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FOREWORD

This report summarizes the results of a study conducted by Engineering

and Economics Research (EER), Inc. under NASA Contract Number NAS 5-27513.

The study involved the development of preliminary concepts for automatic

and semi-automatic quality assurance (QA) techniques for ground image proces-

sing. EER was supported by MRJ Incorporated, as subcontractor, in this

study and we acknowledge the valuable contributions of Dr. Edward McMahon

in this effort.

EER acknowledges the valuable assistance of Mr. Joseph Heinig of NASA/

GSFC, the contract technical officer. In addition, helpful comments, con-

structive criticism, and useful guidance provided by Mr. Paul Heffner, Mr.

Fred McCaleb, and Mr. Gerald Grebowsky of NASA/GSFC during the course of

this study were very useful.
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1.0 SCOPE

This report addresses automation of quality assurance and quality

assessment techniques in a scientific sensor data processing system. A

distinction is made between quality assessment and the more comprehensive

quality assurance which includes decision making and system feedback control

in response to quality assessment.

The philosophy of automated quality assessment (QA) is the main subject

of this study. Some examples of automated QA are given, but they are specu-

lative. It is difficult to give attractive and feasible techniques without

concentrating on a specific system design; however, the principles espoused

herein as philosophies need to be recognized at the beginning of the design

of future systems which attempt to incorporate automated QA.

1.1 Summary

An automated QA system should be:

o Designed integrally with the processing system. Access of the

QA function to data, knowledge of input data quality, and having

test sequences available are requirements for the QA function design.

o Easily managed. Trends, failures, and status of changes to the

system to improve quality or correct failures must be logged and

tracked through a management information system.

1-1



• Maintained and modified, the QA function should accept new algorithms

and modifications as quality problems emerge from a maturing system.

Having access to all data paths and a library of simple measures

will allow "artificial intelligence" concepts such as learning

to be studied.

There are obviously different levels of QA and different amounts of

automation which may be used to implement QA.

The minimum level of QA is output product inspection. With this level,

little more can be done than to reject bad products, request regeneration,

and report the error to some maintenance or repair function. Failures

of a production line are detected by operators or by lack of output and

are handled the same way. Higher levels of QA are inspection of intermediate

products, trend analyses on product quality parameters, and running and

analyzing test data. As with failure reports, warning reports are generated

for the maintenance and repair function.

Automating these QA functions requires:

1. Sensing the parameters used by a QA analyst.

2. Emulating the algorithm used by the QA analyst to reach a decision.

3. Generating failure or warning reports; tracking progress and

closeout of outstanding reports.

Steps 1 and 3 can be accomplished easily within the state-of-the-art.
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Step 3 is a management information system which is not difficult to

implement (or purchase and modify).

Step 1 requires that the QA function have access to the pertinent

data. This may be difficult in certain cases, but should be feasible if

considered in the initial design of a system.

The major difference between a human analyst QA function and an automated

function is in Step 2 . A human analyst is adaptive.

An improvement can be made to some existing QA functions simply by

providing automated Steps 1 and 3, but it is also possible to program known,

planned QA functions such as checks on data bounds, format, data counts,

trends, statistics (destriping), etc. In addition, as new QA evaluation

functions are discovered ( as a result of, say, failures or degradation

of some system component), they may be added to a repertoire of QA algorithms.

It is difficult to program a general adaptive process. One approach

to an adaptive process is a general learning program, which is "taught"

or trained by an experienced analyst as to what is "good" and what is "bad"

output. Such a program would have to maintain many statistics on each

data flow. Candidate statistics could be max, nan, mean, mode, second

and third central moments, correlation between data items, and autocorrelation

function over a fixed length sample.

Under training of a "bad" output, a learning program would correlate

differences in statistics between good and bad data to the definition of

"bad." It appears more cost effective at this time to plan for assisted
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automated QA rather than attempting (and having to rely on) adaptive fully

automated QA functions.

Figure 1-1 presents the concept of an integrated quality assessment

system in a generic data flow process. Die pertinent features are that

the quality assessment function is not done piecemeal throughout the system,

it has access to all data, and it has input to the process control function

to enable quality assurance.

The presentation of the QA function as a single function does not

preclude implementation of various subfunctions in distributed processors,

perhaps coresident in the processors implementing various main-line functions

in the system, but any QA processes must communicate to each other or to

a supervisory QA function and a QA management information system.

Access to the data is obviously necessary, and the processing system

must be designed with this access and overhead considered. The access

does not have to be constant, and should be under the control of the QA

process. The amount of data needed to be processed by the QA function

will vary depending on system status and history. (For example, a low

sample rate would be appropriate when the system has a history of nominal

behavior). Therefore, the ability to supply data should be designed in

the processing system; the ability to select data for assessment should

be built into the QA function.

The most fruitful area for automated QA is in trends analysis on data

from many points in the data flow. Catastrophic failures are simple to

1-4
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detect, and random unimportant bit errors can be tolerated ( and are expensive

to detect). Day-to-day QA requires algorithms to detect when quality measures

cross some threshold between acceptable and unacceptable.

When quality measures are computed regularly, it is easy to perform

trend analyses, and to anticipate or predict when some quality measure

may be approaching a threshold of unacceptability. Appropriate action

may then be taken to correct the cause of the trend.

The algorithm used to compute quality measures may be based on knowledge

of the process and quality measures, or may have to be general statistical

computations from which an adaptive function can "learn" differences in

acceptable and unacceptable products.

Knowledge-based algorithms require more design and analysis, and less

computing time than adaptive functions. Knowledge-based algorithms reliably

give answers according to the rules specified (which may be incomplete

or incorrect); adaptive functions can be "trained" to follow changing standards

of quality (at some lag in time), but give the desired answer with some

probability less than one. Crop recognition algorithms are good examples

of adaptive algorithms.

The concept of automated quality acceptance and assurance presented

here is treated as a system-level function. The interfaces between QA

and the Data Processing Functions are complex, and QA would benefit by

being designed in conjunction with the Data Processing Functions. However,

the utility of an automated QA system depends on the use made from its
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output by the Production Control Function, so there is cause to include

QA in Production Control. The treatment of the QA process ultimately depends

on the philosophy of the system sponsor, and, in any disposition, relies

on system engineering to properly integrate and trade QA system costs and

benefits.
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2.0 DEFINITIONS

2.1 Quality Assessment and Quality Assurance

The term Quality Assurance is generally accepted to mean the program

within a system which ensures that the quality of the product meets minimum

standards. Implied in this term is the measurement of quality of the pro-

duct, the decision to act or not to change the system, and a means of chang-

ing the system to adjust the quality of the product. These three components

of Quality Assurance will be referred to as:

1. Quality Assessment

2. Production Management Responses

3. Corrective Action

Quality Assessment is the kernal of the problem being studied. It

can be a manpower intensive effort if capabilities to automatically monitor

product quality are not in place.

Production Management Responses to a measure of product quality are

usually constrained by policy, and production management is expected to

be able to recognize or discover what faults cause unacceptable quality

and what adjustments, corrections, or repairs are necessary to restore qual-

ity output. Production management may have the option of deciding to ship

or reprocess marginal quality products based on cost, time to reprocess,

and knowledge of customer requirements.
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The corrective actions which may be taken to adjust the quality of

the output are system specific. Such actions as repair of failed components,

realignment and recalibration, cleaning, and special processing are included

in this class of actions in addition to actions such as control parameter

adjustments. Software errors and operator mistakes require corrective ac-

tion.

Corrective action is generally not under control of Quality Assurance

even though Quality Assurance requests corrective actions. Corrective Ac-

tions may require an engineering change request, software modification with

configuration control approval, repair, and maintenance action, procedural

change, or personnel training, other (usual) corrective action requires

simple parameter adjustment. This is considered to be feedback control

and must be included in the specific system implementation. Quality assur-

ance includes feedback control; quality assessment does not.

This study will concentrate on automation of quality assessment and

will use the acronym QA to refer to quality assessment.

2 .2 Automated QA

To distinguish between automated and semi-automated QA, automated QA

is defined to encompass all QA done in the system without operator interven-

tion. Thus, the assessment of quality determined by an algorithm leads

to product acceptance and rejection, reprocessing orders, and repair orders.

This is a reasonable goal but the state-of-the-art in artificial intelligence

will not now reasonably support this goal for a new system. The problem
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lies in the probability that a new system will experience unexpected errors

and the difficulty in generating a complete set of product acceptance crite-

ria. The need to automatically control and correct the process for unantici-

pated errors requires an adaptable, learning algorithm. But for a stable,

well understood process, a reasonably complete set of product acceptance

bounds can be established and simple production management decision rules

can be programmed, closing the loop to the process controls and extending

automated quality assessment to automated quality assurance.

