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ABSTRACT

The governing equations for the geometrically non-

linear deformation of elastic beams subjected to dynamic

bending loads are developed and solved for various

initial conditions. Of primary interest is the response

to pulse Loading and simulated impact. Both transient

and several cycle solutions are generated for the free

vibration response to pulse loading. The results obtained

are compared to a first mode analysis approximation.

A new model is developed to simulate impact loading

by the distribution of additional mass to the elastic system

and subjecting it to a velocity pulse. The governing

equations are solved using second order finite differences

in space and time. The solutions obtained are in reasonable

agreement with experimental results previously obtained [1].
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INTRODUCTION

Of fundamental importance to the design and accurate

assessment of aircraft and aerospace structures is the under-.

standing of the response of composite laminates to foreign

object impact.	 Accurate and consistent modeling of the

damage caused by these conditions can only be achirsved after

the basic deformation response of the system has been 1

characterized.	 Of primary interest is the response to low

velocity impact of foreign objects (less than 10 meters/

second at 10 Joules of impact energy or less) similar to
i

tool drop pro lems .

The simple square beams was chosen for study since it

possesses the fourth order bending effects of flat plate

systems yet is a simpler mathematical system to solve. 	 The

response of the beam system was investigated both under
}

sharp initial velocity pulse conditions and under simulated

impact conditions to study both the basic free vibration

response and the impact response.
j

Nonlinear deformation theory was employed due to the

importance of membrane effects. 	 The buoyancy terms were

r	 `

i

discovered to contribute significantly to the total energy

t
response of the system even in a moderately small deflection

regime.	 The analysis also demonstrates that though the basic .•	 ,¢.y

responses are characterized by single mode envelopes, the

higher ,.,irder modes cause important fluctuations which cannot'
Q
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be ignored.

The material properties and dimensions chosen for this

study simulate the graphite-epoxy plates being tested under

impact loading at the NASA Langley Research Facility. 'While

the results of this study are not expected to match those of

the tests exactly (see, for example [1]), the basic char-

acteristics of the system (contact time, maximum displacement,

percentage of membrane energy) predicted by the analysis are

consistent with the experimental observations. Further re-

finements of the modeling and introduction of damage assess-

ment techniques should lead to predictive impact analysis.

The basic system is solved employing second order finite

difference operators in space and an explicit time integrator.

The initial transient response is predicted using a graded

time step technique discussed in [2]. Convergence and

accuracy was investigated both by checking the convergence of

the displacements and independently monitoring the total

energy of the system (which should remain constant during the

motion). Other methods of solution involving different time

integrators and finite element approximations for the

spatial derivatives will be discussed in a subsequent publi-

cation.
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NONLINEAR BEAM THEORY

Consider a straight beam of square cross section (cross-

sectional dimension h) having a. length L. Assume that the

beam is inextensible and that shear effects can be neglected.

Let the origin of the coordinate system and the coordinate

measure, x, be defined by Figure 1. The equilibrium conditions

can be written in differential form as

aN	
^ 

a2U
^x	 at

-1 3 2 M a	 aW	 92 z 
a= 

* UCN H—)_ a`

where N is the average normal stress across the cross-sectional

face (i.e., the membrane stress) and M is the cross-sectional

moment. It is explicitly assumed from the outset that shear

terms can be neglected. U and W represent the longitudinal

and transverse displacements, respectively. For an elastic,

isotropic beam, assuming 'inextensibility, the stress-dis-

placement relations can be written as [3)

M= -EID2
ax

N= E [w*.	
z

7

M
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4	 OF POOR QUALMTY

where E is Young's modulus for the material and I is the

cross-sectional moment of inertia. Utilizing the stress-

displacement relations in the equilibrium conditions, the

governing equations can be written as

a 2U	 l 9 2U 
c	 aw a zw

ax"	 c-- 
^Z' at -	 ---

9 4w	 1	 s aw 2 9 2w	 aw 92U

ax	 R	 ax	 Dx

9 2w DU	 1 a2w

where the following definitions have been adopted

c 2 = E/p

R2 = T/h2

a2 ` c 2 R2

The quantity p is the mass density of the material and A is

the cross-sectional area of the beam.

