A Reproduced Copy OF

NASA CR-165,430

Reproduced for NASA
by the
NASA Scientific and Technical Information Facility

FFNo 672 Aug 65

*Fer sale by the National Technical Information Service, Springlield, Virginia 22161.
FIMITE ELEMENT FORCED VIBRATION ANALYSIS
OF ROTATING CYCLIC STRUCTURES
by
v. ELCHUR!
G. C. C. SMITH
BELL AEROSPACE TEXTRON
P. O. Box One
Buffalo, New York 14240
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Contract NAS3-22533
NASA Lewis Research Center
Cleveland, Ohio 44135
December 1981

果

ABSTRACT

A new capability has been added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation have been included.

This report presents the theoreticai development of this new capability. The work was conducted under Contract NAS3-22533 from NASA Lewis Research Center, Cleveland, Ohio, with Mr. Richard E. Morris as the Technical Honitor.

SUBMARY

The objective of the work described herein, was the development, documentation, demonstration and delivery of a computer program for the forced vibration analysis of rotating cyclic structures. Tuned bladed discs are an example of specific interest.

The scope was by definition to address:

- direct pericdic loads moving with the rotating structure . specified in the frequency or time domain;
- translational acceleration of the rotating axis.

The capability is operationial in the NASTRAN general purpose program at Level 17.7.

NASTRAN documentation is provided and example analysis results have been obtained.

Relationships to previous work are described and further developments are recommended.

ACKNOGLEDEEMENT

The authors take this opportunity to express their deep appreciation of the programing efforts of Mr. A. Michael Gallo, Mr. Steven C. Skalski and Ms. Beverly J. Dale in implementing this theoretical development in NASTRAN. This report was typed by Mrs. Deanna L. Kutis.
Section Title Page
Abstract ii
Summary iii
Acknowledgement iv
List of Tables vi
List of Illustrations vii
1 Introduction 1
2 Equations of Motion 5
3 Solution of Equations of Motion 15
4 Examples 25
5 Conclusions 57
6 Recommendations 58
Appendix 59
Symbols 62
References 64

IIST OF TAELES

Table Title Page
1 Principa! Features Demonstrated by Example Problems 28
2 Bladed Disc Natural Frequencies 29
3 Effect of Coriolis and Centripetal Accelerations on the Displacement Response of Grid Point 18 at 600 RPS 52
4 Comparison of Response at 1814 Hz 55

LIST OF ILLUSTRATIONS

Figure Title Page
Main Problem Spectrum 2
Overall Program Structure and Status 3
Coordinate Systems 6
Overall Fluwchart of Forced Vibration Analysis of Rotating Cyclic Struetures 17,18
Directly Applied Periodic Loads Specified as Functions of Time 19
NASTRAN Model of the 12 -Bladed Disc 26
NASTRAN Cyclic Model of the 12-Bladed Disc 27
$\mathrm{k}=2$ Hodes of Bladed Disc 30
Bladed Disc Example 1, Displacement Response (Magnitude) 32
Bladed Disc Example 1, Stress Response (Magnitude) 33
Bladed Disc Example 1, Stress Response (Magnitude) 34
Bladed Disc Example 2, Displacement Response (Magnitude) 36
Bladed Disc Example 2, Displacenent Response (Hagnitude) 37
Bladed Disc Example 2, Stress Respunse (Magnitude) 38
Bladed Disc Example 2, Stress Response (Magnitude) 39
Base Acceleration Data in an Inertial Coordinate System 42
Bladed Disc Example 3, Displacenent Response (Magnitude) 43
Bladed Disc Example 3, Stress Response (Magnitude) 44
Bladed Disc Example 3, Displacement Response (Magnitude) 45
Bladed Disc Example 3, Stress Response (Magnituje) 46
Bladed Disc Example 3, Displacement Response (Phase) 47
Bladed Disc Example 3, Displacement Response (Magnitude) 48
Bladed Disc Example 3, Stress Respense (Magnitude) 49
Bladed Disc Example 3, Displacement Response (Magnitude) 50
Bladed Disc E\%ample 3, Stress Response (Magnitude) 51

1. intronuction

In Reference 1 (HASA CR159728), a general approach to conducting dynamics analysis of bladed discs was discussed and a logical sequence of problems defined. Figure 1 indicates the problem spectrum and Figure 2 shows an overall program structure of modular nature, based on additions and modifications to the NASTRAR general purpose structural analysis program.

The general sei of problems can be represented by formal equations, various terms of which are included or excluded depending on the problem teing studied. Thus the equations

$$
\begin{align*}
{[M]\{\ddot{u}\}+\left[[B]+2 \Omega\left[B_{1}\right]\right]\{\dot{u}\} } & -[\dot{u}\}\{u\}+\left[[K]-\Omega^{2}\left[M_{1}\right]\right]\{u\} \\
& =\{P\}-\left[M_{2}\right]\left\{\ddot{R}_{0}\right\}, \tag{1}
\end{align*}
$$

with some boundary conditions, may be taken to represent the general forced vibration dynamic problem of a tuned bladed disc. In the previous and current. work, the advantages of cyclic symmetry are incorporated in this formulation.

The work of Reference 1 handled, within state-of-the-art techmology, analyses of aeroelastic, modal and flutter probiems of tuned cyclic structures (Figure 2). It was documented and operated in NASTRAN at Levels 16 (Refs. 2 - 5), and 17.7 (Ref. 6).

The equations

$$
\begin{equation*}
[M]\{u ̈ u+[B]\{u \hat{u}\}-[Q]\{u\}+[K]\{u\}=\{0\} \tag{2}
\end{equation*}
$$

were treated in the context of modal and flutter problems of a tuned system, where
M represented the inertia matrix;
B represented the damping matrix;
Q represented the induced aerodynamic matrix (complex); and K represented the elastic cum gemetric stiffness matrix.

In the current work, the equations
$[M]\{\ddot{u}\}+[[G]+2 s[B]],\{\dot{u}\}+\left[[K]-\Omega^{2}\left[M_{\}}\right]\right]\{u\}=\{P\}-\left[M_{2}\right]\left\{\ddot{R}_{0}\right\}$
are treated in the context of forced vibration, (Figure ?),

Figure 1: Main Problem Spectrum
organfic prex is
OF POOR QUALITY

Figure 2: Overall Program Structure \& Status
where $[M],[B],[K]$ are as before,
$\left[{ }_{[}\right]$] represents Coriolis forces matrix
[P\} represents applied surface load vector
$\left[\mathrm{M}_{2}\right]$ represents base forcing mass matrix
and $\left\{\ddot{R}_{0}\right\}$ represents base acceleration vector.
The specific form of the forced vibration equations including the types of forcing functions to be incorporated were selected by NASA. These are specifically

- directly applied loads moving with tue rotating stricture;
- inertial loads due to translational accelerations of the ax.s of rotation ("base acceleration").

The lcads may be periodic and specified in the frequency or time domains. Solution procedures follow generally those of the cyclic symmetry furmulation of the NASTRAN Theoretical Manual (Ref. 7). The capability has been deveio ad on the IBM 370 system at Bell Aerospace Textron and documented, delivered and demonstrated on the UiNIVAC 1108 at ilASA Lewis in NASTRAN Level 17.7.

Five demonsuration examples are presented, one being a complete structure example to show compatibility with the cyclic structure formulation. A simple twelve bladed disc is modelled and forced at conditions related to its natural frequencies. The response examples include:

- physical component forcing (frequency domain),
- harmonic component forcing (frequency dor:âin),
- harmonic component forcing of the rotationai axis,
- physical periodic forcing (time comain),
- harmonic component periodic forcing (tine domain)

It would be logical to extend the current work to include the generation of applied and induced oscillatory aerodynamic loâds sc hat the forced vibrations of subcritical engine stages can be addressed directly. Rotational base accelerations could a?so be of practical interest in investigating the gyroscepic effects on rotating machinery.

2. EQUATICNS OF MOTION

The equations of motion of a tuned cyclic structure rotating about its axis of symmetr; and subjected to steady sinusoidal and general periodic excitation are derived using Lagrange's formulation.

