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THE DUGDALE MODEL FOR THE COMPACT SPECIMEN

S. Ma11l and J. C. Newman, Jr.2
NASA Langley Research Center
Hampton, Virginia 23665
SUMMARY
The purpose of this paper is to develop the Dugdale model for the compact
specimen. In particular, plastic-zone size and crack-tip-opening displacement
(CTOD) equations were developed. Boundary-collocation analyses were used to
analyze the compact specimen subjected to various loading conditions (pin
Toads, concentrated forces, and uniform pressure acting on the crack surface).
Stress-intensity factor and crack-surface displacement equations for some of
these loadings were developed and used to obtain the Dugdale model. The
results from the equations for plastic-zone size and CTOD agreed well with

numerical values calculated by Terada for crack-length-to-width ratios greater

than 0.4.

1Associate Professor, University of Missouri, Roltla, MO 65401,
2Sem’or Scientist, NASA Langley Research Center, Hampton, VA 23665.
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NOMENCLATURE
crack length measured from centerline of holes
ratio of bj to specimen width (bj/w)
distance from crack tip to concentrated force
dimensions for partially-loaded crack (j = 1,2)
distance measured from hole centerline to concentrated force
crack length plus tensile plastic zone
Young's modulus of elasticity
boundary-correction factor on stress intensity for pin-loaded hole
boundary-correction factor on stress intensity for concentrated force
boundary-correction factor on stress intensity for uniform pressure
stress-intensity factor
pin load per unit thickness on holes
concentrated force per unit thickness on crack surface
radius of circular holes
crack-surface one-half displacement
specimen width
specimen width measured from location of concentrated force
Cartesian coordinates
complex variable, z = x + iy
crack-length-to-width ratio (a/w)
plastic-zone-size-to-width ratio (p/w)
equal p/{a + p)
equal b/w' or b/(w - a +b)
material constant, n =0 for plane stress and n = v for plane
strain

equal (a + p)/w



v Poisson's ratio

E distance measured along crack surface from crack tip
p length of tensile plastic zone

o uniform pressure acting on segment of crack surface
0g flow stress of material

o,¥ complex stress functions

INTRODUCTION

Many aspects of material behavior contribute to the growth of cracks in
plates under monotonic and cyclic loading. A general view concerning the
behavior of material at the crack tip is that the effects of plastic flow must
be accounted for to correlate and to predict the growth of cracks. The Dugdale
model [1] is a very simple approach that simulates the effects of plastic flow
on plastic-zone size and on crack-tip-opening displacements (CTOD).

The Dugdale model concept has been used with center-crack tension speci-
mens in several fracture analyses [2-4] and in the development of fatigue
crack-closure models [5,6] for cracked metallic materials. Currently, the com-
pact specimen is the most widely used specimen for fatigue crack growth rate
and fracture toughness testing. The purpose of this paper is to develop the
Dugdale model for the compact specimen (Fig. 1(a)). In particular, plastic-
zone size (p) and CTOD equations have been developed. The Dugdale model is the
superposition of two elastic problems. These two elastic problems, a compact
specimen subjected to pin loads (P) or to uniform pressure (o) applied to a
segment of the crack surfaces, are shown in Fig. 1(b). To develop the Dugdale
model for the compact specimen, additional equations for stress-intensity
factor (K) and crack-surface displacement (V) must be obtained for this speci-

men under various loading conditions. These loadings are shown in Fig. 2.
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The pin-loaded case, Fig. 2(a), was previously analyzed by Newman [7] to
obtain stress-intensity factors and crack-surface displacements. Srawley [8]
fitted the results from Ref 7 with a power series to obtain an equation for K.
The boundary-collocation method [7] was used herein to analyze a pair of con-
centrated forces on the crack surfaces (Fig. 2(b)) and a uniform pressure
acting on a segment of the crack surfaces (Fig. 2(c)). Both stress-intensity
factors and crack-surface displacements under plane-stress conditions (v = 0.3)
were calculated. Stress-intensity factor equations were developed for these
loadings. Crack-surface displacement equations were also developed for the
pin-loaded case (Fig. 2(a)) and for the uniform-pressure case (Fig. 2(c)) with
b = 0.

