General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

$\mathcal{P}_{\text {revision }}$ Devices, Ltd.

FINAL REPORT
to
GEORGE C. MARSHALL SPACE FLIGHT CENTER
(Low Gravity Experiment for Studying a Rotating Fluid having a Free Surface)

Contract No. NAS8-35481 DON 1-3-DS-26516

prepared by
O. C. HOLDERER

October 29, 1983

Distribution:

EH 42	10
M 13 A	1
AP 25 G	1
AT 01	1
AS 24 D	3

Approved:

Charlie Schaefer, ED 42

Fred Leslie, ED 42

TABLE OF CONTENTS:

A. Summary
B. Description of Apparatus

1) Mechánical
2) Hllectrical
C. Operation
D. Stress Report (Summary Sheet)
E. Single force load test

FIGURES:

1 Dwg. MS 783-0, Assembly
2 " MS 783-1, Roll bar.
3 " MS 783-II, 16 mm Camera
4 Test Cell Configurations A through J
5 Wiring Schematic
6 Tachometer
7 Power Supply
8 Motor Control.
9 Camera wiring schematic
10 Control Panel
11 Rotational Speed Check
A. SUMMARY:

The contract award occurred on July 14, 1983. This was followed by technical discussions with the contracting officer's representatives and the design of an apparatus tailored to the specific objectives of the experimert. The requirements of the 'JSC Rediced Gravity Aircraft User's Guide' had to be met with least interference of the test goal. By early September 1983, the concept and drawings were approved in a meeting with the CORS, and procurement of structural raw materials and commercial components was initiated. Fabrication was finished by the end of October and "bench" tests confimned the proper function of all mechanical and electrical devices comprizing the total unit. A stress analysis was prepared to document the structural adequacy for safe use on the KC 135 aircraft. A single load proof test of the most critical load case was perforr ed at the site of Precision Devices, Ltd, and was witnessed by the CORS:

E. DESCRIPTILCN OF APPARATUS

1) Mechanical

A reduced scale drawing of the test cell assembly is shown in Fig. 1. The rotating table is mounted with two shielded ball bearings to a hollow shaft. This allows the routing of electrical wires and a co-ax cable from the spinning table to the slipring assembly. The table is machined from 1/2" aluminum plate, it is $16^{\prime \prime}$ in diameter and features a .250" Dia. dowel in the center which protrudes approx. $1 / 8 "$ above the table surface. It's purpose is to center the test cell on the table. The test cell is held to the table with two toggle clamps. The lights and overhead camera are supported on 1 " Dia. solid aluminum columns. Tr. interchangeable cameras are supported in a height-adjustable
open frame, bridging the two columns. The special 16 mm camera is show on Flg. 3. Because of the requirement for camera interchangeability and good balance (C. G, on centexiline), each camera is mounted to a special G-shaped mounting bracket which is fitted with two macnined trunions assuring accurate location over the table, yet alluwing camera tilt angle adjustment. To assure good balanse, the C-shaped camera mounts feature omnidirectional means for counterweight attachment. A special double-gimbaled balancing fixture is furmished to facilitate the balincing. The turntable is driven by a speed-ad,justable gear motor through a timing bell. Since the timing belt and the worm gear of the electric motor cannot slip, the cogged drive wheel at the motor was provided with a safety clutch. The clutch protects the motor and the drive train should the table get stalled or be forced against the motor. The drive motor is mounted to the side of the sturdy swivel frame which supports the dual ball bearings of the turntable. The off-center mass of the motor is compensated for by an adjustable counterweight on the opposite frame side. Two more, non-adjustable counterweights (lead disks, 7 lbs. ea.) are attached to the underside of the swi.vel frame to assure a positive, gravitational restoring moment for all anticipated test conditions, e.g. even when the camera is in the uppermost position. - The swivel frame hangs in the cradle. Small shielded ball bearings minimize friction between these two structures, so that the turn table centerline remains "stable" as the aircraft pitches for the zero-g maneuvre.It had been suggested at the inital planning meeting to allow for the option to free-float the entire test cell assembly for a more perfect "zero-g". This has been accomplished by bolting the cradle to a submount. Two nylon rope tethers limit the possible excursion of the test cell assembly away from the submount. The submount