An assumption in the above paragraph is acceptance of failures when

unexpected errors occur (but the likelihood of such errors is small because

the system is stable and well understood). Thus, some superivision is nee-

ded. Extending the concept of supervision leads to the definition of semi-

automated QA.

2.3 Semi-Automated QA

Semi-Automated QA is defined to be operator assisted automated computa-

tion of quality measures rather than a direct measure of quality. This

is certainly part of automated QA and may included estimates of quality.

The intent in this definition is to emphasize the participation of an opera-

tor or production control personnel in the process of QA as well as in pro-

duction management, and to allow the easy addition of new assessment algo-

rithms. A semi-automated QA system has more flexibility to adapt to a chang-

ing or maturing system and more ability to tolerate a middle ground of QA

- where estimates of quality meet neither criteria for acceptance nor for

rejection, and judgement is required.
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2.4 QA of System Components

The focus of a QA system is the output product, and it is appealing

to consider a QA scheme that only measures observables in the output product

to judge whether or not an output product is acceptable. This is too narrow,

and presumes a completeness of knowledge of output product observables which

is probably not the case. Moreover, given a quality failure, no indication

of the cause of the error is known. Therefore, QA of system components

and intermediate products should be performed.

2.4.1 QA of Hardware Components

It is presumed that all hardware in a system has been accepted by tests

against a specification, and QA of hardware components may be performed

by exercising certain of the acceptance tests, modified as appropriate to

work in a production environment. QA of hardware components (in addition

to obvious failure determination) will support trend analyses of parameters

such as processing time, operator interactions, feedback control parameter

values, power, and expendable usage (if appropriate). Study of the trends

or correlations of trends with failures may lead to prediction capabilities

to avoid failures.

2.4.2 QA of Software Components

Software does not degrade over time as does hardware. There are no

situations where software works properly at one time and fails later, but

there are various conditions where it may appear that the software is acting
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in a random fashion (in error). Typical cases occur when input data or

parameters are outside expected bounds and no limit checking is performed.

Another condition may be produced by combinations or sequences of data values

or events not anticipated in specifying, designing, or building the soft-

ware. Still, the software is deterministic and will give repeatable re-

sults. There are hardware faults that may make it appear as if the soft-

ware failed (such as a bit error, memory failure, or I/O error). To protect

the software itself against hardware errors, it is prudent to have copies

of software and to periodically verify — not just recopy —• the operational

software against an archived copy to detect any errors in the operational

code.

Quality failures in software, "bugs", are hitherto undiscovered errors.

These errors exist due to failures in specifying the software or inadequate

acceptance testing the software. (There is an argument that inadequate

testing may be more cost effective than complete testing if the QA and main-

tenance processes are inexpensive, or schedule is a driving function.)

Both types of failures can occur on the initial build of the software or

can result from changes made to the software (fixing one bug may uncover

others, or the fix might ignore critical interactions elsewhere in the pro-

cess) . It is obviously important to have adequate acceptance testing of

changes to software.

Failures in specifying the software can result from the specifications

being incorrect or incomplete. Incompleteness may result from an unforeseen

combination of events or from presuming (or needing) the software to compen-

sate for failures or tolerances in other components. It may be argued that
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the latter cases are not specification failures, and no specification can

afford to be complete regarding every possible failure mode and combination

of conditions but, in any case, a change to the specification must be made

to resolve these issues if they occur.

At the output product level it may not be possible to distinguish be-

tween errors caused by hardware or those caused by software errors.

2.5 QA of the Process

The quality of the output product, given the design of the processing

system, is a function of the hardware and software components discussed

above, the data and the control parameters. The data will be discussed

in detail in later sections, but it is necessary here to state that the

quality of the input data must be known if proper quality assessment and

assurance is to be performed. Input data quality must be known to assess

quality failures, to order reprocessing or to accept poor output as the

best possible, ot to adjust control parameters to optimize processing.

The data contains calibration or reference data which is used to compute

control parameters. Usually, calibration data is designed to be usable

even at poor signal to noise ratios or high bit error rates (e.g., step

functions with many samples per step, linear ramp functions, etc.). Separate

checking should be performed on calibration data as recieved to assess the

consistency and reliability of the calibration source.

other control parameters are set by the operator or by calculations
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performed on the data (including feedback from measures of output data).

The proper use of data — sensors, telemetry and calibration data — depends

on the hardware and software, leaving errors by the operator to be discussed.

All control parameters set by the operator should be recorded, not

to assess blame, although such records will locate causes of quality errors,

but to be analyzed to determine if changes in procedures or training are

necessary.

Analysis of operator controls will also reveal which controls could

be easily automated.

2.6 Measures of Quality Assessment

The fundamental measure of quality is whether or not the output product•

meets specifications. The fundamental measure of QA is, therefore, what

fraction of product sent to users meets specification, and what is the cost

of performing the QA.

Cost can be measured in various ways, such as system availability,

throughput, average time in process, and overhead (poor quality product,

test, maintenance, calibration). The appropriate measure depends on the

mission of the processing system. A system designed for rapid response

runs to a different criteria than a system designed for bulk throughput,

or one designed for custom processing.
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User demands and system guarantees set the percentage of output product

which meets specifications.
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3.0 GENERIC SYSTEM

3.1 System Description

Figure 3-1 presents a block diagram for a general sensor processing

system. It is principally a serial processing system for some set of stan-

dard products. These standard products are generated according to a specifi-

cation on some schedule based on receipt of data. In addition to the stan-

dard product, an archival record of the data is kept and is used as a source

to fill custom requests for special processed data.

The data source in the block diagram represents the sensor and all

processing to format the data, and includes calibration and telemetry data.

Transmission links include all processes up to the receipt of the data

(sensor, calibration and telemetry) at the processing facility. It is at

this point, the input to the initial processing, that a measure of the qual-

ity of the data should be made. Some indication of quality may be available

from the transmission links subsystem to augment or identify sources of

any error, but a quality measure of the input data is necessary as a refer-

ence for later error identification.

The initial processing block in the diagram contains all standard pro-

duct processing. The result of initial processing is an archival copy of

the data, which may also be the standard output product.

Typical initial processing which would be included in an image process-

ing system would include calibration, reformatting, geometric and radiometric
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correction, and annotation or association of ancillary data with sensor

data. A more complex process might also include registration to some stan-

dard projection, and destriping and missing data estimation. Mote that

regiatration (which involves resampling), destriping and missing data estima-

tion (say, for failed detectors or scan line length variations) is a form

of error correction or quality assurance. If these functions are included

as image processing functions, then they are not considered quality assurance

processes as addressed in this report.

Special or custom processing requires identification of the necessary

processing, and retrieval, processing and reproduction of the data. Note

that this chain includes the processing of the request as well as the proces-

sing of the data.

3 .2 Sources of Error

3 .2 .1 Data Source

All sensors operate in an environment which produces a signal-to-noise

ratio (SNR) which is a measure of sensor data quality. Estimates of the

SNR at the input processor may be made by a QA process not only to know

the input data quality but to be used in trend analysis of the sensor per-

formance. SNR estimates may also control later processing and may be used

as feedback control to command sensor system parameters (such as gains,

filters, data compression, etc.).

Since most data appears random at first glance, and since the data
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passed through a transmission system, estimating the SNR may be difficult.

One means is to compare the power spectrum of the input data to expected

power spectra. Transmission system performance can be estimated by analysis

of calibration and other fixed format data (sync patterns, fill data, etc.).

Failures in sensor channels should be recognizable from trend analy-

ses. ' However, conceiving an automated response to every imagined sensor

system failure does not appear cost-effective. Automated measure of trends

and alerting abrupt changes or threshold crossings certainly is feasible

and recommended.

3.2 .2 Transmission Links

Most transmission links provide error detection and (at least some)

error correction. These give measures of system performance. As mentioned

above, calibration data and fixed format data can be used to estimate BERs

and data drop-outs, but these errors may not be attributable to the transmis-

sion links, as errors could arise in the sensor system. Schemes such as

retransmission of data from a remote receiving site or transmission of test

data can resolve some of these issues.

3.2.3 jnitial Processing

This process contains the main processes in the system. The output

is the archival data and usually the "standard" product. The processes

mentioned in 3.1 above will be addressed in turn.
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3.2.3.1 Calibration

The calibration data must be identified and associated with the correct

sensor data, the quality of the calibration data should be assessed and

trend analysis performed. Sudden changes in calibration data is cause to

suspect the process or the sensor.

