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The effect of the degree of

abrasi on obtained by alumina grit
blasting of epoxy composite

surfaces on the strengths of epoxy

is to establish the effect of

composite surface treatments on

the strength and durability of

high temperature adhesive bonded

graphite po1yimide st~uctures.

Pater and Scola (2) using Fourier

transform infrared spectroscopy,

studied surface contamination from
the transfer of various release

agents to the composite surface
during fabrication of a series of

Kev1ar, glass, and graphite/epoxy

composites. The type of mold,

mold surface treatments, release
agent used, and reinforcin9 fibers

were the factors found to
influence the amount of release

Crane et al. (1) studied the

effect of peel ply, chemical, and

mechanical surface treatments on
the wettability and bondability of

a cured epoxy/graphite composite
with Narmo 329-1C epoxy adhesive.

Their results indicate no obvious

correlation between surface

energetics and bond strength. Of
the surface treatments studied,

the sanded surface gave improved

bond streng~h compared to .the

untreated sampl e•.

Adhesive bonding
was not addressed

agent transfer.
to the composite

in the report.

1. INTRODUCTION

Langley Research Center (LaRC) has

been actively engaged in advancing
composites and composite struc­

tures technology for the past
decade. Several large LaRC com­

posite application programs such

as CASTS, SCR, and ACEE, have had

a significant impact in extending
the use of composites in aircraft

and spacecraft structures. The
use of composite materials has

many advantages over metallic

structures; for example, composite

structures almost always result in
significant weight savings, cost

savings, and a reduction in the

total number of components when

compared to metallic designs.
Efficient joining methods are of

primary importance for the in­

creased use of composite materials

on aircraft structures. The join­
ing techniques for composites are

limited to mechanical fasteners
and adhesive bonding, the latter

·being the preferred technique.

Studies utilizing epoxy matrix

composites and epoxy adhesives
have been widely reported in

the literature; however, there is
a lack of information on studies

using high temperature composites
and adhesives. The development of
efficient joining procedures for
high temperature composites, i.e.,
graphite/po1yimide, is very im­

portant for the fabrication of ad­

vanced aerospace structures. The
long term objective of this study
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bonded joints was studied by Stone reported. Donnet has emphasized

(3). Incomplete abrasion of com- recently (7) the importance of the

posite surfaces resulted in surface characterization of fibers

reduced joint strength for some inattempting to understand the

adhesives, as well as a high pro- properties of composites. How-

portion of composite/primer inter- ever, the emphasis in the present

face failure, probably due to work is on composite bonding, that

polytetrafluoroethylene residues is, the adhesive bonding between

from the release cloths during composites in contrast to fiber-

fabrication, matrix interaction. The primary

objective of the research is the

Parker and Waghorne (4) also characterization of composite sur-

studied carbon fiber-reinforced faces before adhesive bonding.

composite laminates that were This paper details work done on

molded against release cloths, the analysis of composite samples

metal plates coated with release pretreated in a number of ways

agents, and sheets of silicone prior to bonding.

rubber. X-ray photoelectron spec- 2. EXPERIMENTAL

troscopy (XPS or ESCA) was used to 2.1 Samples.

investigate the chemical composi- The composites were made by Rock-

tion of the surfaces and indicated well International from Celion 6000

contamination by release agents graphite fibers with a NR 150B2

during fabrication which resulted polyimide finish in a polyimide

in reduced strengths for epoxy (LARC-160) matrix. Figures l(a) and

adhesive-bonded joints. Abrasion l(b) illustrate the fabrication

by various methods reduced, but process used by Rockwell Inter-

did not eliminate, the contamina- national to make the Celion

tion. 6000/LARC-160 composites used for

the present study. Prepreg was

There is a continuing need to supplied to Rockwell International

establish the role of the inter- by Fiberite. Figure l(a) shows the

facial region in determining the vacuum bag layup used for the pre-

bond strength and durability of preg compaction step (or debulking

composite bonds. Preliminary step). Note the teflon coated

studies (5,6) on the characteriza- glass fabric (3TLL) in contact with

tion of a variety of graphite the prepreg during processing. The

fibers including Celion 6000 using staging conditions are given in

both scanning electron microscopy Figure l(b). A similar vacuum bag

(SEFI)and x-ray photoelectron arrangement was used for the curing !

