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1.0 SCOPE

This report addresses automation of quality assurance and quality
assessment techniques in a scientific sensor data processing system. A
distinction is made between quality assessment and the more comprehensive
quality assurance which includes decision making and system feedback control

in response to quality assessment.

The philosophy of automated quality assessment (QA) is the main subject
of this study. Some examples of automated QA are given, but they are specu-
lative. It is difficult to give attractive and feasible techniques without
concentrating on a specific system design; however, the principles espoused
herein as philosophies need to be recognized at the beginning of the design

of future systems which attempt to incorporate automated QA.

1.1 Summary

An automated QA system should be:

o Designed integrally with the processing system. Access of the
QA function to data, knowledge of input data quality, and having

test sequences available are requirements for the QA function design.

o Easily managed. Trends, failures, and status of changes to the
system tn improve quality or correct failures must be logged and

tracked through a management information system.
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e Maintained and modified. the QA function should accept new algorithms
and modifications as quality problems emerge from a maturing system,
Having access to all data paths and a library of simple measures
will allow "artificial intelligence” concepts such as learning

to be studied.

There are obviously different levels of QA and different amounts of

automation which may be used to implement QA.

The minimum level of QA is output product inspection. With this level,
little more can be done than to reject bad products, request regeneration,
and report the error to some maintenance or repair function., Failures
of a production line are detected by operators or by lack of output and
are handled the same way. Higher levels of QA are inspection of intermediate
products, trend analyses on product quality parameters, and running and
analyzing test data. As with failure reports, warning reports are generated

for the maintenance and repair function.

Automating these QR functions requaires:

1. Sensing the parameters used by a QA analyst.

2, Emulating the algorithm used by the QA analyst to reach a decision,

3. Generating failure or warning reports; tracking progress and

closeout of outstanding reports.

Steps 1 and 3 can be accomplished easily within the state-of-the-art.



Step 3 1s a management information system which is not difficult to
implement {(or purchase and modify).

Step 1 requires that the QA function have access to the pertinent
data. This may be difficult in certain cases, but should be feasible if

considered in the initial design of a system.

The major difference between a human analyst QA function and an automated

function is in Step 2. A human analyst is adaptive.

An improvement can be made to some existing QA functions simply by
providing automated Steps 1 and 3, but it is also possible to program known,
planned QA functions such as checks on data bounds, format, data counts,
trends, statistics (deskrlping), etc, In addition, as new QA evaluation
functions are discovered ( as a result of, say, failures or degradation

of some system component), they may be added to a repertoire of QA algorithms.

It is difficult to program a general adaptive process. One approach
to an adaptive process is a general learning program, which is "taught"
or trained by an experienced analyst as to what is "good" and what is "bad"
output. Such a program would have to maintain many statistics on each
data flow. Candidate statistics could be max, min, mean, mode, second
and third central moments, correlation between data items, and autocorrelation

function over a fixed length sample.

Under training of a "bad" output, a learning program would correlate
differences in statistics between good and bad data to the definition of

"bad." It appears more cost effective at this time to plan for assisted
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automated QA rather than attempting (and having to rely on) adaptive fully

automated QA functions.

Figure 1-1 presents the concept of an integrated quality assessment
system in a generic data flow process. The pertinent features are that
the quality assessment function is not done piecemeal throughout the systenm,
1t has access to all data, and it has input to the process control function

to enable quality assurance.

The presentation of the QA function as a single function does not
preclude implementation of various subfunctions in distributed processors,
perhaps coresident in the processors implementing various main-line functions
in the system, but any QA processes must communicate to each other or to

a supervisory QA function and a QA management information system.

Access to the data is obviously necessary, and the processing system
must be designed with this access and overhead considered. The access
does not have to be constant, and should be under the control of the QA
process. The amount of data needed to be processed by the QA function
will vary depending on system status and history. (For example, a low
sample rate would be appropriate when the system has a history of nominal
behavior). Therefore, the ability to supply data should be designed in
the crocessing system; the ability to select data for assessment should

be built into the QA function.

The most fruitful area for automated QA is in trends analysis on data

from many points in the data flow. Catastrophic failures are simple to
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detect, and random unimportant bit errors can be tolerated ( and are expensive
to detect). Day-to-day QA requires algorithms to detect when quality measures

cross some threshold between acceptable and unacceptable.

wWhen quality measures are computed regqularly, it is easy to perform
trend analyses, and to anticipate or predict when some quality measure
may be approaching a threshold of unacceptability. Appropriate action

may then be taken to correct the cause of the trend.

The algorithm used to compute quality measures may be based on knowledge
of the process and gquality measures, or may have to be general statistical
computations from which an adaptive function can "learn” differences in

acceptable and unacceptable products.

Knowledge-based algorithms require more design and analysis, and less
computing time than adaptive functions. Knowledge-based algorithms reliably
give answers according to the rules specified (which may be incomplete
or incorrect); adaptive functions can be "trained" to follow changing standards
of quality (at some lag in time), but give the desired answer with some
probability less than one. Crop recognition algorithms are good examples

of adaptive algorithms.

The concept of automated quality acceptance and assurance presented
here is treated as a system-level function. The interfaces between QA
and the Data Processing Functions are complex, and QA would benefit by
being designed in conjunction with the Data Processing Functions. However,

the utility of an automated QA system depends on the use made from its
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output by the Production Control Function, so there is cause to include

QA in Production Control. The treatment of the QA process ultimately depends
on the philosophy of the system sponsor, and, in any disposition, relies

on system engineering to properly integrate and trade QA system costs and

benefits.



2.0 DEFINITIONS

2.1 Quality Assessment and Quality Assurance

The term Quality Assurance is generally accepted to mean the program
within a system which ensures that the quality of the product meets minimum
standards. Implied in this term is the measurement of quality of the pro-
duct, the decision to act or not to change the system, and a means of chang-
ing the system to adjust the quality of the product. These three components

of Quality Assurance will be referred to as:

1. Quality Assessment
2. Production Management Responses

3. Corrective Action

Quality Assessment is the kermal of the problem being studied. It
can be a manpower intensive effort if capabilities to automatically monitor

product quality are not in place.

Production Management Responses to a measure of product quality are
usually constrained by policy, and production management is expected to
be able to recognize or discover what faults cause unacceptable quality
and what adjustments, corrections, or repairs are necessary to restore qual-
ity output. Production management may have the option of deciding to ship
or reprocess marginal quality products based on cost, time to reprocess,

and knowledge of customer requirements.



The corrective actions which may be taken to adjust the quality of
the output are system specific. Such actions as repair of failed components,
realignment and recalibration, cleaning, and special processing are included
in this class of actions in addition to actions such as control parameter
adjustments. Software errors and operator mistakes require corrective ac-

tion.

Corrective action is generally not under control of Quality Assurance
even though Quality Assurance requests corrective actions. Corrective Ac-
tions may require an engineering change request, software modification with
configuration control approval, repair, and maintenance action, procedural
change, or personnel training. Other (usual) corrective action requires
simple parameter adjustment. This is considered to be feedback control
and must be included in the specific system implementation. Quality assur-

ance includes feedback control; quality assessment does not.

This study will concentrate on automation of quality assessment and

will use the acronym QA to refer to quality assessment.

2.2 Automated OA

To distinguish between automated and semi-automated QA, automated QA
is defined to encompass all QA done in the system without operator interven-
tion. Thus, the assessment of quality determined by an algorithm leads
to product acceptance and rejection, reprocessing orders, and repair orders,
This is a reasonable goal but.the state-of-the-art i1n artificial intelligence

will not now reasonably support this goal for a new system. The problem



lies in the probability that a new system will experience unexpected errors
and the difficulty 1n generating a complete set of product acceptance crite-
ria, The need to automatically control and correct the process for unantici-
pated errors requires an adaptable, learning algorithm. But for a stable,
well understood process, a reasonably complete set of product acceptance
bounds can be established and simple production management decision rules
can be programmed, closing the loop to the process controls and extending

automated quality assessment to automated quality assurance.

An assumption in the above paragraph is acceptance of failures when
unexpected errors occur (but the likelihood of such errors is small because
the system 1s stable and well understood)., Thus, some superivision 1s nee-
ded, Extending the concept of supervision leads to the definition of semi-

automated QA.