Post-calibration data analysis (averages and variances) should be suf-

ficient to assess the quality of the calibration process. Low frequency

sampling appears capable of maintaining QA on the process if trend analysis

is done on calibration data.

3.2.3.2 De striping

The need for destriping indicates incorrect or insufficient calibra-

tion. It is, in fact, a means of calibration.

If destriping is done (in lieu of calibration per se) trends should

be maintained on the correction needed in each channel as if it were calibra-

tion data. Sudden changes or threshold crossings are cause for notification

of system error.

QA of the destriping process is probably best done with test data.

An alternate is a second pass of destriped data which should suffer no

change. This, however, is implementation algorithm dependent.
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3.2.3.3 Geometric and Radiometric Correction; Registration and Reformatting

These processes are variations of resampling of data. (Radiometric

correction may be considered calibration or destriping.) There are two

major aspects to resampling: calculating the resampling parameters by analyz-

ing the data and performing resampling.

Calculation of resampling parameters may be done from ancillary data

(telemetry, stored parameters from independent analyses, required output

formats) in an open-loop fashion or from analysis of data content (ground

control points, other correlation). These calculations can be checked by

"reasonableness" checks and by sampled analysis of the processed data.

For example, ground control point residuals can be checked; correlation

of registered data with the registration base can be made and correlation

values analyzed.

The actual resampling process can be monitored by processing test data

and comparing output to analytically derived results. Example test data

are constant data, linearly varying data, and fixed frequency data.

3.2.3.4 Annotation

Computation of annotation from telemetry or registration processes

is difficult to verify. Trend analyses or sampled checking by an analyst

may be the only reasonable choices. Indications of annotation error may

be found by other processes - especially those in 3.2.3.3 that depend on

the content of data also used for annotation.
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3.2.4 Storage and Retrieval System

3.2.4.1 Storage System

Typical errors in a storage system are data deterioration and lost

data (misplaced, mislabeled or not in storage). The degree of data deteriora-

tion may be estimated from existing studies or by including fixed test data

in the stored data. Redundant coding and storage techniques could be used

if this is seen as a problem.

Lost data is usually an operator problem and should be minimized by

a good library management system. Data identification should be well distri-

buted in the data to prevent misidentification.

3 .2 .4.2 Reproduction

Errors in archival masters are copied to duplication masters. These

in turn are copied to production data, and bit errors are added at each

duplication step. Sepcific system constraints will dictate the reproduction

process. QA measures of errors requires measures of errors in the master

and independent measures of errors in the product. Test strips and fixed

format data are useful in monitoring this process, but it is important that

the test data be such that it will be treated identically to actual sensor

data.

QA of the reproduction process could be the most valuable QA in the

system, and should be relatively easy to automate.
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3 .2 .4.3 Special Processing

Special processing is system dependent. If a special process is offered

as a standard service to be requested, it should be treated as the initial

processes for QA, except cost-effectiveness values of automated QA are dif-

ferent from those in initial processing. If a special process is a cus-

tomized assemblage of available processes or algorithms, then the QA will

probably be an individual assessment perforce.

3.2.4.4 Request Processing

Proper record keeping and a good data management system should hold

errors in requests, custom processing parameters, and data identification

to a minimum. Independent checks against order copies and verification

or orders to customers are means to identify errors in request processing.

QA of this process would probably be a manual process, and complete records

of such errors should be kept to determine if changes in procedures are

needed.

3.3 Quality Assessment System

Automating a quality assessment function requires:

1. Sensing the parameter used by a QA analyst.

2. Emulating the algorithms used by the QA analyst to reach a decision.

3. Generating failure or warning reports; tracking progress and close-

out of outstanding reports.
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The most difficult step, QA algorithms, will be addressed first.

3.3.1 QA Algorithms

Algorithms for QA can be classified as those required to assess a known

quality parameter (such as striping between detectors or deviation of cali-

bration data from nominal values) and those which adapt to evaluate quality

measures not anticipated in the design phase of the system. Both classes

of algorithms are covered in some detail in Section 4, and both classes

of algorithms fit under the broad umbrella of "Artificial Intelligence"

(AI) in common usage. AI successes at present are in knowledge based systems

(or expert systems) in which a body of knowledge is codified as a number

of IF-THEN statements in a fixed hierarchical structure. An example of

such a construct in QA could be:

IF (calibration bias - normal is less than e) THEN (set variable A

to TRUE) ELSE (set variable A to FALSE)

IF (estimated bit error rate is between TABLE (1,1) and TABLE (1,2)

THEN (set variable B to TABLE (I,O).

IF (variable A is TRUE and variable B is greater than x) THEN (issue

quality warning flag 1).
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This example makes the point that the QA algorithms, called AI or not, must

be designed for a specific system. The knowledge coded into the algorithm

is quite specific.

Adaptive algorithms produce values for clauses or terms in the above

IF-THEN statements. For instance, a system might "learn" in a training

mode what values are appropriate as bounds in a table as in the second IF-

THEN statement in the above example. Such a system will have mistakes in

QA analysis unless the bounds are very stable, and until the bounds are

"learned."

As a system matures, additional tests and algorithms can be implemented

in the QA process. These would reflect additional knowledge gained about

the operation of the system.

3.3.2 Sensing parameters for QA

It is generally impossible to state completely which parameters or

what data is needed for QA by the principle that known sources of error

can be avoided; the unanticipated sources of error will cause problems.

For that reason, we state that access to all data should be provided for

the QA process during system design, and the QA process has the choice of

whether to read a specific data element or not. While it is easy to make

such a statement, it is not easy to justify excessive costs to make high

volume or high rate data continuously available for QA. As in any system

design, trades must be made between cost and amount of data access, but

QA access to data must be taken into account during such trades. This is

further addressed in Section 5.
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It is presumed that parameters observable by a QA analyst can be compu-

ted from available data and control parameters. This may not be simple,,

and can be viewed as "feature extraction" (also addressed in Section 4). For

instance, "zipper" in an image produced from digitial data when bit synchroni-

zation is lost for part of the line is obvious to an operator but is not

trivial to find by computation.

It is strongly recommended that access to data and control parameters

throughout the system be included in the system design.

3.3.3 Failure and Warning Reports

In addiition to the obvious process management function supported by

the issuance and trackings of QA failure reports, the QA process should

use history of failure to condition data processing until the fault is cor-

rected. Knowledge of faults in a process should be used to modify processing

schedules and maintenance. Knowledge of faults in data should be used to

request reprocessing, or retransmission, or to issue disclaimers on output

quality from flawed source data.

3.3.4 Example QA Process

Figure 3.3-1 presents an example implementation of QA process in a

scientific data processing system. Only part of the system is shown; addi-

tional stages of processing may be to the left and right of the portion

shown.
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The QA process consists of a number of local processes and a QA super-

visor process, shown implemented with a management information system.

The QA processing shown as being separate might be implemented in one central

processor or the local processes might be integrated with their associated

data processing functions. The diagram emphasizes that local processes

(which may implement the same or similar algorithms) are applied to various

data paths emphasizes that the quality measures computed by the local QA

processes are fed forward for use in computing later data quality and for

use in assessing performance of the data processing functions, and the qual-

ity measures are fed to the central or supervisory QA function. The design

allows tests to be run in response to requests by the QA function through

production control when testing is necessary to evaluate the performance

of a data processing function.

The results of the QA process are available for use by production

control in scheduling and controlling the processing of data.

3.4 Data Types

Data subject to QA in a scientific sensor processing system can be

categorized as sensor data, test data, calibration data, support data and

management data. The latter, management data, is concerned with ordering

data, requesting special processing, shipping, controlling inventory, etc.

The QA of management data will be left to a MIS or review by appropriate

personnel. Each of the four technical data types is discussed below.

3-13



3.4.1 Sensor Data

Sensor data is, by its nature, random, but important statistics of

the data must be known for the processing system to be designed and built.

Such statistics include maximum values, max variations, precision, variance,

and number of smaples per operating sequence. These statistics can be compu-

ted for input data and, in some designs are necessary to know to process

the data. For instance, mean and maximum values and the variance can be

used to destripe image data. The same measurements should be maintained

to calculate calibration system performance. Some scaling of these para-

meters may be invariant through processing, and calculation of these para-

meters would provide a QA check on the output product. An example would

be the normalized power spectrum of each input sequence in an image proces-

sing system. The transfer function of the processing system should be known

(some MTF compensation might be implemented) and the spectrum of the output

should bear a known relationship with the input.

