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1.0 SUMMARY

This report is a study of the thermal environment of commercial
aircraft from a data set gathered during the Global Atmospheric
Sampling Program (GASP). The data set covers a four-year period of
measurements. The report presents plots of airplane location and speed
and atmospheric temperature as functions of elapsed time for 36 extreme-
condition flights, selected by minimum values of several temperature
parameters. One of these parameters, the severity factor, is an
approximation of the in-flight wing-tank temperature. Representative
low-severity-factor flight histories may be useful for actual temperature-
profile inputs to design and research studies. Comparison of the GASP
atmospheric temperatures to interpolated temperatures from National
Meteorological Center and Global Weather Central analysis fields shows
that the analysis temperatures are slightly biased toward warmer than
actual temperatures, particularly over oceans and at extreme conditions.

2.0 INTRODUCTION

By most criteria, aircraft fly in a hostile environment. In particu-
lar, commercial aircraft typically fly at heights where the outside air
temperature may be -70°C or colder. Present aviation turbine fuels have
low freezing points to insure flowability at minimum temperatures. How-
ever, fuels with higher freezing points can allow better future utilization of
scarce and changing raw materials and flexibility in meeting changes in
product demands.

Engineers have the option of modifying aircraft fuel systems so that
the fuel is not subjected to as severe a temperature stress. This may be
done passively by altering the exposure or actively by heating the tanks
(refs. 1-3). If either of these alternatives is considered, there has to
be a balance between the effectiveness and the penalties paid in terms of
cost complexity, maintainability, weight and aircraft performance.



In order to evaluate potential fuel system modifications, through
design or experimental studies, representative extreme-environment
flights must be characterized. Figure 1 presents the average air
temperature as a function of latitude and height (ref. 4). As expected,
the temperature decreases poleward in the lower atmosphere. However,
above approximately 14 km (46000 ft) in winter (figure 1[al) and 12 km
(40000 ft)} in summer {(figure 1[b]), the average temperature decreases
equatorward with the result that the coldest average temperatures found in
the atmosphere are at approximately 17 km (54000 ft) over the equator.

The day-to-day fluctuations in atmospheric temperatures are far
more important in relationship to minimum fuel temperatures and flowability
than are the mean temperatures. Previous studies have compiled statistics
on minimum atmospheric temperatures to determine the probability of occur-
rence of extremes. In one study, a survey of 8125 flights over 12 commer-
cial routes gave the probability distribution of minimum fuel, total air,
and static air temperatures (ref. 5). Actual flight histories and the
time of occurrence of minima were not reported. Flight temperature
histories were constructed for several military missions in another study,
using National Meteorological Center analysis field data over a ten-year
period with heat transfer model calculations (ref. 6).

This present study utilizes a set of temperature data collected on
many routes worldwide. A previous report (ref. 7) presented statistical
data from each flight and organized the observed atmospheric temperatures
into probability tables by monthly geographic and altitude grids. The
current study presents complete temperature histories of selected flights
determined to be most extreme according to several parameters. One of
these parameters is a severity factor, an approximation of the wing-tank
fuel temperature. The analysis of temperatures includes comparisons of
temperatures measured by the aircraft and temperatures interpolated from
analysis fields.



3.0 DATA

The NASA Global Atmospheric Sampling Program (GASP) ran from March 1975
to July 1979. During this program four commercial B747 aircraft in routine
service were instrumented tc obtain measurements of aerosols, trace con-
stituents and meteorological variables (refs. 8 and 9). The GASP system
was automated to record data at nominal five-minute intervals during flight
above FL190 (5.8 km or 19000 ft according to the ICAO Standard Atmosphere).
When turbulence was encountered, or on entire selected flights, data were
recorded at four-second intervals {ref. 10), but for this study only one-
minute interval data were retained. Temperatures were measured with a
Rosemount temperature sensor for which the expected rms error is less
than 1°C (ref. 11). The temperature data, however, were recorded in whole

degrees Celsius.

The data set used in this study consists of 6945 flights covering 273
different routes. Most of these routes are in the United States (including
Hawaii) or are from the U. S. to Europe or Japan. However, there also are
numerous flights from the Northern Hemisphere to the Southern Hemisphere,
within the Southern Hemisphere, between cities along the southern rim of
Asia, and even into Africa. Airport codes and locations are Tisted in
Table 1. A complete summary of all GASP flights is found in ref. 7.