2.3 Semi-Automated QA

Semi-Automated QA is defined to be operator assisted automated computa-
tion of quality measures rather than a direct measure of quality. This
1s certainly part of automated QA and may included estimates of quality.
The intent in this definition is to emphasize the participation of an opera-
tor or production control personnel in the process of QA as well as in pro-
duction management, and to allow the easy addition of new assessment algo-
rithms. A semi-automated QA system has more flexibility to adapt to a chang-
ing or maturing system and more ability to tolerate a middle ground of QA
- where estimates of gquality meet neither criteria for acceptance nor for

rejection, and )judgement is required.
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2.4 QA of System Components

The focus of a QA system is the output product, and it is appealing
to consider a QA scheme that only measures observables in the output product
to judge whether or not an output product is acceptable. This is too narrow,
and presumes a completeness of knowledge of output product observables which
is probably not the case. Moreover, given a quality failure, no indication
of the cause of the error is known. Therefore, QA of system components

and intermediate products should be performed.

2.4.1 QA of Hardware Components

It is presumed that all hardware in a system has been accepted by tests
against a specification, and QA of hardware components may be performed
by exercising certain of the acceptance tests, modified as appropriate to
work in a production environment. QA of hardware components (in addition
to obvious failure determination) will support trend analyses of parameters
such as processing time, operator interactions, feedback control parameter
values, power, and expendable usage (if appropriate). Study of the trends
or correlations of trends with failures may lead to prediction capabilities

to avoid failures.

2.4.2 QA of Software Components

Software does not degrade over time as does hardware. There are no
situations where software works properly at one time and fails later, but

there are various conditions where it may appear that the software is acting
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in a random fashion (in error). Typical cases occur when input data or
parameters are outside expected bounds and no limit checking is performed.
Another condition may be produced by combinations or sequences of data values
or events not anticipated in specifying, designing, or building the soft-~
ware. Still, the software is deterministic and will give repeatable re-
sults, There are hardware faults that may make it appear as if the soft-
ware failed (such as a bit error, memory failure, or I/0O error). To protect
the software itself against hardware errors, it is prudent to have copies

of software and to periodically verify -- not just recopy -~ the operational
sof tware against an archived copy to detect any errors in the operational

code.

Quality failures 1n software, "bugs", are hitherto undiscovered errors.
These errors exist due to failures in specifying the software or.inadequate
acceptance testing the software. (There is an argument that inadequate
testing may be more cost effective than complete testing if the QA and main-
tenance processes are inexpensive, or schedule is a driving function,)

Both types of failures can occur on the initial build of the software or
can result from changes made to the software (fixing one bug may uncover
others, or the fix might ignore critical interactions elsewhere in the pro-
cess). It is obviously important to have adequate acceptance testing of

changes to software.

Failures in specifying the software can result from the specifications
being incorrect or incomplete. Incompleteness may result from an unforeseen
combination of events or from presuming (or needing) the software to compen-

sate for failures or tolerances in other components. It may be argued that
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the latter cases are not specification failures, and no specification can
afford to be complete regarding every possible failure mode and combination
of conditions but, in any case, a change to the specification must be made

to resolve these issues if they occur.

At the output product level it may not be possible to distinguish be-

tween errors caused by hardware or those caused by software errors.

2.5 OA of the Process

The quality of the output product, given the design of the processing
system, is a function of the hardware and software components discussed
above, the data and the control parameters. The data will be discussed
in detail in later sections, but it is necessary here to state that the
quality of the input data must be known if proper guality assessment and
assurance is to be performed. Input data guality must be known to assess
quality failures, to order reprocessing or to accept poor output as the

best possible, ot to adjust control parameters to optimize processing.

The data contains calibration or reference data which is used to compute
control parameters. Usually, calibration data is designed to be usable
even at poor signal to noise ratios or high bit error rates (e.g., step
functions with many samples per step, linear ramp functions, etc.). Separate
checking should be performed on calibration data as recieved to assess the

consistency and reliability of the calibration source.

other control parameters are set by the operator or by calculations
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performed on the data (including feedback from measures of output data).
The proper use of data -- sensors, telemetry and calibration data -- depends

on the hardware and software, leaving errors by the operator to be discussed.

All control parameters set by the operator should be recorded, not
to assess blame, although such records will locate causes of quality errors,
but to be analyzed to determine 1f changes in procedures or training are

necessary.

Analysis of operator controls will also reveal which controls could

be easily automated.

2.6 Measures of Quality Assessment

The fundamental measure of quality is whether or not the output product:
meets specifications. The fundamental measure of QA is, therefore, what
fraction of product sent to users meets specification, and what is the cost

of performing the Qa.

Cost can be measured in various ways, such as system availability,
throughput, average time in process, and overhead (poor guality product,
test, maintenance, calibration). The appropriate measure depends on the
mission of the processing system. A system designed for rapid response
runs to a different criteria than a system designed for bulk throughput,

or one designed for custom processing.



User demands and system guarantees set the percentage of output product

which meets specifications.



3.0 GENERIC SYSTEM

3.1 System Description

Figure 3-1 presents a block diagram for a general sensor processing
system. It is principally a serial processing system for some set of stan-
dard products. These standard products are generated according to a specifi-
cation on some schedule based on receipt of data. In addition to the stan-
dard product, an archival record of the data is kept and is used as a source

to fill custom requests for special processed data.

The data source in the block diagram represents the sensor and all
processing to format the data, and includes calibration and telemetry data.
Transmission links include all processes up to the receipt of the data
(sensor, calibration and telemetry) at the processing facility. It is at
this point, the input to the initial processing, that a measure of the qual-
ity of the data should be made. Some indication of quality may be available
from the transmission links subsystem to augment or identify sources of
any error, but a quality measure of the input data is necessary as a refer-

ence for later error identification.

The initial processing block in the diagram contains all standard pro-
duct processing. The result of initial processing is an archival copy of

the data, which may also be the standard output product.

Typical initial processing which would be included in an image process-~

ing system would include calibration, reformatting, geometric and radiometric
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correction, and annotation or association of ancillary data with sensor

data. A more complex process might also include registration to some stan-
dard projection, and destriping and missing data estimation. Note that
regiatration (which involves resampling), destriping and missing data estima-
tion (say, for failed detectors or scan line length variations) is a form

of error correction or guality assurance. If these functions are included

as image processing functions, then they are not considered quality assurance

processes as addressed in this report.

Special or custom processing requires identification of the necessary
processing, and retrieval, processing and reproduction of the data. Note
that this chain includes the processing of the request as well as the proces-

sing of the data.

3.2 Sources of Error

3.2.1 Data Source

All sensors operate in an environment which produces a signal~-to-noise
ratio (SNR) which is a measure of sensor data quality. Estimates of the
SNR at the input processor may be made by a QA process not only to know
the input data quality but to be used in trend analysis of the sensor per-
formance. SNR estimates may also control later processing and may be used
as feedback control to command sensor system parameters (such as gains,

filters, data compression, etc.).

Since most data appears random at first glance, and since the data
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passed through a transmission system, estimating the SNR may be difficult.
One means 1s to compare the power spectrum of the input data to expected
power spectra. Transmission system performance can be estimated by analysis

of calibration and other fixed format data (sync patterns, f£fill data, etc.).

Fallures in sensor channels should be recognizable from trend analy-
ses. However, conceiving an automated response to every imagined sensor
system failure does not appear cost-effective. Automated measure of trends
and alerting abrupt changes or threshold crossings certainly is feasible

and recommended.

3.2.2 Transmission Links

Most transmission links provide error detection and (at least some)
error correction. These give measures of system performance. As mentioned
above, calibration data and fixed format data can be used to estimate BERs
and data drop-outs, but these errors may not be attributable to the transmis-
sion links, as errors could arise in the sensor system. Schemes such as
retransmission of data from a remote receiving site or transmission of test

data can resolve some of these issues.

3.2.3 Initial Processing

This process contains the main processes in the system. The output
is the archival data and usually the "standard" product. The processes

mentioned in 3.1 above will be addressed in turn.



3.2.3.1 Calibration

The calibration data must be identified and associated with the correct
sensor data. the quality of the calibration data should be assessed and
trend analysis performed. Sudden changes in calibration data is cause to

suspect the process or the sensor.

Post-calibration data analysis (averages and variances) should be suf-
ficient to assess the quality of the calibration process. Low frequency
sampling appears capable of maintaining QA on the process if trend analysis

1s done on calibration data.

3.2.3.2 Destriping

The need for destriping indicates incorrect or insufficient calibra-

tion. It is, in fact, a means of calibration.

If destriping is done (in lieu of calibration per se) trends should
be maintained on the correction needed in each channel as if it were calibra-
tion data. Sudden changes or threshold crossings are cause for notification

of system error.

QA of the destriping process is probably best done with test data.
An alternate is a second pass of destriped data which should suffer no

change. This, however, is implementation algorithm dependent.



3.2.3.3 Geometric and Radiometric Correction; Registration and Reformatting

These processes are variations of resampling of data. (Radiometric
correction may be considered calibration or destriping.) There are two
major aspects to resampling: calculating the resampling parameters by analyz-

ing the data and performing resampling.