Is bolted to the aircraft floor with four $3 / 4^{\prime \prime}$ special festeners fumishea by JCC. The mounting holes match the prescribed 20" x 20" pattern. - A roll bar cage sumrounds the entire tast cell assemely without impeding the tilt of the turning components. The roll bax is attached with 4 bolts to the cradle frame, it weighs only 38 Ibs, because it is made from thin-walled steel tubing. It's welded construction. provides ample rigidity for carrying the total assembly by using the roll cage horizontal members as handles. The roll bar is show in F1g. 2, drawing No. MS 783-1. For proper bolt hole match-up, the red-banced end of the cage should be on the red-dotted side of the base-cradle. - The test-cell proper is fabricated from acryilic or polycarbonate (Plexiglass and Tuffak respectively). Various inserts and baffles provide for a great variety of fluid chamber coifiguirations which are shown in Fl g. 4, A through J . The nominal dimensions for the fluid chamber outlines are given in millimeters.

2) Miectrical

The electrical circuitry is rather straight Zorward and uncomplicated, it is show in the wiring schematic, Fig, 5 . Terminal staips are provided at the camera base plate, underneath the tumtable, on the swivel bracket side and on top near the motor, and finally inside the control box. Note the custom-built slipring assembly which features 16 poles (silver rings and dual wipers) plus a special rotating terminal for the co-ax transmission cable to the T. V. camera. The slipring assembly is located between the two 'gravity' counterweights under the swivel frame. In the "as delivered" status, there axe 3 vacant sliprings for future use. - Two shielded light fixture mount to the tible columns and they may be mechanically adjusted for optimal lighting. Ordinary light bulbs (120V) fit the fixture sockets. A pair of 40 W bulbs (furnished) yield an
1.Inmination level of approx. 125 foot candles (use f-stop 6,3 at 24 frames cine for ASA 400 film). It is suggested not to use light bulbs over 75 Watts for safe heat dissipation. The lights axe individually controlled from the control box panel. - The turntable rotation rate is monitored with an electronic tachometer. A search of the commercial market did not locate a suitable device. Therefore, a hand-held tachometer with a large LED display, high accuracy, and a range of 1 to 10,000 RPM was purchased for disassembly and repackaging, so that the sending uit is now separate from the electronic computer and display. A 6 V D.C. power supply was built into the display unit to avoid the nuisance of replacing batteries. The sender is driven directly by the axmature of the electric drive motor, which is 22.5 times faster than the table. Thus, the tachometer display must be divided by 22.5 to yield true table RPM. See Fig. 11 The special 16 mm camera (see Fig. 3 and Fig. 5) and the T. V. camera require 24 and 12 V D. C. respectively. D. C. power is available in the KC 135 aircraft, however for the sake of simplicity of operation, a precision D. C. power supply (Fig. 7) was incorporared in the control box. A selector switch provides either 24 or 12 V . D. C. to the camera terminal. The voltage selection is shown by marked red LED's.

The motor speed is controlled with a commercial controller made by the Bodine Corp. The controller is matched to the drive motor, it's diagram is shown in Fig. 8. To save space, the on-off switch of the controller has been tapped to serve as the main power supply switch for the total system. The switch is DPST, breaking the neutral as well as the "hot" side of the 120 V AC supply. The green wire keeps the system grounded (bonded). In addition to the motor controller and the D.C. power supply which are of commercial origin, other components in the control box are custom
arranged. See FJg. 10 for a front view of the master controi panel. An RCA I', V, signal tape recorder can be mounted adjacent to the control box and a convenient power cord storage and fused outlet is provided for the recorder. A co-ax cable terminates near the recorder mounting rail.
C. OPERATION

It is suggested to ship the entire unit, with the roll bar cage mounted in place, in a suitable crate (not furnished). For gruvert testing, a zero-lock plate is provided to keep the swivel frame steady. This plate should not be used for shipping purposen, rather it is suggested to tie the camera support frame to the roll bar cross braces with twine. A custom spare parts and accessory box is furmished; it has compartments for "dummy" disks and baffll i sks for the test cell. There are also spare tie rods, pacens, counterweight washers and screws. A special wrench is provided for the main bearing unit (over slip ring assembly) and the special nut holding the camera mounting plate to the mounting sleeves. Note that thess sleeves are held to the 1" Dia. columns by means of setscrews which fit into countersinks along the column. These countersinks are spaced exactly $l^{\prime \prime}$ apart for automatic parallel positioning relative to the turntable. Other items in the accessory box are a zero-lock plate, a gauge for accurate positioning of the camera support bracket in the camera balancing fixture, a variety of spare bolts and a set of Allen wrenches for all sizes encountered in the assembly. Not inciuded, but needed for disassembly are conventional screwdrivers and wrenches ($1 / 2^{*}$ and $9 / 16^{\prime \prime}$)。
The operation is self-evident. It is best to start out with all switches "off", the motor speed potentiometer in the zexo position and the motor directional switch in the 'brake' position.