The stress-intensity factor equations for pin loading and uniform pressure
(b2 = 0) were used to develop the Dugdale model (plastic-zone size) for the
compact specimen. Again, an equation was fitted to these results which gives
the plastic-zone size as a function of crack length, specimen width, applied
load, and flow stress. Likewise, an equation was developed for the crack-tip-
opening displacement (CTOD) for the Dugdale model. The results from these

equations were compared with recent numerical results derived by Terada [9].

ANALYSIS OF THE COMPACT SPECIMEN
The boundary-collocation method [7,10] was used to analyze the compact
specimen subjected to a pair of concentrated forces, as shown in Fig. 2(b).
Some details of the analysis are given in the Appendix. The stress-intensity
factors for a wide range of configuration parameters (a/w and b/w') were cal-
culated. The following empirical equation was then fitted to the numerical
results

.2
kg = 7o G(aun) (1)



where o =a/w and A =b/w'. The correction factor, G, will be presented
later.

The crack-surface displacements for the compact specimen subjected to the
three types of loading shown in Fig. 2 were calculated by a procedure suggested
by Tada, Paris, and Irwin [11]. This procedure is summarized here.

Consider a cracked body loaded by a force system, P, as shown in Fig. 3.
Let a pair of virtual forces, q, be applied on the crack surface at the loca-
tion where the crack-surface displacement is desired. If Kp and Kq are
stress-intensity factors due to p and q, respectively, then the crack-

surface displacement, V, at location x =c - d is

2 d 3K

- 1l-n - q
V = 5 £ Kp 5 da (2)

where n =0 for plane stress and n = v for plane strain. For the compact

specimen, the partial derivative, aKq/aq, was obtained from Eq (1) as

2K . 26(0,8) _  26(aya)
30 Y27b Y2r(a - ¢)

(3)

where b 1is replaced by (a - c) in the function G. During the integration,
the crack length ¢ in Eq (2) is held constant (see Fig. 3) while the crack
length (a) changes from ¢ to d. The crack length d 1is the final crack
length for which the displacement is desired. Because Kp and Kq are
generally complicated functions of crack length, Eq (2) was numerically

integrated.



STRESS-INTENSITY FACTORS

Pin-Loaded Holes
As previously mentioned, the standard compact specimen subjected to pin
Toading, as shown in Fig. 2(a), has been previously analyzed [7]. Stress-
intensity factors were calculated for crack-length-to-width ratios ranging from
0.2 to 0.8. Srawley [8] then fitted a polynomial expression to these results

and it was
P a
Y /WF (W> (4)
where
Fla) = (2 + «)(0.886 + 4.68a - 13.3262 + 14.7243

- 5.6a4)/kl - a)3/2 - (5)

and o = a/w. Equation (5) is within 0.3 percent of the collocation results
for 0.2 < a < 1. Equation (4) also approaches the exact asymptotic solution

as o approaches unity [12].

Concentrated Forces

The standard compact specimen subjected to a pair of concentrated forces
(see Fig. 2(b)) was analyzed by the boundary-collocation method. The stress
functions used to exactly satisfy the crack-surface boundary conditions and to
approximately satisfy the boundary conditions on the holes and the external
boundary are discussed in the Appendix. Stress-intensity factors were calcu-
Tated for a wide range of configuration parameters. An empirical equation was
then fitted to the numerical results and is