Calculation of resampling parameters may be done from ancillary data
(telemetry, stored parameters from independent analyses, required output
formats) in an open-loop fashion or from analysis of data content (ground
control points, other correlation). These calculations can be checked by
"reasonableness” checks and by sampled analysis of the processed data.
For example, ground control point residuals can be checked; correlation
of registered data with the registration base can be made and correlation

values analyzed.

The actual resampling process can be monitored by processing test data
and comparing ocutput to analytically derived results. Example test data

are constant data, linearly varying data, and fixed frequency data.

3.2.3.4 Annotation

Computation of annotation from telemetry or registration processes
1s difficult to verify. Trend analyses or sampled checking by an analyst
may be the only reasonable choices., Indications of annotation error may
be found by other processes - especially those in 3.2.3.3 that depend on

the content of data also used for annotation.
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3.2.4 Storage and Retrieval System

3.2.4.1 Storage System

Typical errors in a storage system are data deterioration and lost
data (misplaced, mislabeled or not in storage). The degree of data deteriora-
tion may be estimated from existing studies or by including fixed test data
in the stored data. Redundant coding and storage techniques could be used

if this is seen as a problem,

Lost data is usually an operator problem and should be minimized by

a good library management system. Data identification should be well distri-

buted in the data to prevent misidentification,

3.2.4.2 Reproduction

Errors in archival masters are copied to duplication masters. These
in turn are copied to production data, and bit errors are added at each
duplication step. Sepcific system constraints will dictate the reproduction
process. QA measures of errors requires measures of errors in the master
and independent measures of errors in the product., Test strips and fixed
format data are useful in monitoring this process, but it is important that
the test data be such that it will be treated identically to actual sensor

data.

QA of the reproduction process could be the most valuable QA in the

system, and should be relatively easy to automate,
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3.2.4.3 Special Processing

Special processing is system dependent. If a special process is offered
as a standard service to be requested, it should be treated as the inmitial
processes for QA, except cost-effectiveness values of automated QA are dif-
ferent from those in initial processing. If a special process is a cus-
tomized assemblage of available processes or algorithms, then the QAR will

probably be an individual assessment perforce.

3.2.4.4 Request Processing

Proper record keeping and a good data management system should hold
errors in requests, custom processing parameters, and data identification
to a minimum. Independent checks against order copies and verification
or orders to customers are means to identify errors in request processing.
OA of this process would probably be a manual process, and complete records
of such errors should be kept to determine if changes in procedures are

needed.

3.3 OQuality Assessment System

Automating a quality assessment function requires:

1. Sensing the parameter used by a QA analyst.
2. Emulating the algorithms used by the QA analyst to reach a decision.
3. Generating failure or warning reports; tracking progress and close-

out of outstanding reports.



The most difficult step, QA algorithms, will be addressed first,

3.3.1 OA Algorithms

Algorithms for QA can be classified as those required to assess a known
quality parameter (such as striping between detectors or deviation of cali-
bration data from nominal values) and those which adapt to evaluate quality
measures not anticipated in the design phase of the system. Both classes
of algorithms are covered in some detail in Section 4, and both classes
of algorithms £it under the broad umbrella of "Artificial Intelligence”

(AI) in common usage. Al successes at present are in knowledge based systems
(or expert systems) in which a body of knowledge is codified as a number
of IF-THEN statements in a fixed hierarchical structure. An example of

such a construct in QA could be:

IF (calibration bias - normal is less than e) THEN (set variable A

to TRUE) ELSE (set variable A to FALSE)

IF (estimated bit error rate is between TABLE (I,1) and TABLE (I,2)

THEN (set variable B to TABLE (I,C)).

IF (variable A is TRUE and variable B is greater than x) THEN (issue

quality warning flag 1).



This example makes the point that the QA algorithms, called AI or not, must
be designed for a specific system. The knowledge coded into the algorithm
1s quite specific,

Adaptive algorithms produce values for clauses or terms in the above
IF-THEN statements. For instance, a system might "learn” in a training
mode what values are appropriate as bounds in a table as in the second IF-
THEN statement in the above example, Such a system will have mistakes in

QA analysis unless the bounds are very stable, and until the bounds are

"learned.”

As a system matures, additional tests and algorithms can be implemented

in the QA process. These would reflect additional knowledge gained about

the operation of the system.

3.3.2 Sensing parameters for QA

It is generally impossible to state completely which parameters or
what data is needed for QA by the principle that known sources of error
can be avoided; the unanticipated sources of error will cause problems.
For that reason, we state that access to all data should be provided for
the QA process during system design, and the QA process has the choice of
whether to read a specific data element or not. While it is easy to make
such a statemenﬁ, it is not easy to justify excessive costs to make high
volume or high rate data continuously available for QA. As 1n any system
design, trades must be made between cost and amount of data access, but
QA access to data must be taken into account during such trades. This is

further addressed in Section 5.



It 1s presumed that parameters observable by a QA analyst can be compu-
ted from available data and control parameters. This may not be simple,,
and can be viewed as "feature extraction"” (also addressed in Section 4). For
instance, "zipper” in an image produced from digitial data when bit synchroni-
zation is lost for part of the line is obvious to an operator but is not

traivial to find by computation.

It is strongly recommended that access to data and control parameters

throughout the system be included in the system design.

3.3.3 PFailure and Warning Reports

In addiition to the obvious process management function supported by
the issuance and trackings of QA failure reports, the QA process should
use history of failure to condition data processing until the fault is cor-
rected. Knowledge of faults in a process should be used to modify processing
schedules and maintenance. Xnowledge of faults in data should be used to
request reprocessing, or retransmission, or to issue disclaimers on output

quality from flawed source data.

3.3.4 Example QA Process

Figure 3.3-1 presents an example implementation of QA process in a
scientific data processing system. Only part of the system 1s shown; addi-
tional stages of processing may be to the left and right of the portion

shown.
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The QA process consists of a number of local processes and a QA super-
visor process, shown implemented with a management information system.
The QA processing shown as being separate might be implemented in one central
processor or the local processes might be integrated with their associated
data processing functions. The diagram emphasizes that local processes
(which may implement the same or similar algorithms) are applied to various
data paths emphasizes that the gquality measures computed by the local Qa
processes are fed forward for use in computing later data quality and for
use in assessing performance of the data processing functions, and the qual-
ity measures are fed to the central or supervisory QA function. The design
allows tests to be run in response to requests by the QA function through
production control when testing is necessary to evaluate the performance

of a data processing function.

The results of the QA process are available for use by production

control in scheduling and controlling the processing of data.

3.4 Data Types

Data subject to QA in a scientific sensor processing system can be
categorized as sensor data, test data, calibration data, support data and
management data. The latter, management data, is concerned with ordering
data, requesting special processing, shipping, controlling inventory, etc.
The QA of management data will be left to a MIS or review by appropriate

personnel. Each of the four technical data types is discussed below.



3.4.1 Sensor Data

Sensor data is, by its nature, random, but important statistics of
the data must be known for the processing system to be designed and built.
Such statistics include maximum values, max variations, precision, variance,
and number of smaples per operating sequence. These statistics can be compu-
ted for input data and, in some designs are necessary to know to process
the data. For instance, mean and maximum values and the variance can be
used to destripe image data. The same measurements should be maintained
to calculate calibration system performance. Some scaling of these para-
meters may be invariant through processing, and calculation of these para-
meters would provide a QA check on the output product. An example would
be the normalized power spectrum of each input sequence in an image proces-
sing system. The transfer function of the processing system should be known
(some MTF compensation might be implemented) and the spectrum of the output

should bear a known relationship with the input,

The variance of the data normalized to the dynamic range could be
another effective monitoring measure. It is strongly recommended that trends
of the statistics be maintained to monitor the sensor input and the product
output. Sampling the statistics would keep the volume of trend data manage-

able.,

It 1s necessary to know the gquality of the input data in order to deter-
mine the achievable quality of the output product. Without this, it will
not be known whether the processing system degraded the data, or if special

processing or reprocessing could improve the data.
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Since the input data abears random, the quality of the input data cannot
be directly measured (except for obvious measures such as data counts).
The statistics may yield estimation of the quality of the input data but
other sources such as calibration data, bit sync performance and error detec-

tion and correction codes can yield good measures.,

Imbedding reference data in sensor data should be considered in a system
design. Calibration data, synchronizing sequences, controlled data during
retrace or border scanning in a scanning system or the like can be used
for quality checks on the path up to the input of the processing system

in addition to the purposes for which such data is generated,

Continuing the same concept, it can be worthwhile to process such data
as border data and calibration data as equivalent test sequences through
the processing system. It is important, of course, that such data not inter-
fere with sensor data processing by skewing the statistics and impacting

control parameters.