spectroscopy (XPS) have been step (Fioure 2). The materials
2



used for the curing step must be 2-3 minutes. Sample was then

stable at the higher temperature rinsed with distilled water and blow

of 329°C (625°F) than for the dried. Hydrazine hydrate at room

previous step. Teflon coated temperature was spread on Sample No. 8,

glass fabric was again in contact soaked for 15 minutes, rinsed with

• with the composite as was the case distilled water and blow dried. A 50/50

for the compaction step. The cure (by volume) solution of concd. H2SO4

• temperature profile is given in and 30%.H202 at room temperature was

Figure 3. Full vacuum and 738 kPa spread on Sample No. 9, soaked for 30

(200 psi) pressure are held minutes, rinsed with distilled water and

throughout the cure cycle, blow dried. Samples Nos. 10-12 were

Properties of the composites are irradiated at different fluxes using a

given in Table I. Flashblast *TM model FB-200 to obtain 14,

24 and 40 J/cm2. Sample No. 12

The composites were pretreated in following irradiation was washed with

the twelve different ways listed methanol to remove residue and the washed

in the second column of Table If. sample was coded Sample No. 12W.

Details of each pretreatment'are
A 0.5 cm (0.2 in) diameter samplegiven below. Sample No. 2 was

lightly (2-3 quick passes) blasted was punched from each composite and

using 120 grit alumina and air photographed at 20X with a Bausch
and Lomb optical microscope priorpressure of 90 psi with the nozzle
to any analysis. The as-received

held approximately 8-10 inches"
sample designated Sample No. IAfrom the sample. Sample No. 3 was
delaminated on punching and hence

blasted using 100 grit alumina and
a virgin internal surface was

air pressure of 15 psi. Sample

No. 4 was lightly (one pass} produced and designated Sample No. IB.

blasted with 88-140_ diameter
2.2 Scanning Electron Microscopy/

glass beads in a dry honer with
Energy Dispersive Analysis of X-rays

the nozzle held about 12 inches
(SEM/EDAX).

from the surface. Sample No. 5
Photomicrographs were obtained

was handsanded manually using 600
using a Polaroid camera back

SiC sandpaper. Sample No. 6 was
attached to the oscilloscope on

handsanded manually in a criss-
, the Advanced Metals Research

cross pattern with 180 SiC sand-
Corporation Model 1000 scanning electron

paper. Ethanolic KOH solution at

room temperature was spread on

Sample No. 7 and soaked for 2-3 *Flashblast is the official trademark
minutes. Additional ethanolic KOH

of Maxwell Laboratories Inc.
solution was spread and soaked for



microscope (AMR 1000 SEM). Oper- output.

fating at 20 kV, high magnification

views (500X-5000X) gave informa- 2.3 X-ray Photoelectron Spectro-

tion on the details of surface scopy (XPS).

features, while survey scans at XPS studies of the composites were

20X-200X provided a check on the obtained with a Physical Elec-

distribution of representative tronics SAM 550 spectrometer using

features that describe the sur= a Mg x-ray anode. Punched samples

face. For convenience in studying were mounted to the XPS stage with

the results, approximate horizonal double-sided tape. A wide scan of

dimensions of each photomicrograph binding energies (0 to 1000 eV) was

appear at the right in the fig- performed on Sample Nos. 1A and 1B

ures 4-9. initially. Subsequent narrow scans

were completed for the elements C,

N, O, S, F, Al, Si, and K on all

samples. The atomic fraction of

Specimens were cut to approxi- each of these elements present in

mately 1 x 1 cm (0.4 x 0.4 in) on the top 5 nm of the Surface was

a diamond wheel saw and fastened calculated.

to SEM mounting stubs with metal

clamps. To enhance conductivity 2.4 Contact Angles.