Analysis fields of temperature produced by the National Meteorological
Center (NMC) and by the Air Force Global Weather Central (GWC) were also
used in this study. Both data sets are gridded on a 1977-point octagon
presented in fig. 2. Both data sets cover the Northern Hemisphere to
about 18°N latitude. These gridded data are available twice a day, at
0000 GMT and 1200 GMT, and the following pressure levels were used:

500 mb (50 kPa pressure, corresponding to 5.6 km, FL180)
400 mb ( 7.2 km, FL240)
300 mb ({ 9.2 km, FL300)
250 mb (10.4 km, FL340)
200 mb (11.8 km, FL390)
150 mb (13.6 km, FL450)
100 mb {16.2 km, FL530)



4.0 ANALYSIS OF DATA

4.1 Selection Parameters

Five different temperature severity parameters were defined and
computed for each of the 6945 GASP flights to select flights that met
criteria for coldest temperatures. These parameters are defined as follows:

4.1.7 Minimum Temperature

The minimum temperature is the minimum or most extreme single
event ambient (static) temperature recorded at any time during the
flight.

4.1.2 Thermal Exposure

The thermal exposure is the time weighted sum of the ambient
temperatures encountered over the entire flight, expressed in units
of degree-minutes. Mathematically it is given by

t=n
E = E TS At
t=1

where E is the thermal exposure,
T is the ambient (static) temperature,
At is the time interval,

and t is the number of the time interval from the start of
cruise (t=1) to the end of cruise (t=n).

4.1.3 Average Temperature

The average temperature for a flight is the thermal exposure
divided by the total time duration of the flight.



4.1.4 Severity Factor

The severity factor is an estimate of the fuel temperature
during the flight, not measured by the GASP instrumentation. The
severity factor is calculated by assuming a time-varying heat transfer
coefficient. The coefficient is based on Boeing calculations for
configurations typical of the GASP aircraft (ref. 12). Mathematically,

the severity factor is given by:

T T .)at

=T Tsf,i-1 e,

-K(

st,i sf,i-1

where T is the severity factor after time interval i,

sf,i
1)

K is the thermal constant {assumed to be 7.84 x 103min" "
TSf i-1 is the severity factor after time interval i-1,

Tr ; is the recovery temperature during time interval i-1,

and At is the time interval.

The recovery temperature is given by

T .= (0 +o0a8) T

r,i 5,1

where Mi is the Mach number over interval i,

and TS ; is the static air temperature over interval i. This

equation assumes an adiabatic recovery of 90%.

The severity factor at the start of cruise, Tsf 0> Was assumed to
O b

be -17°C.

4.1.5 Minimum Average Segment Temperature

A flight segment is defined as a portion of a flight in excess
of two hours duration during which the flight level changes by less
than $150m (500 ft). If more than one such segment exists, this
parameter is the one with the coldest average temperature.



4.2 Coldest Flights

The computation of each of these parameters for all GASP flights
resulted in an ordered set of flights from most severe to least severe for
each parameter. From this set, 36 "most severe" flights were selected.
These flights are shown in Table 2 along with the values of the selection
parameter. The flights are ranked in Table 2 in a general order of
decreasing severity. The order is subjective, but flights were judged more
severe if they were extreme in more than one of the selection parameters.
Nineteen different airport pairs are represented in Table 2. The most
consistently severe route is between Bahrain Island in the Arabian Gulf
or Dhahrain, Saudi Arabia, and New York. Seven of the 36 flights are
between these cities.

5.0 DISCUSSION OF DATA

5.1 Flight Histories

Flight histories of the 36 selected flights of Table 2 are presented
in the order of rank in figs. 3 to 38. Each of these figures is a panel
with multiple plots of recorded and calculated parameters as common
functions of flight duration.