3.4.2 Test Data

Test data is constructed to see if specifications of a system are being
met. Test data usually stresses a system, and usually includes data which
are out of the expected bounds for a system. Results of processing test
data, 1n an entire test sequence, should be unambiquous. Specific failures
should point to specific processes, Subsets of test data should be used

periodically to check system performance. Trends of the results should



be monitored so system performance can be predicted, and system performance

can be calibrated after a repair or upgrade.

Lacking other measures, test sequences would have to be run on a fre-
quent schedule to provide QA measures. This presents an overhead to the

system throughput which must be considered 1n system design.

Another design consideration is the necessity of providing injection
points for test data throughout the system. It is generally unsatisfactory
to have to rely on a single end-to-end test sequence to isolate a quality

problem,

3.4.3 Calibration Data

In this context, calibration data will encompass all fixed and known
format data. This includes the synchronizing sequences, null words and
similar data discussed in 3.4.1. Within some lamits, this data is known.
For example, calibration data may consist of 100 "black" samples, a ramp
of fixed rate to "white”, and "white" samples to produce a total of 1000
samples. The QA process should calculate and record for trend analysis
the level and noise on the black and white levels, the slope (length) of
the ramp, the variation of the ramp from nominal (e.g., straight line or
logarithmic), and data counts. It is not difficult to compute adaptive
quality thresholds for some statistics of the calibration data a given con-
fidence level. Then, as long as the statistics remain within these threshold
bounds (and the correct statistics are used), the input calibration data

can be considered of good quality. As the example presented in Figure 3.4-1,
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the x% confidence thresholds can be tighter than the specified thresholds,
whether they are or not, if the statistics cross the threshold, a quality
warning should be generated., This should be done even if the data is still
within specifications, since it warns of a trend which should be monitored

and explained.

This same general technique should be applied to all statistics for

which trends are maintained,

3.4.4 Support Data

Support data includes telemetry and operator-set parameters, Processing
parameters and annotation data will likely be derived from support data,
so the quality of the support data is important. Another example of support
data is ground control points used to generate coordinates for matching
points in imagery. Poor quality ground control points will lead to poor

quality geometric corrections.

Each kind of support data must be examined to determine the properties
that reflect quality. With this, "reasonableness" checks, trend analyses
and statistical measures may apply. The spacecraft operational control
functions should not be overlocked as sources of quality measures of teleme-
try data as they are responsible for knowing the quality of telemetry data
for purposes of spacecraft control. It may be cost effective to have that

operation control function monitor sensor as well as spacecraft telemetry.



The sensor data processing function uses spacecraft data such as atti-
tude and attitude rates to annotate and sometimes process sensor data.
Knowledge of "pure spacecraft" data (such as thermal and electrical status)
should be available for correlation with data quality. Presumably, necessary
telemetry points will be requested by those responsible for monitoring sensor
status, but the potential use of these and other telemetry points in QA
analyses should be recognized when a limited choice of telemetry points

are chosen for the system.

Misalignment of support data with sensor data is obvious enough not
to be overlooked in system design. Unique tagging both sensor and support
data is usually simple. 1In cases where the alignment must be calibrated,

it should be monitored for correctness.



SPECIFIED QUALITY LEVEL
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Figure 3.4-1. Example of Adaptive Threshold Monitoring
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4.0 AUTOMATED QUALITY ASSURANCE

The first step toward automated quality assurance is acsisted (or

semi-automated) quality assessment. The components of either system are:

o Data access
o MIS
0 Automated measure of known functions

o Ability to adapt (or be adapted) to new functions

4.1 Data Access

It is obvious that without data, there can be no quality assessment.

The kinds of data are discussed in Section 3.4

Quality errors or faults can be considered as random errors, total
failures or "out of calibration" performance. Failures are generally easy
to detect with a few samples from a data stream (either the data stops,
the data is a constant, or the data is noise with no relation to the correct
statistics). Random failures are difficult to detect. As mentioned above,
catastrophic random errors need to be detected, and reprocessing will usually
solve the issue, but infrequent data value errors should be tolerated to
a limited extent. One reason to tolerate inconsequential errors is the
extreme difficulty in detecting them. Errors causing catastrophies are
similar in their randommess, but are detectable (by definition =-- a catastrophy

must be easily observable). Specific systems and specific definitionms
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of catastrophies will determine the level of data processing needed for

detection of such errors.

The remaining class of errors are "out-of=-spec" or "out-of-calibration"
errors. These, which can be avoided by adjustment or maintenance, are
the standard fare for a QA process, and cost trade—offs should be done
primarily with the control of this type error in mind. To control this

error, trend analyses and prediction of error conditions should be designed.

To be cost-effective, sampling is recommended. This is discussed
in Section 5.1. Enough data must be sampled to calculate reasonably confident
projections and from enough paths in the system so that fault isolation

or identification can be domne.

4.2 MIS for Reporting and Tracking

A typical ground image processing system has three types of information

components within it.

o 1image data
o support data

o production control messages from management

Efficient flow of management information (e.g., work orders, work
schedules, error reports, log entries, report listing, etc.) is critical
since it has an obvious impact on the processing, movement, tracking, and

quality of the image data as well as support data. Clearly, the efficient
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operation of the production processor depends on the efficient management
communications and implementation of a central QA function in the data
flow process. Additionally, such a QA function must have access to data
to derive, extract, or compute measures of quality which, in case of bad
output products, will be provided to the production management for it to

take appropriate corrective action (see Figure 4.2.1).

Based upon state-of-the~art, 1t is difficult to design a general adaptive
QA process., Consequently, only some QA functions can be fully automated
while others may have to only semi-automated or largely manual. Furthermore,
it 1s imperative that a sufficiently long history (or knowledge) be maintained
and made available to the QA function for the purpose of 'training' those

QA functions which are to be automated.

Sensing of parameters to be used by the QA functions can be easily
automated. Such parameters may include, among various others, checks on
data bounds, formats, data counts, trends, statistics such as mean, variance,
max, min, etc,, calibration parameters, geometric correction parameters
(resampling parameters). These and other useful parameters should be properly
tagged and stored on-line for quick access on an as needed basis. It is
noted that these parameters are sensed at various stages during production
processing., Furthermore, it is important that these parameters be sensed
in manner without interferring with the norma. data flow or data processing

in the production processor.

The task of automating the QA algorithms themselves is a complex one

since such algorithms will have to be adaptive just like human QA analysts.
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Sample QA algorithms such as checking data bounds, data counts, calibration,
BER measurements, etc. can be automated. Furthermore, these QA algorithms
can be implemented in near real-time without interrupting the normal production

processing.

However, more complex QA algorithms (like the ones to be discussed
in Section 4.3.2) are based upon artificial intelligence (AI) or pattern
recognition (PR) techniques. Most of those AI/PR algorithms can be automated.

The performance (success or failure) of these will depend largely upon:

- availability of a large sample for each QA parameter

- selection criteria used in extracting each QA parameter

Extreme care would be necessary in implementing such QA functions
to avoid interferring with or impacting the performance of the production
process 1tself. Additionally, some of these QA functions may be highly
process intensive thus making implementation in near real-time unlikely.

Consequently, some of these QA functions may have to be performed off-line,

Another important function of an auvotmated QA processor is to generate
error reports (including failure and warning reports), tracking progress,
and closing out of outstanding error reports. From past experience with
systems such as Landsat Image Processing Facility (IPF) it 1s clear that
error reports represent a large portion of the management message volume.
Error reports are usually generated by operators on various subsystems
and then sent to respective subsystem production control groups within

the IPF. It is a very people-intensive effort from generation to correction/
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resolution. As many as 1000 error reports/month are generated during some
months and as many as 700 may be unresolved at any given time. The effect
of this on system throughput is significiant since the travel of error

reports through the system is less than efficient.

In brief, considering the points/problems mentioned above in manual
handling of error reports, it is absolutely essential that future image
processing systems use on automated on-line management information system
for generation, collection, evaluation and resolution of error reports.
Streamlining of the error reports related functions will undoubtedly result
1n less processing delays thus yielding a much improved total system output.
System~aided resolution tracking would also result in better control of
outstanding error reports and, in addition, 1t may allow efficient planning
around erroneocus data by the production controller during scheduling.

This would reduce the error-scatter effect. Resolution tracking would
also permit rapid information on previous dispositions for identical or

simlar error reports.

