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SUMMARY

A technique has been developed for the calibration of dynamic pressure

transducers at cryogenic temperatures. The calibration system utilizes an

8.9 Newton peak thrust shaker which oscillates a helium-filled bello_sto generate

a slnusoldal dynamic pressure to calibrate transducers i-..ersed in a cryogenic

envlronment_ The system has a dynamic pressure measurement uncertainty of approxl-

mately llg and is capable of producing peak-to-peak dynamic pressure amplltudes of

1.4 kPa over a frequency range of 40 to I00 hertz and a temperature range of 100 to

300 K. It provides an unprecedented capability of both static and dynamic calibra-

tion of pressure transducers from ambient to cryogenic temperature.

INTRODUCTION

The development of the National Transonic Facility, a cryogenic wind tunnel

for high Reynolds' number aerodynamic research, has introduced several new measure-

ment areas. One of these areas is dynamic pressure measurement at cryogenic

temperature. Cryogenic pressure transducers are currently available commercially

in a limited number of designs, however the dynamic calibration of cryogenic

pressure transducers is not provided by the manufacturers. A literature search

has revealed no information on the successful development of a dynamic calibration

technique for cryogenic pressure transducers. Pressure transducers are currently

calibrated statically using a step-functlon method at both ambient and cryogenic

temperatures, and dynamically using quick opening valve/shock tube techniques at

ambient temperatures. This paper describes the design, development, and testing

of a new cryogenic, dynamic _allbratlon system.
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SYMBOLS

2
= Cross-sectional area of bellows, cm

= Static test pressure inside bellows, kPa

3
= Volume of transducer-bellows assembly in unloaded position, cm

= Temperature, K

= Peak-to-peak dynamic pressure, kPa

= Displacement of bellows drive rod, cm



THEORY

This calibration system was based on the reciprocation of a sealed metal
bellows producing a sinusoidal pressure with a calculable peak-to-peak value.
Given the linear bellows displacement (L), the volume (V) of the transducer-bellows

assembly, the bellows cross-sectional area (A), and the initial internal static
pressure (P), peak-to-peak dynamic pressure (P _) can be calculated. Two expres-
sions were used to calculate the value, PV, according to the ideal gas law. One

accounts for the compression (la.) of the bellows and the second accounts for the

expansion (lb.) during its sinusoidal reciprocation.

(la.)

(Zb.)

Solving for the change in pressure due to compression (2a.) and expansion

(2b.) ;

= (PV)c/(v - AVl)- P (2a.)

and AP 2 = P - (PV)e/(V + AV2) (2b.)

Equation (3) represents the peak-to-peak sinusoidal pressure (Pp_p) as a total
of pressure change produced by compression and expansion.

p-p

Substituting (AL/2) for the change in volume due to expansion and to compression:

P = (PV)c/(V - _12) - (eV)e/(V + _/2)p-p
(4)

Equation (4) is simplified to obtain equation (5), the expression for peak-to-pe_k

slnusoldal dynamic pressure:

P = 4 PVAL/(4V 2 - A2L 2)
p-p

(s)



APPARATUS

The primary element of the calibration system apparatus (figure l) is a

reciprocating bellows which develops the time varying pressure waveform applled to
the transducers. Calibration is performed by comparing the response of the trans-
ducers to the time varying pressure calculated from the measured linear motion of
the bellows. The bellows and transducer manifold assembly are immersed in the

cryogenic environment to minimize thermal gradients in the cc_trollable cryogenic
temperature. The bellows is reciprocated using a small vibration generator mounted
outside the cryogenic chamber and linked to the bellows by a steel-drlve rod
(figure 2). Dynamic pressure amplitude is controlled by adjusting the static helium

pressure in the bellows and by controlllng the amplitude of vibration.

The bellows used in the test apparatus is a l.B-cm long, 0.38 cm i.d. nickel

bellows with a spring rate of 10.3 N/cm and a maximum stroke of +0.4 cm. It is

driven by an B.9 Newton peak-thrust vibration generator having a stroke of +0.32 cm.

The generator is linked to the bellows by a steel-drlve rod 16 cm long and 0.4 cm
in diameter. One end of the bellows is fixed while the other is free to oscillate

with the motion of the drive rod. Test and reference transducers are connected

symmetrically to an adapter on the fixed end of the bellows. The volume of the

bellows and adapter assembly is 0.66 cm3. A0.135 cm drive rod stroke, with a

static pressure of 34.5 kPa (5 psid) inside the bellows, will produce a volume

change of 0.026 cm3 and a peak-to-peak dynamic pressure of approximately 1.4 kPa

(0.2 psi).

The vibration generator, helium pressure control valves, and instrumentation

are located outside the environmental chamber. Linear displacement of the bellows

is measured using a proximity probe mounted on the drive rod. Displacement is

measured by mounting a thin strip of steel on the bellows drive rod with the proxi-

mity probe mounted in a stationary position perpendicular to the steel strip

(figure 3). Transducer outputs are recorded and measured using a digital storage

oscilloscope. Temperature inside the chamber is measured using a copper-Constantan

thermocouple. Static helium pressure inside the bellows is measured using a digital
pressure gage connected to the bellows with a 0.15 cm i.d. tube.

TEST RESULTS

A prerequisite for testing the calibration system was the selection of one

transducer as the reference to which experimental measurements and pressure

calculations would be compared. Endevco model 8510-5 piezoreslstlve strain gage

transducers, having full-scale pressure ranges of _34.5 kPa and full-scale outputs
of 300 mV, were selected for these tests.