The total energy of the beam can be decomposed into

bending energy, membrane energy and kinetic energy.

finition, these quantities can be written as

i

r

1

ko=A=
ham+ a,.

z
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B K

Kinetic
1	

L
f

2	 2

A C Cam)	 * () ] A dxEnergy
0

E
Bending L

M2B Energy f dx
0

Membrane 1	 ^
N 2 1

E M Energy
=

J
g--	 A dx

0

The total energy is given by the sum of these components as
z

Total

ET = Energy  EK	 EB + EM
9 I

Utilizing the stress-displacement relations, the bending and

membrane components can be written as
1

E B

L

E-	 J	 (ate) dx
0	 8x I

EM =

L

^ f C^ +
2 2

7 ( ax) ) dx

7

0

The displacement formulation will be utilized for computa-

tional convenience.
(

i
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BOUNDARY CONDITIONS AND MATERIAL MODELING

The boundary conditions of interest for impact

problems are mainly those which simulate the transverse

impact response of a beam or •.late with faxed (guilt in)

edges or pinned edges. The stress state and subsequent

damage will be more severe in the fixed end problem, there-

fore; the analysis is restricted to these conditions. For

fixed or built an edges, the boundary conditions for a

geometrically nonlinear beam can be written as

W(x = 0) = 0.

DW(x =0)/8x=0.

U(x - 0) - 0.

The material proper

to simulate the response

plates. Typical average

W(x=L) =0.

DW(x = L) /Ox = 0.
I

U(x = L) =0	 c.

ties used in this study are chosen

of typical graphite-epoxy composite

quasi-isotropic properties are

E = 7.2135 E + 10 Pascals

E
p = 1.6000 E + 03 Kg /m3

V = 0.33

For a circular plate with clamped edges the bending stiffness,

K and natural frequency, w 0 are given by [4]

f

f'  E'	 ,

Mz

r
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3 (1 . V2

w0 ^ 3. 125 J

where r is the plate radius and h is the plate thickness.

Assuming a plate with radius 2.54 cra and thickness 1.03 mir.,

the bending stiffness and natural :Frequencies are given by

K = 6.0843 E + 05 J/ m3

W0	3.41SQ E + 04 /sec

For a linear, double cantilevered beam of square cross

section, the bending stiffness and natural frequency are. °_

given by [5]

K = 1.92 ^	 l
L	 i

a

WO
= . 04 ' .7,30..2
	 "A

0	
L

Equating the beam and plate parameters, the equivalent beam
1

length and thickness are

h	 3.5565E-03 meters	 '#

L = 6.7203E-02 meters

which are the dimensions employed in the present solution. 	 *^`}

^	 (u
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INITIAL CONDITIONS AND IMPACT MODELING

To investigate the stability and accuracy of the solution

method, a beam subjected to pulse initial velocity conditions

over a short portion of the midspan of the beam was studied.

The initial conditions for this problem are

W(x ,t=0.) =0.

aW(x, t = 0.)/at a F(x)

U (x, t = 0.) = 0.

3U(x, t=0.)/at=^ r

where

	

F (x) = V0 s in	 x' )	 x < x < x
L'	 1	 2

= 0	 otherwise

X' = X - (	 ') i	 Lt = TU

	

L - L'	 L + L'

	

X = --2---	 x2 = —+--z--

An initial velocity (VO = 243. m/s) was chosen corresponding

to an initial energy of 4.06 Joules.

To simulate the response of a beam to foreign body

impact, mass in excess of the beam's mass was uniformly

distributed over a cen tral sector of the beam of length

L' = L/10. The mass added was 7.13 grams which is typical of

impactor objects of interest in tool drop problems. The

F

a
r3 ^^.

IF
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choice of L I was yo simulate typical contact areas for foreign

body impact problems.

An initial velocity profile using a sine squared distri-

bution over the midsection of the beam was chosen to transfer

the energy of impact. The initial conditions are given as

W(x, ta0.)a0.

9H(x, t 0.) G (x)

U(x, t a 0.) a 0.

3P(x, t a 0.) 0

where

1

G (x) a VO sin 2 (7Tx °)	 x1 < x < x2
L

x
0	 otherwise

L - L°	 _ L + LIX 1	 -- --	 x 2 -. 2

VO = 7.0 m/s was chosen corresponding to an impact energy of

2.01 Joules which is typical of low velocity impact energies

of interest.
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FINITE DIFFERENCE APPROACH

The governing differential equations for beam problems

form a system of partial, differential equations in one

space variable (x) and time. To solve these equations r

numerically, the spatial derivatives are approximated

using finite difference operators. The domain is divided

into N discrete points. The derivative at any point, i,

can be approximated by

Y i	 - Y•	 say	 + 1	 x	 1 . O (Ax2) 2 < i< (N - 1)	 a_5_x	 x
x=xi

where

.lx	
ri) = Yi

Ax =xi+1 -xi

to second order in ,fix. Using -the same order of approximation,

the higher derivatives can be written as

Z2. Y	 Yi + 1	 2Yi + Yi - 1 2 < i < (N - 1)
ax(Ax) tx"X xi

94 Y	 .Yi: + .2. 4Yi + 1 + 6Y  - 4Yi - 1 
+ y  - 2

-aax x = x
	

(Ax)	 -

i

3 < i < (N - 2)
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for an arbitrary w-:inction Y(X, ...) .