Figure 3 illustrates the problem by considering a 12-tladed disc as an example. The bladed disc consists of twelve $3 n^{\circ}$ segments--identical in their geometric, material and constrainit properties. fre isc rotates about its axis of symmetry at a constant angular velocity. The axis of rotation itself is pemitted to oscillate linearly in any given inertial reference. In addition, the bladed disc is allowed to be loaded with steady sinusoidal or general periodic loads moving with the structure. Under these conditions, it is desired to determine the dynamic response (displacement, acceleration, stress, etc.) of the bladed disc.

The cyclic symetiry feature of the rotating structure is utilized in deriving and solving the equations of forced motion. Consequently, only one of ine cuclic sectors is modelled and analyzed using finite elemencs, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. The Coriolis and centripetal acceleration terms have been included. For ciarity of derivation, the equations of motion are first derived for an arbitrary grid point of the cyclic sector finite element model, and then extended for the complete model.

COORDIMATE SYSTEMS

These are shown in Figure $3.0-X Y Z$ is an inertial coordinate syste 7. $0-X_{B} Y_{B} Z_{B}$ is a body-fixed coordinate system such that $O X_{B}$ coincides with the axis of rotation of the structure and is always parallei to OX. For a NASTRAN finite element model of the bladed disc, $0-X_{B} Y_{B} Z_{B}$ also represents the Basic coordinate system. A-xyz is a body-fixed global coordinate systen in which the displacements of any grid point P are desired. The unit vectors associated with these coordinate systems are also shown in Figure 3 .

DEGREES OF FREEDOM

The rotating structure is permitted four rigid body moivons including three translations (alung 0x, OY and 0Z) and one rotation at a constant angular velocity Ω about its axis of rotation $0 X_{B}$.

$\hat{\mathrm{I}}, \hat{\mathrm{J}}, \hat{\mathrm{K}}$ Unit vectors along Inertial YYZ axes
$\hat{I}_{B}, \hat{J}_{B}, \hat{K}_{R}$ Unit vectors along Basic $X_{B} Y_{B} Z_{B}$ axes
$\hat{i}, \hat{j}, \hat{k}$ Unit vectors along Global xyz axes
Figure 3: Coordinate Systems

All grid points of the structure are each permitted six degrees of freedom. The displacement at any grid point in any sector can be expressed in any bodyfixed coordinate system as a combination of:

1) the steady state displacement due to the steady rotation of, and the steady state loads applied to, the structure, and
2) the vibratory displacement (superposed on the steady displacement) due to the vibratory excitation provided by the directly appiied loads and the inertial loads due to the acceleration of the axis of rotation ('base' acceleration).

The purpose of the present development is to determine the vibratory response.

LAGRANGE FORHULATION
Referring to Figure 3 , the complete tuned structure consists of N identical cyclic sectors. If u represents all the vibratory degrees of freeciom of the complete structure, the equations of motion can be derived via the Lagrange formulation,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{U}}\right)-\frac{\partial T}{\partial u}+\frac{\partial U}{\partial u}+\frac{\partial D}{\partial U}=\frac{\partial W}{\partial u}, \tag{1}
\end{equation*}
$$

Where T and U represent the kinetic and strain energies, respectively, of the complete structure; D is the Rayleigh's dissipation function representing the energy lost in the system due to resisting forces proportional to velocities is (e.g. viscous damping forces); and δW represents the virtual work done on the structure by the external forces through virtual displacements δu.

The complete set of degrees of freedom u can be subdivided into N subsets, each containing u^{n} degrees of freedom for each of the N cyclic sectors. Since any given cyclic sector is 'connected' to adjacent cyclic sectors only on its two sides, u^{n} satisfies the intersector boundary compatibility condition

$$
\begin{equation*}
u_{\text {side } 2}^{n}=u_{\text {sido }}^{n+1}, \quad n=1,2, \ldots, N . \tag{2}
\end{equation*}
$$

Equations (1), therefore, can be written as N sets of equations coupled only as given by equations (2):

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T^{n}}{\partial U^{n}}\right)-\frac{\partial T^{n}}{\partial u^{n}}+\frac{\partial U^{n}}{\partial u^{n}}+\frac{\partial D^{n}}{\partial u^{n}}=\frac{\partial W^{n}}{\partial u^{n}}, \quad n=1,2, \ldots, N . \tag{3}
\end{equation*}
$$

For clarity of presencation, without loss of generality, equations (3) are first applied to obiain the equations of motion of an arbitrary grid point in any cyclic sector by considering its three tronsiational degrees of freedan. Inciusion of the three rotational degrees of freedom at the arbitrary grid point, and extension to inciude the remaining grid points in the cyclic sector are considered subsequently.

KINETIC ENERGY
With reference to Figure 3 , point P is an arbitrary grid point of the $n^{\text {th }}$ cyclic sector with a mass of ' m ' units iumped fron the adjacent finite elements.

The kinatic energy of the mass at P can be written as:

$$
\begin{equation*}
T=\frac{1}{2} m{\stackrel{0}{r_{p}}}_{p} \cdot{\stackrel{\circ}{r_{r}}}_{p} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
{\stackrel{\circ}{\rho_{O P}}}^{\rho_{O P}}{\stackrel{\circ}{K_{B}}}^{I_{O P}}+\stackrel{\circ}{\gamma}_{O} \hat{\jmath}_{B}+\stackrel{\circ}{Z}_{O P} \hat{K}_{B}, \tag{6}
\end{equation*}
$$

$$
\stackrel{\rightharpoonup}{\Omega}=\Omega \hat{I}
$$

and

$$
\left\{\begin{array}{l}
\hat{I}_{B} \tag{8}\\
\hat{J}_{B} \\
\hat{K}_{B}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & s \\
0 & -s & c
\end{array}\right]\left\{\begin{array}{c}
\hat{\mathrm{I}} \\
\hat{\mathrm{~J}} \\
\hat{K}
\end{array}\right\}
$$

with

$$
\begin{equation*}
c \equiv \cos \Omega t \text { and } s \equiv \sin \Omega t \tag{10}
\end{equation*}
$$

Substitution of equations (5) through (9) in equation (c) results in

$$
\begin{aligned}
& T=\frac{1}{2}\left[\begin{array}{lll}
\circ & \circ & \circ \\
X_{0} & Y_{0} & Z_{0}
\end{array}\right]\left[\begin{array}{lll}
m & & \\
& m & \\
& & m
\end{array}\right]\left\{\begin{array}{l}
\circ \\
X_{0} \\
\circ \\
Y_{0} \\
\circ \\
Z_{0}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text {-8- }
\end{aligned}
$$

$$
+\frac{1}{2} \Omega^{2}\left[x_{0 p} Y_{O P}{ }^{2} O p\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & n & 0 \\
0 & 0 & n
\end{array}\right]\left\{\begin{array}{l}
x_{0 p} \\
Y_{O p} \\
z_{0 p}
\end{array}\right\}
$$

$$
+\Omega\left[\stackrel{\circ}{X}_{O P} \stackrel{\circ}{Y}_{O P} \stackrel{\circ}{Z}_{O p}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -m \\
0 & m & 0
\end{array}\right]\left\{\begin{array}{l}
X_{O P} \\
Y_{O P} \\
Z_{O P}
\end{array}\right\}
$$

$$
+\Omega\left\lfloor X_{O P} Y_{O P} Z_{0 p}\right\rfloor\left[\begin{array}{ccc}
0 & 0 & 0 \tag{11}\\
0 & -m s & m c \\
0 & -m c & -m s
\end{array}\right]\left\{\begin{array}{l}
X_{0} \\
0 \\
Y_{0} \\
0 \\
Z_{0}
\end{array}\right\}
$$

In order to introduce the global coordinates of point P, consider now the position vector to P written as

$$
\begin{equation*}
\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \tag{12}
\end{equation*}
$$

ie.

$$
\begin{align*}
\left\lfloor X_{O P} Y_{O P}\right. & Z_{O P}
\end{align*}\left\{\begin{array}{l}
\hat{I}_{B} \\
\hat{J}_{B} \tag{13}\\
\hat{K}_{B}
\end{array}\right\}=\left[\begin{array}{lll}
K_{O A} & Y_{O A} & Z_{O A}
\end{array}\right\}\left\{\begin{array}{l}
\hat{I}_{B} \\
\hat{J}_{B} \\
\hat{K}_{B} \\
K_{B}
\end{array}\right\},
$$

where

$$
\left\{\begin{array}{l}
\hat{i} \tag{14}\\
\hat{j} \\
\hat{k}
\end{array}\right\}=[T \text { Basic to Giobal }]\left\{\begin{array}{l}
\hat{I}_{B} \\
\hat{J}_{B} \\
\hat{K}_{B}
\end{array}\right\}
$$