Each panel is labeled across the top with the airports of departure
and destination, the time of the first data point (time of departure),
and the date of the flight. Within each panel, there are seven sets of
plots with separate ordinates alternated between the left and right
margins. All refer to the common abscissa of elapsed time. From the
bottom up, the plots show aircraft speed (Mach number), altitude (flight
Tevel), distance from the NMC tropopause {where available), static air
temperature, severity factor (approximate fuel temperature), latitude
and Tongitude. Distance may be estimated by the nominal equivalence of
1700 km, or 1000 statute miles to each 100 minutes of elapsed time.



A1l GASP data were measured from Boeing 747 aircraft, and the average
cruising speeds fluctuate about Mach 0.85. The flight level, or pressure
altitude of the aircraft, is determined by all of the variables that go
into the flight plan and ranges from 10 to 13 km (33000 to 43000 ft).

The height of the NMC tropopause was interpolated to each recorded
aircraft position from NMC tropopause analysis fields, and the height
difference between the tropopause and the aircraft is plotted in the panel
in pressure units (mb). A positive distance indicates that the aircraft
is above the tropopause. Tropopause data were available for most northern
hemisphere flights.

The static air temperature as recorded by the aircraft is presented
in the next part of the panel. If NMC and/or GWC temperature data were
also available, they are also inciuded on the same scale as the GASP
temperatures. The NMC (GWC) temperature curve is distinguished from
the others by small boxes (triangles) drawn at 100 minute intervals.
The NMC and GWC temperature data were interpolated from the gridded fields
to the aircraft position linearly with respect to horizontal distance and
time and linearly with respect to the logarithm of pressure in the vertical.

The severity factor, or arbitrary fuel temperature, is included above
the temperature curve. The severity factor, defined in section 4.1.4,
can be seen to represent a damped response to the air temperature (or,
more specifically, the recovery temperature)}. The top plots in each
panel are the flight location, Tongitude and latitude, as functions of
elapsed time.

5.2 Severity Factors

Temperature patterns in the atmosphere are reflections of meridional
circulation patterns. Near the earth's surface in midlatitudes, the
primary circulation features are sequences of high pressure and low
pressure systems imbedded in the westerly winds. In the upper atmosphere,



say above 6 km (20000 ft), these pressure systems appear as meridional
deviations or waves in a basically zonal (west to east) flow. An aircraft
will generally encounter, during any season of the year, sequences of
relatively high and relatively low temperatures. An examination of the
flight histories presented in figures 3 to 38 shows that cold areas tend
to have a duration of 100 to 200 minutes (1000 to 2000 miles). What this
implies is that even though ambient air temperatures may occasionally reach
-70°C or colder, they do not remain at that extreme level over an entire
long flight. It also shows why it is important to look at actual flight
histories, either measured or inferred from analysis fields, rather than
simple temperature-altitude climatologies when examining a thermal
exposure problem.

The severity factor is calculated from the air temperature and appears
as a damped response to the flight temperature variations. The minimum
value of the severity factor is not directly related to the average air
temperature along the route. The magnitude and duration of any deviation
from the average is more important. Furthermore, cold air temperatures
late in a flight will tend to produce more extreme severity factors than
cold temperatures early in a flight.

A demonstration of the relationship of severity factor to wing-tank
fuel temperature is shown by the comparison in figure 39 of calculated
severity factors for a published flight history of a flight from Seattle
to Johannesburg (ref. 2). The severity factor assumes an initial fuel
temperature of -17°C; in the comparison flight, the initial temperature
was -8°C. However, the influence of initial fuel temperature becomes
negligible after several hours of flight time (compare ref. 12). Both
the severity factor and the Boeing prediction model approximate the
measured fuel temperature well. The severity factor is based on the
Boeing technique with an arbitrary initial temperature and other
simplifications.

The severity factors presented in the flight histories were calculated
from the GASP temperatures. Table 3 compares the minimum severity factors
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from Table 2 for the selected flights as calculated from the GASP tempera-
tures with the factors calculated from the NMC and/or GWC data, if available.
It is significant to note that in only one case was the severity factor
computed from analysis fields colder than the severity factor computed from
the aircraft measured temperatures, and this was by only 0.03°% (flight

rank 11). 1In general, the severity factors computed from the analysis
fields were 3 to 5°C warmer than the GASP severity factors. The differences
appear to be due primarily to the fact that the analysis fields tend to be
consistently biased toward warmer temperatures during the coldest portions
of the flights. Because most of the flights are over water, it is difficult
to judge if this bias is due to the fact that there are less input data

over the oceans or due to a damping or averaging bias. One of the few
flights completely over land (rank 13) also shows a bias between the tempera-
tures. In any case, one should be aware of the magnitude of the differences
in minimum severity factor that can result from different types of input
data.

