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ABSTRACT

The electric and magnetic fields associated with the lightning return stroke are expressed as
a convolution of the current waveform shape and the fields generated by a moving charge of ampli-
tude one (i.e., the Lienard-Wiechert solution for a unit charge). The representation can be used to
compute the fields produced by a current waveform of non-uniform velocity that propagates along
a filament of arbitrary, but finite, curvature. To study numerically the effects of linear charge
acceleration and channel curvature two simple channel models are used: the linear and the hyper-
bolic,
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APPLICATION OF THE LIENARD-WIECHERT SOLUTION TO A LIGHTNING RETURN
STROKE MODEL

by Robert Meneghini
INTRODUCTION

The purpose cf the paper is to provide an alternative description of the lightning return
stroke and the electric and magnetic fields associated with it. The point nf view adopted is that the
charge and current densities can be expressed as a collection of moving and stationary ¢harged parti-
cles, where the position (and therefore the velocity and acceleration) of each is assumed to be given
as a function of time. For the lightning return stroke, charge and current distributions of this kind
result in fields that can be interpreted as the fields produced by a moving charge of amplitude one
(i.e, the Lienard-Wiechert field solution), multiplied by the current wavetorm and integrated over
what might be termed an effective delay time. For typical return stroke parameters, the sources of
the radiation are shown to depend primarily on the channel curvature and the rapid acceleration of
charges near the ends of the channel. Since the furmulation can be used to analyze channels of arbi-
trary, but finite, curvature and non-uniform current waveform velocities, it appears to be somewhat
more general than either the moment [Hill, 1968, 1969; Mamey and Shanmugam, 1971] or the
piece-wise linear [LeVine and Meneghini, 1978a, 1978b] field representation.

The organization of the paper is as follows. First, the charge and current densities are ex-
pressed in terms of a collection of discrete charged particles. By a limiting process, continuous ver-
sions of these sources are obtained from which the scalar and vector potentials and the fields are de-
rived. To complete the solution, the return stroke is modeled simply as a transter of charge between
two points [Uman et al,, 1975]. The boundary conditions appropriate to this model then determine
the fields. The radiation portion of the fields can be integrated in the case of a finite linear filament
if certain restiictions are placed on the velocity of the charges. Although the results are derived in
an approximate manner, they compare well with previous work and serve as a guide to the integral
representation for the field as the appropriate limit is approached.

In the finai section of the paper, numerical resalts are presented for the electric field as func-
tions of the waveforra velocity and the cliannel curvature, For this purpose two channel geometries
are used: the linearnd the hyperbolic.
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Fields Produced by Charge Motion Along a Filament

The charge density, o, and current density, j, associated with a particle of charge Q, ¢an be
described by the equations [Jones, 1964]

p(X',1) = Qo 5(x’ - (1))
i, 1) = Qof'(t) 5(x' — (1))

where § is the Dirac delta function, x’ is an arbitrary position vector and f(t), f'(t) are, respectively,
the location and velocity of the charge as a function of the time t. For a collection of n+! charges
(Qo: - . . , Qp) where the position of the (j+1)th particle at time T is the same as the position of the
jth particle at time T -- A7, the charge and current densities become

n

P00 = 3 QB0 = Kt - jar) M
J=

oyt = B QT - jamsee = f(t~jar) @)

Dividing and multiplying each term of (1) and (2) by Ar and lettingn = oo, A7 = 0 and Qj =+0in
such a way that Qj/Ar is finite, then

(X', 1) = f () 50" = f(t = 7)) dr 3)
i, ) = f (r) £t = 1) 8 (x’ — F(t — 7)) dr (4)

where ¢ nhas units of amperes and is defineq by

r) = lim  Qj/ar (3)
Ar—0
Q=0

The electric E and magnetic H fields that result from the sources p and j can be determined by means
of the potentials ¢ and A, where

m
1

= —Vp — JA/0t (6)
1 TxA (7
Ko

2

o
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with
4reqp(x,t) = ff 1[9_(_’_‘_:%_‘;) §(t' = (t —r/c)) dt’ dx’ (8)
x' (S
dmeqc? Alx, t) =f .{: &r—’t:) §(t’ — (t — r/c)) dt’dx’ )
x’ , '

The integrals in (8) and (9) extend over all space and time. The quantity r is the distance from the
source point, x’, to the observer, x, Substituting (3) and (4) into (8) and (9) yields

dme,p(x , 1) = ! [,f‘(’) SO —H =) 8 — (t —1/C)) g qrvax’ (10)
T r

4”6002A(x$ t) = j:'!: f‘(f)f’(t’ -7)8 (x’ — f(t' - T)) 5(t' -t - r/c))dfdt'dx' (1 l)
X T

r
In these and the following equations the limits on r and t’ are taken to be ( ~ %0 ,%), To complete

the solution, the boundary conditions are then imposed on the fields themselves.