‘o ,?:—b () (6)




where
G(a,a) = (1 +A &+ A, AZ)/(1 - a)3/2 (7)
Ay = 3.57 + 12,501 - q)8 (8)
Ay = 5.1 - 15.32a + 16.580% - 5.9703 (9)

a=aw, A=b/w =b/(w=-a+b), and 0 < A < a. Equation (6) is within
*0.5 percent of the collocation results for 0.3 < a<0.8 and within %1 per-

cent for 0.2 < a < 0.3,

Uniform Pressure Acting on a Segment of Crack Surface
With the availability of the K-solution for concentrated forces, the
stress-intensity factors for the standard compact specimen subjected to a uni-
form pressure, o, acting on a segment (bj to bp) of the crack surface,
shown in Fig. 2(c), can be determined using the Green's function concept. The

stress-intensity factor is then given by

b
1 20

Ko = f Gdb (10)
b2 v2xb

Integration of Eq (10) for uniform pressure gives

by b
¢, = off Heti2) a
H = m[za(l + A+ A)VBE + (1 - a)B

(1= a)(5 + Ay -38,)\BZ + (1 - a)B

B =By

+ (1 - a)2(3 - A1 + 3A2) an (/E +vB +1 - ai] (12)

B=8



where o =a/w and Bj = bj/w. The functions A7 and A2 are given

by Eqs (8) and (9), respectively. Because the concentrated force solution was
within +0.5 percent of the collocation results, the uniform pressure case would
have the same accuracy for 0 <Bj < « and 0.3 < a < 0.8. Equation (11) is
useful in developing the Dugdale model and plastic-zone size equations for the

compact specimen. This development will be discussed later.
CRACK-SURFACE DISPLACEMENTS

- Pin-Loaded Holes
The crack-surface displacements for the compact specimen under pin loading
(Fig. 2(a)) for plane-stress conditions were previously calculated using a
collocation analysis [7,13]. For comparison, the displacements were also cal-
culated from Eq (2). The crack-surface displacement, Vp, under plane-stress

conditions at a distance ¢ from the hole centerline is

Vo= 2P ? F(a)G(a,A) do (13)
P E o fon(a - ciw)

Equation (13) was numerically integrated. Because the polynomial expressions
for F and G (Eqs (5) and (7), respectively) are within 0.5 percent of the
collocation results for 0.3 < a < 0.8, then the computation of crack-surface
displacement would, in general, be within %1 percent of the collocation
results. The normalized displacements, EVp/P, as functions of &/a, are
shown in Fig. 4 for various values of a/w. The symbols show calculations from
Eq (13) and the curves were obtained from a boundary-collocation analysis [13].
The results from numerical integration and collocation agreed within 1 percent.
Equation (13) cannot be used for locations &/a > 1 - 0.2(w/a) because F and

G were not developed for a/w ratios less than 0.2.
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For ease of computation, a polynomial expression for the normalized dis-

placeménts shown in Fig. 4 was developed. This expression is

EV 2
G £ 3
- = Nz [1 +0(3) + &(3) ]F (14)
C; = -1.25 + 9.76a - 20,1502 + 16.6203
C. = 0.64 - 4.380 + 10.24¢® - 8.46¢°

where a =a/w and F is given by Eq (5). Equation (14) is within %1 percent

of the numerical results from Eq (13) for &/a <1 - 0.2/a and 0.3 < « < 0.8,

Concentrated Forces
The crack-surface displacements for the compact specimen subjected to a
pair of concentrated forces (Q) (Fig. 2(b)) under plane-stress conditions were
calculated using either the collocation analysis (see Appendix) or Eq (2).
Using Eq (2), the crack-surface displacement, Vg, at a distance ¢ from the

hole centerline is

G(a,A YG(a,A)
Vg = 4 f (2298 da (15)
c/w d(“ - c/w)bO/w

where Aqg = by/(w - a +by) in Eq (7). The distance b, is the loca-
tion of the stationary force Q. The distance b 1is the location of the
virtual force q. Again, b must be replaced by (a - c¢) and by must be
replaced by (a - cy). The distance c, is the distance from the hole
centerline to the location of the force Q. Again, Eq (15) was numerically
integrated.