After connection to a grounded 120 V AC receptacle, the unit is activated turning the main power switch on. Telltale LEN's will show if 24 or 12 V DC will be supplied to the camera terminal, adjust voltagesslect switch as needed, hence the DC power supply may be turmed on (green LED IIghts up). Turn on the lights and tachometer as desired. Staxt table by turning directional selector switch, then advance speed control potentiometer knob to desired position. Activate 16 mm camera with the appropriately marked switch. (Note: in the 24 frame mode, this switch stays "on" for the duration of filming. For any other film speed, flip switch to "on" only briefly, camera, will keep munning untid switch is briefly tumed "on" again). Maintenance is not required for extended periods of time and the above outlined procedure does not have to be followed verbatim, because of the various safety features in the controller (soft start - stop), the mechanical safety clutch. Since the lights and the power supply to the tachometer are 120 V , the unit should never be operated without the provided insulating shields in place to cover the terminal stapips. Of course, the control box cover should not be removed wathout first disconnecting all power.

Oincumar phere is OF PDOR QUALITY

STRESS ANALYSIS SUMMARY:

The structural adequacy of a test cell assembly (Dwg. MS 783-1) for a 'Lo. Gravity Experiment for Studying a Rotating FIuid havine a Free Surface' (NASA-MSFC contract NAS8-35481), has boon analyzed. It has been determined that the requirements of the 'JSC Reduced Gravity Aircraft User's Guide' are met with ample margines of safety, Very conservative assumptions were used in the appended working-paper-calculations, e. g. a welding efficiency of only 50% was assumed, and distributed loads were treated as concentrated loads. The highest stress level for the 9 " g " forward case (an emergency casel) was found to be 7,856 PSI which constitutes a safety margin of 2.7 against yield of the material.

O. C. HOLDERER, Precision Devices, Istd.

October 29, 1983

OEBION ENOINEERIPO PRODUCTION OF ELECTRO-MEOHANIOAL SYSTEMS AND PROTOTYPES
 2304 ONKWOOD AVENUE, NW.
 HUNTSVILLE, ALABAMA 35810 TELEPHONE: 534SMXAB 4310
 October 31, 1983

SINGLE FORCE LOAD TEST

Ref: $:$ Contract NASA-MSFC NAS8-35481

A simulated load test of the cradle (see stress analysis, page 1 of working papers) was performed. Using a special hook and load coll, a 500 Ibs . (439 lbs. was calculated maximum) load was applied as shown. The structure sustained this load without permanent deformation or other indication of damage. The test was witnessed by the undersigned:

O. C. HOLDERER, Precision Devices, Ltd.

CHARLIE SCHAEFER, ED 42

2 foldout frame

ORIGINAL PAGE IS OF POOR QUALITY

I

ORIGNAL PAGE ISS

OCH SER 20'83 NASA-MSFC CONTR. NAS $8-35481$
TEST CELL CONFIGURATION C

ORIGNAL PAGE IS OF POOR QUALITY

ORYONAR PAGE ${ }^{2} 5$
OF POOR QUALITY

ORIERYAL PAES 19
OF POOR QUALITY

FIG 5

INSTRUCTION MANUAL DIGITAL HAND TACHOMETER

ONO SOKKI CO.ILTD. Tokyo, Japan

We would like to thank you for purchasing the HT-331 Digital Hand Tachomater and urgo that you read this manual cerafuliy ' ifgre using so that you may get the most out of your new Instrement.

Features

The HT-331 is an accurate hand held tachometor that uses an internal optical sitt and sensor mechanistr to datect and count the rpin of rotating shafts. This method placas a very small load on the shaft being measurad and results in a rugged instrument with tilgh repeatability.

This HT-331 makas one measuroment every per second which is three timas the speed of normal clockface type zachometers and repoats measuraments automatically. The digital display covers the entire ranga from 1 to $9,099 \mathrm{rpm}$ without range switching with an accuracy of $\pm 1 \mathrm{rpm}$ and an easy to read display.
By use of the optional circumferential ring circumferential speed may also be measured with the HT-331.