Assuming that the orders of integration in (10) and (11) can be interchanged, the volume
integral can be done directly, giving [Jackson, 1962]

dregp(x, t) =ff ()5 = (£ = 10D gy g (12)
r t r
41‘!’5002A(X,t) = ff ) (L - r)8(t' ~ (t —r/c)) dt’ dr (13)
Tt r
where
r=x—x (14)
with
x' =t ~-7). (1%)

Substituting {12) and (13) into (6) and (7) and carrying out the differentiations vields (Appendix)

E(x.t) = Tl— ft('r)(Fl + Fp) dr (16)

T€o 1
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and 1 A
H(x,t) = 47 ‘/;u,r)r.t(Fl + Fy)dr
where
Fy = & =v/o) (1 = (v/c)? )fpPr?
Fy = £ x ((;—v/c)xv’) /p3c?r
The distance r and the corresponding unit vector T are given by
r=ix —x’|
P (x—x)r
with
x' = f(t—|x —x'|fc ~71)
In addition, the velocity v, the acceleration v’, and the quantity p are
v=f'(t—-r/c—-7)
f'(t = r/c —1)

p=1._v.i'\/c

4

v

where the prime(s) on f denote differentiation with respect to the argumentu =t —v/c —r.

an

(18)
(19)

(23)
(24)
(25)

To compute the fields from (16) and (17) for a given observer x and time t, the integration

is performed over all 7. Since the functional form of f is known and if we assume that it is single

valued and defined for all values of its arqument then at each 7 a corresponding value of x' can be

found from (22). This immediately yields r; the velocity and acceleration are then obtained from

(23) and (24).

To complete the solution for the fields, the following boundary conditions are imposed:

f(u) = x'y uso
f(u) = x'; uZtoy
viu) =0 u<0andu>tm
v(u =0 us<Oanduzty

(26)
(27)
(28)
(29)

ot
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and

) =0 uso0 (30)
W) =0 U -» oo 30

where x'b ,x't are the distances from the origin to the “bottom" and *top" of the channel and
U=t-rfc—-r (32)

To apply these boundary conditions, we use equations (22) and (26) which imply that whenever
rPt—rfc, thenx'= x'y. But this, in tumn, gives r = |x — x",| = ry,, which is the distance from

the bottom of the channel to the observer, Therefore we conclude that if 7 > t — rb/c then

x’=x’y. From this relationship and (28) and (29) it follows that v(t ~ rpfc —7) =v'(t —1p/e,~7)=0
when r >t —r,/c.

Similarly, equations (22) and (27) imply that x’ = x’; whenr <t — tm = rt/c, where
r= X ~ X'tl is the distance from the top of the charel to the observer. This condition and (28)
and (29) give v(t — rt/c —-7)=y(t ~ rt/c ~7)=0for0<r <t~ tn = rt/c.

At those values of 7 for which the velocity and acceleratjon are zero, the integrands of (16)

and (17) simplify considerably, Explicitly,

F1+F2=?b/rb2 f>t—rb/0>0
o]
F1+F2=?t/rt' OS<r<t—t, —r/c

Therefore, the fields can be written in the form

)
1 - A -
E(x,t) = — { f Wr)(F, + F)dr +r t —r./C)rn-
e, 7 ) (Fy +Fy)dr +1,Qut —rpfedry

+0,Qut —t 1 /c)r,” f (33)

,
2
Hex ) = 2 f () Tx (F| +Fy) dr (34)

9 7'1
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where
r] = max(0, t =t —r,/c) (35)
75 = max(0, t —ry/c) (36)
Qy (¢ = ry/c) =f °”i{r) dr (37

2
Qult =ty = ry/c) = jml Hr) dr (38)
0

with
r, = Ix=x'yl I'}b = (x = x'y)ry (39)
fo= =X | ;T = (X=X, (40)

The model of the return stroke implied by the boundary conditions and the sources given in (3) and
(4) is simply the transfer of charge from the point x'b to the point x't (Uman et al., 1975], In par-
ticular, for times less than rb/c the observer measures a static electric field arising from a point charge
of magnitude Qb(O) a distance r, away, where Qb(O) is the total chaige of the system., From the
perspective of the observer, and for times greater than rb/c, charge is extracted from the channel

end and begins to propagate aiong the filament. For times exceeding tm + rt/c, charge accumulates
at the ckannel top with a magnitude given by (38). As time tends to infinity the entire charge of

the system becomes concentrated at the top end point of the channel and the observer measures

a static electric tield given by '?tQt(oo)/rtz, where Qt(w) = Qb(_O).