The variance of the data normalized to the dynamic range could be

another effective monitoring measure. It is strongly recommended that trends

of the statistics be maintained to monitor the sensor input and the product

output. Sampling the statistics would keep the volume of trend data manage-

able.

It is necessary to know the quality of the input data in order to deter-

mine the achievable quality of the output product. Without this, it will

not be known whether the processing system degraded the data, or if special

processing or reprocessing could improve the data.
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Since the input data abears random, the quality of the input data cannot

be directly measured (except for obvious measures such as data counts).

The statistics may yield estimation of the quality of the input data but

other sources such as calibration data, bit sync performance and error detec-

tion and correction codes can yield good measures.

Imbedding reference data in sensor data should be considered in a system

design. Calibration data, synchronizing sequences, controlled data during

retrace or border scanning in a scanning system or the like can be used

for quality checks on the path up to the input of the processing system

in addition to the purposes for which such data is generated.

Continuing the same concept, it can be worthwhile to process such data

as border data and calibration data as equivalent test sequences through

the processing system. It is important, of course, that such data not inter-

fere with sensor data processing by skewing the statistics and impacting

control parameters.

3.4.2 Test Data

Test data is constructed to see if specifications of a system are being

met. Test data usually stresses a system, and usually includes data which

are out of the expected bounds for a system. Results of processing test

data, in an entire test sequence, should be unambiguous. Specific failures

should point to specific processes. Subsets of test data should be used

periodically to check system performance. Trends of the results should
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be monitored so system performance can be predicted, and system performance

can be calibrated after a repair or upgrade.

Lacking other measures, test sequences would have to be run on a fre-

quent schedule to provide QA measures. This presents an overhead to the

system throughput which must be considered in system design.

Another design consideration is the necessity of providing infection

points for test data throughout the system. It is generally unsatisfactory

to have to rely on a single end-to-end test sequence to isolate a quality

problem.

3.4.3 Calibration Data

In this context, calibration data will encompass all fixed and known

format data. This includes the synchronizing sequences, null words and

similar data discussed in 3.4.1. within some limits, this data is known.

For example, calibration data may consist of 100 "black" samples, a ramp

of fixed rate to "white", and "white" samples to produce a total of 1000

samples. The QA process should calculate and record for trend analysis

the level and noise on the black and white levels, the slope (length) of

the ramp, the variation of the ramp from nominal (e.g., straight line or

logarithmic), and data counts. It is not difficult to compute adaptive

quality thresholds for some statistics of the calibration data a given con-

fidence level. Then, as long as the statistics remain within these threshold

bounds (and the correct statistics are used), the input calibration data

can be considered of good quality. As the example presented in Figure 3.4-1,
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the x% confidence thresholds can be tighter than the specified thresholds.

Whether they are or not, if the statistics cross the threshold, a quality

warning should be generated. This should be done even if the data is still

within specifications, since it warns of a trend which should be monitored

and explained.

This same general technique should be applied to all statistics for

which trends are maintained.

3.4.4 Support Data

Support data includes telemetry and operator-set parameters. Processing

parameters and annotation data will likely be derived from support data,

so the quality of the support data is important. Another example of support

data is ground control points used to generate coordinates for matching

points in imagery. Poor quality ground control points will lead to poor

quality geometric corrections.

Each kind of support data must be examined to determine the properties

that reflect quality. With this, "reasonableness" checks, trend analyses

and statistical measures may apply. The spacecraft operational control

functions should not be overlooked as sources of quality measures of teleme-

try data as they are responsible for knowing the quality of telemetry data

for purposes of spacecraft control. It may be cost effective to have that

operation control function monitor sensor as well as spacecraft telemetry.
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The sensor data processing function uses spacecraft data such as atti-

tude and attitude rates to annotate and sometimes process sensor data.

Knowledge of "pure spacecraft" data (such as thermal and electrical status)

should be available for correlation with data quality. Presumably, necessary

telemetry points will be requested by those responsible for monitoring sensor

status, but the potential use of these and other telemetry points in QA

analyses should be recognized when a limited choice of telemetry points

are chosen for the system.

Misalignment of support data with sensor data is obvious enough not

to be overlooked in system design. Unique tagging both sensor and support

data is usually simple. In cases where the alignment must be calibrated,

it should be monitored for correctness.
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4.0 AUTOMATED QUALITY ASSURANCE

The first step toward automated quality assurance is acsisted (or

semi-automated) quality assessment. The components of either system are:

o Data access

o MIS

o Automated measure of known functions

o Ability to adapt (or be adapted) to new functions

4.1 Data Access

It is obvious that without data, there can be no quality assessment.

The kinds of data are discussed in Section 3.4

Quality errors or faults can be considered as random errors, total

failures or "out of calibration" performance. Failures are generally easy

to detect with a few samples from a data stream (either the data stops,

the data is a constant, or the data is noise with no relation to the correct

statistics). Random failures are difficult to detect. As mentioned above,

catastrophic random errors need to be detected, and reprocessing will usually

solve the issue, but infrequent data value errors should be tolerated to

a limited extent. One reason to tolerate inconsequential errors is the

extreme difficulty in detecting them. Errors causing catastrophies are

similar in their randomness, but are detectable (by definition — a catastrophy

must be easily observable). Specific systems and specific definitions
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of catastrophies will determine the level of data processing needed for

detection of such errors.

The remaining class of errors are "out-of-spec" or "out-of-calibration"

errors. These, which can be avoided by adjustment or maintenance, are

the standard fare for a QA process, and cost trade-offs should be done

primarily with the control of this type error in mind. To control this

error, trend analyses and prediction of error conditions should be designed.

To be cost-effective, sampling is recommended. This is discussed

in Section 5.I. Enough data must be sampled to calculate reasonably confident

projections and from enough paths in the system so that fault isolation

or identification can be done.

4.2 MIS for Reporting and Tracking

A typical ground image processing system has three types of information

components within it.

o image data
t

o support data

o production control messages from management

Efficient flow of management information (e.g., work orders, work

schedules, error reports, log entries, report listing, etc.) is critical

since it has an obvious impact on the processing, movement, tracking, and

quality of the image data as well as support data. Clearly, the efficient
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operation of the production processor depends on the efficient management

communications and implementation of a central QA function in the data

flow process. Additionally, such a QA function must have access to data

to derive, extract, or compute measures of quality which, in case of bad

output products, will be provided to the production management for it to

take appropriate corrective action (see Figure 4.2.1).

Based upon state-of-the-art, it is difficult to design a general adaptive

QA process. Consequently, only some QA functions can be fully automated

while others may have to only semi-automated or largely manual. Furthermore,

it is imperative that a sufficiently long history (or knowledge) be maintained

and made available to the QA function for the purpose of 'training1 those

QA functions which are to be automated.

Sensing of parameters to be used by the QA functions can be easily

automated. Such parameters may include, among various others, checks on

data bounds, formats, data counts, trends, statistics such as mean, variance,

max, min, etc., calibration parameters, geometric correction parameters

(resampling parameters). These and other useful parameters should be properly

tagged and stored on-line for quick access on an as needed basis. It is

noted that these parameters are sensed at various stages during production

processing. Furthermore, it is important that these parameters be sensed

in manner without interferring with the normal data flow or data processing

in the production processor.

The task of automating the QA algorithms themselves is a complex one

since such algorithms will have to be adaptive just like human QA analysts.
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Simple QA algorithms such as checking data bounds, data counts, calibration,

BER measurements, etc. can be automated. Furthermore, these QA algorithms

can be implemented in near real-time without interrupting the normal production

processing.

However, more complex QA algorithms (like the ones to be discussed

in Section 4.3.2) are based upon artificial intelligence (AI) or pattern

recognition (PR) techniques. Most of those AX/PR algorithms can be automated.

The performance (success or failure) of these will depend largely upon:

- availability of a large sample for each QA parameter

- selection criteria used in extracting each QA parameter

Extreme care would be necessary in implementing such QA functions

to avoid interferring with or impacting the performance of the production

process itself. Additionally, some of these QA functions may be highly

process intensive thus making implementation in near real-time unlikely.

Consequently, some of these QA functions may have to be performed off-line.

Another important function of an auotmated QA processor is to generate

error reports (including failure and warning reports), tracking progress,

and closing out of outstanding error reports. Prom past experience with

systems such as Landsat image Processing Facility (IFF) it is clear that

error reports represent a large portion of the management message volume.

Error reports are usually generated by operators on various subsystems

and then sent to respective subsystem production control groups within

the IPF. It is a very people-intensive effort from generation to correction/
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resolution. As many as 1000 error reports/month are generated during some

months and as many as 700 may be unresolved at any given time. Hie effect

of this on system throughput is significiant since the travel of error

reports through the system is less than efficient.