Therefore equation (13) yields
Cindman
OF POOR QUALITY

$$
\left\{\begin{array}{c}
x_{O P} \tag{15}\\
y_{O P} \\
z_{O P}
\end{array}\right\}=\left\{\begin{array}{c}
x_{O A} \\
y_{O A} \\
z_{O A}
\end{array}\right\}+\left[T^{G B}\right]\left\{\begin{array}{c}
x_{A P} \\
y_{A P} \\
z_{A P}
\end{array}\right\},
$$

noting that $\left[T^{G B}\right]=\left[T^{B G}\right]^{\top}$.
The global position vector to the point P can be further thought of as consisting of three componeni vectors, i.e., respect to t yields

$$
\left\{\begin{array}{l}
\dot{x}_{O P} \tag{19}\\
\stackrel{\circ}{\gamma_{O P}} \\
\dot{q}_{O P}
\end{array}\right\}=\left[T^{G B}\right]\left\{\begin{array}{l}
\dot{o}_{x} \\
\dot{o}_{x} \\
\dot{u}_{y} \\
\dot{o}_{z} \\
u_{z}
\end{array}\right\}
$$

Therefore, with the help of equations (15), (17) and (18), equation (11) expresses the kinetic energy of the mass at P in terms of the displacements and velocities of P expressed in the global coordinate system $A-x y z$.

STRAIM ENERGY

The strain energy due to the displacements at point P expressed in the basic coordinate system can be written as

$$
\begin{align*}
& U=\frac{1}{2}\left[\left(x_{O P}-x_{O P, i n}\right),\left(y_{O P}-y_{O P, i n}\right),\left(z_{O P}-z_{O P, i n}\right)\right] * \\
& *\left[\begin{array}{lll}
K_{X X} & k_{X Y} & k_{X Z} \\
K_{Y X} & K_{Y Y} & K_{Y Z} \\
k_{Z X} & k_{Z Y} & k_{Z Z}
\end{array}\right]\left\{\begin{array}{ll}
x_{O P} & -x_{O P}, i n . \\
y_{O P} & -y_{O P, i n} . \\
Z_{O P} & -z_{O P, i n} .
\end{array}\right\} \tag{19}
\end{align*}
$$

By using equations (15) and (17), this becomes

$$
u=\frac{1}{2}\left\lfloor\left(\bar{u}_{x}+u_{x}\right),\left(\bar{u}_{y}+u_{y}\right),\left(\bar{u}_{z}+u_{z}\right)\right]\left[{ }^{\text {Global }}\right]\left\{\begin{array}{l}
\bar{u}_{x}+u_{x} \tag{20}\\
\bar{u}_{y}+u_{y} \\
\bar{u}_{z}+u_{z}
\end{array}\right\}
$$

where $\left[K^{\text {Global }}=\left[T^{G B}\right]^{\top}\left[K^{\text {Basic }}\right]\left[T^{G B}\right]\right.$.

DISSIPATED ENERGY

The energy dissipated by the damping forces acting against the motion of the point P is expressed by the Rayleigh's dissipation function,

Use of equation (18) transforms this to

$$
D=\frac{1}{2}\left[\begin{array}{lll}
\circ & & 0 \tag{23}\\
u_{x} & u_{y} & \circ \\
u_{z}
\end{array}\right]\left[\begin{array}{c}
\text { Global } \\
{[B]}
\end{array}\left\{\begin{array}{l}
\stackrel{0}{u}_{x} \\
\stackrel{u}{x}^{u_{y}} \\
0 \\
u_{z}
\end{array}\right\}\right.
$$

where

$$
\begin{equation*}
\left.\left[\mathrm{E}^{\text {Global }}\right]^{\mathrm{GB}}\right]^{\mathrm{T}}\left[\mathrm{~B}^{\text {Basic }}\left[\mathrm{T}^{\mathrm{GB}}\right]\right. \tag{24}
\end{equation*}
$$

VIRTUAL WORK

The virtual work done by an oscillatory applied load

$$
\begin{equation*}
\vec{p}=P_{x} \hat{i}+P_{y} \hat{j}+P_{z} \hat{k} \tag{25}
\end{equation*}
$$

moving with the point of application, through individually achieved virtual displacements $\delta u_{x}, \delta u_{y}$ and δu_{z} can be stated as

$$
\delta \%=\delta\left\lfloor u_{x} u_{y} u_{z}\right\rfloor\left\{\begin{array}{l}
P_{x} \tag{26}\\
P_{y} \\
P_{z}
\end{array}\right\}
$$

ORCIWAL PRCE: OF PCOR QUALITY

EQUATIONS OF FORCED IOTIO:

Substitution of the expressions for T (equation 11 , U (equation 20), 0 equation 23) and 64 (equation 26) in the Lagrange equations (3) results in the following equations of forced motion of point P expressed in the displacement (global) coordinate system $A-x y z$:

$$
\begin{equation*}
[H]\{u \dot{u}\}+\left[[B]+2 \Omega\left[B_{j}\right]\right]\{\dot{u}\}+\left[[K]-\Omega^{2}\left[M_{1}\right]\right]\{u\}=\{P\}-\left[M_{2}\right]\left\{\ddot{R}_{0}\right\} . \tag{27}
\end{equation*}
$$

The terms appearing in equations (27) are:

$$
\begin{align*}
& \{u\}=\left\{\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right\} \tag{28}\\
& \{P\}=\left\{\begin{array}{l}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right\}, \tag{29}\\
& \left\{\tilde{R}_{0}\right\}=\left\{\begin{array}{l}
\ddot{x}_{0} \\
\ddot{y}_{0} \\
\ddot{z}_{0}
\end{array}\right\}, \tag{30}\\
& \left.[M]=\left[M^{\text {g!obal }}\right]^{G \mathrm{~GB}}\right]^{\mathrm{T}}\left[\begin{array}{ccc}
\mathrm{m} & 0 & 0 \\
0 & \text { n } & 0 \\
0 & 0 & m
\end{array}\right]\left[\mathrm{T}^{\mathrm{GB}}\right] \text {, } \tag{31}\\
& {[B]=\left[\begin{array}{l}
\text { global }
\end{array}\right]} \tag{24}\\
& {\left[B_{1}\right]=\left[B_{1}^{\text {global }}\right]=\left[T^{G B}\right]^{\top}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -m \\
0 & m & 0
\end{array}\right]\left[G^{G B}\right],} \tag{32}\\
& {[k]=[k]} \tag{21}\\
& {\left[M_{1}\right]=\left[M_{1}^{\text {global }}\right]=\left[T^{\mathrm{CB}}\right]^{\top}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right]\left[\mathrm{T}^{\mathrm{GB}}\right]} \tag{33}
\end{align*}
$$

and

$$
\left[M_{2}\right]=\left[T^{G B}\right]^{\top}\left[\begin{array}{ccc}
\mathrm{m} & 0 & 0 \tag{34}\\
0 & \mathrm{mc} & \mathrm{~ms} \\
0 & -\mathrm{ms} & \mathrm{mc}
\end{array}\right]
$$

where c and s are given by equation (10).
Equations (27) describe the translators motion of an arbitrary point P in an arbitrary sector n of the rotating cyclic structure subjected to a directly applied vibratory load $\{\mathrm{P}\}$ and base acceleration $\left\{\ddot{R}_{0}\right\}$.

These equations can be extended to include the three rotational degrees of freedom at point P by noting that:

1) in a lumped mass model, only the translational degrees of freedom at any grid point contribute to the kinetic energy of the structure, and
2) the coupling between various degrees of freedom may exist only via the stiffness matrix. (Instances where the damping matrix is defined proportional to the stiffness inatrix also may result in coupled equations of motion.)