The normalized displacements, EVqQ/Q, as functions of &/a, are shown in

Fig. 5 for various values of a/w. The symbols show calculations from Eq (15),
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and the curves were obtained from the boundary-collocation analysis. The
results from numerical integration and collocation again agreed well. Again,
Eq (15) cannot be used for locations £/a > 1 - 0.2(w/a) because G was not

developed for a/w ratios less than 0.2.

Uniform Pressure Acting on a Segment of Crack Surface
The crack-surface displacements for the compact specimen subjected to a
uniform pressure, as shown in Fig. 2(c), were also calculated using Eq (2).

The displacement, V,, at a distance c¢ from the hole centerline is

ow ? H(a,Bl,BZ)G(a,A) y

V = a (16)
o 2t c/w Ya - c/w

where G and H are given by Eqs (7) and (12), respectively. The function
Bj is bj/w, and bj must be replaced by (a - cj). The distance
Cj is measured from the hole centerline to appropriate ends of the uniform
pressure loading.

Some typical normalized crack-surface displacements, EV /(ow), with
a/w = 0.6 for various lengths of uniform pressure are shown in Fig. 6. The
displacements calculated from Eq (16), shown as symbols, were within 1 percent
of displacements calculated from collocation (curves) because the polynomial
expressions for G and H (Egqs (7) and (12), respectively) are within
+0.5 percent of collocation results. These displacements are useful in devel-

oping the CTOD equations for the Dugdale model.

DUGDALE MODEL FOR COMPACT SPECIMEN
The Dugdale model for the compact specimen (Fig. 1) requires that the

"finiteness" condition of Dugdale be satisfied. This condition states that the
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K at the tip of the plastic zone (at d = a + p) is zero. From this condi-
tion, the plastic-zone size (p) was calculated for various a/w and P/(wop)

ratios. An equation was then fitted to these results and was

2
p _ mw/PF
acs §<WT> Fo - (17)
0
where
= 2 3
F=(2+ a)(b.886 + 4,640 - 13,320 + 14.724

- 5.661)/(1 - a)32

2
p p
1+ f(—\V\+f,[—
o 1<woo> 2<woo>

= -2.687(1 - o) + 0.167/a

-
i

-t
—
I

= -2.48 - 0.039/(1 - «)f

cﬁ
N
I

and o = a/w. Equation (17) is within %1 percent of the current collocation
results for 0.3 < (a +p)/w < 0.8 and p/(w - a) £ 0.5. A comparison of
plastic-zone sizes calculated from Eq (17) and some recent collocation results
from Terada [9] are shown in Fig. 7. The normalized plastic-zone size,
o/(w - a), is plotted against P/(wo,) for various values of a/M. The
curves show the present results (Eq (17)) and they agreed well with the previ-
ous results from Terada (symbols).

In the compact specimen, the material at point A in Fig. 1(a) is in com-
pression. At a certain load, this material will yield in compression. From a

finite-element-strip-yield analysis for an elastic-perfectly plastic material,
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the load that causes incipient yielding at point A was calculated. For each
value of a/w, these loads are shown as the upper ends of the solid curves.

The upper ends of the dashed curves denote loads and plastic-zone sizes where
backface yielding at point A has about a 2 percent effect on crack-tip-opening

displacement (CTOD). Thus, Eq (17) is restricted to

P — < 0.53 - 0.650 + 0.324 (18)

so that the influence of backface yielding on CTOD is less than 2 percent. The
influence of backface yielding on plastic-zone size is not included in Eq (17).
The CTOD (2V,) for the compact specimen was calculated by adding the
displacement at the tip of the physical crack length (a) due to the pin load
and due to the uniform stress. Again, an equation was fitted to these results

and was

2VaE 8 wco
p— =28 \Iﬁ FiFo = =5 /Fule (19)
where

Fp=(2+ 2)(0.886 + 4.60x - 13.323% + 14,7223

-s.at)/a - )32

_ 2

B, = -1.25 + 9.76X - 20.15)° 3

1 + 16.62)