In brief, considering the points/problems mentioned above in manual

handling of error reports, it is absolutely essential that future image

processing systems use on automated on-line management information system

for generation, collection, evaluation and resolution of error reports.

Streamlining of the error reports related functions will undoubtedly result

in less processing delays thus yielding a much improved total system output.

System-aided resolution tracking would also result in better control of

outstanding error reports and, in addition, it may allow efficient planning

around erroneous data by the production controller during scheduling.

This would reduce the error-scatter effect. Resolution tracking would

also permit rapid information on previous dispositions for identical or

similar error reports.

A management information system (MIS) consisting of a local management

network (such as 'Ethernet'), a job tracking and error report handling

computer system, and applications software will prove to be essential for

future ground image processing systems. It is possible to incorporate

other functions such as sensing of QA parameters and application of QA

algorithms in the MIS mentioned above and shown in Figure 4.2.1. In the

final analysis, however, the design constraints and cost-effectiveness

should determine the optimal design of MIS.
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4.3 Pertinent Functions of AQA

4.3.1 Known Functions

These functions are known; specifications exist for which tests and

evaluation algorithms can be designed. Some examples of Automated QA on

known functions are given in the following paragraphs.

4.3.1.1 Calibration

Calibration data is used to transform sensor data to some fixed reference.

To Use calibration data, some processing is done to calculate reference

parameters (black level, gain factors, linearity, etc.) to high accuracy

and precision, even in the presence of many data errors. It is likely

that calibration data is smoothed (or filtered or averaged) in this process.

With very little extra effort, the calibration processing function can

produce measures of the smoothing (variance, extremes, residuals, etc.)

for use by the QA process. Thus, QA can have measures of the quality of

the calibration data, and trend analysis will determine if a particular

set of cal data is anomolous or not, and if slow degradation of the cal

process is occurring QA is extended to quality assurance when processing

parameters or decisions to reprocess with different or differently estimated

cal data are determined based on the QA of the cal data. Errors in calibration

data can be due to the calibration source or the data path.

If large varying corrections to a specific data channel are being

performed, the quality of the data in that channel should be suspect.
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Later processing may be improved by ignoring or deweighting contributions

from this channel to processing parameter computations.

4.3.1.2 BER

Bit error rates provide a measure of system performance. It can be

measured if known data is used as a reference. In an operational situation,

it may not be possible to presume that data such as sync words or calibration

levels are, in fact, known. A composite error can be determined and, by

observing the random properties, this error may be allocated between the

data source and components in the transmission path.

Test data and error detection and correction codes are more reliable

and accurate sources for BER measurement.

4.3.1.3 Destriping

Destriping is a specific example of the potential use of quality assess-

ment.

Images may be produced from data collected from a number of detectors

designed to scan adjacent strips in some field of view. That is, parallel

scan lines in the reconstructed image come from different (adjacent) detectors.

Differences in responsivity of the detectors will cause the reconstructed

image to appear striped, so the differences in responsivity are removed

by calibration (having the detectors view a known or common source). If
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the responsivity model is not accurate enough or if the calibration scheme

does not work as aniticipated, detectable stripes will remain in the output

image. Destriping is a method of removing relative differences in adjacent v

lines by assuming that statistics of the data (mean and variance } in adjacent

channels should be identical.

Quality assessment should measure striping if there is a specification

regarding line-to-line variation. The existence of stripes can be estimated

by computing the same statistics used to correct striping, or by some other

method such as a power spectrum analysis. (Computing the power spectrum

of an image in the direction orthogonal to the scan direction, say by a

fast Fourier transform, would show if a spike of energy existed at the

scan frequency. This should be attributed to striping if the data used

has remained in the digital domain. Data scanned from an image could show

the scan frequency due to printing spot size errors or line spacing variations.)

If the power spectrum measure is used for QA, no data is available for

correction striping but an independent measure is known. If the same statistics

are used to measure the quality of destriping as were used to destripe,

then the QA process measures the implementation of the destriping process

and must rely on the analytical correctness of the statistical destriping

process to actually remove stripes to specification levels.

4.3.2 Adaptive Functions

A pattern recognition system is generally composed of the following

elements:
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- Input pattern

- Environment

- Feature extraction

- Decision (classification) algorithm

- Adaptive or Learning mechanism

The word "adaptive" in pattern recognition is generally used to mean

the strategy of feature extraction and classification algorithms which

can be changed flexibly according to the state of the input patterns and

its environment, with the additional function of learning.

The simplest approach for pattern recognition is probably the method

of "template-matching" where a set of templates or prototypes, usually

one for each pattern class, is stored in the machine. The input pattern

(with unknown classification) is compared with the template of each pattern

class and the classification is based on a pre-selected matching criterion

or similarity function. In other words, the input pattern is assigned

to the pattern class whose template it matches the best.

The main disadvantage of the template-matching approach is that it

is somtimes difficult to select a good template for each class and also to

define a proper matching criterion. This difficulty is especially remarkable

when large variations and distortions are expected in all patterns belonging

to one class.

Consequently, a more suitable approach is to classify based upon selected

measurements extracted from the input pattern (see Figure 4.3.1). These
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selected measurements are called features and are supposed to be invariant

or less sensitive with respect to commonly encountered variations and dis-

tortions. Under this approach, pattern recognition can be considered as

consisting of 3 subproblems.

1. What to measure? That is, what primitive measurements should

be represented in the input pattern?

2. What measurements (features) to extract from the input pattern

and how?, i.e., Feature Extraction.

3. What pattern classification technique to use to make a class assignment

to the input patterns based upon selected features?, i.e., Pattern

classification algorithm.

Before operating a pattern classifier, one must first decide which

measurements to use as the input pattern. Unfortunately, there is very

little theory to guide in selection of measurements. At worst this selection

process may be guided solely by the designer's intuitive ideas about which

measurements play an important role in the classification at hand. At best

the process can make use of known information about some measurements that

are certain to be important.

For QA in image processing systems, such measurements may include,

among various others, BER measurements, signal to noise ratio, statistical

parameters such as mean, variance, etc. We will henceforth assume that

a sufficient (large) number of measurements yielding the pattern to be
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classified have been selected wisely remembering that the pattern classifier

cannot itself compensate for a careless selection of measurements. Usually

the decision of what to measure is rather subjective and higly depedent

on practical considerations such as the availability of measurements, cost

of measurements, etc. For instance, a certain measurement for QA may be

known to contain extremely useful and important information. Yet, the

cost of making that measurement may be prohibitive, thus making it impractical,

Feature Extraction

As mentioned earlier, each of these measurements may carry a small

amount of information about the sample or pattern to be classified. This

high dimensionality makes many pattern recognition problems difficult.

Obviously, as the number of measurements (or inputs) for the classifiers

increases, the design of the classifier becomes more difficult. In order

to simplify the problem, we should find some way to extract/select important

features from the measured patterns. This problem is called 'feature extrac-

tion' and is a key problem in pattern recognition.

Feature selection is generally a process of mapping the original measure-

ments into more effective features. If the mapping is linear, the mapping

function is well defined and our task thus reduces to finding the coefficients

of the linear functions so as to maximize or minimize a criterion function.

Consequently, if we have the proper criterion for evaluating the effectiveness

of features we can use well-developed techniques of linear algebra or apply

optimizing techniques to determine these mapping coefficients, e.g., Principle

Component Analysis.
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Unfortunately, in many applications, there are important features

which are not linear functions of original measurements. So, the basic

problem translates into finding a proper non-linear mapping function for

the given data. Since we don't have any general theory to generate such

mapping funcions systematically and to find the optimum one, the selection

of effective features becomes very much problem oriented.

4.3.2.1 Pattern Classification Techniques

The concept of pattern classification may be expressed in terms of

a mapping from feature space to the decision space. Figure 4.3.2 shows

a generic articifical intelligence (AI) oriented system approach to quality

assessment (QA) in an operational image processing system. It is presumed

that the production processor is being monitored at N different stages

and that at each of these stages one is able to make sufficiently large

number of measurements which are reasonably useful for QA. Thus, Kj measure-

ments made at stage I can be represented by a vector P(I) representing the

input pattern for stage I. The feature extractor for stage I would then

yield a feature vector, p(I), containing kj («Kj) important features.

