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SUMMARY 

The reduction or alleviation of helicopter vibration will reduce main t enance 
requirements while at the same t ime increase ride quality and helicopter reliability . 
In forward fl ight, the helicopter ' s fuselage vibration spectrum tends to be dominated 
b y multiples of the "N/REV" component. This paper presents a way to use the method 
of adaptive inverse control to identify, in real- time, a controller capable of gen­
erating N/REV vibra tion of opposite phase to cancel the uncontrolled N/REV vibra­
tion component . The control cons i dered in this paper will be that of multicyclic 
feathering of blade pitch . 

INTRODUCTION 

In forwar d fligh t, asymme trical airflow through the 
produces a fuselage vibration spectrum which tends to be 
the N/REV component ; where "N" is the number of blades 
N cycles of vibration per rotor revolution. The N/REV 
dynamics may be modeled in the locally linear sense as: 

rotor disk of the helicopter 
domina ted by multiples of 
in the rotor producing 
helicopter vibration 

.6Z (j) = T (j) M (j) (1) 

Here, [Z(j)] is a (p x 1) vector whose elements are the N/REV sine and cos ine coef ­
ficien ts of the Fourier transform of data taken from fuselage accelerometers . The 
vector [ 8 (j)] is an (m x 1) vector whose elements are the selected sine and cosine 
coefficients of the higher harmonic blade pitch. The local linear model postulates 
that within a short time interval the changes in the harmonic coeff icients of cyclic 
pitch are linearly related t o the changes in the harmonic coefficients of vibration. 
The tra nsfer matrix describing this linear relationship is "T." 

One solution to the vibration control problem would be to identify T, find its 
inverse (for m = p), and then form the optimal control as : 

Z(j) is the total sensed (measured) N/REV vibration. The vector .68 (j) is the change 
in multicy'clic control necessary to induce a vibration component of opposite phase to 
cancel the sensed vibration. The minus sign thus signifies opposite phase . 

Figure 1 shows this control system. This approach to vibration control is 
limited to transfer matrices which are square, as presented thus far, but can be 
easily generalized for the nonsquare case. 

This paper presents the method of adaptive inverse control as a means to simul­
taneously identify the inverse of the transfer matrix and to find the vibration feed­
back gain matrix . This method uses the least mean square (LMS) algorithm of Widrow 
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and Hoff (ref. 1) to identify the inverse of the transfer matrix. Thereby, no inver­
sion is required . Hence, the adaptive inverse control scheme is computa tionally v ery 
efficient . 

REGULATOR DESIGN WITH ADAPTIVE INVERSE CONTROL 

In this paper , the LMS algorithm and the method of adaptive inver se control pre­
sented by Windrow, McCool, and Medoff (ref . 2) are extended to solve the multiple ­
input/multiple-output helicopter vibration control problem . The necessary input 
command to the con troller in this case is a vector whose elements are the uncon trol led 
componen t s of N/REV vibration, changed in sign. In this manner the feedback com­
mands giv en t o the controller represent the vibration desired to cancel . 

The resultant controller ar rangement is shown in figure 2 . The controller has 
been placed afte r the pla nt to form an adaptation error vector . The commanded 
change in multicyclic pitch at step j is 6 8 (j) . Referring to figure 3, it is seen 
that when 68 (j) is inputted to the helicopter, a corresponding change in vibration, 
6Z(j) , results: 

6Z (j) = [T (j) ] M (j ) (3) 

This 6Z(j) is s ubse que ntly mUltiplied by C , the controller ma trix . If C is th e 
inverse of the transfer matrix , T, then [C] * 6Z(j) should equal the original com­
ma nded change in pitch, 68 (j). This is usually not quite e qual to the original 
cha nge in pitch because of e rrors in [C] ide ntification and is thus denoted with a 
" ha t" symbol, 68 (j) . 