A management information system (MIS) consisting of a local management
network (such as 'Ethernet'), a job tracking and error report handling
computer system, and applications software will prove to be essential for
future ground image processing systems. It is possible to incorporate
other functions such as sensing of QA parameters and application of QA
algorithms in the MIS mentioned above and shown in Figure 4.2.1. In the
final analysis, however, the design constraints and cost-effectiveness

should determine the optimal design of MIS.



4.3 Pertinent Functions of AQA

4.3.1 Known Functions

These functions are known; specifications exist for which tests and
evaluation algorithms can be designed. Some examples of Automated QA on

known functions are given in the following paragraphs,

4.3.1.1 Calibration

Calibration data is used to transform sensor data to some fixed reference.
To Use calibration data, some processing is done to calculate reference
parameters (black level, gain factors, linearity, etc.) to high accuracy
and precision, even in the presence of many data errors. It is likely
that calibration data is smoothed (or filtered or averaged) in this process,
With very little extra effort, the calibration processing function can
produce measures of the smoothing (variance, extremes, residuals, etc.)
for use by the QA process. Thus, QA can have measures of the quality of
the calibration data, and trend analysis will determine if a particular
set of cal data is anomolous or not, and if slow degradation of the cal
process is occurring QA is extended to quality assurance when processing
parameters or decisions to reprocess with different or differently estimated
cal data are determined based on the QA of the cal data. Errors in calibration

data can be due to the calibration source or the data path.

If large varying corrections to a specific data channel are being

performed, the quality of the data in that channel should be suspect.
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Later processing may be improved by ignoring or deweighting contributions

from this channel to processing parameter computations.

4.3.1.2 BER

Bit error rates provide a measure of system performance., It can be
measured if known data is used as a reference. 1In an operational situation,
1t may not be possible to presume that data such as sync words or calibration
levels are, in fact, known. A composite error can be determined and, by
observing the random properties, this error may be allocated between the

data source and components in the transmission path,

Test data and error detection and correction codes are more reliable

and accurate sources for BER measurement.

4.3.1.3 Destriping

Destriping is a specific example of the potential use of quality assess-

ment.

Images may be produced from data collected from a number of detectors
designed to scan adjacent strips in some field of view. That is, parallel
scan lines in the reconstructed image come from different (adjacent) detectors.,
Differences in responsivity of the detectors will cause the reconstructed
image to appear striped, so the differences in responsivity are removed

by calibration (having the detectors view a known or common source), If
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the responsivity model 1s not accurate enough or if the calibration scheme
does not work as aniticipated, detectable stripes will remain in the output
image. Destriping is a method of removing relative differences in adjacent
lines by assuming that statistics of the data (mean and variance ) in adjacent

channels should be identical,

Quality assessment should measure striping if there is a specification
regarding line-to-line variation. The existence of stripes can be estimated
by computing the same statistics used to correct striping, or by some other
method such as a power spectrum analysis. (Computing the power spectrum
of an image in the direction orthogonal to the scan direction, say by a
fast Fourier transform, would show if a spike of energy existed at the
scan frequency. This should be attributed to striping if the data used
has remained in the digital domain. Data scanned from an image could show
the scan frequency due to printing spot size errors or line spacing variations,)
If the power spectrum measure is used for QA, no data is available for
correction striping but an independent measure is known. If the same statistics
are used to measure the quality of destriping as were used to destripe,
then the QA process measures the implementation of the destriping process
and must rely on the analytical correctness of the statistical destriping

process to actually remove stripes to specification levels.

4.3.2 Adaptive Functions

A pattern recognition system is generally composed of the following

elements:



Input pattern

Envaronment
- FPeature extraction

- Decision (classification) algorithm

Adaptive or Learning mechanism

The word "adaptive" in pattern recognition is generally used to mean
the strategy of feature extraction and classification algorithms which
can be chanced flexibly according to the state of the input patterns and

its environment, with the additional function of learning.

The simplest approach for pattern recognition is probably the method
of "template-matching” where a set of templates or prototypes, usually
one for each pattern class, is stored in the machine. The input pattern
(with unknown classification) is compared with the template of each pattern
class and the classification is based on a pre-selected matching criterion
or similarity function. 1In other words, the input pattern is assigned

to the pattern class whose template it matches the best.

The main disadvantage of the template-matching approach is that it
is somtimes difficult to select a good template for each class and also to
define a proper matching criterion. This difficulty is especially remarkable
when large variations and distortions are expected in all patterns belonging

to one class.

Consequently, a more suitable approach is to classify based upon selected

measurements extracted from the input pattern (see Figure 4.3.1). These
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selected measurements are called features and are supposed to be invariant
or less sensitive with respect to commonly encountered variations and dis-
tortions. Under this approach, pattern recognition can be considered as

consisting of 3 subproblems.

1. What to measure? That is, what primitive measurements should

be represented in the input pattern?

2. What measurements (features) to extract from the input pattern

and how?, i.e., Feature Extraction.

3. What pattern classification technique to use to make a class assignment
to the input patterns based upon selected features?, i.e., Pattern

classification algorithm.

Before operating a pattern classifier, one must first decide which
measurements to use as the input pattern. Unfortunately, there is very
little theory to guide in selection of measurements. At worst this selection
process may be guided solely by the designer's intuitive ideas about which
measurements play an important role in the classification at hand. At best
the process can make use of known information about some measurements that

are certain to be important.

For QA 1n image processing systems, such measurements may include,
among various others, BER measurements, signal to noise ratio, statistical
parameters such as mean, variance, etc., We will henceforth assume that

a sufficient (large) number of measurements yielding the pattern to be
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classified have been selected wisely remembering that the pattern classifier
cannot 1tself compensate for a careless selection of measurements. Usually
the decision of what to measure is rather subjective and higly depedent

on practical considerations such as the availability of measurements, cost
of measurements, etc. For instance, a certain measurement for QA may be
known to contain extremely useful and important information. Yet, the

cost of making that measurement may be prohibitive, thus making it impractical,

Feature Extraction

As mentioned earlier, each of these measurements may carry a small
amount of information about the sample or pattern to be classified. This
high dimensionality makes many pattern recognition problems difficult.
Obviocusly, as the number of measurements (or inputs) for the classifiers
increases, the design of the classifier becomes more difficult. In order
to simplify the problem, we should find some way to extract/select important
features from the measured patterns. This problem is called 'feature extrac-

tion' and is a key problem in pattern recognition.

Feature selection is generally a process of mapping the original measure-
ments into more effective features. If the mapping is linear, the mapping
function is well defined and our task thus reduces to finding the coefficients
of the linear functions so as to maximize or minimize a criterion function.
Consequently, if we have the proper criterion for evaluating the effectiveness
of features we can use well-developed techniques of linear algebra or apply
optimizing techniques to determine these mapping coefficients, e.g., Principle

Component Analysis.,
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Unfortunately, in many applications, there are important features
which are not linear functions of original measurements. So, the basic
problem translates into finding a proper non-linear mapping function for
the given data. Since we don't have any general theory to generate such
mapping funcions systematically and to find the optimum one, the selection

of effective features becomes very much problem oriented,

4.3.2.1 Pattern Classification Techniques

The concept of pattern classification may be expressed in terms of
a mapping from feature space to the decision space. Figure 4.3.2 shows
a generic articifical intelligence (AI) oriented system approach to quality
assessment (QA) in an operational image processing system. It is presumed
that the production processor is being monitored at N different stages
and that at each of these stages one is able to make sufficiently large
number of measurements which are reasonably useful for QA. Thus, K; measure-
ments made at stage I can be represented by a vector P(I) representing the
input pattern for stage I. The feature extractor for stage I would then

yield a feature vector, p(I), containing kg (<<K3y) important features.

The problem of pattern classification can now be restated as follows:
"Formulate a classification algorithm to assign each possible feature vector
p(1) to proper pattern class, i.e., class 1 or class 2, where class 1 contains
all input patterns of acceptable guality and class 2 contains input patterns
that are not of acceptable gquality. Mathematically, this problem can be

formulated in terms of "discriminant functions”, Dilp(I)], 1=1,2.
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The decaision rule is given by:

if
Dy [(p(1)] > Dy [p(I)] p(I) belongs to class 1 (i.e., p(I)

is of acceptable quality)

Dy [p(I)] < Dy [p(1)] p(1) belongs to class 2 (1.e., p(I)

is not of acceptable quaiity)

And, the decision boudnary (i.e., boundary of partition between class

1 and class 2 in the feature space) is expressed by the following equation,

Dy [p(I)] = Dy [p(I)]

or,

Dy [p(I)] - D [p(D)] = 0

A general block diagram for such a classifier is shown in Figqure 4.3.3
while Figure 4.3.4 depicts a 2-dimensional illustration of the decision
boundary., A wide variety of discriminant functions (e.g., linear, piecewise
linear, minnimum-distance, quadratic, polynominal, etc.) are described
1n literature. For sake of simlicity, however, only linear discriminant
functions will be discussed here. It should be pointed out that classifiers

that use linear aiscriminant functions are called "linear classifiers".

