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ABSTRACT

The electric and magnetic fields associated with the lightning return stroke are expressed as
a convolution of the current waveform shape and the fields generated by a moving charge of ampli-

tude one (i.e., the Lienard-Wiechert solution for a unit charge). The representation can be used to
'	 compute the fields produced by a current waveform of non-uniform velocity that propagates along

a filament of arbitrary, but finite, curvature. To study numerically the effects of linear charge

acceleration and channel curvature two simple .channel models are used: the linear and the hyper-
bolic.
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APPLICATION OF THE LIENARD-WIECHERT SOLUTION TO A LIGHTNING RETURN

STROKE MODEL

by Robert Meneghini

f	 INTRODUCTION

The purpose of the paper is to provide an alternative description of the lightning return

stroke and the electric and magnetic fields associated with it, The point of view adopteri is that the

charge and current densities can be expressed as a collection of moving and stationary wharged parti-

cles, where the position (and therefore the velocity and acceleration) of each is assumed to be given

as a function of time. For the lightning return stroke, charge and current distributions of this kind

result in fields that can be interpreted as the fields produced by a moving charge of amplitude one

(Le, the Lienard-Wiechert field solution), multiplied by the current waveform and integrated over

what might be termed an effective delay time. For typical return stroke parameters, the sources of

the radiation are shown to depend primarily on the channel curvature and the rapid acceleration of

charges near the ends of the channel. Since the formulation can be used to analyze channels of arbi-

trary, but finite, curvature and non-uniform current waveform velocities, it appears to be somewhat

more general than either the moment [Hill, 1968, 1969; Marney and Shanmugam, 19711 or the

piece-wise linear [LeVine and Meneghini, 1978a, 1978bj field representation.

The organization of the paper is as follows. First, the charge and current densities are ex-

pressed in terms of a collection of discrete charged particles. By a limiting process, continuous ver-

sions of these sources are obtained from which the scalar and vector potentials and the fields are de-

rived. To complete the solution, the return stroke is modeled simply as a transfer of charge between

two points [Uman et al., 1975] The boundary conditions appropriate to this model then determine

the fields. The radiation portion of the fields can be integrated in the case of a finite linear filament

if certain restrictions are placed on the velocity of the charges. Although the results are derived in

Ilk	
an approximate manner, they compare well with previous work and serve as a guide to the integral

representation for the field as the appropriate limit is approached.

Al

In the finai section of the paper, numerical results are presented for the electric field as func-

tions of the waveform velocity and the t,Izar!nel curvature. For this purpose two channel geometries

are used: the linear:and the hyperbolic.
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Fields Produced by Charge Motion Along a Filament

The charge density, p, and current density, j, associated with a particle of charge Qo can be

described by the equations [Jones, 19641

PW, t) 
= 

QQ 8(x' - f(t))

0" t) = Qof'(t) 8 (x' -- f(t))

where 8 is the Dirac delta function, x' is an arbitrary position vector and f(t), f'(t) are, respectively,

the location and velocity of the charge as a function of the time t. For a collection of n+1 charges

(Qo, ... , Qn) where the position of the (j+l )th particle at time T is the same as the position of the

jth particle at time T -- ar, the charge and current densities become

F'.
n

P(x" 0 =	 E Qj 6(x' — f(t — jar))	 (1)
F..r

j=0

0"t)	 _	 E Qj f'(t — jar) 6 (x'	 f( t — jar))	 (2)
j=0

Dividing and multiplying each term of (1) and (2) by Or and letting n	 0 and Qj	 0 in
such a way that Qj/ar is finite, then

ft(r)P(x ', t) = 	 8 (x' — f(t — ,r)) dr	 (3)
i

Is

0" t )	 =
f

t(r) f'( t — r) 8 (x' — f(t — r)) dr	 (4)

!	 A

is

N

j

where t has units of amperes and is defined by s

L(r) =	 iim	 Qj/fir	 (5)
?^	 Iî,	 1

47 -0Q i

Qj	 0
t

The electric E and magnetic H fields that result from the sources p and j can be determined by means
f

of the potentials ¢ and A, where

E = —00 — aA/Bt	 (6)
1H	 cxA	 (7) i

K

uo
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with

J	 4nEOo (x , t)	 J ./ I 
p (x'r t') 6 (t. — (t — r/c)) dt' dx' 	 (8)

X, to I..

r'	 4^reoc2 A(x, t) _ „1 f 0 " to) S (t' — (t — r/c)) dt'dx'	 (9)x' to

A
The integrals in (8) and (9) extend over all space and time. The quantity r is the distance from the

source point, x', to the observer, x. Substituting (3) and (4) into (8) and (9) yields
r

4rreoo(x , t) _ J ff(r) a (x' — f(t' — r)) 6 (t' — (t — r/c)) drdt'dx' 	 (10)
x	 x t

o 
r	 r

	

4zre c2A(x t = .! J fWWc(r 	 — r) 6 (x' f(t' — r)) 6 (t' — (t — r /c))dr dt'dx'	 I 1
°	 )	 x' t'r	 r	 ( )

	In these and the following equations the limits on r and t o are taken to be	 To complete

the solution, the boundary conditions are then imposed on the fields themselves.