Using these central difference operators, the governing

equations for the nonlinear beam vibrations can be written in

the form

az W.
F (Wk , Ut)

d Itz

d2 U.
d-- 4 G(Wk) UZ)

j, k, Si < N
	

x

1

Thus the problem is reduced to solving this set of coupled

ordinary differential equations.

Second order central differences have been chosen for this
	 A

work due to experience with the governing system obtained in
	 ^i

the preliminary studies carried out to date. Employing

higher order operators would produce a poorly conditioned

system due to the high number of modes present in the

problems of interest. Employing first order operators .requires

too many spatial points to be employed to achieve accuracy

in a finite amount of computing time. Generally, both

parabolic and hyperbolic systems are discretized most

efficiently using second order difference operators in

space (6] .

4
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The time integration was performed using an explicit

second order central difference approach. The difference

operator for a single variable, Y, can be written as

d2 
Y t) 	 1:

2
 [Y(t + At) - 2 Y(t) + Y(t - At)]

dt	 (At)

Using this time integrator, the solution of the beam equations
 3,

can be written in the form
1

W^ (t + At) = 2 W^ (t) - W^ (t - At)

+ (At) 2 
F (Wk , 

Ud

k	 N	 IUy (t + At) = 2 Uj (t) - U^ (t - At)

+ (At) 
2 

G 
(Wk, 

Ud	
y	 <

The time step, At, is chosen to insure stability and accuracy

in the solution. Choice of proper time steps is linked to

the mesh density as discussed in [2].

The domain was divided into 1000 spatial increments for

the initial transient response as is discussed in [2]. This

density was reduced to 500 spatial increments after 1 milli-

second of the response (less than .001 of the period). The

error in the energy was calculated to establish consistency.

Discretizations of 1000 increments were also carried for

several time steps for comparison. The relative difference 	 ► `#;

between the 2 discretizations was less than .01% after the 	 n,`

first millisecond under'both pulse and impact initial

I

P
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conditions. Further reductions in mesh incrementation led

to errors unacceptable (i.e., over 1% relative difference).

Five hundred (500) increments was established as the minimum

density to achieve an accurate solution.

The initial time step chosen in both solutions was

l.E-14 seconds. After 100 time steps, this was increased to

l.E-12 seconds. After an additional 100 time steps the step

size was increased to 1.E-10 seconds. This time step was

continued until the mesh density was changed after 1.E-06

seconds. The final time step used for the remainder of the

calculation was 1.E-09 seconds. The rationale for this

approach and a full discussion of accuracy and stability are
given in (2].

I

k

i
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RESULTS AND DISCUSSION

The center point displacement for the first problem

studied with a pulse initial velocity in the form of a sine

wave (described previously) is shown in Figure 2. The cal-

culation was carried out for more than 2 full periods of

oscillation. Convergence was checked by running several

portions of the calculation with both coarser and finer meshes.

After the initial startup (i.e., the first microsecond), a

mesh of 500 points was sufficient for convergence.

While the basic response is similar to a first mode

h .... ' ..
	 higher

 	 y	 ^.	 L.__t Uo__ ti _^ 
allal^'J^.J, many 	 order modes QJ."C oUVJ.UU51y J.J1VU.LVVU.

The period of the oscillation is about 1.73E-04 seconds.

This is 6.2% smaller than would be predicted by a linear

single-mode analysis. This is consistent with the known in-

fluence of buoyancy terms on vibration analysis [7]. The

maximum center point displacement was 1.68 millimeters or

2.5% of the length of the beam. It is also 48% of the beam's

thickness. Even in this relatively small deflection range,

the nonlinearity is important.

As a measure of the accuracy and consistency of the

solution, the total energy was cal -elated. It remained

constant to within 0.5% during the entire solution. It is

necessary to resolve the energy accurately for two reasons.

First, the energy is a good measure of the performance of a
t r ^

y

j4̂ .-
t ;}
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finite difference solution [2]. Second, the energy and its

components are important parameters when damage prediction is

considered. It is interesting, therefore to look at the

energy response of the beam system.