On the basis of severity factor and the other parameters, five routes
that were generally the coldest were identified from among the 19 repre-
sented by the selected flights. These routes and the number of flights
available are:

Los Angeles (LAX) - Tokyo (HND,NRT) 234
San Francisco (SFO) - Hong Kong (HKG) 51
San Francisco (SFQ) - Auckland (AKL) 36
New York (JFK) - Bahrain Is. (BAH) 43
New York (JFK) - Rio de Janeiro (GIG) 30

The average temperature and severity factor were computed for each
flight, and the empirical probabilities of occurrence for several
selected probabilities were determined. These empirical values are
presented in Table 4.

A criterion of extreme temperature conditions often used for design
and research is that of a one-day-a-year probability (refs. 5 and 12).



Two of the coidest routes, JFK-BAH and LAX-Tokyo, do have minimum
severity factors and average temperatures which are normally distributed.
With an assumption cf normality, the one-day-a-year probability on these
two routes can be estimated:

Minimum

Route Severity Factor, °c Average Temperature, °c
JFK, BAH -42.3 -63.6
LAK, Tokyo -39.8 -62.5

Thus the rank 1 temperature history (figure 3) corresponds closely to a
one-day-a-year flight profile with respect to the minimum severity factor.
Other temperature histories of figures 3 to 38 may also be useful as
representative of actual Tow-probability, extreme-condition flights,
adapted and modified as necessary.

5.3 Further NMC, GWC and GASP Temperature Comparisons

It should be noted that changes in flight level produce corresponding
changes in the distances from the tropopause, the temperatures, and
occasionally the aircraft speed. Apart from the near discontinuities in
these flight histories due to flight level changes, the plots of the dis-
tance from the NMC tropopause and the NMC and GWC temperature curves
should be smooth. The distance between analysis field grid points is
equivalent to about 25 minutes of flight time at normal cruise speeds.
This implies that features in the temperature field with wave lengths
smaller than about 50 minutes of flight time cannot be represented by
the NMC/GWC analysis fields. Much more structure is resolvable in the
GASP data which are taken, for the most part, at five-minute intervals.
Even if allowance is made for the damping of temperature details, there
are often significant differences between the GASP temperatures and the
NMC/GWC analysis fields. Furthermore, there are also instances where
there are large differences between the NMC and the GWC temperatures.
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Upper air data have historically been much more readily available
over land than over the oceans. With satellites, more data have been
made available over the oceans, but it is still generally conceded that
the quality and detail of the data over land exceeds that of data over
the oceans. For this reason, two routes, one over land and one over
the ocean, were selected to compare the temperature analysis fields with
the GASP temperatures. The land route was between New York and San
Francisco {146 flights), and the oceanic route was between San Francisco
and Tokyo (108 flights).

Figure 40(a) presents the distribution of the differences between
GASP and NMC temperatures for the oceanic flights and the continental
flights. The continental flight temperature differences have a mean
almost equal to zero and a standard deviation of 1.65°C.  The oceanic
flights, on the other hand, have a mean difference bias of 0.85°C and
a standard deviation of 3.55°C. The mean difference is such that the
NMC temperatures are warmer than the GASP temperatures, thereby under-
stating the severity. Figure 40(b) shows the distribution of the
probability that the absolute value of the temperature difference will
be exceeded. The greater spread of the oceanic flight differences is
apparent.

Figure 41 presents a comparison between GASP/NMC temperatures and
GASP/GWC temperatures for both oceanic and continental routes. Only
flights for which both NMC and GWC temperature data were available were
used. Statistical differences between the NMC and GWC temperatures for
either route are small. The positive temperature bias for the oceanic
route and the slight negative bias for the continental route are evident.

