General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

frys (yISA) 26 pec 103/41 101 cscl 04s
 NMSA
 Technical Memorandum 85114

484-11659
unclas
$63 / 47$ 42442

FORECASTING TROPICAL CYCLONE RECURVATURE WITH UPPER TROPOSPHERIC WINDS.

R. Cecil Gentry

NOVEMBER 1983

National Aeronautics and
Space Administration
\section*{Goddard Spece Filght Center}
Greenbelt. Maryland 20771

TORLCASTING TROPICAL CYCIONE RECURVATURE WITH UPPER TROPOSPRERIC WINDS

R. Cecil Gentry
Department of Physics and Astronomy Clemson University
Clemson, SC 29631

November 1983

Contents

Page
ABsyract 1

1. INMRODOCTION 3
2. DARA 5
3. 3Tsutis 9
4. 085 OF CLOUD MOTION WINDS 12
5. FORECASTING CHANGT IN DIRECTION OF FORNARD MOVEMENT OF BURRICANE 14
6. DISCUSSION OF RESULTS AND ERRORS 19
7. ACNONLEDGEMENTS 21
8. REFERMCES 23

Tables

Table Page

1. THE STORMS AND THE DATA 6
2. RESULTS FOR FORECASTING CHANEE IN DIRECTION OF
MOVEMENT 18

FORECASTING TROPICAL CYCLONE RECURVATLRE
 WITH UPPER TROPOSPHERIC WINDS

by

R. Cecil Gentry
Department of Physics and Astronomy
Clemson Universicy
Clemson, S.C. 29631

ABSTRACT

Data from 17 tropical cyclones during the 1974 through 1979 hurricane seasons are used to investigate whether the high level winds far to the northwest, north and norcheast of the hurricane center can be used E2 predice whether the hurricane track will recurve. It was found that wisen the mean 200-mb winds at about 1500 to 2000 km northwes and north of the storm center equal or exceed $20 \mathrm{~m} / \mathrm{s}$ that SO per cent of the storms recurved before traveling as much as 12 degrees of longitude farEher west. The high level winds were aiso used to predict change in direcion of forward motion during the nexz in hours. The regressing ectuations dereloped explains up to 41 per cent of the variance in future direciion.

In adiition to the geostrophic winds used in these results, winds were aiso obtained jy =racking clouds with successive sateliite imagery. The u-components of the sarellite wincis are nighly correlated wizh the
geoscrophic winds at $200 \cdot m$ and could probably be used instead of them when available. The v-components are less highly correlated. In fact, in many of the cases when the hurricane was recurving, the v-component of the satellite winds greatly exceeded the v-component of the geostrophic winds. Absence of clouds that would make suitable rargets for obraining high ievel winds in the area 700 to 1800 km north of the hurricane occurred only with non-recurving storms and suggests that absence of clotis implies prosence of circulations that would inhibit recurvaEure of storm Erack.

ORICINAL PAGE IS OF POOR QUALITY

1. Introduction

This research was designed to rest the hypothesis that the strength of the west winds in the upper eroposphere 500 to 2200 km northwest, north and northeast of the hurricane canter could be used to predict whether and when the hurricane would recurve and to determine if the Winds derived from tracking of high level clouds by successive satellite imagery could be used to define the wind fields needed for this research.

George and Gray (19:-) using 10 years of composited Western Pacific :awinsonde data had found a strong relationship between tropical cyclone recurvature and the upper tropospheric (200 mb) wind field at large distances norch and northwest of the storm center 12 to 60 hours prior to recuivature. Their results indicated that the stronger the west component of the winds, the more likel: the storm was to recurve. See figure 1. Their rook, however, did nor nvestigate the response time between a given upper \quad ropospheric wind field and the time of recurvarure, distance the rropical cyclone ravels before recurving afier a given upper Eropospheric wind field is observed, the percent of individual cases in which recurvature is observed for a wind field of a given intensity or whether the relationship held for Atlantic/Gulf of Mexico recurving and nonrecurving tropical cyclones. In addition to seeking answers to these questions, in is research used the S:IS/GOES digi=ized data to track clouds to derive winds at the level of the high clouds around a hurricane to see if these winds could be substituted for rawinds. If so, Ehis would Eacilitate improving hurricane forecasts in areas of sparse conventional upper air data.