The problem of pattern classification can now be restated as follows:

"Formulate a classification algorithm to assign each possible feature vector

p(I) to proper pattern class, i.e., class 1 or class 2, where class 1 contains

all input patterns of acceptable quality and class 2 contains input patterns

that are not of acceptable quality. Mathematically, this problem can be

formulated in terms of "discriminant functions", Difp(I)], i=1,2.
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The decision rule is given by:

if

D-| t p ( I ) ] > 02 [p(I) l p(I) belongs to class 1 (i.e., p(I)

is of acceptable quality)

DI t p ( I ) ] < E>2 [p(I) l p(I) belongs to class 2 (i.e., p(I)

is not of acceptable quality)

And, the decision boudnary (i.e., boundary of partition between class

1 and class 2 in the feature space) is expressed by the following equation,

D1 tp ( I ) ] = E>2 [p ( I ) l

or,

D-i t p ( I ) ] - 02 C p ( I ) ] = 0

A general block diagram for such a classifier is shown in Figure 4.3.3

while Figure 4.3.4 depicts a 2-dimensional illustration of the decision

boundary, A wide variety of discriminant functions (e.g., linear, piecewise

linear, minnimum-distance, quadratic, polynominal, etc.) are described

in literature. For sake of simlicity, however, only linear discriminant

functions will be discussed here. It should be pointed out that classifiers

that use linear discriminant functions are called "linear classifiers".

A linear discriminant function is a linear combination of feature

measurements, i.e.,
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, 2

where,

V?i(i) is the weight vector and p(I) is the augmented feature vector.

Let,

•flie decision rule is given by:

if

D[p(I)l > 0, then p(I) is acceptable

and if

< 0, then p(I) is not acceptable.

This decision rule, if necessary can be easily extended to multi-class

situations so that feature vector p(I) whould be assigned to the pattern

class i with largest value of Djjpd)].
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4.3.2.2 Learning in Linear Classifiers

The implementation of the linear classification technique described

above requires that proper values of the "weights" be available. However,

in practice, the correct values of the weights are not known and, therefore,

the classifier should be designed to have the capability of estimating

the best values of weights from feature vectors. By observing the feature

vectors with known classifications, the classifier should be able to automa-

tically adjust the weights in order to acheive correct recognitions. And,

the performance of the classifier should gradually improve as more and

more patterns are observed. This process is called "training" or "learning"

while the patterns used as inputs are called "training patterns"

For the sake of simplicity, it can be assumed that the augmented training

patterns or feature vectors belonging to the two pattern classes are linearly

separable (can be separated by a hyperplane in the feature space). This

means that a weight vector W (I) exists such that

W(I) . p(I) >0 for each training pattern p(I) in class 1

or, W(I) . p(I) <0 for each training pattern p(I) in class 2

The "error-correction" training procedure can be summmarized as follows;

For any training pattern in class 1, the above product (i.e. W(I) . p(I)

must be positive. If the output of the classifier is erroneous (i.e.,

product <0) or undefined (i.e., product =0), the weight vector should be
_ / _

adjusted to yield a new weight vector W(I) = W(I) + a.p(I), where a>0 is

called the correction increment.
4-20



On the other hand, for any training pattern in class 2, this product

must be negative. Else, the weight vector should be adjusted to give

W'(I) = W(I) - a.p(I).

Prior to training, the weight vector can be initialized to any convenient

value. Some rules to make a proper selection of the correction increment

(a) are given below.

(i) Fixed increment rule: a is any fixed positive number.

(ii) Absolute correction rule; a is chosen to be the smallest integer

such that the product W(I) . p(I) >0.

(iii) Fractional correction rule:

Each of these correction rules is known to converge to yield a solution

for weight vector in a finite number of training iterations.

4.3.2.3 Statistical Decision Techniques

In the preceding sections it was assumed that the feature measurements,

p(I), are deterministic quantitite. However, in many applications such

as image processing, this is not always true since noise effects in making

these measurements cannot be neglected. This is because the input patterns

in one class may have large variations.

One approach is to consider the feature vector, p(I), multi-variate

random variable having known probability density function and known probability

4-21



of occurrences of each pattern class. Based upon this a priori information,

the function of a pattern classifier is to perform the classification task

for minimizing probability of misrecognition. The optimal decision rule

which minimizes the average loss* is called the "Bayes Decision Rule" and

a classifier that implements this rule is called a "Bayes Classifier."

Perhaps an example would help one understand the above and also reduce

the mathematical complexities associated in formulating such decision rules.

Assume that parameters such as "gain" (G) and "bias" (B) are found to be

important in performing QA on radiometric correction process and a sufficiently

large sample of. these features is available for training.

Further, let

fl = probability of occurrence of Class 1

f-2 ~ probability of occurrence of Class 2

FI = Probability density function for all samples [gain, bias] belonging

to Class 1

F2 = Probability density function for all samples [gain, bias] belonging

to Class 2

*Loss incurred by the classifier when it misrecognized. For the (0,1)
loss function, the average loss is essentially same as the probability
of misrecognition.
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The Bayes Decision Rule will render the following as decision boundary

between Classes 1 and 2.

f, . FT - f2 . F2 = 0

If both parameters, i.e., gain and bias, have gaussian density function

within each pattern (which is realistic to assume), then the above decision

boundary is a hyperquadric of the form a.Ĝ  + b.B? + c.G.B+d =0. The

coefficients of this equation are functions of mean and variance of gain

and bias in each pattern class.

The decision rule for an incoming test pattern having gain G and bias

B will be as follows;

if G and B are such that the pattern falls above the decision boundary,

then it belongs to Class 1 . Otherwise, the pattern belongs to Class 2.

Special Case; When covariance matrices of both pattern classes are

equal and it is an unit matrix (or can be transformed into a unit matrix

by performing a whitening transformation), the Bayes Classifier discussed

above takes a much simpler form and becomes a distance classifier and the

decision boundary is the perpendicular bisector of the line joining the

mean values of gain and bias for the respective classes (see Figure 4.3.5).

It is believed that a classification technique similar to the one

above might also prove to be useful for performing QA on parameters like

bit-error-rate (BER) an signal-to=noise ration (SNR).

4.3.2.4 Sequential Decision Techniques

In the statistical classification system described in section 4.3.2.3

all the kj features are observed by the classifier at one stage. Additionally,

the cost of making feature measurements was not taken into consideration.

Usually an insufficient number of feature measurements would not result

in satisfactory levels of correct classification. On the other hand, an

arbitrarily large number of feature measurements is impractical. The problem
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is especially pertinent when the cost of making a feature measurement is

high. For example, if the measurement requires that the production process

be interrupted or completely stopped, or if elaborate equipment, excessive

times, or complicated operations are required to perform the measurement,

then these factors may limit or even prohibit the use of such a feature.

In such instances, sequential decision techniques provide a necessary balance

between usefulness of a feature measurement and the cost of making that

measurement. A trade-off between the error (misrecognition) and the number

of features to be measured can be obtained by making feature measurement

sequentially and terminating the sequential process (i.e., making a decision)

when a sufficient/desirable accuracy of classification has been achieved).

Since the feature measurements are to be made sequentially, the order

of features to be measured becomes important. The feature ordering scheme

should be such that the measurements taken in that order will cause the

terminal decision earlier. As a result, the problem of feature ordering

is very important in sequential recognition systems.

Wald's sequential probability ratio test (SFRT) is one of the best

sequential procedures known. At the 1th stage of the sequential process,

i.e., after the ith feature measurement is taken, the classifier computes

the sequential probability ratio, R(i)

where F-| and E2 are the probability density functions as defined in Section

4.3.2.3. This value of R is then compared with two stopping boundaries

— S-) and 82 . The decision rule then becomes,

If R 2. S-| then pattern p(I) belongs to Class 1 , and if

R <_ 82 then pattern p(I) belongs to Class 2 .
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On the other hand, if 82 <R <S-| , then an additional feature measurement

should be taken and the decision process proceeds to stage i+1 . The stopping

boundaries are related to the error (misrecognition) probabilities in the

following manner;

and

- e12

where e^j is the probability of deciding that p(I) belongs to Class i when

actually p(i) truly belongs to Class 3 [i, j = 1, 2]. It has been shown

that Wald1 s SPRT is optimal, that is, for given values of 612 and &21 there

is not other procedure with at least as low error probabilities or expected

risk and with shorter length of average number of feature measurements.