Assuming that the orders of integration in (10) and ( 11) can be interchanged, the volume

integral can be done directly, giving [Jackson, 1962 1

	

4rreoo(x, 
t) = J f t(r) 6 (t — (t — r/c)) dt' dr	 (12)

r t o	 r

dt
('^	 J f c(r)f'(t'—r)6(t'—(t—r/c))	 (13)

	

4nE O C2A(x,t) _	 ,	 dr
r t	 r

where
l

r = Ix — x'I	 (14)

with
'+	 x' z f(t' — r )	 (15)

Substituting (12) and (13) into (6) and (7) and carrying out the differentiations yields (Appendix)

E(x. t)	
4rre 3 `(T) 

t F 1 + F2) dr	 (16)
o r

t

3

A

}
A

in
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and	 r

H(x, t) = 1 J t(r) c .^ (F 1 + F ^,) dr	 (17)
4n	 r

where

F1 = 6 —v/c) ( 1 —(v/C)2 )/p3r2	 (18)

i

	

	 F2 	 r x (lr — v/c) x v' ) / p3 c2r	 (19)

the distance r and the corresponding unit vector r are given by

r = Ix — x')	 (20)

with

X, = f(t — Ix — x11 /c — r)	 (22)

In addition, the velocity v, the acceleration v', and the quantity p are

v = F (t — r/c r)	 (23)

V0 = f"(t — r/c —r)	 (24)
n

P	 1 —V . r/c	 (2S)

where the prime(s) on f denote differentiation with respect to the argument u = t — v/c — r.

To compute the fields from (16) and (17) for a given observer x and time t, the integration

is performed over all r. Since the functional form of f is .known and if we assume that it is single

valued and defined for all values of its argument then at each r a corresponding value of x' can be

found from (22). This immediately yields r; the velocity and acceleration are then obtained from
(23) and (24).

To complete the solution for the fields, the following boundary conditions are imposed:

f (u) = x'b 	u s 0	 (26)
f (u) = x't	 u 3 tm	 (27)
V (u) 0	 u< 0 and u> tm	 (28)

V , (u) = 0	 u < 0 and u > tm	 (29)

4
s^ Y

t

{

t'

fN	 ,

a

f

i
1
I
)
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r.
i

r

i
t and

S

3

t(u) = 0	 u < 0	 (30)

i(u) - 0	 u .,, 00	 (31)

Where x'b , x't are the distances from the origin to the "bottom" and "top" of the channel and

u = t - r/c — r	 (32)

To apply these boundary conditions, we use equations (22) and (26) which imply that whenever
r > t — r/c, then X'= x'b . But this, in turn, gives r = Ix — x'b 1 = rb , which is the distance from

the bottom of the channel to the observer. Therefore we conclude that if r > t — r b/c then
x' 1^ x'b , From this relationship and (28) and (29) it follows that v(t — rb/c — r) = v'(t — rb lo — r)=0

when r > t — rb/c,

Similarly, equations (22) and ( 27) imply that x' = x't when r < t — tm — rt/c, where
rt = Ix — xY is the distance from the top of the char„ el to the observer. This condition and (28)
and (29) give v ( t — rt/c — r) = v'(t — rt/c — r) = 0 for 0 < r < t — tm — rt/c.

At those values of r for which the velocity and acceleration are zero, the integrands of (16)

and (17) simplify considerably, Explicitly,

F I + F, = rb/rb2	r t rb/c 3 0

F 1 + F, = rt/rt '-	 0 < r < t — t	 cm — rt,'
i

Therefore, the fields can be written in the form

E(x, t)	 I	 r c(r) (F 1 + F,) dr + rbQ b (t — rb/c)/rb,4rrea I r f I
+ rtQ t( t — tm — rt/c)/rt2 t

^

1
r r2

	

H(x, t) _ c	 ,J	 t(r) r x ( F 1 + F 2 ) dr
IY • {^	 Orr	 71

(33)

(34)

f

Ij
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where

r I = max(0, t -- t m — rt/c) (35)

r^	 max(0, t — rb/c) (36)

fr
Qb (L — rb/c) _	 ^r) dr

?
(37)

Qt(t — tm — rt/c) s ^ ('r1 t(r)dr
0

(38)

rb = Ix ^— x'b l	 ^b = (x --X b)/rb (39)

rt = Ix — x't I	 rt = (x — x' t)/rt (40)

with

The model of the return stroke implied by the boundary conditions and the sources given in (3) and

(4) is simply the transfer of charge from the point x' b to the point x't (Uman et al., 19751 , In par-

ticular, for times less than rb/c the observer measures a static electric field arising from a point charge

of magnitude Qb(0) a distance rb away, where Qb(0) is the total charge of the system. From the

perspective of the observer, and for times greater than r b/c, charge is extracted from the channel

end and begins to propagate along the filament. For times exceeding t m + rt/c, charge accumulates

at the channel top with a magnitude given by (38). As time tends to infinity the entire charge of

the system becomes concentrated at the top end point of the channel and the observer measures
a static electric field ¢iven by ctQt(-)/rt-', where Qt(-) = Qb(o).