ORIGINAL PAGE 18 OF POOR QUALITY

Fiq. 1. Compolted 200 sb ulad direction and epeedes Por nanracurving storas (top), zecurving ntores (middia) and nonzecurving elnus recurving difference (botzon) for 60 hours prior to recurvature. Diseance ba degrees of latitude (after George and Gray, 1977).

ORIGINAL Page in
 OF POOR QUALITY

In addition to the work of George and Gray, Guard (19i7) tested the hyporhesis with Wostern Pacific storms. His work and that of Chan et al. (1980) sugsested that results would be improved if one either typed the storms before applying the hypothesis or included data in addition to the u-components of the 200 mb winds.

2. The Daca

The satellite winds were derived by tracking clouds after looping successive imagery on the Atmospheric and Ocesnographic Information Processing System (AOIPS) located at NASA/Goddard Space Flight Center. Using imagery at 30 -minute intervals (in a few cases the imagery were at 15 -minute incervals) winds were obtained for the tropical eyclones and the periods listed in Table 1. The high level clouds were eracked over large areas ranging out to 2500 km northwest, north and northeast of the hurricane centers. In most cases the clouds were believed to be representative of the winds in the layer between 300 mb and 200 mb . For many of the cases clouds were tracked using both the infrared and risible imagery.
litnds derived by tracking clouds are of necessity limited to the times and places where there are suicable clouds to serie as targets. The decision was made in the beginning, thereiore, to supplement the satellite winds with ocher data. Rawins and winds measured by high Elving aircraft were used when available. These however, were irequently nor found in the desired areas. It was decided, therefore, to calculate the geostrephic winds to insure there would always be some winds over the entire area to be analyzed. Tabulations of the rawind and aircraf= reconnaissance winds were obrained from the lational hurricane Ceater at
trele 1
Win Bate Amenilet - thmeer of Perton

Yers	$\begin{aligned} & \text { srepient } \\ & \text { Syelane } \end{aligned}$	Bngurut	$\begin{aligned} & \text { Migh tevel } \\ & \text { clowlt } \\ & \text { Trietic } \\ & \hline \end{aligned}$	$\begin{gathered} 200 \text { m } \\ \text { ooonteronie } \\ \text { Whad } \\ \text { calenisten } \end{gathered}$	$\begin{gathered} \text { Treek } \\ \text { in } \\ \text { Prexix } \end{gathered}$
1974	carmen	Yet	17	19	2
1975	carelime	mo	4	3	3
	21eter	Yep	14	16	2
	Faye	Yes	5	14	4
	c1epr	Yes	5	21	4
1976	Selle	Yee	7	8	2
	2mb	Yees	13	22	2
	clerta	Yes	10	12	2
1977	Anfe	m	6	*	3
	Bate	Yet	6	6	3
1978		Yen	4	0	3
	Thessie	Yes		20	3
	Gree	No	1	10	3
	Julies	Yet		6	3
1979	Davit	Yea	7	16	4
	Fruderiek	Yea	2	23	4
	ciouta	Yes		21	4

Miami along with microfilm copies of all cheir maps for the storms to be studied. Microfilm copies of the maps prepared by the National Yeteorological Canter ware also secured. Using the latcer the geostrophic winds and theif u- and v-componente ware compured from the 200 mb maps and the data were plocted on work charts.

The storms chosen for the study, and the periods for which the satellise winds and the geoscrophic winds were obtained, are all listed in Table 1 , and their eracks are illustrated in Figures $2-4$ as indicated in the right column of the Table. In addition, Table 1 Indicases which of the storms recurved. Data have been collected from 17 storms during the years 1974 through 1979. Only three of these storms failed co recurve, but st:eral of the others had periods where the threat of rerurvature seemed real at the time forecasts ware made and the sterm did not resurve until much later. These can be considerad non-recurvature cases. Thus, the number of situations of recurvature and non-recurvazure are fairly evenly balanced. In this study recurvature was defined as having occu:red when the storm motion changed from one with a component coward the west to one where the motion was toward the north or (as was :rue in most cases) to one with a component toward the east.

After the gecstrophic and satellite winds were calculated, the uand v-components were ploted on regular maps. Examinazion of these maps and compaisisons of the components with the eracks of hurricanes for corsesponding periods showed a good correlation between strong u-components norfhees through northeast of the storm and recurvature of the s:ormtrack du:ing the nex: do hours. To put aumbers on ou: relations, a poriton oi a polar grid was superimposed on the maps with the center on
the surface position of the hurricane and with arcs drawn through the northern quadrancs at 10,15 and 20 degrees of latitude radial distance from the hurricane centur. Azimuth lines were than drawn at 315°, $337.5^{\circ}, 360^{\circ}, 22.5^{\circ}$ and 45°.