Figure 42(a) presents the distribution of the GASP and NMC tempera-
ture differences for the oceanic flights (same as figure 40[al]) and the
distribution of the GASP and NMC temperature differences for the
selected flights of Table 2 for which NMC data were available. This

figure is interesting in two respects. First, a much larger mean
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temperature difference bias (1.65°C) is apparent in the coldest flight
data set. This fact reiterates the point that the temperature analysis
fields will underestimate the thermal severity of an actual flight.
Secondly, the bias difference is not reflected in fig. 42(b) which shows
the distribution of the probabiiity that the absolute value of the
temperature difference will be exceeded. Cumulative distributions like
fig. 42(b) are often used to estimate error bounds, and the fact that
these two are nearly identical occurs in this case by chance. This
example serves to illustrate that care must be taken in interpreting
results when absolute values are used in transforming a probability
distribution to a cumulative distribution.

6.0 SUMMARY OF RESULTS

This report has presented a study of the thermal environment of
commercial aircraft from a data set gathered during the Global Atmospheric
Sampling Program. This data set consists of 6945 flights covering 273
routes over most of the world.

From the analysis of this data set, the following results are
obtained.

1. Thirty-six flights, representing 19 different routings, were
selected by several temperature parameters as the most severe. This
report includes plots of airplane position, speed, and atmospheric
temperature as functions of elapsed time for each of the selected
flights. A table shows the various minimum temperature parameters for
each selected flight.

2. A severity factor is defined as one of the representative
extreme temperatures. This factor may be used to select worst case low-
probability flights for design and research modeling. The severity
factor is an approximation of the wing-tank temperature, related to the
minimum enroute temperatures, their duration, and time of occurrence
during flight.
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3. Ambient temperatures as measured from the aircraft were compared
with the temperature interpolated from National Meteorological Center
(NMC) and Global Weather Central (GWC) analysis fields, and it was found
that the interpolated temperatures were slightly biased towards warmer
than actual temperatures. This was particularly true over the oceans and

for the thermally severe flights. NMC and GWC gridded data appeared
statistically similar.
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ACA
AKL
AMS
ANC
ATH
BAH
BDA
BEG
BEY
BGR
BKK
BNE
BOM
BOS
BRU
CCS
CGN
CHC
CLE
CPH
CPT
CTS
CUN
CUR
DAM
DEL
DEN
DFW
DHA
DRW
DTW
DuB
EZE
FAI
FCO
FRA
GIG
GUA
GUM
HKG
HND
HNL
1AD
IAH
IST

TABLE 1
Airport/City Codes and Locations

CITY

Acapulco, Mexico
Auckland, New Zealand
Amsterdam, Netherlands
Anchorage, Alaska
Athens, Greece

Bahrain Is., Arabian Gulf
Bermuda, Atiantic Ocean
Belgrade, Yugoslavia
Beirut, Lebanon

Bangor, Maine

Bangkok, Thailand
Brisbane, Australia
Bombay, India

Boston, Mass.

Brussels, Belgium
Caracas, Venezuela
Cologne, Germany
Christchurch, New Zealand
Cleveland, Ohio
Copenhagen, Denmark
Capetown, South Africa
Sapporo, Japan

Cancun, Mexico

Curacao, Neth. Antilles
Damascus, Syria

Delhi, India

Denver, Colorado
Dallas/Ft. Worth, Texas
Dhahrain, Saudi Arabia
Darwin, Australia
Detroit, Michigan
Dublin, Ireland

Buenos Aires, Argentina
Fairbanks, Alaska

Rome, Italy

Frankfurt, Germany

Rio de Janeiro, Brazil
Guatemala City, Guatemala

Guam Island, Mariana Islands

Hong Kong, Hong Kong
Tokyo, Japan
Honolulu, Hawaii
Washington, D.C.
Houston, Texas
Istanbul, Turkey
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LAT.

.75N
.035
-30N
7N
.96N
.OON
.36N
.82N
.82N
81N
. 90N
.44s
. 15N
.36N
. 90N
62N
.93N
.518
41N
.54N
.90S
.8ON
.03N
.25N
.50N
.56N
.76N
.88N
.28N
.365
.24N
44N
.81S
.82N
.BON
.05N
.84S
.59N
.4IN
.33N
.54N
.33N
. 94N
49N
.98N

LONG.

