crack 

lengths are obtained from potential drop data by using a standard conversion 

formula. 1 The validity of such a conversion was tested by running a calibra

tion test in which cycling was stopped at an intermediate crack length and the 

equivalent crack length was measured at room temperature. Each specimen was 

precracked at room temperature using 20Hz frequency and load levels AP-600-

• 700 lbs. Initial crack lengths were accurately measured under a microscope at 

400X. After each test a plot of crack growth rate, da/dN, VS. stress inten

sity range, AK, was obtained. The fracture surface of each specimen was then 

examined by SEM. 

Table II shows the test matrix for FCG experiments. The tests were run 
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under four different sets of conditions: 

,: 1. In argon: to determine temperature and frequency effects. 

2. In air: to determine environmental effects by comparison with argon data. 

3. In argon. with hold times: to evaluate the extent of any creep-fatigue 

interaction. These data were compared with those under continuous cycling 

conditions to differentiate between pure fatigue and creep-fatigue in 

argon. As will be seen below, environmental nttack occurred in argon. 

4. In air. with hold times: to produce creep-fatigue-environment interactions 

under oxidizing conditions. 

Low cycle fatigue tests were conducted at 650°C and 725°C ;n argon with HIP 

Astroloy and HIP Rene 95. The cylindrical specimens (gage length O.76cm, gage 

diameter O.3om) , see Fig. 3, were machined by turning and grinding. (For Rene 

95 a tapered shoulder was used; other specimen dimensions were the same). Tool 

marks were removed by smoothing with emery cloth using up to O.3~m pure A1 203 
powder. Split-type threaded grips were used to hold the specimen and care 

was taKen to eliminate the distortion of specimens during mounting. 

All LCF tests were performed under total axial strain-controlled concitions 

in argon on an MTS closed-loop high temperature system. The cyclic tests were 

performed at a frequency of O.33Hz (20 cpm). In some cases, a hold time of 2 

min. was imposed at maximum tensile strain. Total strain range was varied from 

1.5-2.7%; R=-l (fully reversed). Since plastic strain range per cycle changed 

continuouslJ during the test, the plastic strain range at Nf/2 was used for 

data plotting and for comparison with other data. 

Fracture surfaces were examined by SEM to identify crack initiation sites 

and to determine crack propagation mechanisms. 
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EXPERIMENTAL RESULTS 

A - Fatigue Crack Growth 
~ 

4. 

Figs. 4-7 show typical FCG results obtained for Astroloy. It is dffficult 

to distinguish between stages I. II and III in any of these curves. There 15 

no Significant change in growth rate with temperature between 575 and 725°C, 

Fig. 4. Both at 575°C and 650°C there is a notable frequency effect, see Fig. 

5. with lower frequency causing more rapid crack growth. FCG rates were higher 

for the specimens tested in air than in argon, Fig. 6. Specimens tested in 

both environments showed substantial oxidation. The hold time of just two 

minut(s (l?O 5), Fig. 7, increased the FCG rate by almost two orders of mag

n~tude. 

Specimens tested at room temperature showed brittle striations, Fig. 8a), 

whereas ductile striations were noted for high temperature tests, Fig. 8b). 

All fractures were transgranular except in the sample tested with a hold time. 

The latter displayed mixed TG-IG cracking, secondary crac~ing and a Significant 

amount of oxidation only at the fresh surface (not in the preeracked region). 

FCG results have been obtained for Rene 95 at 650°C as a function of 

frequency and environment. Fig. 9 shows significantly more rapid crack growth 

in argon than in vacuum of 10-4 to 10-0 torr. A strong frequency effect in 

argon i! noted also. see Fig. 10. A two min. hold in argon caused a dramatic 

shift upward in crack growth rate, see Fig. 11, as was the case for Astro10y, 

t Fig. 7. An experiment with six min. hold times produced no further increase in 

crack growth rate • 
• 

A small deleterious effect of decreasing frequency was noted in the air 

tests. The results at O.lHz in vacuum were about equivalent to those at 1Hz 

in argon. In all continuously cycled test specimens the fracture path was 
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5. 

transgranular. 

In general, craek growth rates were slightly higher in the case of Rene 95 

than in Astroloy for identical test conditions; total 11fe of Rene 95 under 

equivalent FCG conditions is about 1/2 - 2/3 of that of Astroloy. In both 

alloys occasional voids (S-lOpm) have been noted, perhaps due to the original 

porosity of the P/M alloys. 
,# 

Crack growth in Rene 95 at 650°C in argon was transgranular with brittle 

striations. see Fig. 12. The two min. hoid time produced ir.tergranular fractu' 

as may be seen clearly in Fig. 13; the precrack region (prod~ced at 25°C) is 

TG, ~ 'ile the crack morphology produced during the hold time cycling at 650°C 

is IG. 