Accordingly, the matrices derived from kinetic energy considerations, viz. $[11],\left[B_{1}\right],\left[M_{1}\right]$ and $\left[M_{2}\right]$ of equation (27) can be expanded as typified by

$$
\underset{6 \times 6}{[M]}=\left[\begin{array}{c:c}
{\left[M_{t t}\right]} & 0 \tag{35}\\
\hdashline-1 & - \\
0 & 1
\end{array}\right],
$$

where $\left[M_{t t}\right]$ is the 3×3 (translational) mass matrix of equation (27). With subscripts t and r representing the translational and rotational degrees of freedom at point P, the stiffness and damping matrices may be expanded as

$$
[\mathrm{K}]=\left[\begin{array}{c:c}
{\left[k_{\mathrm{tt}}\right]} & {\left[k_{\mathrm{tr}}\right]} \tag{36}\\
\hdashline\left[{k_{r t}}\right] & {\left[k_{r r}\right]}
\end{array}\right],
$$

By similar reasoning, the equations of forced vibratory motion of all the cyclic sectors of the total structure can be written as

The intersegment toundary compatibility is specified by equation (2).

The method of solution of the equations of forced motion (equations 38 and 2, Section 2) is based upon the form in which the excitation of the rotating structure is specified. As noted earlier, the present development considers excitation prescribed as:
i) directly applied loads moving with the structure and
2) inertial loads due to the translational acceleration of the axis of rotation ('base' acceleration).

These steady-staie sinusoidal or general periodic loads are specified to represent:

1) the physical loads on various segments of the complete structure, or
2) the circumferential hamonic components of the loads in (1).

The sinusoidal loads are specified as functions of frequency and the general periodic loads are specified as functions of time.

The translationai acceleration of the axis of rotation is specified as a function of frequency in an inertial coordinate system.

Because of its eventual implementation in the NASTRAN general purpose finite element structural analysis program, the following solution procedure generally follows the theoretical presentation of cyciic symmetry given in the NASTRAis Theoretical Manual (Rer. 7).

METHOD OF SOLUTION
The method of solution of the equations of motion consists of four principal steps:

1) Transformation of applied loads to frequency-dependent circumferential harmonic components.
2) Application of circumferential harmonic-dependent inter-segment compatibility constraints.
3) Solution of frequency-dependent circumferential harmonic components of displacements.
4) Recovery of frequency-dependent response (displacements, stresses, loads, etc.) in various segments of the total structure.

An overall flowchart outlining the solution algorithm is shown in Figure 4. Provision to include the differential stiffness due to the steady loads is also shown.

1. Transformation of Applied Loads

The transformation to frequency-dependent circumferential harmonic components depends on the form in which the excitation is specified by the user. The following options are considered in the present development to specify the form of excitation due to the directly applied loads and base acceleration loads:

Directly applied loads specified as:

- periodic functions of time on various segments,
- periodic functions of time for various circumferential harmonic indices
- functions of frequency on various segments
- functions of frequency for various circumferential harnonic indices.

Base acceleration specified as:

- function of frequency for circumferential harmonic indices 0 (axial) and 1 (lateral).

Details of each of the above five loading conditions are as follows:
Directly applied loads (segment-dependent and periodic in time)
If P^{n} represents a general periodic ioad on sector n specified as a function of time at M equally spaced instances of time per period (Figure 5), the load at $\mathrm{m}^{\text {th }}$ time instant can be written as

$$
\begin{gather*}
p^{m}=p^{n}+\sum_{\ell=1}^{\ell}\left[\begin{array}{l}
-\ell c \\
p^{n} \\
\cos (\overline{m-l} l b)+p^{n} \sin (\overline{m-1} l b)
\end{array}\right]+(-1)^{m-1} p^{n}, \tag{1}\\
\quad m=1,2, \ldots, M,
\end{gather*}
$$

where $b=2 \pi / M, l_{L}=(M-1) / 2$ for odd $M, l_{L}=(M-2) / 2$ for even M. The last term in equation (1) exists only when M is even. The coefficients ${ }^{-" n} n^{\prime \prime}$ (" ℓ " $=0 ; \ell c, \ell s, \ell=1,2, \ldots, \ell_{L} ; M / 2$) in equation (1) are independent of time, and are defined by the relations

$$
\begin{equation*}
p^{-0}=\frac{1}{M} \sum_{m=1}^{M} p^{n}, \quad(l=0) \tag{2}
\end{equation*}
$$

FIGuke 4. (Concluded)

Figure 5: Directly Applied Periodic Loads Specified as Functions of Time

$$
\begin{aligned}
& \text { cncman mas } \\
& P^{-2 c}=\frac{2}{M} \sum_{m=1}^{M} P^{m} \cos (\bar{m}-18 b), \\
& p^{-l s}=\frac{2}{M} \sum_{m=1}^{M} p^{n} \sin (\overline{m-l i l b}) \text {, and } \\
& P^{-M / 2}=\frac{1}{n} \sum_{m=1}^{M}(-1)^{m-1} P^{m} \text { (M even only) } \quad(l=M / 2) .
\end{aligned}
$$

Each of the cocfficient vectors $p^{\prime \prime \prime}$ on the left hand sides of equations (2) can further be expanded in a circumferential (truncated) fourier series

$$
\begin{align*}
& \text { where } n=1,2, \ldots, N, \tag{3}\\
& \text { " } \ell \text { " }=0 ; \ell c, \ell 5, \ell=1,2, \ldots, \ell_{L} ; M / 2 \\
& a=2 \pi / N \tag{4}\\
& k_{L}=(N-1) / 2 \text { for } N \text { odd } \\
& k_{L}=(N-2) / 2 \text { for } N \text { even. }
\end{align*}
$$

The last term in equation(3) exists only when N is even. The Fourier coefficients $\vec{p}^{\prime \prime} k^{\prime \prime}\left\{" k^{\prime \prime}=0 ; k c, k s, k=1,2, \ldots, k_{L} ; N / 2\right)$ in equation (3) do not vary from sector to sector, and are defined by

$$
\begin{align*}
& \bar{p}^{-" \ell "}=\frac{1}{N} \sum_{n=1}^{N} P^{-" \ell "} \quad(k=0) \\
& \overline{p^{k c}}=\frac{2}{i n} \sum_{n=1}^{N} P^{-" \ell "} \cos (\overline{n-1 k a}) \\
& \left(k=1,2, \ldots, k_{L}\right) \tag{5}\\
& \frac{-" \ell "}{\bar{P}^{k} S}=\frac{2}{N} \sum_{n=1}^{N} P^{-" \ell "} \sin (\overline{n-1 k a}) \text {, and } \\
& \left.\frac{-" \ell "}{P^{H} / 2}=\frac{1}{N} \sum_{n=1}^{N}(-1)^{n-1} p^{n} \quad \text { " } \ell \text { " }(N \text { even only }) \quad(k=N / 2) \quad . \quad\right)
\end{align*}
$$

 $\left.k=1,2, \ldots, k_{L} ; N / 2\right)$ are the transformed frequency-dependent circumferential harmonic components of the directly applied loads $f^{K}(m=1,2, \ldots, M$ and $n=1$, 2, ..., N).

Directly applied loads (Circumferential hamonic-dependent and periodic in time).

Such loads can be represented as

$$
\bar{p}^{\prime \prime} k^{\prime \prime}=\overline{\bar{p}}^{-0} k^{\prime \prime}+\sum_{\ell=1}^{\ell L}\left[\begin{array}{l}
-\ell c \tag{6}\\
\bar{p}^{\prime \prime} k^{\prime \prime} \\
\cos (\overline{m-i} \ell b)+\bar{p}^{\prime \prime k} k^{\prime \prime} \\
\sin (\overline{m-l} \ell b)
\end{array}\right]+(-1)^{m-1} \frac{-14 / 2}{\bar{p} k^{\prime \prime}},
$$

where $m=1,2, \ldots, M$ represent the time instances at which harmonic components $" k "=0 ; k c, k s, k=1,2, \ldots, k_{L} ; N / 2$ of directly applied loads are specified.

The coefficients $\overline{\mathrm{p}}^{\prime \prime} k$ " on the right hand side of equation (6) are obtained using equations (2) with sector number n replaced by harmonic number " k ".

Directly applied loads (frequency-and seoment-dependent)
This type of loads can be represented as
where " ℓ " ($=1,2, \ldots, f$) now represents the frequencies at which excitation is specified. The transformed frequency-dependent circumferential harmonic compoients -" \&"
$\bar{p}^{\prime \prime k}$ (" k " $=0 ; k c, k s, k=1,2, \ldots, k_{L} ; N / 2$) are obtained using equations (5) with " ℓ " as defined above.