Models of this kind have been used in a number of studies [Uman et al., 1975 McLain and
Uman, 1977]. Modifications of the model have been discussed by Price and Pierce (1977) and Lin
et al, (1980). Despite deficiendes, the model appears adequate for gaining insight into the induction
and radiation portions of the field and their dependence on observer location, channe! structure, and
the shape of the current waveform. Equations (33) and (34) are free space field solutions. To
account for the presence of a perfectly conducting ground plane at z = 0, the following image con-
tributions are added to (33) and (34) respectively, to give the total field:

T g ~ A .



e R

ORIGINAL PACE IS
OF POOR QUALITY

¢ Ta A ~ -~
C Hy(x, t) ® = —— “ur)ryx (Fy + F,)dr (42)
1% 8= == Jg  x(Fy +Fy

The vectors ?l ,l?:, ¢an be defined by (18) and (19) if ?, r, vand v’ are replaced by ?I' rp Vyy and v'y
respectively, where

= x=-xql; '1}[ = (x = x'p)/ry (43)
x’I=(I—-2/:\z/z\) » f(t—r/c~7) (44)
vp= (-2 /z\Q) ft~rfc~7) (45)
vi= (-2 /Z\ Q) 't —r/c—~7) (46)

with
AN AA  AA
| = XX + yy + 2z 47

A \ Co
the unit vectors T ?It are directed from the “bottom’’ and “¢op’’ of the image filament toward the
observer, i.e.,

T = (= X'pp)/1% = X'y (48)
A ._.( ’ 1] .
Iy = (x = X[ )Ix ~x 1t (49)
A A
where X=Xy ~2 22,x'p=x' -2 2z,

In the numerical calculations to be presented, the observer is taken to be at the surface of perfectly
conducting ground plane. The total fields (actual plus image) are therefore

AA
2zz+ E(x,t) (50)

Et(x, t)

A -22) - Hx, 1) (51)

Ht(x, t)

where the fields on the right hand side of these equations are given by (33) and (34).
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Special Cases
There exist several cases for which the integrals in (33) and (34) can be evaluated. To obtain

the Lienard-Wiechert solution for a single charge that moves along the path f(t), the current is written
as «(r) = Q 6(r). Equations (33) and (34) can be integrated to give

A
Qry/ry2 t < ryfc
4ne, E(x,t) = { Q(F| +F,) e St < ty * fyfC (52)
Q’,\t/,tz RN

and

A
rx(F, + F n/fe|t<t_+r,/c
i:'H(x,t)s Qe+ Fy) m* (53)

0 Otherwise

where F| and F;, are given by (18) and (19) if in (20) through (25) 7 is set to zero, For example,
the r appearing in Fl' F?, and (53) is given by

r = jx—x'|

where

x' = f(t - |x —x'|/c)

Since the velocity and acceleration of the charges are assumed to be zero at the ends of the filament
and continuous everywhere, the fields are continuous as well, Equations (52) and (53) are the
Lienard-Wiechert field selutions for a charge, initially stationary with respect to the observer, which
traverses a finite distance before again coming to rest,

To investigate the behavior of the radiation fields (i.e. the portion of the E and H field 1/
associated with the net power out of a volume en:closing the sources), we obtain from (33) and (34) '

-

1 "2

E . = = yr)h q ' ’
rad 4neoc2 ) p3r T ' (54)

H - 1 " L(T)?‘Xh i (55)
rad are AR d 55

8
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with '
h = tx g(? - v/c)xv’% (56)

For the purpose of identifying the sources of the radiated field it is convenient to express h in terms
of the channel curvature and arc length. The velocity and acceleration can be written in the forms
(Hay, 1953; Stoker, 1969]
A
v(u) = s'jl (57)
A A
vi(u)= s"}l + K" Jn (58)
where s is the arc length along the filament and s’ = ds/du, ' = d'?s/du2 whereu =t —r/¢ -7, The
A
unit vectors jl ,?2 and ?3 are the tangent vector, principal normal and binormal to the filament,
respectively, and form a right-handed orthonormal basis; the quantity K is the curvature,
Substituing (57) and (58) into (56) gives
A In\ ’ /-\ ” '\ - >
hsxs:{fr\x[(rmz)—sh/c)} +s (?"(r"j\l» (59)
As in the case of a single charge, two sources of the radiation field can be distinguished {Panofsky

and Phillips, 1962; Jones, 1964]. If the speed of the charges is a constant v, then s'=v,and
s’ =0 so that

h =K Yo sl? % [(/x}x/j\z) - (vo/c)??’]} (60)

i.e. the integrands of (34) and (55) are proportional to the channel curvature. On the other hand, if
the channel is linear, then K =0 and

A
h = s"%x(Fx])) (61)
For this case, the integrands are proportional to the rate of change in the speed with respect to the

time t - r/c — 7. Finally, if channel is linear arid the speed constant then the radiated fields are
zero,
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For the case of a linear filament the integrals in (54) and (55) can be evaiunt;\ed in an approx-
imate manner if certain restrictions are placed on the speed of the charges, Letting ¢ be a constant
vector along the direction of propagation, then the velocity appearing in the integrals ot (54) and
(55) can be written as

= E L Y W TV g )

vy = 2 v(w) (62)
where u =t —1/c—~r, Since v'(u)= 2 v'(u), then from (56) and {62)