A changing waveform test was carried out on Rene 95 according to the scheme 

shown in Fig. 14. The crack growth rates resulting from the wlveform variations 

are shown in Fig. 15. Tensile holds were interspersed between ~vr,les of 

constant frequency (lor 20Hz). The r~sulting fracture surfaces were always 

transgranu1ar during continuous cycling, but changed to intergranular durinq 

the hold times. Clearly, hold times produced a sharp increase in crack growth 

rates, just as in the case of Astroloy, Fig. 7. An added feature of the hold 

time data recorded in Fig. 15 is the apparent retardation in crack growth 

immediately after resuming continuous cycling. Grain boundary cracks formed 

during the hold time periods, see Fig. 16, may have been responsible for 

relaxation of stresses at the crack tip ~rior to resumption of continuous 

cycling. Alternatively, a large plastic zone at the crack tip accompanying 

rapid crack growth could produce residual compressive stresses at the crack 

tip when continuous cycling resumed. 
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6. 

Low Cycle Fatigue 

LCF data for Astroloy at 650°C and 725°C in ar~on are summarized in 

Fig. 17. A two min hold at peak strain is detrimental at each temperature. both 

in terms of total strain ,and plastic strain. A five m·ln. hold at peak strain 

caused further degradation of LCF life. Note that the slopes of the plots of 

6£p vs. N
f 

remain constant w1thtlnperature and hold time; thus. the Coff1n

Manson relation: 

N~6£p • C (1 ) 

is obeyed. with the constant slope suggesting that there 1s no change in 

fracture mechanism when a hold time is imposed. A summary of the terms sand 

C from Eq. 1 appears in Table III. 

The beneficial effect of argon on LCF behavior may be seen in Fig. 18, 

which is a comparison of data from this investigation (in argon) with previous 

work carried out in air. Argon is beneficial at all cyclic strains, but the 

effect appears to be most marked at low cyclic strains. 

Cyclic hardening was measured in Astroloy at each of the two test tempera

tures, as shown in Fig. 19. Note that there is virtually no effect of temperature 

on hardening in thi~ range. and a linear relation be~ween stress range (as 

saturation) and strain range is seen: 

For both temperatures k",2000 and n"'",O.l. 

Similar LCF experiments have been carried out on Rene 95, see Fig. 20, with 

Coffin-Manson slopes for continuous cycling recorded in Table IV. Again there is 

a detrimental effect of a hold time at peak strain when 6£T is plotted against Nfo 

I 
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For this alloy, plastic strain ranges were so small that they could not be 

measured accurately, especially at low total strain ranges. Therefore, no 

relation is shown between ~£p and Nf • 
~ 

However, very 11mrtted data for HIP Rene 95 in argon at 650°C from this 

investigation are compared to data for HIP and HIP + forged Ren' 95 reported 

by others2,3, see Fig. 21. There is little apparent effect of either 

atmosphere or microstructure on the results. all the data f~11ing within a 

single scatter band. 

The detrimental effects of hold times on Rene 95 in both air and argon 

may be noted in Fiq. 22. which shows a more severe loss of life in argon. 

However. the hold time exoeriments in air were carried out on HIP + forged 

material, and it is not known to what extent the microstructure may have 

influenced that result. 

Cyclic hardening of a sample of Rene 95 ,:'sted a~ 650°C is compared to 

data for Astro10y at the same total strain range (2%) in Fig. 23. Note that 

Rene 95 is the stronger alloy, so that the maximum stresses at each cycle are 

higher for Rene 95. However. the rate of cyclic hardening appears to be 

similar fo~ both alloys. 

Cyclic stress-strain curves for Rene 95 in two conditions (HIP. HIP + 

forged) and HIP Astroloy are compared in Fig. 24. Although Rene 95 appears 

to cyclically harden at a more rapid rate than Astroloy, it should be noted 

that the grain size of Astroloy (ASTM g.s. 5-7) is much larger than for Rene 
~ 

95 (ASTM g.s. 11-14). The very rapid cyclic hardening of HIP + forged Rene 

95 undoubtedly is a result of the excess dislocations imparted by the forging 

operation. 