Models of this kind have been used in a number of studies (Uman et al., 1975; McLain and

Uman, 19771, Modifications of the model have been discussed by Price and Pierce (1977) and Lin

et al. (1980). Despite deficiencies, the model appears adequate for gaining insight into the induction

and radiation portions of the field and their dependence on observer location, channel stricture, and

the shape of the current waveform. Equations (33) and (34) are free space field solutions. To

account for the presence of a perfectly conducting ground plane at z = 0, the following image con-

tributions are added to (33) and (34) respectively, to give the total field:

EI(x't)	
" 47 e ^f-01

r^ 

t(r )(FI + F., )d r + rlbQb(t — r'I5/c)/rlb2 + rItQt(t _ t m — rIt/c)/rlt2 (41)
0

6

x	 ,

i

r
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f

r 't(r) ^I x (F  + F ,))dr (4?)
arl

r

P

_

The vectors F l , F,)	can be defined by (18) and (19) if r, r, v and v' are replaced by ri, ri , v, t and v'i
respectively; where

1

i

ri = (x — x'l)	 ; rI _ (x — x' I)/ri (43)
3

x'i = (I — 2 z z)	 f(t — r/c — r) (44)

vi = (I — 2 i z) • f'(t — r/c — r) (45)

I
V,_ (I — 2 z Z) , f "(t — r/c — r) (46)

Fi

with
:..	 k

i
A  AA nn

1	 xx + yy + zz (47)

the unit vectors irit are directed from the "bottom" and"top" of the image filament toward the

observer, i,e.,

k rIb = (x — x'Ib) /Ix — x'IbI (48)

rit = (x -- x'lt)/Ix	 — x'It ( (49)

m A	 n
where	 X# lb = x'b — 2	 ZZ, Wit — x' t -2	 zz ,

In the numerical calculations to be presented, the observer is taken to be at the surface of perfectly

conducting ground plane. The total fields (actual plus image) are therefore

, n n
E t(x , t) _ 3 z z -	 E(x, t) (50)

^, <
nn

Ht(x, t) _ ?(I	 z z)	 H(x, t) (31)

where the fields on the right hand side of these equations are given by (33) and (34).

l`
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Special Cases

There exist several cases for which the integrals in (33) and (34) can be evaluated. To obtain

the Lienard-Wiechert solution for a single charge that moves along the path f(t), the current is written

as t(r) = Q a (r). Equations (33) and (34) can be integrated to give

Q rb/rb 2 	t G rb/c

	

41re, E(x, t) _	 Q (F 1 + Fj)	 rb/c < t < tm + rt/c	 (52)
Q r

t
t

t/r 2	 t > tm + rt/c

and

4" Hfx, t)	
Q rx(F 1 + F,)	 rb/c < t < tm + rt/c

(53)

	

c 	 _ 
0	 Otherwise

where F 1 and F` are given by (18) and (19) if in (20) through (25) r is set to zero, For example.

the r appearing in F 1 , F Z and (53) is given by

r
4

t

f

r = Ix — x'1

where

X, = f(t — Ix — x'1/c)

Since the velocity and acceleration of the charges are assumed to be zero at the ends of the filament

and continuous everywhere, the fields are continuous as well. Equations (52) and (53) are the

Lienard-Wiechert field solutions for a charge, initially stationary with respect to the observer, which

traverses a finite distance before again coming to rest.

To investigate the behavior of the radiation fields (i.e. the portion of the E and H field

associated with the net power out of a volume enclosing the sources), we obtain from (33) and (34)

1	 /^ r2 t(r) h
Erad	

4rreoc-- rl	
p3r dr	 (54)

1	 /" 
r2	 t(r) 'r

H 
x 

h d+	 (55)
rad Tr c r 1	p3r

8

r

^K
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with

h= r x I (r v/c) x v'	 (56)

For the purpose'of Identifying the sources of the radiated field It is convenient to express h in terms

of the channel curvature and arc length. The velocity and acceleration can be written in the forms

(Hay, 1953; Stoker, 19691

V(u) = s' j 1	 (57)

v'(u) = s" j 1 + K s'	 (58)

where s is the arc length along the filament and s'= ds/du, s" = d 2s/du' where u = t — r/c r. The

unit vectors j 1 , A and A are, the tangent vector, principal normal and binormal to the filament,

respectively, and form a right-handed orthonormal basis; the quantity K is the curvature,

Substituing (57) and (58) into (56) gives

h= K S' r x [(r x j,)) — s' 3/c] + S"( r x (r Xi l))	 (59)

As in the case of a single charge, two sources of the radiation field can be distinguished (Pano fsky

and Phillips, 1962; Jones, 1964] . if the speed of the charges is a constant v o , then s' = vo and

s" = 0 so that

h= K vo2 tll r x F x j) (vo/c) j 31 	 (64)
l

i.e. the integrands of (54) and (55) are proportional to the channel curvature. On the other hand, it

the channel is linear, then K 0 and

i
h = s"rx(r xjl )	 (61)

l

For this case, the integrands are proportional to the rate of change in the speed with respect to the

time t -- r/c — r. Finally, if channel is linear and the speed constant then the radiated fields are

zero,

9
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For the case of a linear filament the Integrals In (54) and (55) can be evaivated in an approx-n
imate manner if certain restrictions are placed on the speed of the charges. Letting p be a constant

vector along the direction of propagation, then the velocity appearing In the Integrals of (54) and