A ———— 5 et

b= Fxx Qv (63)

Making the change of variable w = v(u) and using the fact that

R e B s

drfdr = feovp (64)

S

where r is defined by (20) and (22) and p by (25), then

v(u)dr = ~pdw (65)
If (63) and (65) are substituted into (54) a simpler integrand results, In general, the integral cannot
be evaluated because ¢ and r are functions of w. If it is assumed, however, that at the bottom end
point of the filament the charges are accelerated from rest to a constant velocity v o Overa distance
much smaller than Iy, and further that u = 0 (and therefore ¢(r) = «{t — rb/c)) over this same distance

then (54) can be written approximately as

Box(fx) Yo \
Epag0 1) = 2Bt (t =1, f0) f (1 =2, « Bwier? aw (66)
4me, T,e” 0

At the top of the channel a similar contribution is made by the deceleration of charges from Vo to
rest over a distance small in comparison with Iy This contribution and (66) can be integrated to give

4me c*

Epq ) = —2x { t = /o) B x By x rpy rb_t(t-rt/c-:m)'?tx('ﬁtxfé’)/ptrt} (67)
0 ;

10
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Similarly,
Heag(x ) = -Z-é Wt - rb/c) I, x 2 / Pyl — Ht = rt/c —tn) Ty % R/ Pift (68)
T .
where -
‘ A "
Pp = 1 —(vyfedry « & (69)
A
pp= 1= (v O, - 2 (70)

o n o exw e e

and t s the channel length divided by Vor

The fields given by (67) and (68) are appropriate to a current pulse, having a rectangular
velocity versus time curve, wwhich propagates along a linear filament. Results similar to these and in
the latter reference identical to them, have been derived by several different approachés {Uman,
1975, Uman et al,, i578; Le Vine and Meneghini, 1978a]. The electric field signature predicted by
(67) is a familiar one. For times greater than rb/c but less than tmt rt/c the magrutude of Erad
is proportional to the current waveform ¢(t ~ rb/c) with a polanzahoa given by T X (A b 32) For
times greater than tm t rt/ ¢, each component of the field is a weighted sum of the current wave-
form with a txme delaved and mverted image of itself. It is worth noting that as v o approaches ¢
andif | - "b 2 #0,1 - 1't 2 # 0, then the induction terms of (33) and (34) tend to zero and
previously derived expressicas for the total electric and magnetic fields are recovered* {Le Vine and

Maneghini, 1978a].

Equations (67) and (68) can be used to approximate the radiation fields for a current wave-
form traversing a piece-wise linear channel comprised of n elements of lengths Ll’ v v oL a and direc-

tions .Ql, Co e Qn’ where the speed of propagation of the current waveform is
(t) = U 9] 2 LA
v(t) = v, [U(t) - Ut - % Livol

and where U is the unit step function.

The electric field, for example, is simply the sum of individual terms of the form of (67)
[Le Vine and Meneghini, 1978b] and can be written

*The static terms of the two solutions can be matched if the same boundary conditions are used.

11
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v, A
Erad(x. t) = % 0 3 {C(t - rb/c)/r‘b X (?b X Ql)/rbpb
e ¢

0

J

A K A A
n—-1 «(t—-ri/c =T rix 0y r xR
+3 J JA,X[J 50 R Rl

j=1 r; p(G, j+1)

J

Wt —ry/c=T;) A
- ! ] {l}tx('?txa )
TPt n

where r, is the distance from the jth channel transition point to the observer and

J

T, =éLv
J k=] k/O

b, = 1= &« &)

[ &

an

(72)

(73)

Note that Iy is the distance from the top of the nth channel segment to the observer, while ry is the

distance from the bottorn of the first segment to the observer,

Terms in the summation of (71) correspond to radiation arising from the channel transition

points. It is not obvious that these contributions are identical to the limiting form that would be

obtained from (54). By “limiting form’ we mean the field produced under conditions of a current

pulse of constant speed and a channel geometry in which the curvature is non-zero only near iso-

lated truasition points. Untortunately, we have not been able to carry out the integration ot (54) in

this limit. Numerical comparisons between (54) and (71) are discussed in a subsequent section

of this paper.

Channel Geometries

a) Channel tortuosity: hyperbolic channel

One of the simplest continuous and differentiabi» channel models that can be used to study
the effects of curvature is the hyperbola. In addition to its analytic simplicity, it also lends itself to
a comparison of a two element piece-wise linear channel model if the elements are chosen to coin-

cide with the asymptotes of the hyperbola. In fact, if the equations for the asymptotes are given

then there exists a family of hyperbolas having these asymptotes which includes the degenerate case

l‘)
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of the piece-wise linear channel, i.e. the asymptotes themselves. Since the curvature of the channel
is the change in angle with respect to arc length, the integrated curvature of any hyperbola depends
only on the angle subtended by the asymptotes*, This property provides a convenient way to quan-
tifv the effects of curvature on the radiated field.