.76W
.81E
.76E
.98W
.73E
.60E
.63u
.30E
.48t
.82W
.60E
J12E
.86E
.0TW
.49E
L97W
.32E
.52E
.84W
.B1E
.68E
.67E
.B8W
.91W
.50E
12K
.89
.O3W
JO7E
.89E
.39W
.26W
.53W
.86W
.25E
.58E
.20W
.52HW
.80E
21E
.77E
.92W
L44W
.28W
.83E



TABLE 1 (cont'd)

ITO - Hilo, Hawaii 19.64N 155.03W
JFK - New York, New York 40.63N 73.77W
JNB - Johannesburg, South Africa 26.12S 28.22E
KHI - Karachi, Pakistan 24.90N 67.15E
KUL - Kula Lumpur, Malaysia 3.12N 101.66E
LAS - Las Vegas, Nevada 36.08N 115.15W
LAX - Los Angeles, California 33.95N 118.40W
LHR - London, England 51.47N .43W
LPA - Las Palmas, Canary Island 27 .94N 15.39W
MEL - Melbourne, Australia 37.675 144 . 84E
MEX - Mexico City, Mexico 19.45N 93.05W
MIA - Miami, Florida 25.79N 80.27W
MIQ - Caracas, Venezuela 10.60N 66.99W
MNL - Manila, Philippines 14.49N 121.02E
MRU - Mauritius, Indian Ocean 20.45S 57 .68t
MUC - Munich, Germany 48.08N 11.60E
NAN - Nandi, Fiji Island 17.75S 177 .46E
NCE - Nice, France 43.57N 7.41E
NOU - Noumea, New Caledonia 22.01S 166.24E
NRT - Tokyo, Japan 35.72N 140.32E
OKA - Okinawa, Japan 26.20N 127 .63E
OMA - Omaha, Nebraska 41.34N 95, 89W
ORD - Chicago, Illinois 41.97N B7.90W
OSA - Osaka, Japan 34.78N 135.42E
ORY - Paris, France 48.77N 2.38t
PDX - Portland, Oregon 45 .85N 122.47W
PER - Perth, W. Australia 31.92S 115.94L
PHL - Philadelphia, Pennsylvania 39.90N 75.07u
PIK - Glasgow, Scotland 55.60N 4.70W
PPG - Pago Pago, Samoa 14.06S 170.68W
PPT - Papeete, Tahiti 17.55S 149.60W
PTY - Panama City, Panama 9.08N 79.38W
SEA - Seattie, Washington 47 . 44N 122.30W
SFO - San Francisco, California 37.61N 122.39W
SIN - Singapore, Singapore 1.44N 103.85E
SNN - Shannon, Ireland 52.69N 8.91W
STL - St. Louis, Missouri 38.75N 90.36W
STR - Stuttgart, Germany 48 .55N 9.21E
SYD - Sydney, Australia 33.87S 151.34L
THR - Tehran, Iran 35.68N 51.31E
TPE - Taipei, Taiwan 25.07N 121.54E
VIE - Vienna, Austria 48.11N 16.58E
YQX - Gander, Newfoundiand, Canada 48.98N 54 . 500
YVR - Vancouver, B.C. Canada 49.20N 123.18W
YYZ - Toronto, Ontaric, Canadea 43 67N 79.61W
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Table 2