(55) can be written as

A

	

V(u)	 Q v(u)	 (62)

A
where u - t r/c — r. Since V(u) Q V(u), then from (56) and (62)

h +* r x (r x Q) v'(u)	 (63)

Making the change of variable w = v(u) and using the fact that

dr/dr = r , v/p	 (64)

where r is defined by (20) and (22) and p by (25), then

v'(u)dr =	 p dw	 (65)

y
If (63) and (65) are substituted into (54) a simpler integrand results. In general, the integral cannot

be evaluated because t and r are functions of w, If it is assumed, however, that at the bottom end

point of the filament the charges are accelerated from rest to a constant velocity v o over a distance

much smaller than rb and further that u -- 0 (and therefore 4,r) --v t(t — rb/c)) over this same distance

then (54) can be written approximately as

rbx(rbXQ)	 ^vo	 A
Erad(x, t) =	 cf t -- rb/c)	 (1	 rb Q w/c)-'- dw	 (66)

41reo rbe2 	o

At the top of the channel a similar contribution is made by the deceleration of charges from vo to

rest over a distance small in comparison with r t . This contribution and (66) can be integrated to give

Erad(x, t) 	
4rreoc

- oc2 ,S t(t — rb/c) rb x (rb x 2)/pb rb — t(t — rt/ c — tm) rt x Crt :: Q)/ ptrt t (67)
,	 j

'	 10
k ^

y
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Similarly,

H rad(x ' t) : —'o';t(t rb/c) cb x Q / pbrb — t(t — rt/c	 — tm) rt x Q / ptrt
	

(68)

where

Pb	 1 — (v o/c) rb • ^^^
	

(69)

pt a 1 — (v o/c) r t 	 lz	 (70)

and tm is file channel length divided by vo.

The fields given by (67) and (68) are appropriate to a current pulse, having a rectangular

velocity versus time curve, which propagates along a linear filament. Results similar to these and in

the latter reference identical to them, have been derived by several different approaches (Uman,

1973; Uman et al., 19 78; Le Vine and Meneghini, 1978a] . The electric field signature predicted by

(67) is a familiar one. For times greater than r b/c but less than t m + rt/c, the magnitude of Erad
,^	 n

is proportional to the current waveform c(t — r b/c) with a polariza0rai given by rb X (orb x k). For

times greater than tm + rt/c, each component of the field is a weighted sum of the current wave-

form with a time delayed and inverted image of itself. It is worth noting that as v o approaches c
and if 1 — rb • Q # 0, I — rt R 0 0, then the induction terms of (33) and (34) tend to zero and
previously derived expressions for the total electric and magnetic fields are recovered* [Le Vine and

17 gneghini, 1978a] .

Equations (67) and (68) can be used to approximate the radiation fields for a current wave-

form traversing a piece-wise linear channel comprised of n elements of lengths L 1 , . , .,Ln and direc

tions 2 1 , . , ., Q n , where the speed of propagation of the current waveform is

v(t) = v o (U(t) - U(t — 1 L1/vo)]

and where U is the unit step function.

The electric field, for example, is simply the sum of individual terms of the form of (67)

(Le Vine and Yleneghini, 1978b] and can be written

*The static terms of the two solutions can be matched if the same boundary conditions are used.

fi^



ORIGINAL rlh^X21 r 1
OF POOR QUALITY

Erad(x. t) _	 v° 2 l t(t — rb/c) b x (rb x Rl)/rbPb
4aEQC

+ E
1 	 L(t •- ri/c Tj) 

r x Frj
j 	 x Qj+I — x "'j

j= I	 rj	 P((i, j+l) 	 PG, J)

t(t — rt/c — Tj) n	 n
—

	

	 rt x (•rt x Qn)	 (71?
rcpt

where rj is the distance from the jth channel transition point to the observer and

Tj	= k I Lk/vo	(72)

p(i, j) = 1 — (v .o/c) (ri • Rj )	 (73)

Note that rt is the distance from the top of the nth channel segment to the observer, while r b is the

distance from the bottorn of the first segment to the observer.

Terms in the summation of (71) correspond to radiation arising from the channel transition

points. It is not obvious that these contributions are identical to the limiting form that would be

obtained from (54). By "limiting form" we mean the field produced under conditions of a cu.n

pulse of constant speed and a channel geometry in which the curvature is non-zero only near isc

lated mi.,asition points. Unfortunately, we have not been able to carry out the integration of (5^

this limit. Numerical comparisons between (54) and (71) are discussed in a subsequent section

of this paper.

Channel Geometries

a)	 Channel tortuosity: hyperbolic channel

One of the simplest continuous and differentiabo channel models that can be used to st

	

+	 the effects of curvature is the hyperbola. In addition to its analytic simplicity, it also lends itsel

a comparison of a two element piece-wise linear channel model if the elements are chosen to coi

cide with the asymptotes of the hyperbola. In fact, if the equations for the asymptotes are give

then there exists a family of hyperbolas having these asymptotes which includes the degenerate

	

R^	 12

P

u
^r
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of the piece-wise linear channel, i.e. the asymptotes themselves. Since the curvature of the channel

is the change in an gle with respect to arc length, the integrated curvature of any hyperbola depends

only on the angle subtended by the asymptotes *, This property provides a co ►lvenient way to quan-

tify the effects of curvature on the radiated field.