Directly applied loads (frequency-and circumferential harmonic-dependent)

These loads are the transformed frequency-dependent circumferential harmonic components $\overline{\mathrm{p}}$-" "k" ("k" $=0$; kc, ks, $\left.k=1,2, \ldots, k_{L} ; N / 2\right)$ with "\&" ($\left.=1,2, \ldots, F\right)$ representing the various frequencies at which the directly applied loads are specified.

Base acceleration (frequency- and circumferential harmonic-dependent)

In Appendix A, it is snown that the components of the translational base acceleration contribute to inertial loads on the rotating structure in the following manner:

1. Axial component contributes to $\overline{\bar{p}}{ }^{-" \ell "}$ where " k " $=0$, and " ℓ " represents the specified excitation frequencies._"s."
2. Lateral components contribute to $\bar{P} " k$ " where " k " $=1 c$ and 1 s , and " ℓ " represents the effective excitation frequencies which are shifted from the specified frequencies by $\pm \Omega$, the rotational frequency.
3. Appication of Inter-Segment Compatibility Constraints

As shown in Section 4.5.1 of Reference 7, equations (2) of Section 2 are used to derive the compatibility conditions relating the circumferential harmonic component degrees of freedom on the two sides of a rotationally cyclic sector:

side 2 side 1

$$
\left.\left.\begin{array}{rlr}
\bar{u}_{2}^{0} & =\bar{u}_{1}^{0} & \quad(k=0) \tag{8}\\
\bar{u}_{2}^{k c} & =\bar{u}_{1}^{-k c} \cos (k a)+\bar{u}_{1}^{-k s} \sin (k a) \\
\bar{u}_{2}^{-k s} & =-u_{1}^{-k c} \sin (k a)+\bar{u}_{1}^{-k s} \cos (k a)
\end{array}\right\} \quad\left(k=1,2, \ldots, k_{L}\right)\right\}
$$

In order to apply these constraint relationships for any given harmonic k, an independent set \mathcal{u}^{K} consisting of the circumferential harmonic component (cosine and sine) degrees of freedom from the interior and side 1 of the cyclic sector is defined. \mathcal{u}^{K} is selected from the 'analysis' set degrees of freedom (i.e., the degrees of freedom retained after the application of constraints and any other reduction procedures), and is defined as

$$
\left.\begin{array}{l}
\mathrm{u}^{-k c}=\mathrm{G}_{c k}(k) \bar{u}^{k}, \quad \text { and } \tag{9}\\
\bar{u}^{-k s}=\mathrm{G}_{s k}(k) \bar{u}^{k}
\end{array}\right\}
$$

$\bar{u}^{k c}$ and $\bar{u}^{-k s}$ each contain ail (and only) the 'analysis'set degrees of freedom from the interior and both sides of the cyclic sector. Equations (8) are used to define some of the elements of the transformation matrices $G_{c k}$ and $G_{s k}$. For $k=0$ and $N / 2$, the matrix $G_{s k}$ is null.

3. Solution of Frequenc:-Exaspt Sirmai- Displacements

For a given harmonic k, the introduction of u^{-K} in the equations of motion, equations (38), Section 2, results in the transformed equations of motion (Ref. 1)

$$
\begin{align*}
& \vec{M}^{k}=G_{c k}^{\top} M^{n} G_{c k}+G_{s k}^{\top} M^{n} G_{s k}, \tag{10}\\
& B^{K}=G_{c k}^{\top} B^{n} G_{c k}+G_{s k}^{\top} B^{n} G_{s k} \text {. } \\
& \kappa^{K}=G_{c k}^{\top} K^{n} G_{c k}+G_{s k}^{T} K^{n} G_{s k} \text {, and } \tag{11}\\
& p^{K}=G_{c k}^{\top} \bar{p}^{k c}+G_{s k}^{\top} \bar{p}^{-k s} .
\end{align*}
$$

where

As discussed in subsection 1 of Section $3, \bar{p}^{k c}$ and $\bar{p}^{k s}$ are the transformed frequency-dependent circumferential harmonic components of the directly applied and base acceleration loads.

At any excitation frequency ω^{-}, let

$$
\left.\begin{array}{ll}
\bar{p}^{K} & =\overline{\bar{p}}_{\mathrm{e}} \mathrm{e} i \omega^{\prime t} \tag{12}\\
\bar{u}^{K} & =\overline{\bar{u}}^{K} e^{i \omega \mathrm{\omega}} \mathrm{t} \\
=k & ,
\end{array}\right\}
$$

where $\overline{\bar{p}}^{\mathrm{K}}$ aid $\overline{\bar{u}}^{\mathrm{K}}$ are complex quantities. Equation (10) can be rewritten as

$$
\begin{equation*}
\left[-\omega^{-2} \frac{M^{K}}{}+i \omega^{-B^{K}}+\vec{K}^{K}\right] \bar{u}^{K}=\overline{\bar{p}}^{K} . \tag{13}
\end{equation*}
$$

The excitation frequency w^{\prime} is given by

$$
\left.\begin{array}{l}
\omega^{-}=\omega \text { for all directiy applied and axial base acceleration } \tag{14}\\
\text { loads, and } \\
=\omega \pm \Omega \text { for iateral base acceleration loads. }
\end{array}\right\}
$$

Equation (13) is solved for $\overline{\bar{u}}{ }^{K}$ for all excitation frequencies and all harmonics as specified by the user. The cosine and sing harmonic components of displacements are recovered using equations (9).
4. Recovery of Frequency-Deperident Displacements in Various Segments

This step is carried out only when the applied loads are specified on the various segments of the complete structure.

For loads specified as functions of time, equation (3) is used to obtain the displacements $u^{-n^{\prime}}$ in various scgants with " ℓ " $=0 ; 2 c, \ell s, \ell=1,2, \ldots, \ell_{\text {max }}$. The circumferential harmonic k is varied from $k_{\min }$ to $k_{\max }$. The user specifies. $\ell_{\text {max }}: k_{\text {min }}$ and $k_{\text {max }}$.

For loads specified as functions of frequency, equation (7) is used to obtain the displacements $u^{-" 2}{ }^{n}$ " in various segments with " ℓ " representing the excitation frequencies. The circumferential harmonic is varied from user specified $k_{\min }$ to $k_{\max }$.

The solution procedure discussed in this section has been implemented as a new capability in mastran (Ref. 8).

4. EXQMPLES

Five inter-related examples are presented to illustrate the theoretical development of the previous sections. The new capability added to MASTRAN to conduct forced vibration analysis of rotating cyclic structures (Ref. 8), as a result of the present development, has been used to conduct these examples. A 12-bladed disc is used for demonstration.

Example 1 is conducted on a finite element model of the complete structure (Figure 6). Examples 2 through 5 use a finite element model of one rotationally cyclic sector (Figure 7). Results of example 1 are used to verify some of the results obtained in the remaining examples. Table 1 summarizes the principal features demonstrated by these examples.

Steady-state frequency-dependent (sinusoidal) or time-dependent (periodic) loads are applied to selected grid point degrees of freedom. The specified loads can represent either the physical loads on various segments or their circumferential harmonic components. For illustration purposes oniy, the frequency band of excitation, $1700-1920 \mathrm{~Hz}$, due to directly applied loads and base acceleration is selected to include the second bending mode of the disc for a circumferential harmonic index $k=2$. The 'blade-to-blade' distribution of the directly appiied loads also corresponds to $k=2$. Table 2 lists the first few natural frequencies of the bladed disc for $k=0,1$ and 2. Modes for $k=2$ are shown in Figure 8.

General Input

1. Parameters:

Diameter at blade tip	$=19.4 \mathrm{in}$.
Diameter at blade root	$=14.2 \mathrm{in}$.
Shaft diameter	$=4.0 \mathrm{in}$.
Disc thickness	$=0.25 \mathrm{in}$.
Blade thickness	$=0.125 \mathrm{in}$.
Young's modulus	$=30.0 \times 10^{6} 1 \mathrm{bf} / \mathrm{in}^{2}$
Poisson's ratio	$=0.3$
Material dersity	$=7.4 \times 10^{-4} \mathrm{ibf}-\mathrm{sec}^{2} / \mathrm{in}^{4}$
Uniform structural damping $(\mathrm{g})=0.02$	

2. Constraints:

All constraints are applied in body-fixed global coordinate system(s). All grid points on the shaft diameter are completely fixed. Rotational degrees of freedom θ_{Z} at remaining grid points are constrained to zero.