In order to establish a reference transducer, it was necessary to calibrate
it statically over the 100-300 K temperature range and assume its statit sensiti-

vity to be equal to its dynamic sensitivity at low frequencies (_< 100 Hz). The
reference transducer sensitivity was measured to be 6.7 mV/kPa at 100 K and

7.0 mV/kPa at 300 K (figure 4). The test transducer was also calibrated and measured

to have sensitivities of 5.9 mV/kPa at I00 K and 6.1 mVlkPa at 300 K (figure 5).

Both transducers were operated at excitation voltages of i0 VDC. Between i00 K

and 300 K, both transducers exhibited thermal sensitivity shifts of less than 0.07Z/K,
and thermal zero shifts of less than 0.02% FSO/K. Figure 6 illustrates the thermal
zero shifts for the transducers.
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Next the proximity probe was calibrated to accurately measure the shaker drive

rod displacement. The proximity probe was calibrated over a 0.25-cm range (fig. 7).

The bellows volume was calculated from manufacturer design specifications to be
0.36 cm in its unextended position. Given the initial transducer-bellows assembly

volume, and measuring the bellows displacement and the static pressure inside the
bellows, the dynamic pressure produced by the bellows motions was calculated.

Displacement was measured using the proximity probe apparatus. The bellows static
pressure was generally held constant at a differential pressure of 6.9 kPa (1.0 psi),
but an increase in bellows 8taticpressure was sometimes used to produce an increased

dynamic pressure. Heliumwas used to purge the system and control static pressure
in order to eliminate moisture condensation and gas liquefaction at cryogenic

temperature. Temperature was measured with a copper-Constantan thermocouple
mounted inside the bellows. Experiments were performed at 100, 150, 200, 250, and

300 K over a frequency range of 40 to 100 Hz to determine operational characteristics
such as dynamic pressure produced, changes in gas temperature, and bellows displacement.

The change in dynamic pressure amplltude as a function of frequency was meas-
ured over a frequency range of 40 to i00 Hz. The highest peak-to-peak dynamic pres-

sure generated was approximately 1.4 kPa (0.2 psi) for a bellows static pressure
of 6.1 kPa (0.9 psid). Figure 8 illustrates the quality of the slnusoldal curve

at 100 Hz, showing a clean single frequency pressure signal. Dynamic pressure was
highest near the shaker's loaded resonant frequency of approximately 60 Hr.

The effect of bellows oscillation on gas temperature was measured by oscillat-

ing the bellows for 20 minutes while immersed in a 150 +__iK environment. With the

+ I K temperature resolution, no measurable change in bellows gas temperature was

measured.

Using the proximity probe calibration data, drive rod displacement was measured

as a function of frequency for the 40-100 Hz range over a temperature range of

I00 to 300 K. The transducers were removed in order to unseal the bellows assembly

volume, thus venting the system to atmospheric pressure and eliminating static

pressure loadlng. Maximum displacement occurred at approximately 50 Hz, as figure 9
illustrates. Chamber environmental temperature was found to |lave no appreciable

effect on the dlsplacement-frequency curve, but it was found that an increase in

bellows static pressure caused an increase in system resonant frequency and a slight

change in the shape of the curve by essentially increasing the spring constant of

the system.

Finally, a test was done to compare measured and calculated dynamic pressures

at cryogenic temperature. The bellows was oscillated from 40-100 Hz at I00 K.
Assuming the reference transducer's static and dynamic sensitivities to be equsl at

low frequencies, the slnusoldal pressure amplltude was measured and compared to the

pressure calculated using equation (5). The resonant frequency of the loaded system
was approxlmately 60 Hr. This comparison is illustrated in figure 10 (ambient temp-
erature) and figure ll (cryogenic temperature). Curves for measured and calculated
pressure as a function of frequency agree favorably with a ,mxlmum difference of

approximately llZ at 40 and 80 Hz.

ERROR ANALYSIS

Given the bellows displacement (L), volume (V), cross-sectlonal area (A), and

static pressure (P), peak-to-peak dynamic pressure (Pp_p) was detenalned by
equation (5).
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The uncertainty of the digital pressure gage used to measure the static

pressure was 0.25% of reading. According to calculatlons from manufacturer
tolerances, the uncertainties in the bellows volume and cross-sectional area were

each determined to be approximately 5%. Based on tests for repeatability, the
uncertainty in displacement was also determined to be approximately 5%. Equation (5)

was differentiated to find _Pp_p/_L, _P_ _/_V, _P /_A, and _Pp_p/_P. The overall
uncertainty in dynamic pressure measurem_n_ was fo_n_ to be approximately IIZ RMS.

CONCLUDING REMARKS

The cryogenic dynamic pressure calibration system has the capability of

producing dynamic pressure of 1.4 kPa (0.2 psi) at frequencies of 40-100 Hz

from ambient to cryogenic temperatures. The system can also be used to perform

static calibrations over the same temperature range at pressures up to 70 kPa

(i0 psi). Dynamic pressure amplitudes developed are determined to within an

uncertainty of 11%. The most significant sources of error are th_ uncertainties

in displacement measurement, and in bellows volume and cross-sectlonal area.

Overall system measurement uncertainty can be most easily reduced by the improve-

ment in the displacement measurement technique, since uncertainties in bellows

volume and cross-sectlonal area are largely dependent upon manufacturer's tolerances.

System measurement uncertainty will be greatly improved by replacing the proximity

probe displacement measurement apparatus and shaker with a system capable of

servo-controlling and measuring the bellows oscillation frequency and displacement.

Thermal contraction can also be controlled by building the oscillating bellows

apparatus frame and drive rod from Invar steel, an alloy with a small coefficient

of thermal contraction at cryogenic temperature. The design of an operational

system having components and materials specifically selected will improve the

overall system performance to provide high quality data.
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FIGURE 3-PROXIMITY PROBE APPARATUS
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