Thase arcs and azimuthal lines outlined several sectors that could be examined individually. Note thet in Figure 1 the data of George and Gray showed large diffe, ses in the 200 mb winds between recurvacure and non-curvature cases in the sectors between 10 and 20 degrees north of the storm. For recurvature situations the westerlies at 200 mb extended sonthward to within about 10 degrees of latitude of the hurricane center. he computed tor each of our time periods u- and v-componenis for various of the sectors. In thas paper, herisier, when there is a reference co an average (unless specified ocherwise) the average will De for daca becween 15 and 20 jegrees radius ard between azimuchs of $315^{\circ}-360^{\circ}, 337.5^{\circ}-22.5^{\circ}$, and $360^{\circ}-45^{\circ}$. These sectors will be referred to respectively as norchwest, nerth and northesse sectors. duerajes were used partiaily for convenienca, but mostly to smooth the dara and to derermine she selacionship berween th, sacellite and geoscrophic winds. As will be discussed later chere was a racher high correlation between the eic sers of winds as long as comparisons were meje between spatiai averages.
-i. The Resules
All the recurving storms hed mean u-components in northwest and
neren seciors equal or greater than $20 \mathrm{~m} / \mathrm{s}$ for swo consecurive 12 -hou;
pe:iods cisher at the ine of recurvatire or up to go hours prior so
recurvature. lione of the stcras which did not recur:e had such steng
hinds with the exception of Anita (1977). Anita, however, had an antigyclonic buffer zone berween the hurricanc cencer and the strong westerlies far to the norch. There was a large area north of the strong cyclonit circulation around the hurricane center where there were no westerlies evident either in the cloud winds or the 200-mb geostrophic winds. Note in Figure 1 for the recurving storms that the westerlies are continuous to within about 10 degrees of the hurricane center at 200 mb. The cloud patcerns north of Hurricane Anita ar high levels clearly showed chis anticyclonic circulation between the center and the belt of strong westerlies farther to the north. Evidently it shielded the storm from influence by the strong westerlies.

In some cases where the hurricanes recurved more than once, the Wind situation was very complex, and there are indications that in some of these cases the recurvarure rule did not hold. These will be discussed later. But in general, for the major recurving periods, each one was forecasted correctly br the following rule: then the mean u-component of the genstrophic winds at $15-20$ degrees radius (1650 and 2200 km) berween azimuths 315° and 22.50° are $\geq 20 \mathrm{~m} / \mathrm{s}$ and when chere were also westerlies at 200 mb between 10 and 15 degrees $=a d i a l$ distance berween Che same azimuths, expect recurvacure. In mose cases studied it came within 12 to 48 hours, anc in all cases recurvature occurred within 96 hours.

A more objective manner of expressing the results is to measure how many degrees of longitude a hurricane will move kestward after the defined strong wescerlies have been ooserved. Eor che tícases in this study, the acidizional iestinad movements of tine individual storm centers
after the strong winds were observed were only $2.5,2.5,3.2,5.0,5.3$, $6.0,6.0,6.5,6.9,11.0,11.5,14.8,14.5$ and 15.0 degrees of longrude. That is 64 per cent of the storms raveled less than 7 degrees of longitude farther west and 79 per cent of them traveled less than 12 degrees farther west. None of the storms traveled more than 15° of longitude farther westward after the winds met the stated criteria.

Some of the hurricanes that had multiple turns in their tracks seemed to support the hypothesis and some seemed to be exceptions. Hurricane Carmen (1974) recurved from moving west-northwestward to moveing northerly on September 3 and 4 (Fig. 2). This recurvature was pereceded by the strong westerlies. Although the westerlies continued strong, on September 7 and 8 instead of the tract turning more northeasterly it turned northwestward. The storm simultaneously moved inland and dissipated. This change in direction of movement cannot be accounted for by the hypothesis. A probable explanation is that as the storm weakened it was influenced much more strongly by circulations at lower levels than by che $c i$:ulcion represented by the winds at 200 mb .