of the composite samples, a thin Five different liquids of varying

(-20 nm) film of Au was vacuum- surface tensions were used for

evaporated (Technics, Model Hummer contact angle determinations. The

I) onto the samples which had been liquids and respective surface

ultrasonically cleaned in meth- tensions (in mJ/m2) are noted

anol. Photomicrographs were taken below: water (72.8), formamide

with the sample inclined 30° from (58.3), methylene iodide (50.8),

the incident electron beam. bromonaphthalene (44.6), n-

Rapid, semiquantitative elemental hexadecane (27.6). A droplet of

analyses were obtained with an each liquid approximately 5 mm in

EDAX International Model 707A diameter was placed on each com-

energy-dispersive x-ray fluor- posite sheet. Contact angles were

escence analyzer attached to the measured with a Gaertner Scienti-

microscope. Detection was limited fic goniometer within 30 seconds

to elements of atomic number 11 after the introduction of the o

(Na) and above. A Polaroid photo- droplet. A second replication was

graphic record of each spectrum completed for each liquid on each

was made using a camera specially composite. Means were calculated

adapted for the EDAX oscilloscope using the University IBM 1360 com-
4



puter system which was also used The spherical shapes on the right

to construct plots of measured of Figure 5 (a) are the acrylic

contact angle (e) as a function of molding material used to mount the

surface tension (y). Critical - sample during polishing. The

surface tensions for each com- varying thicknesses of the surface

posite were obtained by extrapola- polymer is evident in the figure

• tion of cos e vs _ plots using the and varies according to the loca-

Zisman approach (8). tion of-the cut through the con_

3. RESULTS AND DISCUSSION posite. Figure 5(b) is a higher

3.1 Scanning Electron Microscopy/ magnification showing the range of

Energy Dispersive Analysis of thickness for the surface polymer

X-rays (SEM/EDAX) in greater detail.

SEM photomicrographs (lOOx, 500x,

and 5000x) were used to assess The surface of Sample No. 2 was

changes in surface topography of obtained by grit blasting with 120

composite samples after different alumina grit and a very rough sur-

pretreatments. The surface of face with fiber damage and polymer

Sample No. 1A (as-received) shown breakup was obtained (Figure 6

in Figure'4(a) contains polymer- (a)). The brittle nature of the
i

rich "peaks" and polymer-poor polymer matrix and the polymer- i

"valleys" which had conformed to rich and polymer-poor areas is i
the pattern of the release cloth still evident. The transition !

used during fabrication. Figure region between the polymer-rich

4(b) shows a smooth polymer tran- _nd polymer-poor areas is shown in
/

sition region between a peak and Figure 6(b). Figures 6(c) and

valley. The apex of a peak with 6(d) are of the peak and valley

cracks (fissures) in the polymer areas, respectively. The removal

is shown in Figure 4(c). The of the thin polymer coating on the

graphite fibers close to the sur- fibers, thus exposing apparent

face are covered with a thin coat- "clean" graphite fibers, can be

ing of matrix polymer as evidenced seen in Figure 6(d). The surfaces

in Figure 4(d). This composite of Sample _los.3 and 4 are very

surface, Sample No. 1A, was the similar to Sample No. 2 and there-

, as-received surface to which the fore the photomicrographs are not

different pretreatments were reproduced here.

• given.

The surface produced by manually

An edge view of Sample No. 1A in- abrading with 600 SiC sandpaper,

dicates a highly-compacted void- Sample No. 5, is shown in Figure

free com.posite(Figure 5 (a)). 5 7. Figure 7(a) shows that the



treatment removed the polymer the surface. The residue produced

peaks down to the graphite fibers during the process was removed by

with little damage to the fibers washing with methanol while

when compared to the 120 grit stroking with a natural,bristle

blasted surface. The valleys paint brush. Some polymer has

remain almost intact in most areas been removed from the surface °

of the treated surface. Figure leaving a pitted surface on the

7(b) is the transition region polymer peaks (Figures 9 (a), (b),

between polymer-rich and and (c)), and a thin-walled

polymer-poor areas. As noted in cellular structure between the

Figure 7(c), the resin is graphite fibers (Figure 9 (d)).

separated from the fibers in some The cellular structure appears to

cases due to the abrasive action, be composed of both open and

The surface of Sample No. 6 was closed cells. For some surface

obtained in a similar fashion to areas of the fibers, the polymer

Sample No. 5 except that 180 SiC appears to be completely removed.