A linear discriminant function is a linear combination of feature

measurements, i.e.,
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Dj [p(1)] = wi(1) * p(I) + W;(0) , i=1, 2

Wi(1) - P(I)

where,

Wi(I) is the weight vector and B(I) is the augmented feature vector.

Let,

DIp(I)]) = Dglp(I)) - Dy [p(I)] = W(I) * P(I)

The decision rule is given by:

if

D[(p(I)]) > 0, then p(I) is acceptable

and if

D[p(1I)] < 0, then p(I) is not acceptable.

This decision rule, if necessary can be easily extended to multi-class

situations so that feature vector p(I) whould be assigned to the pattern

class i with largest value of Dj[p(I)].
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4.3.2.2 Learning in Linear Classifiers

The implementation of the linear classification technique described
above requires that proper values of the "weights" be available. However,
in practice, the correct values of the weights are not known and, therefore,
the classifier should be designed to have the capability of estimating
the best values of weights from feature vectors. By observing the feature
vectors with known classifications, the classifier should be able to automa-
tically adjust the weights in order to acheive correct recognitions. And,
the performance of the classifier should gradually improve as more and
more patterns are observed. This process is called "training" or "learning"

while the patterns used as inputs are called "training patterns"”

For the sake of simplicity, it can be assumed that the augmented training
patterns or feature vectors belonging to the two pattern classes are linearly
separable (can be separated by a hyperplane in the feature space). This
means that a weight vector W (I) exists such that

W(I) . P(I) >0 for each training pattern p(I) in class 1

or, E(I) . p(I) <0 for each training pattern p(I) in class 2
The "error-correction" training procedure can be summmarized as follows;

For any training pattern in class 1, the above product (i.e. W(I) . p(I)
must be positive. If the output of the classifier is erroneous (i.e.,
product <0) or undefined (i.e., product =0), the weight vector should be
adjusted to yield a new weight vector E(I) = ﬁ(I) + a.p(I), where ad>0 is

called the correction increment. 4-20



On the other hand, for any training pattern in class 2, this product
must be negative. Else, the weight vector should be adjusted to give

W (I) = W(I) - a.p(I).
Prior to training, the weight vector can be initialized to any convenient
value. Some rules to make a proper selection of the correction increment

(a) are given below.

(i) Fixed increment rule: a is any fixed positive number.

(ii) Absolute correction rule: a is chosen to be the smallest integer

such that the product W(I) . p(I) >O.

(iii) Fractional correction rule:

a = be W(I).p(I) 0<b<2
p(I).p(I)

Each of these correction rules is known to converge to yield a solution

for weight vector in a finite number of training iteratioms.

4.3.2.3 Statistical Decision Techniques

In the preceding sections it was assumed that the feature measurements,
p(1), are deterministic quantitite. However, in many applications such
as image processing, this is not always true since noise effects in making
these measurements cannot be neglected. This is because the input patternms

in one class may have large variationms.

One approach is to consider the feature vector, p(I), multi-variate

random variable having known probability density function and known probability
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of occurrences of each pattern class. Based upon this a priori information,
the function of a pattern classifier is to perform the classification task
for minimizing probability of misrecognition. The optimal decision rule
which minimizes the average loss* is called the "Bayes Decision Rule" and

a classifier that implements this rule is called a "Bayes Classifier."”

Perhaps an example would help one understand the above and also reduce
the mathematical complexities associated in formulating such decision rules.
Assume that parameters such as "gain" (G) and "bias" (B) are found to be
important in performing QA on radiometric correction process and a sufficiently

large sample of these features is available for training.

Further, let

f1 = probability of occurrence of Class 1

fy = probability of occurrence of Class 2

F] = Probability density function for all samples [gain, bias] belonging
to Class 1

Fo = Probability density function for all samples [gain, bias] belonging

to Class 2

*Loss incurred by the classifier when it misrecognized. For the (0,1)
loss function, the average loss is essentially same as the probability
of misrecognition.
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The Bayes Decision Rule will render the following as decision boundary

between Classes 1 and 2.

If both parameters, i.e., gain and bias, have gaussian density function
within each pattern (which is realistic to assume), then the above decision
boundary is a hyperquadric of the form a.G2 + b.B2 + c.G.B+d = 0. The
coefficients of this equation are functions of mean and variance of gain

and bias in each pattern class.

The decision rule for an incoming test pattern having gain G and bias

B will be as follows;

1f G and B are such that the pattern falls above the decision boundary,
then it belongs to Class 1. Otherwise, the pattern belongs to Class 2.

Special Case: When covariance matrices of both pattern classes are

egual and it is an unit matrix (or can be transformed into a unit matrix
by performing a whitening transformation), the Bayes Classifier discussed
above takes a much simpler form and becomes a distance classifier and the
decision boundary is the perpendicular bisector of the line joining the

mean values of gain and bias for the respective classes (see Figure 4.3.5).
It is believed that a classification technique samilar to the one
above might also prove to be useful for performing QA on parameters like

bit-error-rate (BER) an signal-to=noise ration (SNR).

4.3.2.4 Sequential Decision Techniques

In the statistical classification system described in gsection 4.3.2.3
all the k1 features are observed by the classifier at one stage. Additionally,
the cost of making feature measurements was not taken into consideration.
Usually an insufficient number of feature measurements would not result
in satisfactory levels of correct classification. On the other hand, an

arbitrarily large number of feature measurements is impractical. The problem

4-23



YATJISSVIO FONVISIA V G ¢ % AdNOIA

¢ 8 T Sossed 10J SBIq

y uresS jo sonyea uesay Oy % T

ne

.Nﬁv > aav asnedaq
arqeldaooe SF Aﬁp.ﬁwv uxajied e

Ip % Zp asneoeq
91qeadsooe jou st (q‘3) uiajleg e

Z sserd

T SSBTD

XIVANNOY NOISIDAQ

4-24



is especially pertinent when the cost of making a feature measurement 1s
high. For example, if the measurement requires that the production process
be interrupted or completely stopped, or 1f elaborate equipment, excessive
times, or complicated operations are required to perform the measurement,
then these factors may limit or even prohibit the use of such a feature.

In such instances, sequential decision techniques provide a necessary balance
between usefulness of a feature measurement and the cost of making that
measurement. A trade-~off between the error (misrecognition) and the number
of features to be measured can be obtained by making feature measurement
sequentially and terminating the sequential process (i.e., making a decision)

when a sufficient/desirable accuracy of classification has been achieved).

Since the feature measurements are to be made sequentially, the order
of features to be measured becomes important. The feature ordering scheme
should be such that the measurements taken in that order will cause the
terminal decision earlier, As a result, the problem of feature ordering

is very important in sequential recognition systems.

Wald's sequential probability ratio test (SPRT) is one of the best
sequential procedures known. At the ith stage of the seguential process,
i.e., after the ith feature measurement 1s taken, the classifier computes

the sequential probability ratio, R(i)

R(i) = Fili)

where Fi and F2 are the probability density functions as defined in Section
4.3.2.3. This value of R is then compared with two stopping boundaries

== S9 and S3. The decision rule then becomes,

If R > Sy then pattern p(I) belongs to Class 1, and if

R < Sy then pattern p(I) belongs to Class 2,
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On the other hand, if S5 <R <S4, then an additional feature measurement
should be taken and the decision process proceeds to stage i+1, The stopping
boundaries are related to the error (misrecognition) probabilities in the
following manner;

1%

€12
and

=21
1 - eq2

where ejy is the probability of deciding that p(I) belongs to Class i when
actually p(I) truly belongs to Class j [i, j = 1, 2]. It has been shown

that Wald's SPRT is optimal, that is, for given values of ey and e there
is not other procedure with at least as low error probabilities or expected

risk and with shorter length of average number of feature measurements.

It should be noted that the Wald's SPRT results in two decision boundaries

which partition the feature space into three regions:

1. The region associated with Class 1
2. The region associated with Class 2

3. The region of indifference (null region)

The region between the two boundaries is the region of indifference in
which no terminal decision is made., It is obvious, but important to note,
that the decision boundaries in a sequential process vary with the number
of feature measurements. For this reason, it is highly likely that such

a process will be extremely useful while performing QA of the geometric
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correction process based upon, for example, resampling parameters, For
example, if xq,x,%X3... are independent measurements during resampling

process, then assuming gaussion density functions (having means mq and

my and variance v for two classes), then sequential probability ratio R(i)

can be computed numerically.*

After the first parameter xq is measured, R(1) is given by

2

2
(m,‘ —%) X, - 1/2 (ln1 -m, )

v

R(1) =

and, the decision boundaries are given by

. v
if xq > my - m Log S7 + 1/2 (my+my), then pattern belongs to Class 1

if xq < Log S + 1/2 (mq+my), then pattern belongs to Class 2

_—
—m - m

and if, —_ Log Sy + 1/2 (my+my) < xq < K‘_’— Log S1 + 1/2(my+my)

m - m m2

then next resampling parameter (X;) is observed and the sequential decision

process proceeds to Stage 2.