Assuming that the hyperbola lies in the x-z plane with the transverse axis aiong the x axis
and with a origin displaced along the vertical (z) direction, then

2 _@-9r (74)
22 b2

In the subsequent discussion and in the numerical results, we choose the 0 < z < 2d segment of
branch of the hyperbola for which x 2 0.

The square of the speed, v, of a charged particle moving along the hyperbola is
v3(t) = (dx/dt)? + (dz/dt) (75)
To find the trajectory of the charges (or, equivalently, the trajectory of the current waveform) as a

function of time, (74) is differentiated with respect to t. Squaring the result and using (74) and (75)
to eliminate x2 and (dx/dt)2 gives

a 7\ 1/2
(z—-d)"+ 7~ bv(t)
(2-d)7* 7 = —— d 76
((Z_d)z+b2> e - (76)

where
7 = b2 +pH!/3 (77

Integrating (76) from z(0) to z(t) yields {Gradshteyn and Ryzhik, 1965]

t 2
V’Sl,c v(Ddt =ty * ¢ sen (z-d){‘?’g—p(ﬁl,Q) ~bE@,q)

2 2\!/2
+ lz--d|<b tiz-d) > } (78)

y2+(z - d)?

*Since the channel model uses only a finite portion of the hyperbola, this statement is not strictly
correct, For the parameters used in the numerical calculations. however, it is a good approximation,

13

. - T
i igmsaun: s e . . T ,(‘
[P



ORIGHNAL PAGE 13
OF POOR QUALIYY

where F, E are elliptic integrals of the first and second kind, respectively,

'

¢ e . e
Fo = [ (1 =kPsin? 0712 g
(o]

" E(s, k) .f¢ (1 = k2 sin? x)1/2 gx
0

The constant time, ty is given by

y2 b2 +42\1/2
ty 2\ F(ﬁz:Q)—bE(ﬂz:Q)"'d

b 73 +d2
with
¢ = (a2 + b2)1/2 /vob
8y =Tan~}(ld — 2/ /b)
B, =Tan™! (d4/b)
and sgn(x) ={ L x>0
-t x<0

The constant v, » defined below, has dimensions of velocity.

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

To complete the specification of charge motion along the channel. the speed and acceleration

are assigned so that they are zero at the channel end points and continuous everywhere. Choosing

the speed to be a cubic polynomial in t both for 0 < t <t jandt, St < tm

and an exponential

for ty < t < t, provides a sufficient number of constants to satisfy these requivements. Note

that tm is the time taken for a charge to transverse the enti . channel. One reason for choosing this

particular model is that it allows us to obtain approximations to the velocity versus time curves com-

puted by Leise and Taylor (1977).

The result is

14
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(
vot/t )% (ag +an(tit,)) 0<t<t
) = Ly e Pt t <t<ty,  (87)
Tollt = t)/tp? (ag +agt—tytp e P27 Qg

\

where Vo = v(tl) is the maximum speed and

tp =t —t (88)

Expressions for the z components of the velocity and acceleration can now be found from (76) and
(87)

2.2 12
v = dZ/dt = bv(t) (z—-d)*+b (91)
: (a2 +b)1/2 | @ -d)2 + 42

o YO W) e-d6P-b))

v(t) (a2 +b2) ((z —d)2 +73)2

(92)

where v'(t) is determined by differentiating (87). Equations for X, v, v’y are derived from (74) and
(75) by a similar procedure. Since X is more conveniently. computed trom (76), the results are given
here only for vy,v'y which are

av(t) xz—a"' 1z
5 A sgn (z — d) (93)

X (a2+b:)1/2 X2 —ga

oy @) (a@ - o)

{94)
v(t) (a® +b2) (x2 -2)°

with
a2/(a% +p/2 (95)

Q
it

15
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The foregoing equations can now be used in (33) and (34) to generate the fields for arbitrary obser-
vation points and times. Since the evaluation of the integrals is somewhat complicated and since
simplifications are possible, it is worth indicating how the calculations are made,

To find z as a function of t, equally spaced values of z are taken from O to 2d and the corre-
sponding value of t is obtained from (78). To express z in terms of equally spaced time intervals, a
linear interpolation is performed. The x(t) vaiue is then found from (74) with x 3 0. Once x(t) and
z(t) ar= known, the velocity and acceleration are computed from equations (87) and (91) through
(94). These quantities then determine f(t), f'(t), f'(t).