Figure 6: NASTRAN Hodel of the 12-bladed Disc

Figure 7: NASTRAN Cyclic Model of the 12-Bladed Disc

TABLE 1: PRINCIPAL FEATURES DEMONSTRATED BY EXAHPLE PROBLEMS

TABLE 2: ELADED-DISC MATURAL FREQUENCIES
 OF POOR QUALITY

* k is the circumferential harmonic index
** Mode No. 4 for $k=0$ at 1994 Hz represents an in-plane shear mode not excited by the applied forces.

Figure 8: $k=2$ Modes of Bladed Disc

e

Description

This example uses the direct frequency response capability in NASTRAN, RF8, and forms the basis to verify some of the results of examples 2 through 5.

Input

1. Parameters:

Same as general input parameters.
2. Constraints:

Same as general input constraints.
3. Loads:

$$
P(f ; n)=A(f) \cos \left(\overline{n-1} \cdot(2) \frac{2 \pi}{12}\right)
$$

where n is the segment number,
(2) represents $k=2$,
(12) represents the total number of segments in the bladed disc.
P is specified using RLOADi bulk data cards.
Results
Sample plots of grid point displacement and element stress response are shown in Figures 9 through ii. The expected behavior about a $k=2$ natural frequency of the bladed disc can be seen in all these figures.

All the response plots (Figures 9 through 25 except 16) have been obtained using the plotting capability of NASTRAN. On any given plot, the various curves are identified, in order, by symbols $x, *,+,-, \cdot$ and o. The sequence of curves is indicated in the first line of the plot description at the bottom left of each figure.

continn \therefore Mun
 O: - O Qualt ${ }^{-1}$

14 (T3RM). 18:TЗRHI. 95(T3AM)
FORCED VIGRRTIGN RNALYE!S OF ROTRIINE CYELIC ETSUCTURES
BLADED DISC EXGOPLE 1 (EULI MOUEL,FAEO LYAUS)
KINDEX $2 C$ TYPE LORDS
Figure 9
-32-
GRGOB BNE
or POOR QuALITY

Figure 10

OF POOE QUALITY

Figure 11

Eximpe 2

Description

This example uses the forced vibration capability with cyclic symmetry. The user inputioutput data for loads, displacements, stresses, etc., pertain to the physical representation of the various segments of the bladed disc. The frequency-dependent applied ioads correspond to $k=2$, and hence the solution loops on the circumferential harmonic index k are restricted to $k=2$ only via parameters KMIN and KMAX.

Input

1. Parameters:

In addition to general input parameters,
CYCIO $=+1$ physical cyclic input/output data
KMIN $=2$ minimum circumferential harmonic index.
KMAX $=2$ maximum circumferential harmonic index
NSEGS = i2 number of rotationally cyclic segments
RPS $=0.0$ rotational speed
GKAD $=$ FREQRESP $\$ Specify the form in which the damping parameters
LGKAD $=+1 \quad \int$ are used.
2. Constraints:

Same as general input constraints.
3. Loads:

$$
P^{n}(f)=A(f) \cos \left(\overline{n-1} \cdot(2) \cdot \frac{2 \pi}{(2)}\right),
$$

where n is the segment number, (2) represents $k=2$, (12) represents the total number of segments in the bladed disc.
p is specified using RLOADi buik data cards.

Results

Displacement and stress output results for selected grid points and elements are presented in Figures 12 through 15 . Agreement between results of Figures 12-13 and Figure 9, Figure 14 and Figure 10 , and Figure 15 and Figure 11 is excellent.

Figure 12

OREMAS FREE B of FOOR QUALITY

Figure 13

Figure 14

Figure 15

EXAMPLE 3

Description

This example uses the forced vibration capability with cyclic symetry. The user input/output data pertain to harmonic representation. Frequencydependent excitation is provided by both directly applied and base acceleration loads.

Input

1. Parameters:

In addition to general input parameters, CYCIO $=-1$ harmonic cyclic input/output data
KHIN $=0$ minimum circunferential harmonic index
KMAX $=2$ maximum circumferential harmonic index
NSEGS $=i 2$ number of rotationally cyclic sectors
RPS $=600.0$ revolutions per second
BXTID, BYTID, BZTID \mid Refer to TABLEDi bulk data cards to specify BXPTID, BYPTID, BZPTID magnitude and phase of base acceleration component:.
GKAD $=$ FREQRESP $\$ Specify the form in which damping parameters are LGKAD $=+1 \quad \int$ used.
2. Constraints:

Same as general input constraints.
3. Loads:
a) $\bar{p}{ }^{0,2 c}=A(f)$ specified on RLOADi bulk data cards.
b) Base acceleration as shown in Figure 16.

Results
Results are shown in Figures 17 through 25.
Figures 17 and 18 present $k=0$ results (subcase 1). The excitation consists of axial base acceleration and directly applied loads. The selected frequency band of excitation, $1700-1920 \mathrm{~Hz}$, lies between the second out-of-plane disc bending mode frequency ($1577 \mathrm{~Hz}, k=0$, Table 2) and the first in-plane shear mode frequency ($1994 \mathrm{~Hz}, k=0$, Table 2). Since the excitation is parallel to the axis of rotation, only the former mode responds.

Figures 19 through 23 present $k: 1$ results (subcases $2(k=1 c)$ and 3 ($k=1 s$)). The excitation is due to lateral base acceleration only. Although the frequency band of input base acceleration is $1700-1920 \mathrm{~Hz}$, the rotation of the bladed disc at 600 Hz (parameter APS) splits the input banduidth into two effective bandaidths:

$$
\begin{aligned}
& (1700-600)=1100 \text { to }(1920-600)=1320 \mathrm{~Hz}, \text { and } \\
& (1700+600)=\underline{2300} \text { to }(1920+600)=\underline{2520} \mathrm{~Hz} .
\end{aligned}
$$

The only $k=1$ mode in these effective banderdths is the first torsional mode of the blade with the disc practically stationary ($2460 \mathrm{~Hz}, k=1$, Table 2). This is shown by the out-of-plane displacenent. magnitudes of grid points 18 (blade) and 3 (disc) respectively (Figures i9 ($k=1 c$) and $22(k=1 s)$). The corresponding phase responses of these grid points are shown in Figure 21.

Figures 24 and 25 present $k=2$ results (subcase $4(k=2 c)$). The excitation consists of directly applied $k=2 c$ loads. The out-of-plane displacement magnitude of grid point 18 (Figure 24) compares well with that obtained in example 2 (Figure 12). Table 3 lists the out-of-plane displacement response of grid point 18 as obtained in examples 2 and 3. The marginal difference in response in example 3 is due to the Coriolis and centripetal acceleration effects at a rotational speed. of 600 revolutions per second.

No $k=2 s$ loads are applied in this example (subcase 5).

Figure 16: Base Acceleration Data in an Inertial Coordinate System

Figure 17

E(T3RM).1日(T3RH)
FORCED VIERATIOH RNRLYSIS DF RUTATING CTCLIC STPUCTURES
BLAOED DISC EXRMPLE 3 ICYC MODEL,FAEOPERSE ACCN LDRE. HARM $1 / 0$
KIKOEX IC
SUECRSE 2
Figure 19

OHGWAL FAGE s OF FOCR QUALIT

11(3).11(51.1:17).11(10).111121.11114)
FOACED VIEARTIO: RNALYS:S OF FOTRTING CYCLIC STRUCTURES
BLADEO DISC EXAMP:E 3 ICYC MODEL.FAEO-QRSE RCCN LORD.HARM $1 / 0$
KIHOEX IC
SURCRSE?
Figure 20
-46-

Figure 22

7
Figure 23
 CR POOR QUALITE

Okvinat fac: : OF POOR QUALITY

$11(9) .1115) .11(7) .11110) .1: 112) .11(14)$
FERCED VIBRATIGN ANRLYSIS OF BOIATING EYCLIC STAUCTURES
DLADED DISC EXAMPLE 3 ICTC HODEL,FREQ BASE ACCH LORD, HARM $1 / 0$
KIHDEX 2C SUGCRSE 4
Figure 25
table 3: effect of coriolis aho cemiripetal accelerations on the DISPLACEMETT RESPONSE OF GRID POINT 18 AT 600 RPS.