sandpaper was used, producing the

surface shown in Figure 8 (a). A Photomicrographs of the surfaces

criss-cross abrasive pattern was of Samples Nos. 7, 8 and 9 which

used to generate the rough surface were given different chemical

which produced significant damage pretreatments all appear similar

to the fibers, (polymer-rich area, to those for Sample No. 1A and

Figure 8(c) and polymer-poor area, therefore are not reproduced in

Figure 8(d)). The transition this paper. Overall, mechanically

region between polymer-rich and and light irradiated sample_

polymer-poor areas appears in showed varying degrees of the

Figure 8(b). polymer peak removal; as-received

and chemically pretreated samples

The FlashblastTM process, showed polymer-rich "peaks" and

performed by Maxwell Laboratories polymer-poor "valleys". Results

Inc. for LaRC, produces a surface of EDAX analysis indicate the

(Sample No. 12W) significantly presence of a small amount of

different than the other surface silicon for all the surfaces of

treatments. The Flashblast Sample _Ios.1A, 2-9, and 12W. The ,

process consists of subjectino the presence nf silicon was also noted

surface to intense light energies during XPS analysis (< 1.3 atomic

to vaporize or chemically alter percent). A trace amount of

6



calcium was also noted for impurity but it may be associated

surfaces of Sample Nos. 7 and 8. with the sample holder.

The source of silicon and calcium

is uncertain. The quantitative results of the XPS

analysis are given in Tables II and

• 3.2 X-ray Photoelectron Spectros- III. The binding energies (B.E.)

copy (XPS). in eV and the atomic fractions

An extensive XPS study was done on (A.F.) for the F ls, 0 ls, N ls and

the composite samples before and C ls photopeaks are listed in Table

following different pretreatments. II. Half of the samples contained

Wide scan XPS spectra were ob- high concentrations of surface

tained on Samples Nos. IA, IB, 7, fluorine even following pretreat-

8, and 9. The major photopeaks ment and in every case, a high

were assigned to fluorine, oxygen, binding energy photopeak around 292

nitrogen and carbon. The presence eV was observed in the C ls spec-

of large amounts of fluorine on trum. This is a characteristic of

the surface of some of the samples carbon-fluorine bonding (9). Of

even after pretreatment is a particular interest is the fact

striking result and emphasizes that the as-received composite

the importance of surface analysis (Sample No.'IA) has a large fluor-

in determining trace concentra- ine signal. However, the fluorine

tions of elements on bonding sur- photopeak is some 10D times smaller

faces which may be detrimental to for a freshly exposed surface (Sam-

bond properties. In addition, ple No. 1B) produced on delamina-

trace amounts of calcium _nd sod- tion of the same sample.

ium were noted on Sample No. 7,

and Sample Nos. 1A and 7, respec- The atomic fraction ratios are

tively, listed in Table III. There are

large differences in the F/C ratio

Narrow scan XPS spectra were ob- for the various samples. The

tained on all samples and in addi- mechanically pretreated composites

tion to scanning for fluorine, generally have lower F/C ratios

oxygen, nitrogen, and carbon, than the chemically pretreated com-

• scans were also made for potas- posites. The longer Flashblast

sium, sulfur, aluminum_ and sill- treated samples show a much reduced

, con. These latter elements were fluorine signal. Further, the

suspected surface impurities based values of the O/C ratio are fairly

on the known pretreatments, constant except for the Flashblast

Potassium was not detected on any pretreated Sample Nos. 11, 12 and

sample; sulfur appeared as a trace 12_. A parallel trend is noted in
7



the N/C ratio. It appears as though This result is consistent with

the Flashblast pretreatment carbonizes critical surface tensions reported

the surface region resulting in the for fluoropolymers (8).

removal of oxygen and nitrogen con- ," 4. CONCLUSIONS

tained in gaseous species possibly, This study was focused on SEM/EDAX,

for example, CO and HCN. XPS analysis and contact angle -

measurements on graphite fiber com-

In summary, the surface fluorine is posites pretreated in _ number of '

associated with the external composite .different ways including mechani-

surfaces only, which suggests the cal, chemical and light irradia-

inclusion of fluorine during composite tion. A s_gnificant fluorine sig-

fabrication. The order of removal of nal was observed by XPS on the as-

the surface fluorine species by the received Celion 600D/LARC-160 com-

treatment is, Flashblast > mechanical posite surface prior to pretreat-

> chemical, with Flashblast being the ment. Only a trace fluorine signal

most effective, is noted on a delaminated surface

of the same as-received sample.