Fractographic examinations of the two alloys was carripd out both to 

7. 
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determine the influence of hold times on crack path and to identify crack 

initiation sites such as second phase particles and inclusions. In the case 

of Astroloy, non-metallic inclusions rich in magnesium were responsible for 

crack initiation, see Fig. 25. These inclusions were typically 5-l0~m in 

maximum dimension. 

8. 

Str1ations were not~d in many samples tested at 650°C and 725°C. and 

generally were br1ttle 1n appearance. see Fig. 26. Specimens subjected to a 

tens1le 110ld had more read11y visible striat10ns at 650°C. as in Fig. 27; 

however, no str1ations were noted 1n hold t1me samples tested at 725°C. per

haps due to the presence of a substant1al ox'ide f11m. The most notable feature 

of the hold t1me exper1ments was to produce a mixture of TG and IG crack1ng 

over most of the fracture surface compared to the TG fracture noted in samples 

s~bjected o~ly to cont1nuous cycling. A more notable effect of hold time was 

noted in the initiation zone, which was always TG for continuous cyc11ng and 

IG for hold time samples. These results are summarized in Table V. 

Cracks in Rene 95 were morf! likely to initiate at pores, as shown in 

Fig. 28a), for a sample tested at 725°C with no hold time, and in Fig. 28b) 

for a sp~c1men tested at 650°C with a 2 m1n. hold. In one sample, tested at 

650°C with 6£t=1.54%, both particles and pores were responsible for crack 

initiation. Results of all fractographic observations on Rene 95 are summarized 

- .. ,-.~ 

in Table VI. With no hold time, both initiation and propagation were TG. However, 

with a hold time initiation was IG and propagation was IG + TG. Therefore, the 

effects of a hold time on crack path are very similar in the two alloys. 

Striations were seen in a few continuously cycled specimens of Rene 95, but 

were not observed in samples subjected to a hold time. 



9. 

DISCUSSION 

A major aim of this investigation was to determine the relative importance 

of creep and environmental interaction of fatigue ~havior of the test alloys. 

The constant stress hold at peak load is meant to simulate a creep dwell, as 

may be experienced by the rim at blade attachment areas. During LCF testing, 

tests in vacuum led to excessive heating of the extensometer. For ease of 

comparison of da/dN and LCF results it was decided. therefore. to run both 

crack growth and LCF tests in argon. The crack growth tests showed that argon 

is intermediate between air and a relatively poor vacuum (10.4 to 10.5 torr) in 

ib effect on crack gro'Ath rates (see Fig. 6 for Astroloy and Fig. 9 for Rene 

95). 

To describe the FCG behavior of the two alloy~, the Paris equation 

may be used. The constants found for different conditions are listed in 

Table VII. 

(1) 

The magnitude of the exponent and the pre-exponential factor were higher 
.. 

in air and in hold time tests than those in arg~n. The slopes for Rene 95 

were somewhat lower than those for Astroloy under similar test conditions. 

This equation can be used for life prediction. However, it should be 

noted that most of the Rene 95 specimens showed large overload regions as 

opposed to Ast~oloy. This in turn means that the limiting crack length (a f ) 

prior to catastrophic failure is smaller for Rene 95. Hence in spite of lower 

slopes. Rene 95 shows decreased total life. 

The separation of ~ 1nto individual fatigue, creep or oxidation fractions, 

if, and to find the frac·ional cont'ribution Cif each as suggested by Wei et al'J4, 

was not possible because appreCiable oxidation occurred even in argon. On the 

basis 01 our observations, 1t can be suggested that the superoos1tion model 
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for Astroloy and Rene 95 at 650°C in argon reduces to: 

~. f fatigue x (~) fatigue + foxide x (~) oxide 

since creep damage was insignificant. 

10. 

(2) 

As a consequence of the lack of parametric data ~uch as strain rate sen

sitivity, other models such as the modified damage l.~el15 or strain rate 

dependent models,16 could not be applied at this stage. 

The oxide fl1m produced in argon ha', been Measured by Scanning Auger 

Spectroscopy. The results show a chromium-rich oxide (whether er03 or Cr203 
° could not be estab11shed) !bout 2000A thick is formed after a test at 650°C. 

It appears that oxidation played a major role i" decreasing fatigue life or 

increasing crack growth rate under conditions of lower test fre~uency or a hold 

time at peak load. Little or no evidence for creep damage under hold time 

conditions could be found. 