Hurricane Faye (1975) offers an interesting semi-verification of the hypothesis. On September 23 and 24 the storm movement changed from westerly to northerly and continued moving northerly for about 34 hours (Fig. 4). Then the movement reverted back to the northwest. The storm was rather weak at the initial turn and the westerlies to the north were quite weak. Lacer the direction of motion changed from north-northwest to north and northeast on September 27. This later recurvature was presceded by the strong westerlies. Apparently something caused the track to change for a short period on September 23 and 24, but without the
strong westerlies to the north of the storm the mechansism that originally started the storm moving northward was short-lived and the track reverted to one that had westerly components until such time as there were strong westerlies developing to the northwest and north. Hurricane Emmy (1976) (Fig. 2), while still of tropical storm intensity, recurved on August 24 and 25 with the westerlies rather strong but not quite up :o the criteria listed earlier. Later its course reverted to one with westerly components and it did not finally recurve until August 29. This later recurvature was preseded by the strong westerlies.
4. Cise of Gicud Yotion Vinds and Additional Results

The results discussed thus far were based primariiy on geostrophic winds s:ipplemented by a few observed winds. One of our objectives, however, was to determine if the satellite winds were adequate for the purpose. High level clouds were tracked for 14 of the 17 storms and for a total of 105 periods. In about 90 per cent of the cases there were high clouds that were suitable targets for obtaining wincs in the needed
 the two types of winds. The correlation coefficient between the two Eypes of u 's is fairly good, .83. In all cases the comparisons are between mean winds. That is, each point on the illustraions represents the mean wind for an area. In no case was a satellite find used in this comparison unless it represented the average motion $c i$ at least 3 individual clouds. The geostrophic winds were from the same areas as the sarellite kinds.

```
    The r-components are less highly correlated, .52. .iore in parzicu-
iar that in many cases sirong positive :-components for cloud mozions
```


Plg. 5. Comparimon of u-componentin of atalilite and gaontrophie winds.
are not matched by nearly as high southerly winds in the geostrophic components. It is these cases that often represent the hurricanes about to recurve. That is, when the hurricane has winds with strong southerly components flowing away from the storm center at high levels that are not matched by strong geostrophic winds from the south at 200 mb , there is high probability that the tropical cyclone will recurve, especially if there are strong westerlies at 200 mb farther north. At least that was true for the cases studied in this research.

There was another indirect result from the effort to obrain satel lite winds. In a few cases there were few or no clouds to the north and northwest of the hurricane center to track to derive the high level winds. Sotable examples are furricane Caroline of 1975 and to some extent Hurricane Anita (197i). Xeither storm recurved. In anita's case there were some clouds, but there were large areas to the north of the hurricane that were relatively cloud free. These two cases suggest that the absence of clouds implies the presence of atmospheric circulations that act to keep the storm from recurving.
5. Uise of the High Level hinds in Forecasting

Direction oE Yovement

The principal hyporinesis evaluased in the research discussed thus ̇̈s relared $=0$ recurvature of hurricane tracks. Efforts were also made to see if the winds could be used to predici changes in direction of motement of sine storm center. All cases were used in which at forecast E1me =ile hu:zicane track had a westeriy component. The directions at Eorecast $=$ ime, ξ_{0}, and at $24, \dot{4}$ - and iz-inr are defined as tine direcion
the storm moved during the $24 \cdot h r$ period centered on the respeczive times. See Fig. 7 for further illustration. The change in direction for the 72 hours following forecast time, for example, is the difference in direction at τ_{0} and at τ_{72}, again as illustrated in Fig. i, angle number 3.

The cases were stratified according to the mean u-components in the northwest sector (Section 2) and the data are plotted in Fig. 8. Tha error bars represent standard deviations of the direction changes. Note that even though the standard deviations are large there is definitely a correlation between the u-components and the direction changes, especially for the longer periods.

To further check the utility for forecasting of the winds, regression equations zere developed to forecast the change in direction of forward motion of the hurricanes for 24-, 48- and 22 -hour pericds. The u-components in the northwest and north sectors were used as predictors. In addition, a no-yes (\mathbf{N} / Y) predictor was used to indicate when there were westerly winds in the sectors 10 to 15° north of the hurricane center. The quantities to be predicted were the change in direction of motion for the chree time periods. The changes (in degrees) are considered positive if the track was curving in a clockwise sense.