Fracture studies at NASA-LaRChave This result indicates that fluorine

been made on similar bonded composites is probably introduced by contact
pretreated in the same ways as above.

with the Teflon coated glass fabric
The effect of surface contamination

during the fabrication step. Chem-
on bond strength is being evaluated

ical pretreatment was the least

currently, effective method of removing sur-

face fluorine while the Flashblast
3.3 Critical Surface Tension.

The critical surface tension delin- process reduced the fluorine signal
to trace levels. Critical surface

eates the wettability of a solid
tensions of the pretreated com-surface. The critical surface ten-
posites were determined from mea-

sion of each composite sample is

listed in Table III. A direct sured contact angles. Low critical
surface tensions were characteris-

correlation is suggested between the
tic of composite surfaces havingsurface fluorine concentration as

measured by XPS and the value of high surface fluorine concentration

the critical surface tension. The as determined by XPS.

results of these two independent

techniques are plotted in Figure 10. SEM/EDAX results of the composites

Indeed, the higher the surface clarified the topography changes ,

fluorine concentration, the lower resulting from the various mechan-

the critical surface tension, ical, chemical, and light irra-

diated pretreatments. XPS results

and contact angle meas_Jrements
8



produced information on the sur- 7. J.B. Donnet, Abstracts, 4th

face contamination as a result of Intl. Conference on Surface and

,. fabrication techniques which may Colloid Science, Jerusalem,

provide answers to the strength July, 1981.

and durability of adhesively 8. W.A. Zisman in "Contact Angle,

bonded composites. These tech- Wettability and Adhesion", Adv.

niques have been shown to be cap- Chem. Series #43, R.F. Gould,

able of providing valuable infor- Ed., pp. 1-51, Am. Chem. Soc.,

mation with respect to surface Washington (1964).

analysis of composites prior to 9. K.Siegbahn et al., "ESC.A-

adhesive bonding. Atomic, Molecular and Solid
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TABLE I
PROPERTIES OF CELION 6000/LARC-160 COMPOSITE

Panel No. Tg(°C) Average Specific VF Void
Thickness(mm) Gravity' % %

i 344 (651°F) 2.2(0.086 in) 1.57 59 0.1

2 332 (629°F) 2.0 (0.079 in) 1.58 61 <1.0

a (0,0,0,+30,-30,+30,-30)s ply orientation.

TABLE II
XPS ANALYSIS OF COMPOSITES

Sample Sample
No. Pretreatment Photopeak

F ls 0 ls N ls C ls
1A As-received _ _ _ -(_2-_-Z1_-6")B.E.(eV)

0.19 0.11 0.030 0.66 A.F.

1B Delaminated 688.8 532.4 400.2 (284.6)

0.002 0.11 0.020 0.86

2 120 Al203 Grit Blast 689.0 531.4 399.8 (284.6)

0.13 0.11 0.020 0.73

3 Boeing Grit Blast 689.0 532.0 400.0 (284.6)

0.060 0.15 0.023 0.75

4 Glass Bead Blast 689.2 531.8 400.0 (284.6)

0.12 0.12 0.024 0.73

5 600 SiC Handsand 689.4 532.2 400.2 (284.6)

0.025 0.13 0.020 0.80

6 180 SiC Handsand 689.0 531.8 400.0 (284.6)