The increased crack growth rate and reduced life a!;ociated with hold time 

experiments can be related to the change in crack origin from TG to IG (LCF) 

and the crack path to mixed TG ~nd IG. 

The behavior of a'il' in promoting crack growth has been related in the past 

to oxygen diffusion down grain boundaries, as well as localized oxidation 

damage at the crack tip.4-9 Oxide growth stresses at the crack tip may also 

promote crack growth. 10 In the present work, although unmistakable evidence of 

oxidation during crack growth in argon was observed, the crack path remained 

transgranu1ar in both FCG and LCF experiments, except when tensile holds were 

imposed. Increased TG crack growth in argon relative to vacuum could arise 

from accelerated diffusion of oxygen into slip planes, although no direct 

evidence for such a mechanism was observed. 



11. 

It is difficult to explain why temperature hid so litt,e effect on crack 

growth or fatigue lite, especially between 6S0·C and 725·'. Whether creep 

damage or oxidation contributed to the rate of fatigue crack growth at 650·C, 

increasing the temperature to 725·C should have produced I significant rise in 

FCG and LCF life degrldat1on. This did not occur for Astroloy, as shown in 

Figs. 4 and 17, respectively. Insufficient aata have been obtained for Rene 
95 to determine whether t' .,rature instns1t1v1ty is observed in that alloy. 

Very different sftns1t1v1ties to oxygen have been ciemnnstrated between 

y~-strength.ned nickel base superafloys. For example, Sadananda and Shah1n1an ll 

have shown that although FCG rates are the same 10 IH71S and PE16 in vacuum, 

rates are 1ncrea!ea in air by a factor of two for PE16 but more than a factor 

of ten for 718. Similarly, a 1 min. hold in air had 00 effect on PE16 but. 

lOOX increase in FCG ~as observeJ 1n IN718. A similar increase in FCG rate 
~ 

(lOOX) was ob~!rved in the present ~rk for both Astroloy and Rene 95 in argon 

when a 2 min. hold was imposed. T~e extreme sensitivity of crack ~rowth rates 
'" of Rene 95 and Astroloy to dec.-easing fre'1~.ency and to hold times in air tH' in 

argon is probably therefore, a manifestation primarily of the susce~t1bil1ty of 

these alloys to oxygeh-1nduced ddmage. The most noteworthy feature of the fracture 

mechanism in these alloys, however, is the maintenance of a TG crack path, 

both in FCG and LCF exper1ments, even at low frequencies. 

Recent theories of creep cavitation in Hi-base alloys a,~ based on internel 

gas bubble fonmation, typically CO or C02
12 ,13 and the gas pressure is assumed 

as the major driving force for cavity nucleation. Our calculat10r.s for these 

alloys indicate that the gas pre~surel at 650°C would be at most of the 

order of 5-14 Pa. Obviously such low pressures cannot nucleate the cavities. 

This partially explains why insignific~nt creep damage was ooser-led. 

I 
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12. 

It is interesting to compare the results of our hold-time experiments on 

HIP Rene 95 with data previously reported by AFML for cast and wrought Rene 

95. Tests were conducted on the latter lllterial at 650°C with one and ten 

min. hold periods in tension and compression. Our own two min. hold time 

tests in argon on HIP IIIterial provided precisely the same lives, based on 

total strain, as those noted on the cast and wrought alloy. The earlier 

work showed that tensile holds were not very ddmP1ing, and that, in fact, 

cOllPressive hold periods were RIIch more damaging. For cast Rene 80, tensile 

holds were actually reported to be beneficial relative to continuous CYC11.1g. 

Lord and Coffin19 suggested that those unusual results might be explained if, 

during a tensile hold, compressive mean stresses are introduced ~hile in 

compressive holds a tensile mean stress develops as hysteresis loops 

stabilize. Tensile mean stresses should degrade LCF resistance, while 

compressive mean stresses should prolong life. 

In our own work, conduct~d in argon, no such beneficial effect of tensile 

hold~ was noted in eh:her alloy, whether in load controlled FCG or strain-

controlled LCF experiments, especially when the latter data were plotted as 
.. 

plastic strain vs Nf • For example, life of HIP Rene 95 was reduced fr'om 2600 

cycles to 200 cycles at 6Ep=4X10-4• In the case of Astro10y, a distinct loss 

of life with tensile holds was noted whether data were plotted against 6£t 

or 6Ep' see Fig. 17. However, the effect was more readily apparent on the 

basis of ~Ept and clearly a 5 min. hold was more damaging than a two min. hold. 