The northwest and north sector u-components weze very highiy correlated wi=h each orher and were abour equally useful as predictors. The presence of positive u-components in the 10 to 15° radial sector (N / Y predictor) was arji=raril: assigned a +8 value and cases without wes: wincs here assigned a -i vaiue.

P4. 7. paragtion of metion at forgeast tiat Illugeration of method of manaring
 72-houre (E_{72}) and change of direction 82 motion $t o r$ viftous eine peridde.

 Rolation of enange of direction of rotion to terengeh of the uecomponencs (efs) of 200 mb , geostrophic vinds in the northowist secter (about $1500-2000 \mathrm{~km}$ north-northwest of the seorm conterl. Vercheal bara represent seandard deviation of the shanges in dizection.

Fig. 9. Verificution of 24 hr direction forecast:
Comparinon of ehneres in direction of formere noverumt of stect center for 24-howes with champes torecasted by regresalion equation.

F1g. 10. Verifieation of te hr direction forecast: Congarison of chapers in direction of forvend movenent of ston cencer for te-homrs with changes forecseted by regremsion equation.

Fig. 11. Cerifieation of 72 hr eifection forecast:
Comperison of cheares in direction of
forvard moveacent of storm cencer for
72-hoar with changes fozecasted ty
regrestion equation.

ORIGNAR PAGE IS OF POOR QUALITY

The regression equations developad were:

$$
\begin{aligned}
& \mathrm{D}_{24}=-2.73-0.76 \times \mathrm{NW}+1.40 \times \mathrm{N}+0.90 \times(\mathrm{N} / \mathrm{Y}) \\
& \mathrm{D}_{48}=-1.79-0.41 \times \mathrm{NW}+1.94 \times \mathrm{N}+1.11 \times(\mathrm{N} / \mathrm{Y}) \\
& \mathrm{D}_{72}=13.81+1.26 \times \mathrm{NW}+0.77 \times \mathrm{N}+0.40 \times(\mathrm{N} / \mathrm{Y})
\end{aligned}
$$

Where D_{24}, D_{48} and D_{72} are the changes in direction of motion over the respective time periods, NW and N represent the mean u-compenents defined in Section 2, and N/Y represents the No-Yes values already mentioned. The errors resulting from applying the equations to the dependent data used in this study are summarized in Table 2 and illustrated ir Fig. 9-11.

Table 2
Rejults of Forecasting Change in Direction of Forward Yovement:

D_{24}	167	17.9	23.8	.51
D_{48}	153	25.5	32.6	.63
D_{72}	134	28.0	36.5	.64

The per cent of variance explained is greater for the 48 -hour and i2-hour Eorecasts than for the 2 -hour forecasts. This seems reasonable (as will be discussed further in Section 6), because the short term motion of the storm center should be strongly influenced by forces closer to the storm center than 15° of latitude. While che results are not sensationai, they suggest that the predictors definicely show skill. Furthermore, the skill is great enough that in the many sections of the
world where other daca are sparse, these results may be as good or beteer than achieved by other techniques for 48 - and $\mathbf{7 2 - h o u r}$ periods. For example the portion of the variance explained is 41 per cent for the 72-hour periods. There are probably many hurricine forecast rechniques used in the last 20 years which do not explain 41 per cent of the variance for 72-hour forecasts.

6. Discussion of Results and Errors

The use of the strong westerlies at approximately the 200 mb level to identify situations favorable for recurvarure and in particular the results that :.aarly 80 per cent of the storms recurve before traveling as much as 12 degrees of longitude farther west after the strong westerlies ase observed should be useful in most rropical cyclone areas. Some of the orher results, while favorable, may not be impressive enough to suggest replacing other forecast techniques in areas of plentiful dara. However, the resilles should certainly be useful to forecasters in areas of very sparse conventional data. It is interesting that super-gradient southerly winds as revealed by tracking of clouds seem to be associated With storms about to recurve and that large areas of few or no clouds 5 to 12 degrees of latitude north and northwest of the hurricane cencer are associated with storms not likely to recurve in the near future. Boch of these indications deserve further checking with additional cases. While most of the results have been stated in terms of the geossrophic winds, this research suggests that in most cases the satellite hinds could be used. The irue correlation berween the u-components of geostrophic and satellite winds is probably higher than the .83 menrioned earlie:. Errors in each ser of winds probably caused a reduced
correlation. In particuler, the geostrophic winds for this project were calculated from gradiencs read from small scale maps and the satellite winds were obtained from imagery at 30 -minute intervals. Accuracy of satellite winds, however, should be as good or better than the geostrophic winds (Hasler, et al., 1977; Rodgers, et al., 1979;.