Figure 3 is a plot of the Kinetic Energy as a function

of tame. While the response is contained within a first

mode envelope, the high frequency effects are extremely

evident. The instantaneous fluctuations are as high as 30%

of the envelope response. Figure 4 is a plot of the Bending

Energy as a function of time. It also is contained within a

single mode envelope but with significant fluctuations due

to high mode effects. The basic modal response is approxi-

mately 180 degrees out of phase with the kinetic energy as

would be expected. Close examination reveals that the

fluctuations on the bending energy curve are also 180 degrees

out of phase (approximately) with the kinetic energy fluctua-

tions. This is a strong indication that the present solution

technique is a good approach for resolving vibration problems

with multiple mode responses.

Figure 5 is a plot of the Membrane Energy as a function

of time. This energy component is assumed zero in a Linear

analysis. The maximum membrane energy is 17.9% of the total

energy indicating the necessity of a nonlinear analysis.

The curvy' indicates that the membrane response is not

primarily a modal envelope response. No definitive

a

R.

f
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periodicity is evident during the time period studied. The

high order modes are responsible for a significant portion

of the membrane energy as is evident by the highly oscilla-

tory response.

The second problem involved studying the response of a

nonlinear beam to impact loading. Impact was simulated by

adding additional concentrated mass to a central portion of

the beam and subjecting the same section to an initial veloc-

ity and added mass were chosen to supply the initial energy

consistent with impact energy transfer occurring in tool

drop problems [1]. The response of the beam was calculated

until the center point displacement passed the initial zero

point which would correspond to the point at which contract

in an impact problem was lost. This corresponds is the

first half cycle of the beams response.

Convergence was checked by varying the density of the

grid and the time step size at various points in the calcu-

lation. Less than 0.5% local fluctuation in the displace-

ments was chosen as the criteria for convergence. As an

independent check on the calculation, the total energy of

the system was monitored continuously. Using a density of

1000 mesh points for the first microsecond and subsequently

a density of 500 mesh points, the above convergence criteria

was satisfied. The initial time stepping technique (described

in [2]) employed continually varying time steps from t = 1.E-14

1-

R

'.	 L

1

M e n	 I

f
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seconds to t G 1.E-10 seconds during the .first microsecond.

With a mesh density of 500 points (after the initial

startup) time steps oC t = 1.E-09 seconds were sufficient

for convergence. During the entire calculation, the total

energy remained constant to within 3% of the energy trans-

ferred by the initial conditions.

Figure 6 is a plot of the center point displacement as a

function of time during the first half cycle. The contact

time (or half period) predicted was 1.858 milliseconds which

is consistent with experimental observations for this type

of problem [1]. The maximum displacement was 2.01 milli-

meters (3% of the length of the beam and 56.5% of the thick-

ness). The response is obviously modal with no discernible

fluctuations.

Figure 7 is a plot of the Kinetic Energy as a function

of time. The response is contained within a first mode

envelope but with significant fluctuations (on the order of

15-20%). While not evident in the center point response,

the higher order effects have significant influence on the

energetics of the vibrations. Figure 8 is a plot of the

Bending Energy as a function of time. Again the response is

contained within a first mode envelope with nontrivial

fluctuations. A careful examination shows that both the

modal response and the fluctuations on the bending energy

curve are 180 degrees out of phase with the kinetic energy.

'_'_	 :. d
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Figure 9 is a plot of the Membrane Energy as a function

of time. For this problem, the membrane energy also follows

a modal response. The fluctuations due to the higher modes

area as much as 40% of the total membrane energy (at certain

instances). The maximum membrane energy is 12% of the total

energy response. The effects of the nonlinearity cannot be

ignored even in this moderately small deflection regime.
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CONCLUDING REMARKS

The results generated in this study demonstrate a

simple approach to the solution of impact loading problems

for low velocity and moderate deflection applications, A 	 }

model is proposed which accounts for the energy and stiff-

ness properties transferred by an impacting object on the

system. While the method is computationally cumbersome

and computer runtimes are significant, the a 	 '	 ?p	 g	 approach is shown

to be both consistent and accurate when compared with known 	
t

i
experimental results.

This st eady also reinforced the necessity for an in-

dependent numerical check for accuracy and stability for 	 {,

nonlinear problems. It was necessary to check both the 	
^'L.

displacement convergence and the energy conservation to

avoid erroneous results. The energy check is a strong 	 ;u

approach for the finite difference method as it is a second

order quantity in the displacement derivatives (the primary

variables and, thus, the most accurate results are the dis-

placement components).	 ^.

Inv;stigations are currently being carried out to de-

termine optimal numerical approaches to the solution of the

governing system. Refinements to the impact model and the	 ''•^
,

•	 P s

direct comparison with experimental results are also being
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