$\begin{gathered} \text { Frequency } \\ \mathrm{Hz} \end{gathered}$	Example 2	Example 3
	$\begin{aligned} & \text { Segnent } 1 \text { (subcase } \\ & \text { Mag. (in)/Phase (deg) } \end{aligned}$	$\begin{aligned} & k=2 c \text { (subcase } 4 \text {) } \\ & \text { inag. (in) } / \text { Phase (deg) } \end{aligned}$
1700	7.2655 E-5/349.4	$7.5132 \mathrm{E}-5 / 354.3$
1750	1.3071 E-4/343.1	1.3844 E-4/347.3
1778	2.1560 E-4/332.7	2.3252 E-4/335.8
1796	3.4139 £-4/314.6	3.7252 E-4/315.2
1814	4.8374 E-4/269.9	$4.9177 \mathrm{E}-4 / 266.8$
1832	$3.4146 \mathrm{E}-4 / 224.9$	$3.2655 \mathrm{E}-4 / 225.5$
1850	2.1451 E-4/206.6	$2.0742 \mathrm{E}-4 / 209.3$
1880	. $1.2433 \mathrm{E}-4 / 195.6$	$1.2214 \mathrm{E}-4 / 199.2$
1920	7.6125 E-5/190.4	7.5397 E-5/194.3

Description

This example uses the forced vibration capability with cyclic symnetry. The user input/output pertains to physical representation. Periodic loads are specified as functions of tirne on the segments of the bladed disc corresponding to $k=2$. For clarity of illustration only, sinusoidal loads of varying amplitudes at a frequency of $i 814 \mathrm{~Hz}$ are specified. The Fourier decomposition of these sine functions obviously contains contributions from rirst harmonic alone ($l=1$)-- the paramater Limix accordingly has been set at $1(\varepsilon=0, i c$, is).

Input

1. Parameters:

In addition to general input parameters,
CYCiO $=+1$ physical cyclic input/output data
KMIN $=2$ minimum circumferential harmonic index
KMAX $=2$ maximum circumferential harmonic index
LMAX $=1$ maximum harmonic in the Fourier decomposition of periodic, time-dependent loads,
NSEGS $=12$ number of rotationally cyclic sectors
RPS $=600.0$ revolutions per second
GNAD $=$ FREQRESP $\$ Specify the form in which the damping parameters are LGKAD $=\dot{+1} \quad \int$ used.
2. Constraints:

Same as general input constraints.
3. Loads:

$$
P^{n}(t)=A(t) \cos \left(\overline{n-1} \cdot(2) \cdot \frac{2 \pi}{(12)}\right)
$$

where n is the segment number, (2) represents $k=2$, (12) represents the total number of segments in the bladed disc, $A(t)=A \cdot \sin (2 \pi \cdot 18 i 4 \cdot t)$. P is specified on TLOADi bulk data cards.

Results are presented in Tible 4 and are in good agreement with those from example 3.

TABLE 4: COAPARISON OF RESPONSE AT 1814 Hz .

Grid Pt.Disp. or Elem. Stresses	Example 3	Example 4	Example 5
	$\begin{aligned} & k=2 c \text { (subcase 4) } \\ & \text { Mag. (in)/Phase(deg) } \end{aligned}$	$\begin{aligned} & \text { Segment I (subcase 7) } \\ & \text { Hag. (in)/Phase(deg) } \\ & \hline \end{aligned}$	$\begin{aligned} & k=2 c \text { (subcase } 4 \text {) } \\ & \text { Mag. (in)/Phase(deg) } \end{aligned}$
8 (T3RM), U_{z}	5.4297 E-4/82. ${ }^{\text {b }}$	$5.4299 \mathrm{E}-4 / 82.6$	5.4299 E-4/82.6
18 (T3RM), u_{z}	4.9177 E-4/266.8	4.9180 E-4/266.8	4.9180 E-4/266.8
$11(3), \sigma_{x x, 1} *$	1.4841 E 3/84.7	1.4842 E 3/84.7	$1.4342 \mathrm{E} / 84.7$
11 (5), $\sigma_{y y, 1}$	2.0891 E $2 / 83.4$	2.0892 E 2/83.4	2.0892 E2/83.4
	1.0774 E 2/64.7	1.0775 E 2/64.7	1.0775 E2/64.7
$11(10), \sigma_{x, 2}{ }^{*}$	1.4577 E 3/263.3	1.4678 E3/263.3	1.4678 E3/263.3
11 (12), $\sigma_{y y, 2}$	2.2489 E 2/260.3	2.2491 E 2/260.4	2.2491 E2/260.4
11 (14), ${ }^{\text {xy }, 2}$	1.8510 E $2 / 253.0$	1.8511 E 2/253.0	$1.8512 \mathrm{E} / 253.0$

* Fibre distances 1 and 2.

MARES

Description

This example uses the forced vibration capability with cyclic symmetry. The user inpur/output pertains to hamonic representation. Periodic loads are specified as functions of time for the circumferential harmonic index $k=2$. For clarity of illustration only, sinusoidal loads are selected.

Input

1. Parameters:

In addition to general input parameters,
CYCle :- -1 harmonic cyclic input/output data
WAIf $=2$ minimum circumferential harmonic index
KPGX $=2$ maximum circumferential harmonic index
LAX $=1$ maximum harmonic in the Fourier decomposition of periodic, time-dependent loads.
NSEGS $=12$ number of rotationally cyclic sectors
RPS $=600.0$ revolutions per second
GRAD $=$ FREQRESP Specify the form in which the damping parameters
LGKAD $=4 \quad \int$ are used.
2. Constraints:

Same as general input constraints.
3. Loads:

$$
\bar{p}^{2 c}(t)=A \cdot \sin (2 \pi \cdot 1814 \cdot t),
$$

specified on TLOADi bulk data cards.
Results
Results are presented in Table 4 and agree well with those from example 3.

5. comclusions

1. A ne:d capability has been developed and added to the general purpose finite element program NASTRAF Level $1 \% .7$ to conduct forced vibration analysis of tuned cyclic structures rotating abcut their axis of symmetry.
2. The effects of Coriolis and centripetal accelerations together with those due to the transiational acceleration of the axis of rotation have been included.
3. A variety of user options is providad to specify the ioads on the rotating structure.
4. Five interrelated examples are presented to illustrate the sarious features of this development.

5. neccomelioations

1. This is a new capability and, therefore, the examples presented herein have been primarily designed to illustrate the various basic features of the development. Application to a variety of real problems would substantially contribute towards determining its merits ard limitations with regards to its applicability, usefulness, and savings in modelling and computational time.
2. The capability should be extended to conduct forced response analysis using norma modes with cyclic symmetry as the basis.
3. Inclusion of induced and applied oscillatory aerodynamic loads within the capability would be a desirable step in solving the forced vibration problems of turbomachines.

 of poor quality

APPEHDIX

InERTIAL LOADS DUE TO BASE ACCELERATION

The acceleration of the axis of rotation generates inertial loads at all grid points of the complete structure. In this appendix, the generation of these inertial loads and their transformation to frequency-dependent circumferential harmonic components are discussed.