Adapta tion Error M (j) M (j) 

e (j) M (j) [C (j) ] 6 Z (j) 

M (j) [C(j) ] [T(j) ] [ Lle (j) ] (4 ) 

Cl early , this error will be minimized when the con troller ma trix , C, is the inverse 
of T . This error vector is then use d by the LMS algorithm in steepest descent form 
t o update the estima t e of the inverse tr a nsf er ma trix, C. This algorithm is an 
ite rative identification technique which makes changes in the C (inverse plant) 
ma trix e lements proport ional to the gradient of the expected value of the mean s qu are 
error signal with r espec t to the current e stimate of C, 

It will be shown that a n unbiase d es timate of this gradien t is g ive n by , 

(5) 

The steepest descent (LMS - SD) algorithm fo r calculating each row "i" of the contr oller 
matrix is then shown to be: 

(6 ) 
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LMS ALGORITHM IMPLEMENTATION 

The LMS algorithm (ref. 1) is the iterative estima tion algorithm which we will 
use here to identify the inverse of the plant (helicopter) transfer matrix . In this 
sec tion, the LMS algorithm and the method of adaptive inverse control presented by 
Widrow, McCool, and Medoff (ref . 2) will be extended to solve t he multiple-input, 
multiple-output helicopter vibration control problem . This extension will be made 
by identifying the inverse transfer matrix in a row-b y-row fashion . In this manner, 
the single weight vector originally LMS identified by Widrow and Hoff (ref . 1) now 
becomes a matrix of weights. The LMS algorithm will be adap ted to make row-by-row 
corrections to the current row estimate s of the inverse matrix. Using the "steepest 
descent" approach, these corrections will be made proportional to the gradient of the 
expected mean square estimation error vector, with respect to the current row esti­
mate values. In this section we will de fine the terminology used and explain the 
meaning of the previous statement. 

For each row "i" of the controller matrix at time step "j " we have: 

and the square of this error as : 

Here, 68 (j) is the ith element of the control vector fed into the helicopter 
plant (T). 

( 7) 

(8) 

The LMS algorithm is an iterative identification technique which makes changes 
in the C (inverse plant) matrix elements proportional to these estimat ion error 
signals. For each row of the controller matrix, the steepest descent update can be 
written as: 

(9) 

This equation states that the current row estimate is equal to the previous value of 
the estimate plus a cor rection term. The correction term is zero when the identifi­
cation err or is zero. 

"E[efU)] " denotes the "expected value" of the error squared, or the mean 
square error. V{E[et(j)] } denotes the gradient of the mean square error signal 
respect to the current estimate of C. That is, 

with 

(10) 

An expression of this gradient for the multiple-input, multiple-outout (MIMO) case 
will be presented. Note that if the row error is large , a large change will be made 
to the row estimate of the inverse. If the error is small, a small change will be 
made. The stability constant , ks' governs the stability and rate of convergence of 
this method, as will be shown . 
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The feature which makes the LMS algorithm so efficient is the elaborate manner 
in which the gradient of the mean square error is estimated. This method is now 
discussed in the context of identifying the inverse plant matrix, C . The gradie nt 

of the mean square error can be approximated for one time step (Ref. 1) as: 

(11) 

Then by noting that the gradient of the error can be expressed as: 

(1 2) 

we may express the gradient of the mean square error as: 

(1 3 ) 

I t is important to r e alize that in this expression ~ 8 (j) is an (n x 1) vector, 
~ZT(j ) is a (1 x m) vector, and hence the gradient is not a vector, but an (n x m) 
ma trix . 

Al though surprisingly simple in form, this approximation to the gradient is 
unb i ased . To s e e this, we note that the square error (for each row i) may be 
expresse d as: 

The mean square error can then be found by taking the expected value of the e rror 
squa r e d : 

wh e r e the c overiance matrices have been defined as 

an d 

T 4l i (Z, 8 ) 

(14) 

(1 5) 

(16 ) 

4l (Z,Z) = E[ ~ Z(j) ~ZT(j)] (17) 

If we n ow differentiate the expected value of the error squared with respect to C, 
we f ind tha t 

V{ E[e 2
1.o (j)]} = - 2¢~(Z, 8 ) + 2C~(j) 4l (Z,Z) (18 ) 

1. 1. 

whi ch is in agreement with the gradient estimate we had before: 
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(19) 

Furthermore, by setting the gradient expression in equation (18) equal to zero, we 
see that each row of the C matrix should converge to the corresponding row of the 
inverse of T in an ordinary least squares sense: 

(20) 

as this is the same solution as would be obtained for the ordinary least square error 
solution. 

Thus by using 

(21) 

as the gradient es timate of the mean square error, the LMS-SD algorithm fo r each row 
"i" of the controller matrix is: 

C~ (j + 1) 
1 

(22) 

Stability and rate of convergence are determined by the selection of the stabil­
ity constant, k s ' Considerations governing the selection of ks will now be 
discussed. 