After measuring x3, one can compute R(2) as follows,

R(2) == [xq4x3 = (m+mp)].

Proceeding as before, the decision boundaries are given by:

*For simplicity of computation, instead of R(i), Log (R(i)) is computed.
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if xq9+xp > Log Sy + (mq+my), then pattern belongs to Class 1

mq-mp

and 1f,

v__ Log Sy+(mq+my) < xq+xp < v Log Sq + (my+mp)
mq-mp (my-mj )

then next resampling parameter x3 will be observed and the decision process
will proceed to stage 3. This process may continue for several more stages.

In general, the sequential classification procedure becomes such that

n
if E X Z;RIV Log Sl + _rl(ml + m2) then pattern belongs to Class 1
i=1

1—m2 2
n
if X, £ v Log S, + n (m, + m_ ) then pattern belongs to Class 2
Zl\m 22
i=1 1 2
and if
n
n v n
+ + =
- vm Log s, 5'(m1 mz) < E X, & — Log S, + 3 (m1 + mz), then
172 i=1 12

the process continues to next stage (i + 1)

v

The width of the region of indifference is proportional to )
172

and, hence for given or assigned values of error probabilities eqp and
ez 1, the average number of feature measurements for termination of this
sequential process depends directly on variance v and inversely on (mq-mp)

It has been proven, in literature, that the Wald's SPRT

1. terminates with probability = 1
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2. mnumizes the average number of observations to achieve a given
set of error probability values

3. 1is optamal

It should be noted that there exists a trade-off between the number

of feature measurements that can be tolerated and selection of values for

probabilities ey, and ey,

4.3.2.5 Learning in Sequential Pattern Recognition Systems

In the previous section, all the information relevant to the statistical
characteristics of patterns in each class is assumed to be completely‘known.
However, in practical situations, this information is only partially known.

One approach is to design a pattern recognition system which has the capability
of learning the unknown information during its operation. The decisions
(feature selections and classifications) are then made on the basis of

learned information. If the learned information gradually approaches the

true i1nformation, then the decisions based upon the learned information

will eventually approach the optimal decisions as 1f all the information
required were known. Therefore, during the system's operation, the performance
and the knowledge of the system are gradually improved. The process which
acgulires necessary igformatlon for decision during system operation and

which improves system performance is usually called "learning” or "adapting.”

During the operation of a pattern recognition system, the system learns
{(estimates) the necessary information about each pattern class by actually

observang various patterns. In other words, the unknown information is
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obtained from these observed patterns., Depending upon whether the correct
classifications of the input patterns observed are known or not, the learning
process performed by the system can be classified into "learning with a
teacher"” or "supervised learning," and "learning without a teacher" or
“nonsuperviced learning." 1In the case of supervised learning, Bayesian
estimation and stochastic approximation can be used to successively estimate
(learn) unknown parameters in a given form of feature distributions of

each class. The successive estimation of continuous conditional probabilities
of each pattern class can be performed by applying the potential function
method or the stochastic approximation. The similarities between certain
Bayesian estimation schemes and the generalized stochastic approximataon
algorithm have been demonstrated. It has also been shown that certain
learning algorithms of the potential function method belong to the class

of stochastic approximation algorithms. In nonsupervised learning (or
clustering), the correct classifications of the observed'patterns are not
available and the problem of learning is often reduced to a process of
successive estimation of some unknown parameters in either a mixture distri-

bution of all possible pattern classes or of a known decision boundary.

One property of SPRT which can be used to improve the accuracy of
classification 1s to reduce the error (misrecognition) probability by varying
stopping boundaries. It has been shown that in SPRT if the upper stopping
boundary S¢ is increased and the lower stopping boundary S; is decreased,

then at least one of the error probabilities, e12 and ey, decreases,



4.3.2.6 Summary

It is necessary to emphasize again that the selection of feature is
an important problem in pattern recognition and it is closely related to
the performance of classification. Furthermore, in sequential pattern
recognition systems, the ordering of features for successive measurements
is very important, The purpose of feature ordering is to provide, at successive
stages of sequential classification process, a feature which is most "informa-
tive" among all possible choices of features for the next measurement so

that the decision process can be terminated as early as possible,



5.0 USE OF QUALITY ASSESSMENT IN QUALITY ASSURANCE

5.1 Sampling as a Tool

In a well-designed system, it should be unnecessary and is probably
overly expensive to test every piece of data at every stage in the process.
Moreover, it is statistically certain that a number of errors will be in
the data. QA must be concerned with the errors which are catastrophic to
the data (such as loss of sync) and somewhat tolerant of simple data value
errors (such as radiance errors). It should be clear that catastrophic
errors are easier to detect and, if caused by some random phenomenon, can
be eliminated by reprocessing. (It is not obvious how a radiance error
could be detected after, say, a resampling process. Majority voting on

three runs is an expensive possibility.)

In a system where a certain small number of detectable errors may be
permitted but many errors cannot be permitted, sampling provides a means
to estimate the number of errors without exhaustive testing. This may be
the case wherein proper operation of a system produces only a few statisti-
cally generated errors (as from BER), but system failure produces many er-
rors. As will be shown, sampling does not aid the case where a single error

(or two or three) errors are intolerable.

Sampling can provide estimates of errors (bad data) in a population
where trend analysis of threshold monitoring is being performed. In a popula-
tion of N items with n errors, the probability that a sample of size k will

contain x errors is given by the hypergeometric distribution

® é =)0 bf%{z%%)
5-1

P(x) =




P(x) = (?‘) (E:Q) = (g%) (}11:},9
®) ®)

where

() -

Given that a sample of size k is taken and that it does contain x er-
rors, the maximum likelihood estimator of n, the number of errors in the
total population, is

x (N=1)

n = greatest integer not exeeding "

This, simply, says the proportion of errors in the population is most likely

. . . . A .
the same as the proportion of errors in the sample. The variance in n is

(8+1)% (N-k) n (1-n) _ (N-k) n (1-n)
k (N-1) N N~k N

var(n) =

from which the "goodness®" of the estimate can be known in a non-rigourous

fashion (n is not known).

Consider the following arqument for confidence estimation, A sample
k contains x errors, It is most likely that the population N contains n
= INTI[x(N-1)/k] errors. The probability that the population contains more
than some limit n' given that a sample of k contained x errors can be esti-

mated as follows.

Ways that x errors in k can come from all n > n'
ways that x errors in k can come from any n

Prob{acutal ny»n') =



N- (k=-x)

> W)

= i=n'+l
N=- (k-x)

> 66

The only unspecified parameter in the above (given the results of a sampling)
is n', so the probability -- the confidence 1in this case -- can be computed

as a function of an upper limit on the number of errors in the population.



In the special case where no errors are observed in the sample, the

equation reduces to

For reasonable values of k, this is approximately 1 - k/N as intuition tells

us.

Table 1 gives the probability of obtaining x errors in a sample of
size k for a population of 1000 for various numbers of errors in the popula-
tion. The column for one error in the population (n=1) is intuitive, If
there is one error, the probability of observing it equals the fraction

of the population sampled.

Table 2 gives the probabilities of n errors existing in the population
when 0, 1, or 2 errors are observed in samples. The population is 1000
and sample sizes of 200, 500, and 900 are shown. Suppose 1/2% errors (5
in 1000) could be tolerated. Then if zero errors were observed in a sample
of size 509, the probability is 0.9847 that the number of errors in the
population is 5 or fewer (by summing from n=0 to n=5)., If one error was
observed, the confidence would be 0.8917, and if two errors were observed,

the confidence would drop to 0.6577.
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5.1.1 Adaptive Sampling

In an automated QA system operating at, say, 90% confidence, a sample
1n the above example showing one error would be below the confidence thres-
hold. However, 89% confidence is still good. Resampling (or sampling the
next trial of 1000) at a higher sampling rate is recommended to tighten
) the variance on the estimate. Suppose that 90% sampling were performed.
Then, two observed errors would yield 99.87% confidence that five or fewer
errors were in the population. If more errors were observed (say 4 or 5),
then 100% sampling and a quality warning would be indicated. It there is
high confidence that quality is being maintained, the sampling rate would

drop back to smaller levels.