As indicated earlier, for each sample point 7 in the numerical integration of (33) and (34), r
can be found from the equations

r = |x—-x’| (20)
with

x'= f(t—|x=xl/lc —7) : (22)
An easier way to evaluate r is possible, however, Letting

x'= §(T) (96)
then (22) can be written

f(T) = f(t ~ [x =f(TH/c —1) (97)
The function f is assumed to be one to one $o that the arguments of f can be equated:

T=t-Ix-f(Mifc—r (98)

Since t,x and fare known and r is fixed, (98) can be solved numerically for T. From T, x’ is found
from (96) which determines, in tumn, r, v and v’.

b) Linear Channel Model
For the case of a linear channel, the specification of ¥(t), f'(t) and f''(t) is straighttorward.
Letting (x1 , 0, zl), (X, 0, 24) be the bottom and top end points of the channel then the equation

16
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for any point (x, 0, z) on the channel is

z—zl=s(x—x1) (99)

where

S‘(Zg-ll)/(xz—xl); Xy #E X ‘ (100)
Solving for x and z as a function of the time t yields

t
X(1) = xp+ (1+5%) —1/2j; v(t) dt (101)

2t) = zl+s(l+sz)"1/2ftv(t)dt (102)
o

These equations determine f(t) = (x(t), 0, z{t)); ' (t) and f’(t) are then obtained by successive differ-
entiations. Note that if X] = Xq, z(t) can be obtained from (102) by letting s =+o°. As in the hyper-
bolic channel, the speed v(t) is assumed to be given by (87),

Numerical Examples

The cases presented illustrate some of the characteristics of the field solutions given by (33)
and (34). In all examples, the observer is located on the surface of a perfectly conducting plane;
thus, only the normal electric field and tangential magnetic field are non-zero. The current waveform
is assumed to be

-
]

o(r) = 30,000 (=047 ~e=27) (103)

where 7 is expressed in microseconds and ((r) in amperes. In all figures the quantities Vor by and ty
in (87), (88) are taken such that Vo= ¢/3 and tl = tf. Each curve consists of 400 equaily spaced
samples in the time domain. The CPU time required for a representative curve is approximately 40 s
on an IBM 3081.

To show the effects of changes in speed independent of the channel curvature, a linear chan-
nel model is used. Examples are shown in figures | and 2. For both figures the channel is vertical
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with bottom and top end pointsat x =y =z =0 and x =y = 0, z * 4 km, respectively. The observer
is located at x = 100 km, and y =z = 0. In figure 1 the curves A, B, C correspond to values of ty,as
defined in (87), equal to 16, 8, 2 us respectively. In all cases § =0, Curve D was generated by means
of (67); all others from (33). As mertioned earlier, curve D represents the field in the limiting case
ty > 0Oand is proportional to a sum of two current waveforms where one is displaced in time and in-
verted with respect to the other, Increasing t1 has two effects: the curves are ‘stretched’ and the
peak amplitude of the field is reduced such that the time integral of the magnitude of the field re-
mains approximately constant, It should be noted that in the case of a linear filament (67) has been
shown to approximate (33) well as long as t is less than about | us. This remains true for different
channel orientations and propagation speeds, Vor

In figure 1 the parameter 8 as defined in (87) equals zero. !n figure 2, t is fixed at 4 us
while g is varied. The curves A, B and C correspond to values of g equal to 2 x 104, 1.5 x 104 and
104 s“l, respectively, The speed versus time curves for these cases are shown in the inset. Since
t, and the maximum velocity, v,y are constant, the peak field occurs at approximately 4 us in all
cases.

Increasing 8 tends to narrow the width of the waveform and to decrease the positive over-
shoot. This latter effect is caused by a decrease in acceleration near the channel top; for example,
atg = 104 1 the charges must be decelerated from v=6.3 x 107 ms""1 to zero within 4 us while
forg=2x 10%s-1 they are decelerated from the smaller value v= 2.5 x 107 ms—! to zero within

the same time span.

To explain the narrowing of the initial portion of the field, note that for § = 0, charge accel-
eration at the channel bottom produces a negative z directed field. For g # 0, the charges, having
reached their maximum velocity, are then decelerated, i.e., v'(t) = - ﬁe‘m, which results in a posi-
tively directed Ez' The total field, therefore, is the sum of negative and positive z components, the
latter contribution beginning 4 us after the first. The result is that the width of the negative portion
of the waveform narrows as § increases. It should be noted that the field signatures given by curves
A and B are qualitatively similar to the radiated waveform proposed by Leise and Taylor (1977).
This is not surprising since we have essentially proceeded in a reverse direction by starting with a
velocity curve qualitatively similar to their derived curve and then using this to compute the field.

To study the effects of tortuosity on the fields, the speed of the current waveform is chosen
to be a constant, Vo iri figures 3 and 4: i.e., = 0, te= 0 and 8 =0in (87), This situation is not the

18
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same as obtained by taking the limit ty =t~ 0 which yields radiation fields of the form given by
(67). Rather, the assumption is simply used to eliminate the sources of radiation from the ends of
the filament and isolate curvature effects,