Before examining these apparently contrad~ctory results in more detail, it 

must be empha~iled that the previous work on cast and wrought Rene 95 and 

Rene 80 was carried out in air, under diametral strain control. (The method of 

strain control is not considered to be significant). n~r own experiments in 
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argon permitted some axidation tQ occur, but clearly at a lower rate than 

would be the case in air. load-controlled FCG experiments with a 2 min. hold, 

conducted in our laboratory. have shown that cracks do not proopagate readily 

in air in either alloy. In order to maintain crack extension, the load 

periodically has to be increased. This observation sU9gests that crack 

blunting. caused by extensive oxide buildup at the crack tip during the 

hold periods, can slow or even stop crack growth. We suggest, then. that 

oxygen, while clearly embrittling to these alloys at relatively low concentra

tions,can effectively supress crack growth when present at the usual levels 

in air. Therefore, we conc-Iude that the response of superalloys to tensile 

and compressive hold periods will depend sensitively upon the oxygen pressure, 

and that either beneficial or detrimental effects of such holds may be expected, 

depending upon environmental conditions. 



14. 

REFERENCES 

1. H. Tada, P.C. Paris and G.R. Irwin, "The Stress Analysis of Cracks Hand
book", Del Research Corp. Hellertown, PA, 1973. 

2. S. Bashir, P. Taupin and S.D. Antolovich, Met. Trans. A, 1979, V lOA, 
p. 1481. 

3. B.A. Cowles, J.R. Warren and F.K. Haake, "Evaluations of Cyclic Behavior 
of Aircraft Turbine Disk Alloys", P & WA Technical Report for NASA CR-165123 
(1980) • 

4. M.L. Sessions, C.J. McMahon and J. Walker, Mat. Sci. & Eng., 1977, V 27, 
p. 17. 

5. P.N. Chabu and C.J. McMahon, Met. Trans. A, 1974, V 5, p. 441. 

6. M.N. Menon, J. Mat. Sci., 1976, V 1i, p. 984. 

7. J.C. Runkle and R.M. Pelloux, in "Fatigue Mechanisms", STP 675, ASTM, 
1979, p. 501. 

8. J. Wareing, Met. Trans. A, 1977, V 8, p. 711. 

9. D.A. Woodford, Met. Trans. A, 1981, V 12, p. 299. 

10. S. F10reen and R.H. Kane, Met. Trans. A, 1979, V 10, p. 1745. 

11. K. Sadananda and P. Shahinian, Metals Technology, Jan. 1982, p. 18. 

12. K. Raj, Acta Met., 1982, V 30, p. 1259. 

13. B. F. Dyson, Acta Met., 1982, V 30, p. 1639. 

14. R.P. Wei and G.W. SilllOOns, "Recent Progress in Ur.derstanding Environmentally 
Assisted FCG" Technical Rep. #8, ONR N00014-C-0543, NR036-097, Jan. 1979. 

15. D.A. Jablonski, and R.M.N. Pe110ux, Met. Trans. A, V 8A, 1977, p. 1893. 

16. P.S. Maiya and S. Majumdar, Met. Trans. A, V 8A, 1977, p. 1651. 

17. D.A. Cowles, J.R. Warren and F.K. Haake~ "Evaluations of Cyclic Behavior 
of Aircraft Turbine Disk Alloys", NASA NAS 3-20367 (quoted from P & WA 
Technical Report for NASA CR-165123 (1980), p. 70). 

18. Life Prediction Techniques for Analyzing Creep-Fatigue Interactions in 
Advanced Nickel Base Supera11oys, Wright State Univ., July 1976 (quoted in 
L.F. Coffin, Jr. in Fatigue Environment and Temperature Effe~t, J.J. Burke 
and V. Weiss, Eds., Plenum Press, New York 1983). 

19. D.C. Lord and L.F. Coffin, Jr.~ Met. Trans. V 4, 1973, p. 1657. 

o-_-~ ~ 



En- -__ . ~~~ __ =-~-=-.... ~._-==_..-<=O=~ ~ _~~ ___ ~ 

TABlE I 

Cbe111 cal Co!pos 1 t1 on 

C Cr Co Mo Cb Zr T1 At W B Hi 
HIP-Astroloy* 0.02 15.1 17 5.2 - <.01 3.5 4 <.05 .025 Bal. 

HlP-Rene 95** 0.05 13 8.3 3.5 3.5 .04 2.5 3.6 3.4 - Bal. 