Assuming that the hyperbola lies in the x-z plane with the transverse axis along the x axis

and with a origin displaced along the vertical (z) direction, then

X2	 (z — d)2 	(74)

a2 _ b2	
1

In the subsequent discussion and in the numerical results, we choose the 0 < z < 2d segment of

branch of the hyperbola for which x > 0.

The square of the speed, v, of a charged particle moving along the hyperbola is

V2(t) = (dx/dt)2 + (dzl dt)2 	 (75)

To rind the trajectory of the charges (or, equivalently, the trajectory of the current waveform) as a

function of time, (74) is differentiated with respect to t. Squaring the result and using (74) and (75)

to eliminate x  and (dx/dt)2 gives

^f	 1/2
(z — d)2 + y"	 dz =	 bv(t)	

i
dt	 (76)

(z — d)'- + b 2	 (a-' + b'-) 1/2

where

i
Integrating (76) from z(0) to z ( t) yields [Gradshteyn and Ryzhik, 1965 J

t	 ^	 I
vo 1 f v(t )dt _ to + c 1 sgn (z — d)7b F (R 1 Q) — b E(p 1 q)

I'.

/2

+ 1z — dI	
b 2 +(z — d)` 1	 I'

	

(78)	 F'
y= + (z — d)2

*Since the channel model uses only a finite portion of the hyperbola, this statement is not strictly 	 f

	

correct. For the parameters used in the numerical calculations. however, it is a good approximation. 	 t
a
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where F, E are elliptic integrals of the first and second kind, respectively,

F(0, k) - f (1 — k2 sing x)-1/2 dx 	 (79)
0

E(0, k) = f0
	

1/2
	(1 — k- sin` x)	 dx	 (80)

The constant time, to , is given by
4

to = c1 b F(P2, q) — b EOM , q) + d b , + 
d	

/	 (81)y-+d-

with

	

cl = (a2 + b2) 1/2 /vob	 (82)

q = a/(a2 + b2)1/7,	 (83)

	

0 1 Tan— l (Id — z  /b)	 (84)

9 2 = Tan-1 (d/b)	 (85)

and	 sgn(x) = 1 x > 0

	

l x < 0	
(86)

The constant vo , defined below, has dimensions of velocity.

To complete the specification of charge motion along the channel, the speed and acceleration

are assigned so that they are zero at the channel end points and continuous everywhere. Choosing
the speed to be a cubic polynomial in t both for 0 S t < t

1 and t2 < t	 tm and an exponential
for t 1 < t < t., provides a sufficient number of constants to satisfy these requirements. Mote
that tm is the time taken for a charge to transverse the enti channel. One reason for choosing this

particular model is that it allows us to obtain approximations to the velocity versus time curves com-
puted by Leise and Taylor (1977).

f

> The result is
n

q'.

14
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vo(t/t 1 )2 (a 1 + a 2(t/t 1 ))	 0 < t < t 1

	

V(t) =	 vo e — P(t — t 1)	 ti < t < t 2	(87)

vo((t — tnl)/tf)2 (a 3 + a4(t tm)/t f) e— P02 — t 0	 t2 < t < tm

where vo = v(t 1) is the maximum speed and

tf = tm — t.,	 (88)

a l = 3+Pt l ; a,) =-- 2—Pt l 	(89)

a3	 3 — Qtf ; a4 = 2 — Ptf	(90)

Expressions for the z components of the velocity and acceleration can now be found from (76) and

(87)

v =	 dz/dt	 bv(t)	 (z d)2 + b2	 )1/2	
(91)

	

z	 (a2 + b 2) 1 /2 (z — d) 2 + y'-

"=
2 _ v '(t )vz + (bv(`t))2 (z — d) (y2 — b2)	

(92)v z	 d z/dt 
V(t)	 (a'- + b 2) ( (z — d)2 +,y2)2

where v'(t) is determined by differentiating (87). Equations for x, vx, VF  are derived from (74) and

(75) by a similar procedure. Since x is more conveniently computed from (76). the results are given

here only for vx , v'x which are

av(t)	 x2 a2) 1/2
vx = sgn (z — d)

(a'+ b2 ) 1/2	 x- — a-

v' 
_ v'(t)vx + (a v(t)) 2 (a- — v")x

X
V(t)	 (a'- + b 2 ) (x2 — a2)2

with

15
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The foregoing equations can now be used in (33) and (34) to generate the fields for arbitrary obser-

vation points and times. Since the evaluation of the integrals is somewhat complicated and since

simplifications are possible, it is worth indicating how the calculations are made,

To find z as a function of t, equally spaced values of z are taken from 0 to 2d and the corre-

sponding value of t is obtained from (78). To express z in terms of equally spaced time intervals, a

linear interpolation is performed. The x(t) value is then found from (74) with x > 0. Once x(t) and

z(t) are known, the velocity and acceleration are computed from equations (87) and (91) through

(94), These quantities then determine f (t), f (t), f'(t).