SELECTION OF STABILITY CONSTANT ks FOR ALGORITHM STABILITY AND CONVERGENCE 

It has been shown thus far that we can find an unbiased estimate of the mean 
square error gradient for steepest descent utilization. The convergence properties 
of the steepest descent technique will now be discussed . Specifically, there is a 
nee d to know when the method can be guaranteed to converge to the true inverse of 
the plant, an d how long it will take to do so . Our analysis will follow that of 
Widrow and Hoff (ref. 1) and will be extended to incorporate the helicopter (plant) 
inverse identification problem. 

For each row (i) of the C (inverse plant) matrix the following difference equa­
tion was written for the method of steepest descent: 

(23) 

Taking the expecte d value of both sides of this equation we get : 
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E[CI(j+l)] 

j 

2ks L [I + 2k s<I>(Z,Z)]¢I(Z, 8) 
i=o 

(24) 

This equation can be put into modal form by writing the signal covariance matrix a s 

(25) 

where Q is the matrix composed of the eigenvectors of ~ (Z,z) and A is a diagona l 
ma trix whose elements are the eigenvalues of ~ (Z,z) . Substituting this int o the 
ab ove equation y ields: 

j 

E[CI(j + 1)] = [1 + 2ksQ- 1AQ]j+1C i (O) - 2ks ~ 
i = o 

j 

E[CI(j + 1)] = Q- l[1 + 2ksA]j+1QCI(O) - 2ksQ-l ~ (I + 2ksA)iQ¢ICZ, 6) 
i= o 

Fr om this we n o t e tha t a s long a s the e l e ments of 

a r e a l l l ess t han one, then the term 

will conve r ge to z e r o , a nd the seco nd t e rm will c onve r ge to 

j 

l imit - 2ksQ- l ~ [I + 2ksA]iQct>IcZ, 6) 
j +oo i= O 

6 

- 2k Q- l 
s 

00 

l: Cl + 2ksAp)iQ ct> IcZ, 6) 
i=O 

(26) 

( 27) 
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Thus, for convergence to the correct solution by the method of steepest descent, 
we see that 

(28) 

(29) 

Within these limits, the value of ks is selected with regard to the desired 
application. Values of ks close to zero will be less apt to be affected by random 
noise variations on the plant at the expense of slow adaptation. Values of ks near 
- l/ Amax will adapt rapidly, but will be more prone to tracking random noise after 
" convergence" has been achieve d, and will tend to oscillate about the correct solu­
tion. The right value of ks is the one which converges at a sufficiently rapid 
rate, yet does not produce unacceptable steady state convergence errors. It is pos­
sible to make the value of ks depend exponentially on the time step, but this will 
not be discussed here. 

The rate of convergence may be thought of in terms of learning curve time con­
stants, T . Letting rp denote the geometric ratio of the pth mode, we can say 
that 

rp (l + 2ks Ap) 

The n, 

rp exp (- Tip) 

1 1 
1 -- + 2!T T Tp P P 

or 

1 
Tp ::; 

2k s Ap 

If all eigenvalues of ~ (Z,Z) were the same, a single exponential learning curve 
co uld be defined. In the more general case, however, the eigenvalues will not 

(30) 

(31) 

(3 2) 

be e qual. Then the learning curve will be a f unction of all of the eigenvalues 
corresponding to the various normal modes. Thus, we can expect the fast modes to 
cause rapid initial learning , whereas the learning errors associated with the slower 
modes will take longer to die out and govern final convergence. 

STARTING THE ADAPTIVE INVERSE VIBRATION CONTROL ALGORITHM: THE TRAINING PHASE 

We have thus far established a method for iteratively correcting the estimate 
of the helicopter transfer matrix inverse. Yet, nothing has been said about initial 
conditions. At the start of the control routine, whether on the ground or in the 
air, a good starting value for the inverse of the helicopter transfer matrix may not 
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be known. Hence, a learning phase, termed the "training phase," is required at the 
start of the algorithm. 

During the training phase, the blade pitch is given small perturbations and the 
corresponding changes in vibration are measured . These measurements are then used 
by the LMS-SD algorithm to correct an arbitrary i nitial value of the inverse plant 
matrix, C(O). Any value of C(O) may be used - for example, all elements equal to 
zero. No vibration control commands are generated during the training phase. In 
this manner, large transients in control are avoided. Hopefully, after a number of 
iterations, the inverse plant matrix will be accurate enough to use in the actual 
con trol phase. 

The control phase begins when the sum of squares of the adaptat ion errors, 
~ 8 - ~8 , becomes small enough . No further training is then required. The LMS - SD 
algorithm will update the estimate of the plant inverse transfer matrix to keep up 
with changes in the plant (helicopter) or changes in the operating environment . 