0.027 0.12 0.032 0.81

7 Ethanolic KOH 689.2 531.8 399.8 (284.6)

0.26 0.10 0.012 0.63

8 NH2NH2-H20 689.2 531.8 399.6 (284.6)

0.20 0.10 0.041 0.64

9 Concd. H2SO4 689.2 532.0 400.0 (284.6)

+ 30% H2O2 0.19 0.12 0.020 0.66

10 Flashblast #I 689.4 532.0 400.2 (284.6)

0.14 0.080 0.026 0.74

11 Flashblast #2 - 532.6 - (284.6)

NSP 0.053 NSP 0.93

12 Flashblast #3 689.2 532.4 400.0 (284.6)

0.006 0.078 0.010 0.89

12W Flashblast #3 - 532.4 400.0 (284.6)

(after I,leOHwash) NSP 0.071 0.021 0.89

NSP - no significant peak 10



TABLE III

XPS ATOMICRATIOSAND CRITICALSURFACETENSIONSOF COMPOSITES

Sample AtomicFractionRatio CriticalSurfaceTension
No. -FIC OIC NIC (mJlmL) .

• 1A 0.29 0.17 0.045 23.

1B 0.0023 0.13 0.023 --

2 0.18 0.15 0,027 31

3 0.08 0.20 0,031 37

4 0.16 0.16 0,032 33.

5 0.031 0.16 0,025 35.

6 0.033 0.15 0,040 40.

7 0.41 0.16 0,019 23.

8 0,31 0.16 0.064 28.

9 0.29 0.18 0.030 31.

10 0.19 0.11 0.035 37.

11 <0,001 0.057 <0.001 40.

12 0.0067 0.088 0,011 40.5

12W <0.001 0.080 0.023 --

Q

I

11

.3



(a) VACUUM BAG LAYUP
..._----------- NYLON VACUUM BAG

1/;::================== 162 GLASS CLOTH
v£.------------- 120 GLASS CLOTH

Ii Ii Ii Ii " 1 PERFORATED CAUL PLATE
-----------------------vMOCHBERG PAPEr.
- -- ---- ---'---- TEFLON COATED GLASS FABRIC (3TLL)

C:::====:===:=========~l COMPOS ITE PREPREG
_____________ TEFLON COATED GLASS FABRIC (3TLL)

-------------------MOCHBERG PAPER;Jl'-:':===========:::; KAFTON OR NON-POROUS 3TLL
STAGING PLATE

•

SEALANT
(b) STAGING CONDITIONS

1. APPLY 12.7cm (Sin) Hg VACUUM AND HOLD FOR FULL'CYCLE.
2. HEAT TO 491K (42SoF).
3. HOLD AT 491K (42SoF) FOR 30 MINUTES.
4. COOL TO LESS THAN 339K (150°F) BEFORE RELEASING VACUUM.

FIGURE 1. TYPICAL (a) VACUUM BAG LAYUP AND (b) STAGING CONDITIONS
FOR CELlON 6000/LARC-160 COMPOSITE FABRICATION •

..._--------------- KAPTON VACUUM BAG

162 GLASS CLOTH OR BOAT CLOTH

C::;IqC:::=rJII=::JIITI=::III:1=:::Illl=::J\ PERFORATED CAUL PLATE

;:============ 120 GLASS CLOTH
- - - - - - - - - - TEFLON COATED GLASS FABRIC (3TLL)
( S STAGED COMPOSITE
- --------- TEFLON COATED GLASS FABRIC (3TLL):::::==:=:============= 120 GLASS CLOTH

~~II~=!~I=~I~I=:'~I=J~J=~1 i~rg~~~D C~~~ PLATE

,..'--t-~~==========~ KAPTON
STEEL TOOL

VACUUM
SEALANT

FIGURE 2. VACUUM BAG LAYUP FOR CURE ,PROCESS OF CELlON 6000/LARC-160 COMPOSITE.

400

600

10B2

VACUUM AND 73BkPa (200psi)
THROUGHOUT CYCLE '

o

o

4 6

TIME (HOURS)

FIGURE 3. fINAL CURE CYCLE FOR CELIO~ 6000/LARC-160 COMPOSITE.
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F]IGU_E _o SE_ PNOTOMICI_OGF_P:NS O_ AS_RECEIVED SAMPLE #1A
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FIGURE 5, 5EH PHO'1'OHTCROGRAPHS OF EDGE VIEW OF AS-RECEIVED SAMPLE t}lA•