It should be noted that the Wald's SPRT results in two decision boundaries

which partition the feature space into three regions:

1 . The region associated with Class 1

2. The region associated with Class 2

3. The region of indifference (null region)

The region between the two boundaries is the region of indifference in

which no terminal decision is made. It is obvious, but important to note,

that the decision boundaries in a sequential process vary with the number

of feature measurements. For this reason, it is highly likely that such

a process will be extremely useful while performing QA of the geometric
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correction process based upon, for example, resampling parameters. For

example, if xi,X2,X3... are independent measurements during resampling

process, then assuming gaussion density functions (having means m-| and

n>2 and variance v for two classes), then sequential probability ratio R(i)

can be computed numerically.*

After the first parameter x-j is measured, R(1) is given by

(m -BL ) x -1/2 (m -nu )

and, the decision boundaries are given by

v
if X1 2. Log Si + 1/2 (mi+mo), then pattern belongs to Class 1

~

if x1 _<_ - Log S2 + 1/2 (m-i+n^), then pattern belongs to Class 2

and if, - Log So + 1/2 (m-i+mo) < x-i < - Log S-i +
1 ~ ^2 mi — m2

then next resampling parameter (X£) is observed and the sequential decision

process proceeds to Stage 2 .

After measuring X2 , one can compute R(2 ) as follows,

R(2

Proceeding as before, the decision boundaries are given by:

*For simplicity of computation, instead of R(i), Log (R(i)) is computed.
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Tj

if x-|+X2 2. Log Si + (m- i+mo) , then pattern belongs to Class 1m - j - m 2 l i t .

and if,

v Log S2+(m1+m2) < x-|+X2 < v Log S-\ +

then next resampling parameter X3 will be observed and the decision process

will proceed to stage 3. This process may continue for several more stages.

In general, the sequential classification procedure becomes such that

n

if \ x. ̂  v Log S + n_ (m + m ) then pattern belongs to Class 1A

n

if > x. s v Log S. + n (m, + in } then pattern belongs to Class 2/ 1 ̂ ^ — 2. •— 1 2
- - in Tin 2

and if

n n
r n . . ., ^T v . .

v Log S2 + _ (m^ + n^} < /_
 Xi <C Log Sl + J 1 + m2 '

mm 2 . _ m -m
•»• ^ i^i i ^

the process continues to next stage (i + 1)

v
The width of the region of indifference is proportional to -m ;

and, hence for given or assigned values of error probabilities e-\2 and

&21/ the average number of feature measurements for termination of this

sequential process depends directly on variance v and inversely on

It has been proven, in literature, that the Wald's SPRT

1. terminates with probability = 1
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2. minimizes the average number of observations to achieve a given

set of error probability values

3. is optimal

It should be noted that there exists a trade-off between the number

of feature measurements that can be tolerated and selection of values for

probabilities 612 and 621.

4.3.2.5 Learning in Sequential Pattern Recognition Systems

In the previous section, all the information relevant to the statistical

characteristics of patterns in each class is assumed to be completely known.

However, in practical situations, this information is only partially known.

One approach is to design a pattern recognition system which has the capability

of learning the unknown information during its operation. The decisions

(feature selections and classifications) are then made on the basis of

learned information. If the learned information gradually approaches the

true information, then the decisions based upon the learned information

will eventually approach the optimal decisions as if all the information

required were known. Therefore, during the system's operation, the performance

and the knowledge of the system are gradually improved. The process which

acquires necessary information for decision during system operation and

which improves system performance is usually called "learning" or "adapting."

During the operation of a pattern recognition system, the system learns

(estimates) the necessary information about each pattern class by actually

observing various patterns. In other words, the unknown information is
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obtained from these observed patterns. Depending upon whether the correct

classifications of the input patterns observed are known or not, the learning

process performed by the system can be classified into "learning with a

teacher" or "supervised learning," and "learning without a teacher" or

"nonsuperviced learning." In the case of supervised learning, Bayesian

estimation and stochastic approximation can be used to successively estimate

(learn) unknown parameters in a given form of feature distributions of

each class. The successive estimation of continuous conditional probabilities

of each pattern class can be performed by applying the potential function

method or the stochastic approximation. Die similarities between certain

Bayesian estimation schemes and the generalized stochastic approximation

algorithm have been demonstrated. It has also been shown that certain

learning algorithms of the potential function method belong to the class

of stochastic approximation algorithms. In nonsupervised learning (or

clustering), the correct classifications of the observed patterns are not

available and the problem of learning is often reduced to a process of

successive estimation of some unknown parameters in either a mixture distri-

bution of all possible pattern classes or of a known decision boundary.

One property of SPRT which can be used to improve the accuracy of

classification is to reduce the error (misrecognition) probability by varying

stopping boundaries. It has been shown that in SPRT if the upper stopping

boundary S-| is increased and the lower stopping boundary 82 is decreased,

then at least one of the error probabilities, e-|2 and 621, decreases.
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4.3.2.6 Summary

It is necessary to emphasize again that the selection of feature is

an important problem in pattern recognition and it is closely related to

the performance of classification. Furthermore, in sequential pattern

recognition systems, the ordering of features for successive measurements

is very important. The purpose of feature ordering is to provide, at successive

stages of sequential classification process, a feature which is most "informa-

tive" among all possible choices of features for the next measurement so

that the decision process can be terminated as early as possible.
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5.0 USE OF QUALITY ASSESSMENT IN QUALITY ASSURANCE

5.1 Sampling as a Tool

In a well-designed system, it should be unnecessary and is probably

overly expensive to test every piece of data at every stage in the process.

Moreover, it is statistically certain that a number of errors will be in

the data. QA must be concerned with the errors which are catastrophic to

the data (such as loss of sync) and somewhat tolerant of simple data value

errors (such as radiance errors). It should be clear that catastrophic

errors are easier to detect and, if caused by some random phenomenon, can

be eliminated by reprocessing. (It is not obvious how a radiance error

could be detected after, say, a resampling process. Majority voting on

three runs is an expensive possibility.)

In a system where a certain small number of detectable errors may be

permitted but many errors cannot be permitted, sampling provides a means

to estimate the number of errors without exhaustive testing. This may be

the case wherein proper operation of a system produces only a few statisti-

cally generated errors (as from BER), but system failure produces many er-

rors. As will be shown, sampling does not aid the case where a single error

(or two or three) errors are intolerable.

Sampling can provide estimates of errors (bad data) in a population

where trend analysis of threshold monitoring is being performed. In a popula-

tion of N items with n errors, the probability that a sample of size k will

contain x errors is given by the hypergeometric distribution
fn\ ($-n\ fin} (N-k)
jxj VK-xj Ixj \n-x.l

= N = N
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In] fa-n} AO /N-k]
v" ™-» V*' ¥*-»~

where

al
b!(a-b)!

Given that a sample of size k is taken and that it does contain x er-

rors, the maximum likelihood estimator of n, the number of errors in the

total population, is

n = greatest integer not exeeding - - —
JC

This, simply, says the proportion of errors in the population is most likely

the same as the proportion of errors in the sample. The variance in n is

(M+1 )2 '(N-k) n (1-n) (N-k) n (1-n)

from which the "goodness" of the estimate can be known in a non-rigourous

fashion (n is not known) .

Consider the following argument for confidence estimation. A sample

k contains x errors. It is most likely that the population N contains n

= INT[x(N-1 )/k] errors. The probability that the population contains more

than some limit n' given that a sample of k contained x errors can be esti

mated as follows.

_ , , . . . . Ways that x errors in k can come from all n > n'
Prob(acutal n>n' ) = — * - r—r - : — : - - -

ways that x errors in k can come from any n
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N-(k-x)

ffl
(I)i «= n'+l \k

N-(k-x)

k-x^— oi = x Me'

N-(k-x)

i = n'+l
N-(k-x)

1 = X

/N-iX
lk-x/

N-i

n1

1 + i = x
N- (k-x)

-1

The only unspecified parameter in the above (given the results of a sampling)

is n1, so the probability — the confidence in this case — can be computed

as a function of an upper limit on the number of errors in the population.
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In the special case where no errors are observed in the sample, the

equation reduces to

P (n y- o) =

-1

1 +

N
K

N - k
N-i
k

i = 1

For reasonable values of k, this is approximately 1 - k/N as intuition tells

us.

Table 1 gives the probability of obtaining x errors in a sample of

size k for a population of 1000 for various numbers of errors in the popula-

tion. The column for one error in the population (n=1) is intuitive. If

there is one error, the probability of observing it equals the fraction

of the population sampled.

Table 2 gives the probabilities of n errors existing in the population

when 0, 1, or 2 errors are observed in samples. The population is 1000

and sample sizes of 200, 500, and 900 are shown. Suppose 1/2% errors (5

in 1000) could be tolerated. Then if zero errors were observed in a sample

of size 500, the probability is 0.9847 that the number of errors in the

population is 5 or fewer (by summing from n=0 to n=5). If one error was

observed, the confidence would be 0.8917, and if two errors were observed,

the confidence would drop to 0.6577.
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5.1.1 Adaptive Sampling

In an automated QA system operating at, say, 90% confidence, a sample

in the above example showing one error would be below the confidence thres-

hold. However, 89% confidence is still good. Resampling (or sampling the

next trial of 1000) at a higher sampling rate is recommended to tighten

the variance on the estimate. Suppose that 90% sampling were performed.