Such a sampling scheme 1s recommended whenever a small number of errors

can be tolerated and measuring errors is time consuming or expensive.

5.2 Other Parameters

5.2.1 Costs

The breakpoint for a QA system is where costs due to having products
(final and intermediate) passed on which do not meet specifications balance
the cost of the QA system., System engineering would determine balancing
OA costs and processing system improvements, considering throughput loading
due to the need to reprocess data. Costs due to unsatisfied errors are

difficult to know, but result from having no product, a product not meeting



specification, and late products. This trade-off is presented in Figure

5-1 .

Costs can be reduced if the QA system gives not only indication of guality
failures, but provides a measure of urgency of required remedial action.

A total failure requires immediate action. A quality failure due, probably,
to random failure (a statistical excess of errors in one product) requires

no action but reprocessing (and a logged report of reprocessing -- an indica-
tion of system status itself). A trend analysis crossing a warning ‘threshold
requires, perhaps, preventive maintenance or a test sequence to be scheduled

at the end of an operational shift.

5.2.2 Other Measures

There are benefits accruing to a QA system which reduce costs to other

system components or provide capabilities beyond QA.

A proper QA system with its MIS contains data for use in analyzing
and recommending changes in preventive maintenance scheduling, spares inven-
tory policies, operator training and, ultimately, processing system design

changes.,

In reviewing the costs for an automated QA system, these benefits should

receive accounting.



INPUT PROBABILITY OUTPUT IS

: ACCEPTABLE VS. COST
p
REPROCESSING
, PROCESSTNG
R SYSTEM
$
R+1 PROBABILITY QA DETECTS
ERRORS VS. COST
p

QA PROCESS

PROBABILITIES OF
OCCURRENCES GIVEN
A SYSTEM

ACCEPTABLE PRODUCT LATE POOR QUALITY . NO PRODUCT
PRODUCT DUE TO PRODUCT
REPROCESSING

FIGURE 5-1. Cost Trade-0ff Model



6.0 SURVEY OF STATE-OF-ART

6.1 Literature Survey

A fairly comprehensive search of existing literature was conducted
in an effort to identify available techniques and existing systems using
such techniques for purposes of performing QA (automated and/or semi-
automated) of image data during ground processing. The search included,
among others, numerous on-line queries on National Technical Information
Services’s (NTIS) databases, many trips to local scientific/technical librar-
ies, and a thorough screening of various IEEE publications during past 4
or 5 years. Unfortunately, the results have not been encouraging. In fact,
no technique(s) or system(s) could be identified to assist us in simplifying

the QA problem at hand.

A brief description of each of the relevant articles uncovered during

literature search is presented below.

Antikidis [1] has attempted to show how important the needs for image
quality are in the definition of an image-taking satellite system and the
associated on-board and ground processing facilities. Some measures of
image quality have been defined in the framework of future European Space

Agency (ESA) sensing system.

Leberel and Kropatsch [2] have conducted experiments with part of a
digital Landsat-image of Southern Germany to show that automatic location

of features in a digital image is feasible if recognition is supported by
6-1



a digital map database., The authors have recognized 13 features in the
test scene and reported that resulting image rectification left residual

point errors of less than + 1 pixel,

Tsuchiya and Arai [3] have suggested an approach to geometric correction
processing., Removal of geometric erxors in Landsat MSS imageries in preci-
sion processing 1s made using GCP's (Ground Control Point). Thus selection
of GCP's affects the geometric accuracy of the processed imageries, Based
on 2 years Landsat MSS imageries data, effects of the feature of GCP matching
success rate and cross correlation of the two imageries which should be
registered were studied together with the relationship between time lapse
of two imageries and success rate of GCP matching. It was found that the
best GCP's 1n the automatic matching are island, wharf and break waters,
and the best GCP's in the manual matching are break water, highway intersec-
tion and wharf. PFurthermore, it was also found that break water and wharf
indicate high cross correlation coefficient in the automatic GCP matching.
There was a periodical tendency in the success rate of GCP matching with
the prevailing period of 21 months. Between two imageries of time lapse
ranging from 8 to 17 months, a symmetric tendency was found in GCP matching

success rate with the maximum of 12 months.

Williams, Siebert, and Gunn [4] have described an image analysis system
known as KARS. The Kansas Applied Remote Sensing (KARS) program and Depart-
ment of Geography-Meteorology have developed an interactive digital image
processing program package that runs on the University of Kansas central
computer. The module form and simple Fortran programming of the package

has allowed easy and rapid upgrades and extensions of its capabilities.
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The package is comprised of subimage extraction and rectification, image

display and enhancement, and both supervised and unsupervised classification

routines, It has been used in both instructional and research settings

at the University.

A classification of multi-sensor imagery from the sensor's point of
view is advanced by Casasent and Munoz (5]. From this treatment, the statis-
tical and deterministic contributions to a multi-sensor image correlation
process are more clearly seen. The optimum preprocessing cperation for
several cases of multi-sensor image pattern recognition are noted and the
use of weighted matched spatial filter synthesis as a one step optical pat-
tern recognition correlator is described. Theoretical formulation and experi-
mental verification of the result that edge enhancement preprocessing is
not always optimum in a multi-sensor optical image pattern recognition system

are presented.

Aggarwal and Panda [6] have described a system developed by Honeywell
for analyzing the imagery automatically and detecting tactical as well as
strategic targets in the image. The main features of the image recognition
system are sequential frame processing, symbolic image segmentation, context-
dependent syntactic recognition, and recognition of multi-component objects

and conflict removal.,



7.0 CONCLUSIONS

7.1 Recommendations

The primary recommendation from this study is that Quality Assurance
be considered in the system design from the earliest point, and that access
to the data be provided in the design for QA. This is conceptually easier
to do for modular, serial-processing systems than for highly integrated
parallel-processing design. 1In the latter, QA should be addressed on which-
_ ever level provides access to data and to whichever level fault isolation

is desired. This may be a fairly low subfunction level.

Another important recommendation is that, whatever the level of automa-
tion, some supervision of the QA process by an analyst is required. Known
quality measures can be programmed from the start as a "knowledge based
system (a structured set of IF-THEN statements), and, with access to the
data, additional quality measures can be added as they are discovered by
analysts. It is not cost effective to insure against every conceivable
failure; many failures in existing systems were certainly not foreseen and
would have been assigned an extremely low probability a priori had they

been considered.

Should NASA wish to pursue even more automation of QA in future systems,
an adaptive "learning”" process is recommended. Again, with access to the
data, simple statistics and trend analyses can be calculated inexpensively.
Analysis of the trends and development of a classification algorithm for

QA may prove worthwhile. 7-1



Specific recommendations are given individually in the following.

® OA must be a system level function, composed of central QA and local

OR functions which may be distributed throughout the system.

® Quality should be measured/monitored at the level of satellite de-
sign, checkout, in-flight control as well as on-board and ground
processing. That is, QA must become an important element of end-to-
end satellite system design since the question of image quality

is no longer just an instrumental concept.

System Design Impacts

The ground system by design must be required to provide access to
all data by the central QA function or process. Such access may

be provided via numerous taps into the production processing system.

e OA must have strong interface with Production Control.

e Cost-effective studies shall account for overall QA process,

QA Process

e Central QA should control local QA functions, local QA functions
determine and select data to be analyzed as data progresses through

various stages of production process.



OA

Contains or has access to a MIS to track system history and status

of repair and maintenance.

Has access to quality of input data.

Algorithms

Some algorithms may be shared by local functions:
- Statistics
~ Trend Analyses

-~ Sampling Algorithms

Known measures be assessed by specific calculations

("AI" type IF-THEN calculations).

Adaptive algorithms may be included for unforeseen problems or growth

in analysis.

QA should be structured so new known algorithms can be added easily,

The Central QA function must provide quality indicating measures

which may later be appended to all output products before their

dissemination to the user community.

All QA algorithms/parameters must be stored for TED years (perhaps,

life of mssion) for quick retrieval to aid in future analyses.
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Simple QA functions such as checking data bounds, calibration, etc.
can and should be made adaptive at a reasonable increase in system
costs initially. Yet, in the long run, this should result in cost
savings. Such QA parameters can be computed in real-time or near

real-time.

More complex QA functions such as those needed to perform QA of

the geometric corrections processing may also be made adaptive.
However, implementation of corresponding QA algorithms will probably
not be in real-time or near real-time., Additionally, cost of their
implementation would, in all likelihood, far exceed the resulting

benefit.

Certain types of QA functions (such as detecting a "zipper") will
best be performed by a human analyst since no simple/known algorithms

exist to even detect such deficiencies by means of computations.
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