As indicated earlier, for each sample point r in the numerical integration of (33) and (34), r

can be found from the equations

r = Ix —x' 1	 (20)

with

X, _ f(t — Ix — x'I/c — r)	 (22)

An easier way to evaluate r is possible, however. Letting
ti.

X' = f(T)	 (96)

then (22) can be written r

f(T) = f(t — Ix — f (T)I/ c — r)	 (97)

The function f is assumed to be one to one so that the arguments of f can be equated:

T = t — Ix—f(T)I/c — r	 (98)
I
r

	Since t, x and f are known and r is fixed, (98) can be solved numerically for T. From T, x' is found 	 j

from (96) which determines, in turn, r, v and v'

b)	 Linear Channel Model

V(t)For the case of a linear channel, the specification of f(t), f (t) and f" (t) is straightforward.

Letting 	 _g (x 1 , 0, z l ), (.x^, -0, z.,) be the bottom and top end points of the channel then the equation

16
^	 I
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for any point (x, 0, z) on the channel is

z—z1=s(x—xl)
	

(99)

where

s = (z,) — z I )/(x2 — x 1 ) ; X2 O x l
	

(100)

Solving for x and z as a function of the time t yields

X(t) = X1 + (1 +s2) —1/2 fo t v(t) dt
	

(101)

z(t) - z I + s(1 + s" ) —1/2 

fo
t v(t) dt	 (102)

These equations determine f(t) _ (x(t), 0, x(t)); V (t) andf"(t) are then obtained by successiv e differ-

entiations. Note that if x  = x 2 , z(t) can be obtained from (102) by letting s 	 As in the hyper-

bolic channel, the speed v(t) is assumed to be given by (87),

Numerical Examples

The cases presented illustrate some of the characteristics of the field solutions given by (33)

and (34). In all examples, the observer is located on the surface of a perfectly conducting plane;

thus, only the normal electric field and tangential magnetic field are non-zero, The current waveform

is assumed to be

t (r) = 30,000 (e—.04r — e— 2-,)	 (103)

where r is expressed in microseconds and t (r) in amperes. In all figures the quantities v o , t 1 and t f

in (87), (88) are taken such that v  = c/3 and t  = t f. Each curve consists of 400 equally spaced

samples in the time domain. The CPU time required for a representative curve is approximately 40 s

on an IBM 3081.

To show the effects of,changes in speed independent of the channel curvature, a linear chan-

nel model is used. Examples are shotm in figures 1 and 2. For both figures the channel is vertical

17
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with bottom and top end points at x = y = z = 0 and x = y = 0, z = 4 km, respectively. The observer

is located at x = 100 km, and y = z = 0. In figure 1 the curves A, B, C correspond to values of t I , as

defined in (87), equal to 16, 8, 2 As respectively, In all cases 11= 0, Curve D was generated by means

of (67); all others from (33). As mentioned earlier, curve D represents the field in the limiting case

t I -+ 0 and is proportional to a sum of two current waveforms where one is displaced in tim,F and in-

verted with respect to the other. Increasing t 1 has two effects: the curves are 'stretched' and the

peak amplitude of the field is reduced such that the time integral of the magnitude of the field re-

mains approximately constant. It should be noted that in the case of a linear filament (67) has been

shown to approximate (33) well as long as t  is less than abou t 1 µs, This remains true for different

channel orientations and propagation speeds, vo.

In figure 1 the parameter p as defined in (87) equals zero. in figure 2, t 1 is fixed at 4 As

while ¢ is varied .. The curves A, B and C correspond to values of p equal to 2 x 104 , 1,5 x 104 and

104 s_ 1, respectively. The speed versus time curves for these cases are shown in the inset. Since

t 1 and the maximum velocity, vo , are constant, the peak field occurs at approximately 4 As in all

cases.

r^

Increasing Q tends to narrow the width of the waveform and to decrease the positive over-

shoot. This latter effect is caused by a decrease in acceleration near the channel top; for example,

at p =104 s--1 the charges must be decelerated from v = 6.3 x 10 7 ms-1 to zero within 4 us while

fo:,ro = 2 x 104 s- 1 they are decelerated from the smaller value v = 2.5 x 10 7 ms-1 to zero within

the same time span.

To explain the narrowing of the initial portion of the field, note that for p 0, charge accel-

eration at the channel bottom produces a negative z directed field. For p 0 0, the charges, having

reached their maximum velocity, are then decelerated, i.e., v'(t) = — ge —Rt , which results in a posi-

tively directed E z . The total field, therefore, is the sum of negative and positive z components, the

latter contribution beginning 4 As after the first. The result is that the width of the negative portion

of the waveform narrows as p increases. It should be noted that the field signatures given by curves

A and B are qualitatively similar to the radiated waveform proposed by Leise and Taylor (1977),

This is not surprising since we have essentially proceeded in a reverse direction by starting with a

velocity curve qualitatively similar to their derived curve and then using this to compute the field.