Mechanical Properties 

UTS 0.2Say %E1 %RA T 
MPa MPa 

HIP-Astro1oy 1393 936 26 31 Room T. 
1287 869 26 28 538°C 

HIP-Rene 95 1936 1214 16 15 Room T. 
1514 1119 16 17 650°C 

Microstructure 

HIP-Astro1oy y-y~ - M23C6 MC 
volume fraction of y' = 42% grain size: 40-60~m 

Rene 95 y-y' - "23C6 MC 
volume fractl0n of y' = 48% grain size: 10-l5~m with 

occasional 40~m large grains 

* Supplied by Pratt and Whitney - NASA 

** Supplied by G. E. - NASA 
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TABLE II 

Test matrix to be followed for each alloy 

R • 0.05 

1. Argon, Hold time • 0 
v • 0.33 
v = 1 

v • 20 

2. Air, Hold time = 0 
v = 0.33 
'11=1 

v • 20 

* 
* 

* 
* 

3. Argon, Hold time te3ts with v = 1 
Hold time • 120 s 
Hold time = 360 s 

4. Air, Hold time tests with v • 1 
Hold time = 120 s 
Hold time = 360 s 

* waveform /v\,/\/\ 
** waveform f'V'VV\ 

Hz 

Hz 

* 
* 
* 

* 
* 
* 

** 
** 

** 
** 

16. 

v: frequency in Hz 

* 
* 

* 
* 
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TABlE III -
Coffin-Manson Constants for Astroloy 

B 
650°C, 0 hold 0.96 

125°C, 0 hold 0.91 

650°C, 2 min hold 0.94 

125°C, 2 min hold 0.99 

650°C, 5 min hold 0.96 

Coffin-Manson Constants for Rene 95 

650°C, 0 hold 

725°C, 0 hold 

0.72 

0.73 

C 

1.11 

0.6 

0.3 

0.4 

0.2 

0.13 

0.11 

11. 
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18. 

ORIGINAL PAGE IS 

TABLE! 
OF POOR QUALITY 

Summary of Fractographic Studies of HIP Astroloy 

4 

6Et (%) 6&:2(%) Type 
Nt Initiation Propagation Comments on Or19i Test 

1.56 0.065 650°C 2321 TG TG flat striations o hold 
2.03 0.3 650°C 484 TG TG flat striations o hold 
2.57 0.55 650°C 250 TG TG + void s11ghtly rough 

o hold striatiors 
72SoC flat. 

1.59 0.087 o hold 1377 TG TG striations 
72SoC s11ghtly rough, 

1.98 0.32 o hold 307 TG TG striations ~ 

72SoC slightly rough, 
2.62 0.59 o hold 173 TG TG + void striations 

650SC no dimples 
1.67 0.07 2 min hold 945 IG TG + IG striations 

6506C some dimples 
2.66 0.78 2 min hold 74 IG TG + IG no striations 

725°C G8 cracking many 
2.05 0.25 2 min hold 62 IG TG + IG dim2leS~nO striati -.;.:; 

72Sbt G8 crac 1ng many ~ 

2.3; 0.89 2 min hold 20 IG TG + IG dimples.no striati 
650bC 

1.5 0.076 5 min hold 358 IG TG + IG no striations 
650d t G8 cracking + 

2.08 0.268 5 min hold 118 IG TG + IG no striations q 8S0ot GB cracking 
2.635 0.968 5 min hold 26 IG TG + IG no striations 

" • All have multiple origins associated with particles. 1 

HIP Astroloy: ASTM grain size 5 - 7 grain dia,- 40 - 60~m 



ORIGINAL PAGE II 
OF POOR QUALITY 

SUMMary of Fractographic Studies of HIP Reni 95 

ll£t(S) lll'p (I) Type N, Initiation Propagation Test 
650·C 

1.54 0.045 o hold 2702 TG TG 
650·C 

2.04 0.12 o hold 498 TG TG 
650·C 

2.56 0.32 o hold 191 TG TG 
725°C 

1.52 0.105 o hold 570 TG TG 
725°C 

2.08 0.33 o hold 203 TG TG 
725°C 

2.61 0.36 o hold 105 TG TG 
650°C 

1.68 0.039 2 min hold 224 IG TG + IG 
650°C 

2.05 0.2 2 min hold 135 IG TG + IG 
6S0b C 

2.70 0~39 2 min hold 10 IG TG + IG 
7ZSbC 

1.66 0.096 2 min hold 122 IG TG + IG 
7ZS6C 

2.04 0.2 2 min hold 39 IG TG + IG 

Striations are generally not observed. 