In figure 3 are shown three curves of the z component of the electric field for an observer at
x = 100 km,y = z = 0. The channel geometry is a hyperbola, given by (76), with x > 0,0 <z < 3 km
(d= 1,5 km) and a = b. Curves A, B and C correspond to values of ‘a’ equal to 500, 100, and 20 m,
respectively. The channel geometries are shown in the inset. Since the ratio b/a is constant the
asymptotes of the channels are identical and therefore the total integrated curvature of each of the
channels is approximately constant, As ‘a’ decreases the field is seen to tend towaid zero for times
less than 25 us After 25 us the shape of the curve C corresponding to a = 20 m is similar to the cur-
rent waveform. This behavior can be qualitatively explained by noting that as ‘2’ decreases, the
only portion of the channel where significant charge acceleration occurs is near the ‘bend’, i.e., the
apex of the hyperbola. In the limit of small ‘a’ the radiation field, (which is the dominant contrib-
utor to the tota! field at this distance), originates entirely from this point and is proportional to the
current waveform, «. Several examples were run for ‘a’ less than 20 m, down to 2 minimum of 2 m.
The corresponding field change, however, is smalil.

Figure 4 shows the effect of changing the slope of the asymptotes. The channel geometry is
again given by (74) with x >0, 0 € z € 3 km but now with a = 2b. Curves A, B, and C correspond
to values of ‘a’ equal to 500, 100, and 20 m. Notice that amplitudes of the field are increased as
compared to those of figure 3, This is reasonable in the sense that the integrated curvature of the
channel has increased over that assumed in figure 3. Since the integrand of (54) is proportional
to curvature for the v= v, case then, in general, larger fields can be expected.

The combined effects of channel curvature and linear acceleration on the electric and mag-
netic fields are shown in figures 5 and 6. For both figures the channel geometry is hyperbolic with
x>0,0Sz<3kmanda=b=100 m. The velocity is again given by (8"") withf = 0 and ty = 2 us.
Curves A, B and C correspond to observer distances of | km, 10 km and 100 km along the x-axis.
For curves A and B in figure 5, the static contribution is evident. This is a consequence of the
simple charge transport model used and represents the accumulation of charge at the top end of
the channel. Since the bottom of the cliannel is on perfectly conducting plane, the stati¢ con-
tribution from this endpoint is zero. For the magnetic field, plotted in figurs 6, the static contri-
bution is, as shown by (34), zero,
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A number of numerical comparisons were made between the fields predicted by the pieze-
wise linear representation of (71) and the Lienard-Wiechert solution of (33), The comparisons
were made in the far field and therefore (33) and (54) are essentially the same, To make the
geometries as close as possible n, in (71), was set equal to 2 and for (33) a hyperbolic channe!l
was chosen with parameters ‘a’ and ‘b’ as small as possible without incurring sampling errors. In
addition t tf in (87) was chosen to be small to approximate the delta function acceleration at
the end points inherent in (67) and (71). As indicated earlier, the radiation arising from the end
points of the channel are in good agreement for the cases considered. On the other hand, the fields
arising from the channel transition points showed differences which generally increase with increas-
ing channel curvature. For example, when the curvature is small, 2a = b, the two solutions are in
good agreement. At a = 2b, however, the ratio of the Lienard-Wiechert to the piece-wise linear
solution is approximately two for v, between ¢/10 and 6/1.25. As noted before, we have been un-
able to analytically evaluate (54) in the limiting case of a piece-wise linear channel. Some qualita-
tive understanding of the differences between (54) and (71) can be gained, however, by noting that
in deriving (71) the velocity and acceleration were assumed to be colinear and therefore the term
hy= x/-\x (v/c x v*) in the integrand of (54) was zero. On the other hand, as we let the parameters
‘a’ and ‘b’ in the equation for the hyperbola approach zero, the geometry will tend toward a piece-
wise linear channel. In general, however, hl will be non-zero and therefore will contribute to the
Lienard-Wiechert solution.

Discussion and Con<lusions

A form of the Lienard-Wiechert solution has been used to determine the electric and mag-
netic fields associated with a commonly used lightning return stroke model, An apparent advantage
of this form of solution is that parameters of the current waveform can be assigned independently
of the channel geometry, Because of this, a class of geometries can be studied in the context of the
same return stroke model. For example, one type ot geometry that can be analyzed is a cubic spline
approximation to photographed lightning channels.

Effects of linear acceleration and curvature were studied by means of two simple channel
geometries: the linear and the hyperbolic. For the special case of a linear filament and a rectangu-
lar velocity versus time profile, the solution is in good agreement with previous work. Significant
changes in the signature appear, however, when the shape of the velocity profile is altered.