Selected Extreme Condition Flights

Parameter Values

V4 N
N 7
Departure- Thermal Min Avg

Destination Min Exposure Avg Severity Segment
Rank  Airports Date Temp,°C  °C-Min  Temp,°C Factor,°C Temp“C
1 BAH-JFK 11/25/78 -73 -46840 -60.1 -42.5 -70.8
2 CPT-AKL 10/29/77 -72 -47693 -59.0 -39.7 -66.9
3 BAH-JFK 1/ 3/79 -73 -46968 -59.1 -38.5 -66.3
4  JFK-DFW 5/ 2/77 -71 -9755 -65.9 -32.7 -67.8
5 SIN-HKG 11/29/78 -71 -10801 -65.5 -34.9 -70.0
6  SNN-JFK 1/27/76 -71 -24262 -64.4 -40.7 -69.7
7 FRA-JFK 1/.2/79 -71 -28838 -63.7 -37.5 -67.0
8  SFO-HNL 4/12/75 -68 -17661 -64.9 -37.1 -67.0
9 NRT-SFO 2/ 4/79 -74 -28172 -58.2 -37.4 -61.8
10 JFK-DHA 2/22/179 -73 -38025 -58.4 -37.4 -62.6
11 JFK-HND 12/16/77 -68 -48168 -59.4 -35.3 -62.7
12 BOM-BAH 11/25/78 -69 -11175 -65.7 -34.2 -67.8
13 DFW-JFK 5/ 4/77 -70 -8520 -65.5 -31.0 ----
14 HND-LAX 3/ 2/77 -74 -30416 -59.5 -35.7 ~62.0
15 HND-LAX 2/16/178 -73 -27595% -56.9 -33.9 -61.8
16 JFK-BAH 1/25/77 -73 -37870 -58.7 -33.4 -58.2
17 LAX-HND 12/17/77 -73 -37255 -56.4 -36.9 -57.2
18 LHR-JFK 1/26/76 -69 -22157 -63.9 -38.7 ----
19 ORD-HNL 4/ 4/79 -68 -29817 -61.9 -38.7 -65.7
20 JFK-HND 10/18/76 -66 -45920 -57.6 -32.6 -59.3
21 BAH-JFK 11/23/78 -69 -45910 -58.6 -34.5 -59.5
22  GIG-JFK 3/28/77 =71 -31675 -59.8 -38.9 -69.2
23 SYD-SFO 5/22/77 -67 -40745 -55.4 -37.2 -66.1
24 PPT-PPG 5/10/77 -67 -9667 -64.0 -31.9 -66.3
25  HKG-SIN 12/10/77 -66 -10920 -62.4 -31.9 -65.1
26 SFO-HKG 12/ 9/77 -64 -45556 -54.4 -34.0 -63.2
27  DHA-JFK 2/24/79 -69 -45348 -56.9 -34.5 -61.8
28  HND-LAX 4/18/77 =71 -30840 -60.8 -37.2 -62.7
29  HKG-SFO 4/11/79 -70 -36620 -56.8 -37.2 -64.0
30  SFO-AKL 12/25/76 -70 -42156 -57.0 -37.2 -60.3
31  SFO-HKG 5/29/78 -64 -42787 -51.2 -31.2 -61.7
32 SYD-SFO 7/ 3/77 -67 -44615 -56.8 -35.7 -64.6
33 LAX-HND 4/19/77 -68 -40562 -61.3 -35.3 -67.3
34  DHA-JFK 2/22/79 -72 -41910 -54.7 -36.6 -63.3
35  HND-JFK 2/14/77 -72 -35482 -53.3 -30.6 -62.0
36 JFK-HND 5/16/78 -64 -39151 -53.5 -32.9 -55.7
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Table 3

Comparison of Minimum Severity Factors of Selected Flights

* * %*
Rank SF GASP SF NMC SF GHC

1 -42.46 -35.59 -

2 -40.22 - -

3 -38.47 -33.88 -

4 -32.67 -29.97 -

5 -34.88 - -

6 -40.77 -36.53 -

7 -37.48 -35.25 -

8 -37.09 - -

9 -37.39 -33.46 -32.08
10 -37.39 -31.64 -33.59
1N -35.26 -35.23 -35.29
12 -34.15 -29.77 -
13 -31.00 -28.28 -
14 -35.65 -32.42 -
15 -33.89 -33.14 -30.08
16 -33.45 - -
17 -36.91 -31.40 -33.16
18 -38.74 -33.16 -
19 -38.74 - -
20 -32.60 -30.73 -
21 -34.49 -37.10 -
22 -38.87 - -
23 -37.21 - -
24 -31.91 - -
25 -32.96 - -
26 -33.99 -30.98 -31.84
27 -34.49 -32.89 -33.63
28 -37.22 -35.81 -34.04
29 -37.22 -33.80 -32.87
30 -37.36 - -
31 -31.7 -28.30 -
32 -35.65 - -
33 -35.32 -32.84 -31.44
34 -36.56 -32.86 -32.79
35 -30.60 -28.91 -29.95
36 -32.90 -29.46 -

* SFGASP, SFNMC, and SFGWC are the minimum severity factors
as computed from the GASP temperature and the NMC and GWC
analysis fields, respectively.
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Table 4.