To study the effects of tortuosity on the fields, the speed of the current waveform is chosen

to be a constant, vo , in figures 3 and 4. i.e., t I = 0, t f = 0 and Q = 0 in (87), This situation is not the
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same as obtained by taking the limit t l = tf -► 0 which yields radiation fields of the form given by

(67), Rather, the assumption is simply used to eliminate the sources of radiation from the ends of

the filament and isolate curvature effects.
•

In figure 3 are shown three curves of the z component of the electric field for an observer at

• x = 100 km, y = z = 0. The channel geometry is a hyperbola, given by (76), with x > 0, 0 < z < 3 km

(d = 1,5 km) and a = b. Curves A, .B and C correspond to values of `a' equal to 500, 100, and 20 m,

respectively. The channel geometries are shown in *he inset. Since the ratio b/a is constant the

asymptotes of the channels are identical and therefore the total integrated curvature of each of the

channels is approximately constant, As `a' decreases the field is seen to tend toward zero for times

less than 25 µs After 25µs the shape of the curve C corresponding to a = 20 m is similar to the cur- r
rent waveform. This behavior can be qualitatively explained by noting that as 'a' decreases, the

only portion of the channel where significant charge acceleration occurs is near the `bend', i.e,, the

apex of the hyperbola. In the limit of small `a' the radiation field, (which is the dominant contrib-

utor to the total field at this distance), originates entirely from this point and is proportional to the

' current waveform, L. Several examples were run for `a' less than 20 m, down to a ,minimum of 2 m.

The corresponding field change, however, is small.

Figure 4 shows the effect of changing the slope of the asymptotes. The channel geometry is

again given by (74) with ,x > 0, O< z < 3 km but now with a =2b. Curves A, B. and C correspond
4

to values of `a' equal to 500, 100, and 20 m. Notice that amplitudes of the field are increased as }

• compared to those of figure 3. This is reasonable in the sense that the integrated curvature of the t

channel has increased over that assumed in figure 3. Since the integrand of (54) is proportional

to curvature for the v = v o case then, in general, larger fields can be expected.

The combined effects of channel curvature and linear acceleration on the electric and mag-

netic fields are shown in figures 5 and 6. For both figures the channel geometry is hyperbolic with

x > 0, 0 < z < 3 km and a = b = 100 m. The velocity is again given by (81') with g = 0 and t l = 2µs. j

x Curves A, B and C correspond to observer distances of l km, 10 km and 100 km along the x-axis.

For curves A and B in figure 5, the static contribution is evident. This is a consequence of the

simple. charge transport model used and represents the .accumulation of charge at the top end of

the channel. Since the bottom of the channel is on perfectly conducting plane, the static con-

tribution from this endpoint is zero. For the magnetic field, plotted in figure 6, the static contri-

bution is, as shown by (34), zero.

.{
er
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A number of numerical comparisons were made between the Fields predicted by the pie R e-

wise linear representation of (71) and the Lienard-Wiechert solution of (33), The comparisons

were .Wade in the far field and therefore (33) and (54) are essentially the same, To make the

geometries as close as possible n, in (71), was set equal to 2 and for (33) a hyperbolic channel

was chosen with parameters `a' and `b' as small as possible without incurring sampling errors. In

addition t i a: tf. in (87) was chosen to be small to approximate the delta function acceleration at

the end points inherent in (67) and (71), As indicated earlier, the radiation arising from the end

points of the channel are in good agreement for the cases considered. On the other hand, the fields

arising from the channel transition points showed differences which generally increase with increas-

F	 irig channel curvature. For example, when the curvature is small, 2a = b, the two solutions are in

`	 good agreement. At a = 2b, however, the ratio of the Lienard-Wiechert to the piece-wise linear

solution is approximately two for v o betwe°en c/10 and x/1.25. As noted before, we have been un-

able to analytically evaluate (54) in the limiting case of a piece-wise linear channel. Some qualita-

tive understanding of the differences between (54) and (71) can be gained, however, by noting that

in deriving (71) the velocity and acceleration were assumed to be colinear and therefore the term

h I r x (v/c x v') in the integrand of (54) was zero. On the other hand, as we let the parameters

`a and `b' in the equation for the hyperbola approach zero, the geometry will tend toward a piece

wise linear channel. in general, however, h I will be non-zero and therefore will contribute to the ,
Lenard-Wiechert solution.

Discussion and Conclusions
,k
1i

!i
K

`

	

	 A form of the Lienard-Wiechert solution has been used to determine the electric and mag-

netic fields associated with a commonly used lightning return stroke model. An apparent advantage

of this form of solution is that parameters of the current waveform can be assigned independently

of the channel geometry, Because of this, a class of geometries can be studied in the context of the

same return stroke model. For example, one type of geometry that can be analyzed is a cubic spline

approximation to photographed lightning channels.

Y	 R

Effects of linear acceleration and curvature were studied by means of two simple channel

geometries; the linear and the hyperbolic. For the special case of a linear filament and a rectangu-

Jar velocity versus time profile, the solution is in good agreement with previous work. Significant

changes in the signature appear, however, when the shape of the velocity profile is altered.

i	 20	 ,
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In the case of the hyperbolic filament, the radiated fields are functions of the curvature, ob-

server location and current waveform shape. Only in cases where the non-zero curvature is concen-

trated about a small segment of the channel do the signatures approximate the current waveform

shape, Preliminary numerical results also have shown that If the velocity profile of the current wave-

form is rectangular and the non-zero curvature occurs only near isolated points along the channel,

then the Lienard-Wiechert and the piece-wise linear representations are in fair agreement in many

cases. In particular, the two solutions give nearly identical results for the radiation arising from the

channel end points. As to the radiation .from the channel transition points, discrepancies between

the two solutions are observed that become more pronounced with increasing ^hannel curvature.