Then, two observed errors would yield 99.87% confidence that five or fewer

errors were in the population. If more errors were observed (say 4 or 5),

then 100% sampling and a quality warning would be indicated. It there is

high confidence that quality is being maintained, the sampling rate would

drop back to smaller levels.

Such a sampling scheme is recommended whenever a small number of errors

can be tolerated and measuring errors is time consuming or expensive.

5.2 Other Parameters

5.2 .1 Costs

The breakpoint for a QA system is where costs due to having products

(final and intermediate) passed on which do not meet specifications balance

the cost of the QA system. System engineering would determine balancing

QA costs and processing system improvements, considering throughput loading

due to the need to reprocess data. Costs due to unsatisfied errors are

difficult to know, but result from having no product, a product not meeting
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specification, and late products. This trade-off is presented in Figure

5-1.

Costs can be reduced if the QA system gives not only indication of quality

failures, but provides a measure of urgency of required remedial action.

A total failure requires immediate action. A quality failure due, probably,

to random failure (a statistical excess of errors in one product) requires

no action but reprocessing (and a logged report of reprocessing — an indica-

tion of system status itself). A trend analysis crossing a warning threshold

requires, perhaps, preventive maintenance or a test sequence to be scheduled

at the end of an operational shift.

5.2 .2 Other Measures

There are benefits accruing to a QA system which reduce costs to other

system components or provide capabilities beyond QA.

A proper QA system with its MIS contains data for use in analyzing

and recommending changes in preventive maintenance scheduling, spares inven-

tory policies, operator training and, ultimately, processing system design

changes.

In reviewing the costs for an automated QA system, these benefits should

receive accounting.
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6.0 SURVEY OF STATE-OF-ART

6.1 Literature Survey

A fairly comprehensive search of existing literature was conducted

in an effort to identify available techniques and existing systems using

such techniques for purposes of performing QA (automated and/or semi-

automated) of image data during ground processing. The search included,

among others, numerous on-line queries on National Technical Information

Services's (NTIS) databases, many trips to local scientific/technical librar-

ies, and a thorough screening of various IEEE publications during past 4

or 5 years. Unfortunately, the results have not been encouraging. In fact,

no technique(s) or system(s) could be identified to assist us in simplifying

the QA problem at hand.

A brief description of each of the relevant articles uncovered during

literature search is presented below.

Antikidis [1] has attempted to show how important the needs for image

quality are in the definition of an image-taking satellite system and the

associated on-board and ground processing facilities. Some measures of

image quality have been defined in the framework of future European Space

Agency (ESA) sensing system.

Leberel and Kropatsch [2] have conducted experiments with part of a

digital Landsat-image of Southern Germany to show that automatic location

of features in a digital image is feasible if recognition is supported by
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a digital map database. The authors have recognized 13 features in the

test scene and reported that resulting image rectification left residual

point errors of less than _+ 1 pixel.

Tsuchiya and Arai [3] have suggested an approach to geometric correction

processing. Removal of geometric errors in Landsat MSS imageries in preci-

sion processing is made using GCP's (Ground Control Point). Thus selection

of GCP's affects the geometric accuracy of the processed imageries. Based

on 2 years Landsat MSS imageries data, effects of the feature of GCP matching

success rate and cross correlation of the two imageries which should be

registered were studied together with the relationship between time lapse

of two imageries and success rate of GCP matching. It was found that the

best GCP's in the automatic matching are island, wharf and break waters,

and the best GCP's in the manual matching are break water, highway intersec-

tion and wharf. Furthermore, it was also found that break water and wharf

indicate high cross correlation coefficient in the automatic GCP matching.

There was a periodical tendency in the success rate of GCP matching with

the prevailing period of 21 months. Between two imageries of time lapse

ranging from 8 to 17 months, a symmetric tendency was found in GCP matching

success rate with the maximum of 12 months.

Williams, Siebert, and Gunn [4] have described an image analysis system

known as KARS. The Kansas Applied Remote Sensing (KARS) program and Depart-

ment of Geography-Meteorology have developed an interactive digital image

processing program package that runs on the University of Kansas central

computer. The module form and simple Fortran programming of the package

has allowed easy and rapid upgrades and extensions of its capabilities.
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The package is comprised of subimage extraction and rectification, image

display and enhancement, and both supervised and unsupervised classification

routines, it has been used in both instructional and research settings

at the University.

A classification of multi-sensor imagery from the sensor's point of

view is advanced by Casasent and Munoz [5]. Prom this treatment, the statis-

tical and deterministic contributions to a multi-sensor image correlation

process are more clearly seen. The optimum preprocessing operation for

several cases of multi-sensor image pattern recognition are noted and the

use of weighted matched spatial filter synthesis as a one step optical pat-

tern recognition correlator is described. Theoretical formulation and experi-

mental verification of the result that edge enhancement preprocessing is

not always optimum in a multi-sensor optical image pattern recognition system

are presented.

Aggarwal and Panda [6] have described a system developed by Honeywell

for analyzing the imagery automatically and detecting tactical as well as

strategic targets in the image. The main features of the image recognition

system are sequential frame processing, symbolic image segmentation, context-

dependent syntactic recognition, and recognition of multi-component objects

and conflict removal.
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7.0 CONCLUSIONS

7.1 Recommendations

The primary recommendation from this study is that Quality Assurance

be considered in the system design from the earliest point, and that access

to the data be provided in the design for QA. This is conceptually easier

to do for modular, serial-processing systems than for highly integrated

parallel-processing design. In the latter, QA should be addressed on which-

ever level provides access to data and to whichever level fault isolation

is desired. This may be a fairly low subfunction level.

Another important recommendation is that, whatever the level of automa-

tion, some supervision of the QA process by an analyst is required. Known

quality measures can be programmed from the start as a "knowledge based

system (a structured set of IF-THEN statements), and, with access to the

data, additional quality measures can be added as they are discovered by

analysts. It is not cost effective to insure against every conceivable

failure; many failures in existing systems were certainly not foreseen and

would have been assigned an extremely low probability a priori had they

been considered.

Should NASA wish to pursue even more automation of QA in future systems,

an adaptive "learning" process is recommended. Again, with access to the

data, simple statistics and trend analyses can be calculated inexpensively.

Analysis of the trends and development of a classification algorithm for

QA may prove worthwhile. -71



Specific recommendations are given individually in the following.

• QA must be a system level function, composed of central QA and local

QA functions which may be distributed throughout the system.

• Quality should be measured/monitored at the level of satellite de-

sign, checkout, in-flight control as well as on-board and ground

processing. That is, QA must become an important element of end-to-

end satellite system design since the question of image quality

is no longer just an instrumental concept.

System Design Impacts

• The ground system by design must be required to provide access to

all data by the central QA function or process. Such access may

be provided via numerous taps into the production processing system.

• QA must have strong interface with Production Control.

• Cost-effective studies shall account for overall QA process.

QA Process

• Central QA should control local QA functions, local QA functions

determine and select data to be analyzed as data progresses through

various stages of production process.
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• Contains or has access to a MIS to track system history and status

of repair and maintenance.

• Has access to quality of input data.

QA Algorithms

• Some algorithms may be shared by local functions:

- Statistics

- Trend Analyses

- Sampling Algorithms

• Known measures be assessed by specific calculations

("AI" type IF-THEN calculations).

• Adaptive algorithms may be included for unforeseen problems or growth

in analysis.

• QA should be structured so new known algorithms can be added easily.

• The Central QA function must provide quality indicating measures

which may later be appended to all output products before their

dissemination to the user community.

• All QA algorithms/parameters must be stored for TBD years (perhaps,

life of mission) for quick retrieval to aid in future analyses.

7-3



• Simple QA functions such as checking data bounds, calibration, etc.

can and should be made adaptive at a reasonable increase in system

costs initially. Yet, in the long run, this should result in cost

savings. Such QA parameters can be computed in real-time or near

real-time.

• More complex QA functions such as those needed to perform QA of

the geometric corrections processing may also be made adaptive.

However, implementation of corresponding QA algorithms will probably

not be in real-time or near real-time. Additionally, cost of their

implementation would, in all likelihood, far exceed the resulting

benefit.

• Certain types of QA functions (such as detecting a "zipper") will

best be performed by a human analyst since no simple/known algorithms

exist to even detect such deficiencies by means of computations.
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