SIMULATION OF A THREE- INPUT, THREE-oUTPUT PLANT 

The LMS-SD algorithm presented in this paper was simulated for a three- state 
plant. An arbi trary three- by - three transfer matrix , T, was chosen to r e present the 
helicopter (fig . 4) . The helicopter- vibration dynamics were then modeled in the 
global sense by the fol lowing equations: 

r,(j] [" T 1 2 r, ][, (j] [Z' (0] 
Z2 (J) = T21 T 22 T 2 3 8 2 (j ) + 22 (0) (33) 

z 3 (j) T 31 T 3 2 T 3 3 8 3 (j) Z 3 (0) 

Vibra tion at Multicyc lic con trol Uncontrolled 
step k input vibration 

The LMS -SD update equations which identify the inverse plant transfer matrix (con­
troller matrix) were then: 

Ci (j + 1) 

C; (j + 2) (34) 

And the vibration con trol commands we re then generated b y : 

(35) 
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The simulation included both the training and the control phases. The effects 
of identification errors and changes in the operating conditions were also simulated. 
The overall program is diagrammed in figure 6. 

From the preliminary simulation results, the LMS-SD algorithm appeared to pro­
vide a very robust control system. Figures 4 and 5 illustrate some of the interest­
ing results obtained. Figure 4 illustrates the typical convergence pattern for ks 
chosen near its midrange stability. Here the sum of the adaptation errors, 68 - £8, 
have been plotted versus the identification iteration cycle count . From this plot 
the normal modes of the system can be seen. Initial rapid convergence seemed to be 
produced by the fast modes, whereas final convergence appeared to be governed by the 
slower modes. 

Figure 5 shows the behavior of LMS-SD convergence and vibration levels through 
the training and control phases. To simulate a sudden change in the operating condi­
tions, the plant simulation values were suddenly changed by 20% and the uncontrolled 
vibration level was changed by 40%. The effect of these changes is shown in figure 5. 
The controller was able to respond in a manner to alleviate the vibration and a 
rather surprising feature of this robust con trol system was discovered. 

The controller values did not have to converge exactly, or even very c losely, to 
cancel the vibration. For example, figure 5 shows that after a step disturbance in 
the uncontrolled vibration level, the controller may retain steady-state identifica­
tion errors, while rapidly alleviating the vibration. The explanation of this robust­
ness rests in part upon the identification and control phases being iterative pro­
cesses. As such, the proper change in blade-pitch control can be generated by a 
number of linear combinations of control changes over several steps. It turned out 
(in simulation) that when the controller matrix was sufficiently close to the true 
inverse, a linear feedback combination capable of alleviating most of the vibration 
was generated. When the vibration level approached zero, the pitch vector was no 
longer altered, thus preventing complete identification of the inverse. This was as 
it should be, since if there is no vibration, there is no need to change the pitch­
control vector. The controller matrix can then no longer be altered since the update 
correction term (eq. (22)) goes to zero for no uncontrolled vibration. In actual 
implementation, however, random noise and perturbations would most likely allow com­
plete convergence to the true inverse. The significant point though is that complete 
convergence is not required for good vibration control . 

CONCLUSIONS 

The method of adaptive inverse control was presented in the context of 
vibration control. The theory used to derive the MIMO LMS-SD algorithm was 
Results of computer simulations of the inverse adaptat ion process were also 
and shown to indicate the validity of the results predicted by the theory. 
clusions verified by simulation were as follows : 

helicopter 
given . 
presented 
The con-

1. The method of adaptive inverse vibration control can provide a very robust 
control system which does not require a perfect knowledge of the inverse plant matrix 
to alleviate vibration. 

2 . The "training phase" and the LMS-SD algorithm allows the method of adaptive 
inverse control to be implemented without any a priori knowledge of the plant. No 
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dynamic models are required, as the training phase can quickly determine proper con­
troller initial conditions . 

3 . The LMS-SD algorithm is capable of adapting the controller to track changes 
in the flight conditions or changes in the uncontrolled vibration level. The con­
troller converges quickly for moderate disturbance levels, while taking longer for 
larger (step) disturbances . 

4 . The learning curve of the controller during the training phase was shown to 
be quantitatively close to that predicted by the learning curves of the normal modes. 

5. The method of adaptive inverse control should have very fast on-line capa­
bility, as implementation of the LMS-SD algorithm requires so few operations. 
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