Research done by earlier investigators (see Chan and Gray, 1982a and 1982 b for discussion, summaries and references) implies that the movament of hurricane for the next $\mathbf{1 2 - 2 4}$ hours is highly related zo the ambient circulations and dynamic forces within about 6° latitude distance of the storm center. There is little indication in reports of earlier invesigators that existence of strong winds far to the north of the storm hould immediately affect the motion of the hurricane center. iet the results of this research and that of George and Gray (1977) definitely suggest that there is at least a delayed effect. It seems log" ical that the strong westerlies are highly correlated with or are repre sentative of features of che geneal circulation which will affect direction of hurricane motion in the next $2 \boldsymbol{- 9 6}$ hours. If this is true i: could explain why for the short term the hurricane sometimes moves in a direcion contrary to the hypothesis of this research, but in neazly all cases over longer periods the hurricane racks do conform to the hypothesis.

The zesults described in Seczion 5 using regression equarions show that the u-components of the winds concain predictive information about the furure direction of motion of the storm for periods out to at least in nours wine az forecast time the storm is moving in a direction that has a westerity compound.

7. Acknowiedsments

The author hrs benefized greatly by frequent discussions with his colleague Mr. Edward Rodgers. The daca for rracking of the clouds were organized and prepared by Mr. Joseph Steranka and ocher members of the staff supporting the work of the Severe Storms Group of the Goddard Laboratory for Atmospheric Sciences. John Hartley, Wayne Hayes, John Trostel, Pat Atkins, Tony Kinard and Susan Willard all helped with the data processing while they were graduate students at Clemson University. Support for this research came through the Goddard Laboratory of dtmospheric Science under NASA grant number NSG 5349.

ORICNAL PACE IS
 OFP POOR QUALITY

8. Referances

Chan, J.C.L., H.M. Gray and S.Q. Kidder, 1980: Forecasting Tropical Cyclone Turning Morion From Surrounding ivind and Temperature Fields, Yon. Wea. Rev., 108, 778-792.

Chan, J.C.L. and W.M. Gray, 1982a: Trooical Cyclone Movement and Surrounding Flow Reletionships. Mon. Wea. Rov., 110, 1354-1374.

Chan, J.C.L. and W.M. Gray; 1982b: On the Physical Processes Responsible for Tropical Cyclone Motion. Atmos. Sci. Paper No. 358, Colorado Scate Univ., Fe. Colliss, Co. 200 pp.

George, John E. and W.M. Gray, 1977: Tropical Cyclone Recurvature and Non-recurvature as Related to Surrounding Wind-height Fields. J. of Appl. Meteor., 16, 34-42

Guard, Charles P., 1977: Operational Appli:ation of a Tropical Cyclone Recurvarure/ion-recurvature Study Based on 200 mb Wind Fields. FLEWEACES Tech. Noce: JTWC 77-1, U S. Fleer huather Central, Guam, 40 pp .

Hasler, A.F., W.E. Shank and W. Skillman, 1977: Wind estimation From Cinud Motion: Phases 1,2 and 3 of an in situ airerafe verificacion experiment. J. Appl. Mereor., 16, 812-815.

Hebert, Paul J., 1980: Aclantic Hurricane Season of 1979. Yon. We.Rev., 108, 973-990.

Hebert, Paul J., 1976: Atlantic Hurricane Season of 1975. Mon. Wea. Rer., 10\%, 433-465.

Hope, John R., 1973: arlantic Hurricane Season of 1974. Mon. Kea. Rev., 103, 265-293.

Lakrence, Miles B., 1:79: Azlantic Hurricane Season of 1978: Yon. Kea. Rev., 10i, 4i7-491.

Lakrence, Miles B., 1978: Atlantic Hurricane Season of 1977; Yon. Hea. Rev., 106, 534-5ij.

Carrence, Miles B., 1977: AElansic Hurricane Season of 197o: Yon. Wea. Rev., 105, 497-307.

Rodgers, Edward, R.C. Gentry, W.E. Shenk and V. Olivis, 1979: The Benefits of lising Short-interval Satellite laages to Darive Winds for Tropical Cyclones. Yon. Wea. Rev., 107, 575-58'.