As given by equation (27) of Section 2 , the inertial forces on the three translational degrees of freedoin at an arbitrary point P of the modelled cyclic sector, expressed in the global (displacement) coordinate system, are

$$
\begin{equation*}
\left\{P^{G}\right\}=-\left[M_{2}\right]\left[\ddot{R}_{0}\right\}=\left[T^{B G}\right]\left\{P^{B}\right\}, \tag{1}
\end{equation*}
$$

where

$$
\left\{P^{B}\right\}=\left\{\begin{array}{l}
P_{X} \tag{2}\\
P_{Y} \\
P_{Z}
\end{array}\right\}^{B}=-\left[\begin{array}{lll}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & s \\
0 & -s & c
\end{array}\right]\left\{\begin{array}{l}
\ddot{x}_{0} \\
\ddot{y}_{0} \\
\ddot{Z}_{0}
\end{array}\right\},
$$

with $c \equiv \cos \Omega t$ and $s \equiv \sin \Omega t$.
Since ali the cyclic sectors are identical in all respects except for the specified loads, no generality is lost in assuming, for simplicity, that the modelled sector is the $n=1$ sector. Equation (1) can, then, be rewritten as

$$
\left\{P^{G}\right\}=\left[T^{B G}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \tag{3}\\
0 & c_{n} & s_{n} \\
0 & -s_{n} & c_{n}
\end{array}\right]\left\{P^{B}\right\}
$$

where

$$
\left.\begin{array}{ll}
c_{n}=\cos (\overline{n-1} \cdot 1 \cdot 2 \pi / N) ; & \text { and } \tag{4}\\
s_{n}=\sin (\overline{n-1} \cdot 1 \cdot 2 \pi / N) & .
\end{array}\right\}
$$

Substituting equation (3) in equations (5) of Section 3 , and noting that

$$
\begin{equation*}
\sum_{n=1}^{N} c_{n} \equiv 0 \tag{5}
\end{equation*}
$$

$$
\Gamma \quad \sum_{n} s_{n} \equiv 0
$$

$$
\begin{gathered}
-\cdots \\
\square \therefore \because \because
\end{gathered}
$$

$$
\begin{aligned}
\sum_{n} c_{n} \cdot \cos (\overline{n-1} \cdot k \cdot 2 \pi / n) & =N / 2, k=1 \\
& =0, k \neq 1
\end{aligned}
$$

$$
\begin{equation*}
\sum_{n} s_{n} \cdot \cos (\overline{n-T} \cdot k \cdot 2 \pi / w) \equiv 0 \tag{5}
\end{equation*}
$$

, $k \neq 1$,

$$
\sum_{n} c_{n} \cdot \sin (\overline{n-\Gamma} \cdot k \cdot 2 \pi / M) \equiv 0,
$$

$$
\sum_{n} s_{n}^{\cdot} \cdot \sin (\overline{n-T} \cdot k \cdot 2 \pi / N)=N / 2 \quad, k=1
$$

$$
=0
$$

the circumferential harmonic components of the base acceleration loads become

$$
\begin{align*}
& \left\{\bar{P}^{0}\right\}^{G}=\left[T^{B G}\right]\left\{\begin{array}{l}
P_{X} \\
0 \\
0
\end{array}\right\}^{B},(" k "=0) \\
& \left\{\bar{P}^{i c}\right\}^{G}=\left[T^{B G}\right]\left\{\begin{array}{l}
0 \\
P_{y} \\
P_{Z}
\end{array}\right\}^{B},(" k "=1 c), \tag{6}\\
& \left\{\bar{P}^{l s}\right\}^{G}=\left[T^{B G}\right]\left\{\begin{array}{c}
0 \\
P_{Z} \\
-P_{Y}
\end{array}\right\}, \quad(": k "=1 s), \text { and } \\
& \left\{\begin{array}{l}
B
\end{array},\right. \\
& \left\{\bar{P}^{k c}, k s\right\}^{G}=\{0\}, \text { all other "k". }
\end{align*}
$$

In the present development, the components of : se acceleration $\ddot{x}_{0}, \ddot{\gamma}_{0}$ and \ddot{Z}_{0} are considered to be sinusoidal of frequency u, and are specified as

$$
\begin{align*}
& \ddot{x}_{0}=\ddot{x}_{0, \text { mag }} \cos \left(\omega t+\dot{\phi}_{x}\right), \\
& \ddot{y}_{0}=\ddot{y}_{0, \text { mag }} \cos \left(u t+\dot{q}_{1}\right), \text { and } \tag{7}\\
& \ddot{z}_{0}=\ddot{z}_{0, \text { mag }} \cos \left(u t+\dot{q}_{z}\right)
\end{align*}
$$

From equation (2), therefore, we can write

$$
\left.\begin{array}{l}
P_{X}^{B}=-\ddot{X}_{0, \text { mag. }} \cos \left(\omega t+\phi_{X}\right), \\
P_{Y}{ }^{B}=-m\left[\ddot{Y}_{0, \text { mag }} \cos \rho \cdot \cdot \cos \left(\omega t+\phi_{Y}\right)+\ddot{Z}_{0, \text { mag }} \sin \Omega t \cdot \cos \left(\omega t+\phi_{Z}\right)\right], \text { and } \\
P_{Z}^{B}=-m\left[-\ddot{Y}_{0, \text { mag }} \sin , \cdot \cos \left(\omega t+\phi_{Y}\right)+\ddot{Z}_{0, \text { mag }} \cos \Omega t \cdot \cos \left(\omega t+\phi_{Z}\right)\right] . \tag{8}
\end{array}\right\}
$$

The cosine and sine products in equations (8) can be expressed in terms of individual cosine and sine terais with frequencies $(\omega+\Omega)$ and $(\omega-\Omega)$.

The following conclusions about base acceleration loads can, therefore, be drawn by substituting equations (8) into equations (6):

1. The axial component of base acceleration, $\ddot{x}_{0}(\omega)$, contributes to \vec{p}^{0} at excitation frequencies ω.
2. The lateral components of base acceleration, $\ddot{\gamma}_{0}(\omega)$ and $\ddot{z}_{0}(\omega)$, contribute to \bar{p}^{lc} and $\overline{\mathrm{p}}^{\mathrm{ls}}$ at excitation frequencies ($\omega \pm \Omega$) for each ω specified.

B Damping matrix
B_{1}
D
G
$\hat{I}, \hat{J}, \hat{K}$ $\hat{I}_{B}, \hat{J}_{B}, \hat{k}_{B}$ $\hat{i}, \hat{j}, \hat{k}$

K

k
ℓ
1
M_{1}
M_{2}
m
N
p
Q
\ddot{R}_{0}
$\vec{\rightharpoonup}, \vec{R}, \vec{\rho}$
T
t
U
u
W
Ω
ω

Coriolis acceleration coefficient matrix
Rayleigh's dissipation function
"Symmetric Components" transformation matrix
Unit vectors along Inertial XYZ axes
Unit vectors along Basic $X_{B} Y_{B} Z_{B}$ axes $\}$ (Figure 3)
Unit vectors along Global byz axes $\quad]$
Stiffness matrix
Circumferential harmonic index
Time harmonic index
Mass matrix, number of time intervals per period (Figure 5)
Centripetal acceleration coefficient matrix
Base acceleration coefficient matrix
Mass
Number of cyclic sectors in the complete structure
Load vector
Aerodynamic coefficient matrix
Base acceleration vector
Position vectors (Figure 3)
Kinetic energy, coordinate system transformation matrix Time

Strain energy
Physical displacement degrees of freedom
Virtual work
Rotational frequency
Forcing frequency

smmos (Continued)

Superscripts

B	Basic
G	Giobal
K	Independent solution set in "symmetric components"
m	meh time instant
n	nth cyclic sector
-2c	
-ls	
-kc	Fourier coefficients ("symmetric components")
-ks	
-14/2	
-N/2	

1. Smith, G. C. C., and Elchuri, V., "feroelastic and Dynamic Finite Element Analyses of a Bladed Shrouded Dis!", MASA CR 159728, lharch 1980.
2. Elchuri, V., and Smith, G. C. C., "\#ASTRAN Level 16 Theoretical itanual Updates for Aeroelastic Analysis of Bladed Discs", HASA CR 159323, Harch 1980.
3. Elchuri, V., and Gallo, A. Michael, "Mastran Level 16 User's :inual ipdates for Aeroelastic Analysis of Bladed Disce", NASA CR 159824, Harch 1980.
4. Gallo, A. Michael, and Dale, B. J., "Histrair Leyel is Programmer's Manuail Updates for Aeroelastic Analysis of Bladed Discs", NASA CR 159825, March 1980.
5. Elchuri, V., and Gallo, A. Michael, "NASTRAN Level 16 Demonstration fanual Updates for Aeroelastic Analysis of Bladed Discs", MASA CR 159826, March 1980.
6. Gallo, A. Michael, Elchuri, V., and Skalski, s. C., "Bladed-Shrouded-nisc Aeroelastic Analyses: Computer Program Updates in NASTRAN Level 17.7", NASA CR 165428, December 1981.
7. NASTRAN Level 17.6 Theoretical Manual, NASA SP 221 (05), October 1980.
8. Elchuri, V., Gallo, A. Michael, and Skalski, S.C., "Forced Vibration Aralysis of Rotating Cyclic Structures in NASTRAN", NASA CR 165429, December 1381.

End of Document