19. 

COI1IIIents on Ori gi n 
particles. pore. 
no striation, 
particle. 
striations 

no striations 
pore 
no striations 
pore 
striations 
pore 
no striations 

no striations 
pore 
no striations 
pore 
no striations 

no striations 

no striations 

All have multiple origins associated with surface connected particles or pores. 

HIP Rene 95: grain size 5 - 4O~m(non-uniform) 



ArE" 
0.33Hz 

1Hz 
20Hz 

2m hold 

A1," 
1Hz 

20Hz 

TABLE VII 

Constants of the Paris Equation for FCG at 6SOoC 

Astro10.Y 
A 

3.38x10·13 

5.01xl0·13 

4.46xl0·14 

1.38xl0·12 

2.24xl0·13 

m 

4.1 
3.7 
5.6 (725°C) 

4.0 
4.3 

Rene 95 
A 

1.51x10·11 

6.30x10·9 

1.99xl0·10 

2.45x10·9 

1. 15xl0·9 

8. 71xl0-11 

m 

3.1 
1.2 
1.9 
2.8 

1.9 
2.5 

20. 



a) low magnification 

b) high magnification 

Fig. 1 Transmission electron micrograph of Astroloy 
plastic replica 

21. 



Fi g. 2 

a) low magnification 

b) high magnification 

Transmission electron micrograph of Reni 95, 
plastic rep l ica 

22 . 
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ORiGt AL . , 
OF POOR Q AUTV 
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28 . 

b) 650°C 

Fig . 8 Brittle striations in Astroloy, air, v=20Hz 
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ORI I L 
OF pOOR QUALfT'Y 

Fig : 12 SEM fractograph of bri ttle striations in Rene 95 ~ 
650°(, argon, 1Hz 

32. 



OR G I P, 19 
OF POOR QUALITY 

Fig . 13 Fracture surface in region of precrack-crack 
transition , Rene 95 , argon , hold time = 120 s 
(1 Hz) 

33. 
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, 
Fig. 16 Grain boundary damage in Rene 95, 650°C, argon, 

hold time = 360 s (1Hz) . Plastic replica of the 
side surface 

36. 



\II 
<l 

ASTROLOY, Ar 
If· O.~3 Hz 
R· -I 

• 650°C, 0 HOLD 
0650°C, 2MIN HOLD 
A650°C, 5 MIN HOLD 
.725°C, 0 HOLD 
EJ 725°C, 2 MIN HOLD 

10 

TTTTi-T , - 'TTITTI - , - T r, I I '~ 

6c
T 

l:1_ p 

102 103 104 

Nt 

Fig. 17 lCF data fo r Astroloy 

~~ 
-oQ 
8 z 
;n l» 

.0 
c . 
}:o G) 
r- rr 

~ -

w 

" 



t-- -2 
\JJ 10 
<1 

10
2 

ASTROLOY 
650°C, o HOLD 

~ ,, =O.33Hz,A=-1 

~~Ar 

--- Air 

• NAS 3 - 20367 

10
3 

10
4 

Nt 

Fig. 18 Effect of environment on LCF of Astro1oy. 
Data in air fro~ Ref. 17 

w 
CD 



en 
~ 

N 
b' 
<l 

200 

100 

. -
• • ..-=- ---=---------

ASTROLOY I II = 0 .33 Hz I Ar 
R = -I 

• 
• 

650°C ~112(JJMPO (!EP)O.l1 
= 2114 -

2 

725°C (6_ (J \ __ = 1986 ~ l:l2E~O.1 
,,'- ,/ "'" u 

I I 

10-3 

~Ep/2 

Fig. 19 Effect of temperature on cycl ic stress-strain 
curVE": for HIP Astroloy (/l0/2 and /lC p/

2 
are 

measured at Nf / 2) 

00 
""'::0 
"'D~ 
8 
::ar-
tO "'O c 
l> ,. 

W 
\0 



-21 
10 

\U 
<l 

-3b 10 -

I 

RENE 95, Ar 

II =0.33 Hz 
R= -I 

• 650°C, o HOLD 

0 650°C, 2 MIN HOLD 

• 725°C, o dOLO 

G 725°C, 2 MIN HOLD 

10 

~ 

10
2 

Nf 

'~ 

10
3 

Fig. 20 LCF test results foy ' HIP Rene 95 

~ET 

~ 

~Ep 

10
4 

~~ 
'"0 

8 
:::0 

~ 
o 



70 I 

--
a. 