Specifications

Names of Parts and Functions

1 Power Switch
Pressing this switch applied power to the HT-331 and readies it for use.
2 Sensor Shaft
Fitted with the conical or circumferential tip this shaft is used to pick-up the rpm or circumferantial spesd respectively of the shaft being measured.
3 Display
This large LED display is used to read directly the measured value in rpm or circumferential speed.
4 Battary Low Lamp
This lamp comes in when the battery voltage is about to become too fow for useful measuremenes. When this lamp lights it is time to replace the batteries.

OF POOR QUALITY

POWER SUPPLY APPLICATION AND MAINTENANCE DATA EMA "C" CASE

SPECIFICATIONS

INPUT: 10510125 VAC of 21010250 YAC at 47 to 03 Hz . Derata output curront 10% for 50 Hz operation.
DC OUTPUT RATINGS: See Vollage/Current Raling Chant, Unitis reted for full current
output at tomperature betwean $0^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ and ia ingaarly deraled from $+40^{\circ} \mathrm{C}$ to 05%
of the full output at $+71^{\circ} \mathrm{C}$
HEGULATION: LIne regulation is rated at 0.05% tor a 10% input voltage change and toad regulationis rated at 0.1% ior $\begin{gathered}\text { zero } \\ \text { to full load change. }\end{gathered}$
OUTPUT RIPPLE; Botter than $1 m V$ RMS: 3 mV peak to patak typical.
OVERLOAO PROTECTION: Self restorino current limiting (foldback type) is standard.
TEMPERATURE COEFFICIENT: $\pm 0.005 \% \%^{\circ} \mathrm{C}$ Iyplcal. $\pm 0.02 \% /^{\circ} \mathrm{C}$ maximum.
cooling: Convertion cooled. Moving air lo recommended when mounting in a confined araa.
MOUNTING: The open trame mounts on any one of three surlaces
OUTPUT VOLTAGE ADJUSTMENT
The output of all Econo/Mate II power supplies may be adjusted by means of a potentio. meter located on the printed circuil board. The porentiometer is labeled 'EO ADJ', Durino the adjustment procedure, monitor the DC output voltage by connacung a meter across the output terminals
INPUT CONNECTIONS
When operaling with 115 VAC input, place a jumpar balween transtormer terminals ono (1) and two (2) and also belwoen three (3) and four (4). Then ennnect the AC primary leads to ter. minals one (1) and lour (4) as shown in Fig, i.
Whan operating with 230 VAC input, place a jumper batween transformer terminals two (2) and three (3) and connoct the AC primary leads to terminats one (1) and four (4) as shown in Fig. 2.
SECONDARY TRANSFORMER CONNECTONS the transtormer secondary to the PC board before adjusting the output vollage. This is accompilshed by soldering the loose wire attached to the PC board to the appropriale lap on the transformer

LOCAL SENSINO

ECONOIMATE II power supplies are factory wired for local sansing. Sunsing terminals are located on the PC brard. A jumper connecting the BC output and sansing terminals provides local senting as shown in Fig. 3.
AEMOTE SENSING
Femote sensing is a standard feature. To sanse the output voltage directly at the load, dis. connect the jumpers between the DC output terminais and sensing torminals, Connect the load to the DC output terminals. Then wire the $(+)$ and $(-)$ sensing terminals respectively across the load as shown in Fig. 4. This permits semsing directly al ine load.

VOLTAGEICUARENT RATING CHART

MODEL	RATING
EMA.5/6C	5V © 6.0 A
	6V@5.0A
EMA.9/10C	9 V ©3.8A
	10V133.6A
EMA.12/15C	12V@3.04,
	15V@2.8A
EMA-18/20C	18V ${ }^{(1) 2.5 A}$
	20V@2.3A
EMA-24C	24V@2.3A

Fig. 1

Fig. 3

Fig. 2

Fig. 4
5.10 V

12-24V

ORIGNAL PAGE II OF POOR QUALITY

FIG. 8
\square

ORIENNAL PACR [ST OF POOR QUALITY

FIG. 10

ROTATIONAL SPEED CHECK

Motor Speed	Observed Motor RPM from approx. 30 readings over 1 min . perioa			Max. Deviation from avg. \%	Average Table RPM	Average Table r d/sec.
	Max.	Mın.	Avg.			
10	130	116	123	5.6	5.47	. 57
20	380	366	373	1.9	16.6	1.74
40	901	884	893	1	39.7	4.16
60	1472	1456	1464	. 6	65	6.8
80	2007	1992	2000	. 4	88.9	9.3
100	2451	2437	2444	. 3	109	11.4

FIG. 11