•



A lOOpm i 20/Jm

FIGURE 6, SEM PHOTOMICROGRAPIIS OF 1,20AI203 GRIT BI_ -"" N' " _"
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F]O[IRE 7,. SI_M P_OTOMICROGRAPHS O[_"600 Si.C H'ANDSAND_.fD SAMPLE #5_



i 20P m

: :::::::::::::::::::_

........ H_I

......' E 8 ......... " .......... "._'[OUN..'.,,._JEM PHOTOMIZgROGP_APN',S05 1,80 SIC _NDSANDED SAMPLE #6.
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?_%GURE 9. gEM PHOTOMICROGRAPHS OF FLASN_[A<_I_ "' S_ #3 SAMPLE #12Wo
la



O

0.4--

O
H

•
z ® oo

U

o

0.2--

o

0.0 1
i0 30 50

CRITICAL SURFACE TENSION (mJ/m 2)

FIGURE I0. XPS FLUORINE TO CARBON RATIO AS A FUNC-

TION OF THE CRITICAL SURFACE TENSION OF

PRETREATED CO_OSITES.

19



1. Rr|x.'_rt No 2. Gove,nmen! Acc_sion No. 3. Rt_::ipient's C_I,,hKj No.
NASATM-85700

4. Title _nd Subtitle .. S. Repot1 Dale
October 1983

Surface Analysis of Graphite Fiber Reinforced 6. PeSo,re;n90,_;,al_oncode
Polyimide Composites 506-53-23-06

7. Aulhor($} 8. Performing Oroan;zalion Report No.

D. L. Hessick,* D. J. Progar,** and J. P. Wightman* 10. Wock Uni! No.'

9. Fetfo,'ming Organi:alion Name and Address

NASALangley Research Center 11. Conl,act or G,ant No.

Hampton, VA 23665
13. "Type of Report and Period Covered

12.S_n,o,;-;A_:y romea_dA_,_, Technical F_emorandum

NationalAeronautics and Space Administration 14.spo_so,;n9A_cv Code
Washington,DC 20546

15. Supp;emenlary Notes

*VPI&SU **NASA-LangleyResearch Center '
Blacksburg,VA 24061 Hampton, VA 23665

° o

Use of commercialproducts dr-names of manufacturersin this report does not constitute
Officialendorsementof such products or manufacturers,either expressed or implied,
by the National Aeronautics and Space Administration.

Presentedat the 15th National SAMPE TechnicalConference on October 4-6, 1983 in
Cincinnati,.QFL.

16. Absl,act

Severaltechniques have been used to establishthe effect of different surface pre-
treatmentson graphite-polyimidecomposites. Composites were prepared from Celion
6000 graphite fibers and the polyimideLARC-160. Pretreatmentsincluded mechanical
abrasion,chemical etching and light irradiation. Scanning electron microscopy (SEI4)
and X-ray photoelectronspectroscopy(XPS)were used in the analysis. Contact angles
of five different liquids of varying surfacetensions were measured on the composites.
SEH results showed polymer-rich "peaks" and polymer-poor "valleys" conforming to the
pattern of the release cloth used during fabrication. Mechanically treated and light
irradiated samples showed varying degrees of polymer peak removal, with some degradation
down to the graphite fibers. Minimal changes in surface topography were observed on
chemical pretreatment. XPS spectra showed that half of the samples contained high
concentrations of surface fluorine even after pretreatment. The light irradiation pre-
treatment was most effective at reducing surface fluorine concentrations whereas chemic_
)retreatment was the least effective. Critical surface tensions correlated directly
with the surface fluorine to carbon ratiosas calculated from XPS.

17. Key Words {Sug_t_ by Author{sJ} 18. Distribution Statement

graphite-polyimide composites,surface Unclassified-unlimited
analysis,SEM, XPS, and critical surface Subject Category 24
tension.

19" SeCu,i,y C_aL_if.|of this report) 20. Security Clatsif. Icf th;t F.age) 21. No. of P,_es 22. Pwice

20 A02
Unclassified Unclassified

, ::; Fo"salebylheNalior_lTechnicalIr,f_r._!ssnS=_:vlre.S?.:Jn£l,el_.Vlr£_n,a22161• .



)