W 
<l 

~o 
I 

~ 

10
2 

• • 
• A 

• 
• 

• Ar, HIP 

• .A 

• 

I 

RENE 95 

6500 C t 0 HOLD 
1/=0.33 Hz, R =-1 

".A • 

• • 
• • .A Air, HIP (ANTOLOVICH) • 

• Air t HIP / FORGED (ANTOLOVICH) 

• Air t HIP/ FORGED (P a WA) .A 

10
3 

10
4 

Nf 

Fig. 21 Coffin-Manson plots for HIP Rene 95 for 
comparison with previous re5ults from 
Refs. 2 and 3 

• 

10
5 

00 
" ;;0 

~ i5 
8-
:tir-

,0 "" c 
~ r ,. 
~--

~ 



I I I III r--l r-Ill fl----- r - 1 
I 

RENE 95 

R=-I, 650°C, 0.33Hz 

t- \ ~ IO-2r Ar, 2 

• • 
<:> 
A 

Ar, .0 HOLD 
~ .~~ 

-.-: - 0(:l. .. ~c: 

MIN HOLD "-A' 15 MIN HOLD 

'" Ir, 
As - HIP 

HIP / FORGED (P a WA) 

Lu Ii I I I I I I d I I I I I 11 I I 1 LLUd 

10 102 103 104 

Nf 

Fig. 22 Strain control LCF results for HIP Rene 95 
for comparison with HIP/FORGED Rene 95 test 
resul ts, Ref. 3 

~Air. 0 HOLD 

0-

105 

0 0 
.." 

"'0 

8 . - r:-
,0 ""0 
C ~ 
)::0 !.':) 
r-

~ 

.p. 
N 



en 
~ .. 
b 
<l 

400~,--~----~~~~--~--~~~~----~~----~~ 

100 650°C, Art" = 0 .33 Hz, R = - I 
/ 

• RENE 95, ~cT = 2.04 '0 
• ASTROLOY t ~"T = 2.03 0

/ 0 

0' u 
10 102 

N 

Fig. 23 Cyclic hardening in Astroloy and Rene 95 
at 6500 C 

103 

00 
":;;0 
'lJG) 
gz 
::tJ ~ 
,0 "'0 
C 
):t ~. 
r- r. / 

~ 

""" w 



-(/) 
(/) 

w 
a:: 
~ 
(/) 

220 

60 

20 

o I AL I ": 
OF POOR QUALITY 

I 
RENE 95 

'---_ HIP / FORGED 

HIP 

~HIP ASTROLOY 

650°C, 0.33Hz, R=-I 

Air (P 8 WA) 

• Argon 

• Argon 

0 .004 0.008 0.012 0.016 
STRAIN 

Fig. 24 Cyclic stress -strain behaviors for HIP Rene 95 
and HIP Astroloy for comparison with HIP/FORGED 
Rene 95 . Data for air from Ref. 3 

44. 



• 

20 urn 

a) Origin (right -hand side is the specimen surface) 

b) X-ray EOS pattern for particles (arrows) 

Fig. 25 SEM fractographs of HIP Astroloy, 650 °C, ~Et: 
1.56% O.33Hz ard 0 hold 

45. 



OR L P GE 
OF POOR QUALIlY 

20 urn 

Fig. 26 SEM fractograph of HIP Astroloy near origin, 
showing brittle striations, 65aoC, ~€t=1.56% , 
a.33Hz and a hold 

46. 



• 

20urn 

20 urn 

ORlGI ~\L f . i 
OF POOR QUALITY 

a) origin 

b) crack propagation region near origin showing 
more readily visible striations and TG+IG 
cracking 

Fig. 27 SEM fractographs of HIP Astroloy 650 °C, ~~t= 
1.67% and 2 min. hold 
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OR\GI Al P G~ 
OF pOOR QUALrrI 

20um 

a) Origin associated with pore 

b) Crack propagation region near origin 

Fig. 28 SEM fractograph of HIP Rene 95, 725°C, 6~= 
1.52%, O.33nz and 0 hold 
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• 

20um 

ORIGINAL PAGI! I 
OF POOR QUALITY 

a) or igin (right-hand side is the specimen surface) 

20um 

b) crack propagation region near origin 

Fig . 29 SEM fractograph of HIP Rene 95, 650°C, 6£ t= 
2.7% and 2 min . hold 
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