ORIGHAL Falde
OF POOR QUALITY

In the case of the hyperbolic filament, the radiated fields are functions of the curvature, ob-
server location and current waveform shape, Only in cases where the non-zero curvature is concen-
trated about a small segment of the channel do the signatures approximate the current waveform
shape, Preliminary numerical resuits also have shown that if the velocity profile of the current wave-
form is rectangular and the non-zero curvature occurs only near isolated points along the channel,
then the Lienard-Wiechert and the piece-wise linear representations are in fair agreement in many
cases, In particular, the two solutions give neéxrly identical results for the radiation arising from the
channe! end points. As to the radiation from the channel transition points, discrepancies between
the two solutions are observed that become more pronounced with increasing =hannel curvature.
One of the reasons for the differences appears to be tie assumption used in detiving the piece-wise
linear solution: that the velocity and acceleration are colinear.,

It should be mentioned in conclusion that several other issuas pertaining to the Lienard-
Wiechert representation have not been answered: whether the field given by (33) is equivalent to
the Panofsky and Phillips solution as applied to the return stroke model by Leise and Taylor (1977);
and whether a form of the Lienard-Wiechert representation can be derived for more complicated
models of the retumn stroke (Price and Pierce, 1977; Lin et al,, 1980],
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APPENDIX — CALCULATION OF THE FIELDS
The electric E »nd magnetic H fields are given by
E=-Vo¢— 3A/0t
1
H=—VxA

Ko

where ¢ and A are, from (15) and (16),

dnep = f[ ekl :(t“’/c)) dt’ dr
T

dre,c2A = f f (r) £ =) 8 (' ~ (t ~1/e)) dt'dr
r t r

with

1= |x—f(t' —r) |

The limits of integration on t’ and r are (~ oo, o),

(Al)

(A2)

(A3)

(A4)

(A3)

Taking the gradient of (A3) and interchanging the order of integration and differentiation yields

4ne, Vo = fc('r)( Fo(r) +1g(r)) dr
T

where
?
g = - f -;__-;- s(t'-(t-r/c))vdt’
tl
'B ) = f L Vs (t' —(t —ric)) dt’
r

tl

By an application of the chain rule V5(t’ — (t — r/c)) can be written as

1

(A6)

(A7)

(A8)

(4
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£8'(t! ~ (t = £/c))/c where the prime on the delta function denotes differentiation with respect to
its argument,

Following Jackson (1962), the change of variable w = t’ + r/c is made in (A7) and (A8).
From (A5) we find that

dw/dt’ = | —v + fJc =p (A9)
with
v o= P —1) | (A10)
Equations (A7) and (A8) become
. A
Ly(r) = _f BW=Y Gy (AlD)
2
pr
A
5 (w—t
Igr) = f W0 (A12)
pre

[ A(t) can be integrated immediately to give
Iy (r) = = (Fpr?), (A13)

where the subscript 0 means that all variables within the brackets are to be evaluated at t’ =t ~r/c.

Explicitly,
r = jx —x’| (Al4)
p = l-v-.i (Al5)
with
x' = f(t—[x =x|[c~7) (A16)
v = ft—|x~x'|jc—17) (AL7Y
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d (1 \
g = & st o (A18)

Integrating (A12) by parts gives

Using the facts that

d [t -1 d /7 ‘
I p—,> P I <;;> (A19)
d 2 ALy
—';(Pl')'-l = --(pr)"2 (.Z-..v .?.. f.r___‘i..) (A20)
dt ¢ ]
di} A
T - v—T(v . 1) (A21)
then
1|, .
Ig(r) = SFF(vz/c—v v P —rf e vic) + (v~ T(v '?))P]} (A22)
lp r°¢ o

From (A6), (A14) and (A22),
4re Vo = fz(r) 5-—-!- [? (v2fcmv *F=rT+v/c)+p(¥ — "r\(vf?'))]} dr (A23)
T (p3r2c i)o

The calculation of 3 A/at follows closely that for V. The result is

,
4me,c” 0A/0t =ft 0] { '-3;1'-2 [prv' —vvife —v o F—rf - v'/c}} dr  (A24)
| p°r 0
Inserting Vo into dA/at into (A1) and using the identities
' [(r —v/fc) x v'} =9 v'(’?- vic) =v'p (A25)
(P =vie) (1 = (w/e)?)=Tp* —pv =P (v + BYe = (vfe—-v + D E=vice  (A26)

then

s

e
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Ex,t) = L f& (r) (Fy + Fy)dr
41reo ‘ -
where

o 2‘
Fi i 2 @ =v/e) (1 = (v/e) }o

1 A ‘
F = {__... T x [(F—v/c)x v']

To obtain the magnetic field, the curl of (A4) is taken which gves
41reoc2 VxA(x, t) = —ft (r) (e(r) = 14(r)) dr
where

et A
1(r) =/‘-f-(-t--?c--’-)-’i-r 5°(t" = (t - r/c)) dt’

#(t' — 1) x 7
14(7) =f -'("-';'—T')-—L §(t' —(t —r/c))dt’
rh
Proceeding as before and using (A2) and the identities

—Px {’r\x[(?—v/c)x v’]} = ’?x {(? 'v’)v/c+PV'}

- x [('?—-v/c)(l —v?‘/cz)] = CVx/h(vz—c:)

then

H(x,t) = -ﬁ-fc(r) 5?:((!‘1 +F,) } dr
4n ' = Jo

To simplify the notation in the text the subscripts o have been omitted.

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

(A35)
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Figure 4. Same as figure 3 except that a

=2b.
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