One of the reasons for the differences appears to be the assumption used in deriving the pieca-wise

linear solution: 'that the velocity and acceleration are colinear.

It should be mentioned in conclusion that several other issues pertaining to the Lienard-

Wiechert representation have not been answered: whether the field given by (33) is equivalent to

the Panofsky and Phillips solution as applied to the return stroke model by Leise and Taylor (1977);

and whether a form of the Lienard-Wiechert representation can be derived for more complicated

models of the return stroke (Price and Pierce, 1977; Lin et al., 19801.
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APP 1,5NDIX — CALCULATION OF THE FIELDS
i

The,,  electric E and magnetic H fields are given by

H = =V x A	 (A3)^o

where 0 and A are, from (15) and (16),

4rre	 3o _ 3 , 
4(r̂  o (^ dt' dr

	

z t	 r	 (A3)

i(r) f'(t' — r) d (t' 	 (t -- r/c)) dt' dr

r to	 r

with

r = I x —f ( t o —r) I	 (AS)

The limits of integration on to and r are ( 	 00).

Taking the gradient of (A3) and interchanging the order of integration and differentiation yields

41re o 7o = J t(r)1 IA(r) + 1 B(7)) dr	 (A6)
r

where

1(r) _ —	 1 6 (t' — (t — r/c)) dt'	
(A7)

to
rr

iB (r) =	 1 76 (t' — (t — r.!c)) dt'	 (AS)f r

	

to
	 -

k	 By an application of the chain rule V6 (t' — (t — r/c)) can be written as

i^•
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S'(t' — (t — r/c))/c where the prime on the delta function denotes differentiation with respect to

Its argument.

Following Jackson (1962), the change of variable w = t' + r/cis made in (A7) and (AS).
r	 From (A5) we find that

}	 dw/dt' = 1 — v - r/c ss p	 (A9)

with

V = f'(t' — T)
	

(AW)

Equations (A7) and (A8) become

IA(r))_ --	 r 8(w — t) 
dw	 (A11)

pr2

B(T) 	 r 6(w —) dw	 (Al2)
prc

I A(t) can be integrated immediately to give

IA(r) _ — 0/pr2)0	 (A13)

where the subscript o means that all variables within the brackets are to be evaluated at t' = t — r/c,

Explicitly,

r = Ix — x'I	 (A 14)

}
p	 1 — v i/c	 (A15)

with
y

X, — f(t — Ix —x`( /c — r)	 (A16)	 i

y
v	 f'(t	 Ix —x'I /c r)	 (A17)	

I
t
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Integrating (Al2) by pasts gives

jj 	 pcc 
o
	

(At 8)1

Using the Facts that

	

d (P).P-1 
d r	 (A19)

dw pr	 dt' pr

dt'(pr)—I
	 (pr)-2 v" —

v o r
— r r v (A20)

G	 c

.1

	

'	
.- r' I (v — r(v e)

	

dt	
)	 (A21)

then

JB r)	
f 3 r 

1 r (v2/c — v • it -- r r i V/ c) + (v _ r(v ' A))p	
(A22)

1pc	 o

From (Ab), (A14) and (A22),

4rre oD0 = f i(r) J 1	 r (v2/c — v • rr — r
A

. v'/c) + p(v i(v • r))	 dr (A23)
r	 ,p3r2c	 o

The calculation of 3A/at follows closely that for D0. The result is

2
4aeoc Wat = f i	

p3
(r)	 1 

r'
2 ^ ply' — v v 2/c — v • r — r r • v'/c	 dr	 (A24)

o

Insertin g 00 into Miat into (Al) and using the identities

r x (r — v/c) x v' = r • v' ®r -- v/c) — v' p 	 (A25)

(r v/c) (1 (v/c) 2 ) = r p' — p (v — r (v • r))/c — (v
2
/c — v r) ( _ v/c)/c	 (A26)

then

I B(r)

'.1

yi

t'

Y

i.

i
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^x

E (x, t)_ 4rr 	 r^ (r) (F1 + F2)dir
a J

`	 where

F l :	 , 0 — V/c) (1   (V/c)2
x	 f p3r2	 0

E;

F2	 =2 "r x (dr, — V/0 x v')
p c r 	 ^0

[
To obtain the magnetic field, the curl of (A4) is taken which gives

M

4treac2 OX A(x, t) _ --^i (r) (ic(r) — Id(r)) dr

where

IcCr) = r f'(t^ s'(t' — (t — r/c)) dt'
3 	 rc

I^(r) =f f'(t— 1	 rr a ( t , —(t — r/c))dt'
r^

N	 Proceeding as before ar,d using (A2) and the identities

— r x ) r x ((c — v/c) x v'] = r x J (r • v')v/c + pv'

{ S

— c3r x [ (r — v/c) (I —v'-/c2)J	 (v x'r) (v'- — c2)

(A27)

(A2$)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

then
i

H(x,t) = o
	

c (r) 1rx (F 1 +F,)	 dr
47r ,!	 -	 0

To simplify the notation in the text the subscripts o have been omitted.

25
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