Probability of Occurrence for Two Temperature Parameters on Five Coldest Routes

Probability

Route

JFK, BAH
GIG, JFK
HKG, SFO
AKL, SFO
LAX, HND(NRT)

Probability

Route

JFK, BAH
GIG, JFK
HKG, SFO
AKL, SFO
LAX, HND(NRT)

Severity Factor, °c
1% 5% 10% 25% 50%
- -38.0 -35.5 -33.7 -31.5
- -35.5 -34.7 -31.7 -29.0
- -35.5 -34.6 -33.2 -30.0
- -34.8 -33.0 -31.0 -28.4
-37.2 -35.4 -34.2 -31.9 -29.0

Average Temperature, °c

1% 5% 10% 25%
- -59.9 -58.7 -b7.2
- -58.8 -57.5 -55.8
- -55.8 -54.6 -53.8
- -56.3 -55.3 -54.3
-60.9 -58.9 -57.9 -56.1

50%

-53.8
-53.5
-50.8
-52.4
-53.5

75%

-29.0
-23.8
-26.8
-27.0
-26.2

75%

-52.1
-48.2
-48.8
-50.4
-51.4

90%

-26.3
-18.6
-24.2
-26.1
-24 .1

90%

-50.0
-41.5
-47.5
-49.2
-49.8

95%

-25.0
-17.5
-21.9
-25.2
-22.8

95%

-49.1
-39.8
-45.2
-49.0
-47.2

99%

99%
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70 60 50 40 30 20 10°N

(b) Summer

Vertical cross-sections of the meridional distribution of temperatures
(adapted from ref. 4, fig. 4.1).



Figure 2. Grid points for National Meteorological Center (NMC)
and Global Weather Central (GWC) analysis fields.
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Figure 5. Flight history for flight rank 3.
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Figure 7. Flight history for flight rank 5.
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Figure 11. Flight history for flight rank 9.
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Figure 17. Flight history for flight rank 15.
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Figure 19. Flight history for flight rank 17.
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Figure 21. Flight history for flight rank 19.
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Figure 22. Flight history for flight rank 20.
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Figure 24. Flight history for flight rank 22.
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Figure 25. Flight history for flight rank 23.
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Figure 26. Flight history for flight rank 24.
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Figure 27. Flight history for flight rank 25.
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Figure 28. Flight history for flight rank 26.
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Figure 29. Flight history for flight rank 27.
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Figure 30. Flight history for flight rank 28.
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Figure 31. Flight history for flight rank 29.
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Figure 32. Flight history for flight rank 30.
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Figure 34. Flight history for flight rank 32.
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Figure 35. Flight history for flight rank 33.
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Figure 37. Flight history for flight rank 35.
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Figure 38. Flight history for flight rank 36.
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FUEL TEMPERATURE, °C

e MEASURED FUEL TEMP.
— BOEING PREDICTED FUEL TEMP.

--- SEVERITY FACTOR -

Figure 39.

FLIGHT TIME, HOURS

Comparison of calculated severity factor and Boeing-madel
predicted fuel temperature with measured fuel temperature
on & flight from Seattle to Johannesburg.
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(b} Probability of Exceedance

Distribution of differences between the GASP and NMC analysis field temperatures

BT=Tanalysis field

- TGASP) for an oceanic and a continental route. The number

of observations (N), the average temperature difference QE?), and the standard
deviation (s.d.) for each route are given in the figure.
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Figure 41. Distribution of

differences between the GASP and the NMC
and GWC analysis field temperatures (AT=T

TGASP) for an oceanic and a continental route. Only

observations which are common to all three data sets are
included, and the number_of observations (N), the average
temperature difference (AT), and the standard deviation

{s.d.) for each curve are given in the figure.
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Distribution of differences between the GASP and NMC analysis field temperatures
AT= Tana]ysis Field - TGASP) for an oceanic route and for selected extreme

flights. The number of observations {N), the average temperature difference
{&T), and the standard deviation (s.d.) are given in the figure.
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