2 3

B, = 0.64 - 4,34x + 10.24)\" - 8.46)

2

Hy = 3[?3(1 +A +A)+ (1= A)(5+ A - 3A2)] Jsz +(1-2)8

+ (1= 2)%(3 - A 3A2)[}n (VB+YBFT-%)-an /T2 A]i (1 - 2)3/2



13

Ay = 3.57 + 12.5(1 - 2)8
A, = 5.1 - 15,321 + 16587 - 5.9723
H, =1+ hy,y +h 72

2 1 2

h, = 0.666 + 0.796)% + 12.36x%

1 - Y * .

) 2 4
h, = 0.084 + 2.622% - 14.08x

B =p/w, X=(a+p)/m, and v =p/(a + p).

Equation (19) is within about #1.5 percent of the current collocation
results for 0.3 <1 <0.8, y<1-0.2/x and p/(w - a) < 0.5. Figure 8
shows the normalized displacement against plastic-zone-size-to-ligament ratio
for various a/w ratios. The curves show the results from Eq (19) and the
symbols show results from Terada [9]. The results agreed well. The slight
discrepancy at an a/w ratio of 0.3 was probably due to neglecting the pin-
loaded holes in Terada's analysis. Again the dashed curves indicate that back-
face yielding is occurring, but its influence on CTOD is less than 2 percent if

the plastic-zone size is less than that given by Eq (18).

CONCLUDING REMARKS
A two-dimensional elastic boundary-collocation analysis was used to ana-
lyze the compact specimen subjected to various loading conditions. The effects
of the pin holes were included. The loading cases were: pin-loaded holes, a
pair of concentrated forces acting on the crack surfaces, and a uniform pres-
sure acting over a segment of the crack surfaces. Stress-intensity factor (K)
equations were developed for each of these loadings. Crack-surface displace-

ment (V) equations were also developed for pin-loaded holes and for some
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restricted configurations of the uniform pressure case. The K-equations were
within 0.5 percent and the V-equations were within %1 percent of the colloca-
tion results. Some of these equations were used to develop algebraic equations
for plastic-zone size and crack-tip-opening displacement (CTOD) for the Dugdale
model. The plastic-zone size and CTOD equations were within 1 and 1.5 percent,
respectively, of the collocation results.

The results from this study on the compact specimen can be used in various
analyses based on the Dugdale model concept. Some examples are the critical

CTOD fracture analyses and the crack-closure models.
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APPENDIX

STRESS-INTENSITY FACTOR EQUATION FOR CONCENTRATED FORCES APPLIED
TO CRACK SURFACES ON COMPACT SPECIMENS

The stress-intensity factors for a compact specimen subjected to a pair of
concentrated forces on the crack surfaces, Fig. 2(b), were obtained from a
boundary-collocation analysis. An algebraic equation was fitted to the numeri-
cal stress-intensity factors.

For the compact specimen configuration, consider a semi-infinite crack
along the x-axis in an infinite plate subjected to a pair of concentrated
forces, Q, as shown in Fig. 9. The dashed lines Lj and Lp define the
boundaries of the compact specimen. The Muskhelishvili [14] stress functions
for this configuration are

¢(z) = ¢0(z) + ¢l(z) + ¢2(z) oo
20

¥(z) wo(z) + vl(z) + wz(z)

The subscripts denote functions which are needed to satisfy conditions for the
concentrated forces on the crack surfaces and to approximately satisfy condi-
tions on boundaries Lj and Lo, respectively.

The stress functions for a semi-infinite crack in an infinite plate sub-
Jected to a pair of concentrated forces on the crack surface were derived from

equations given in Ref 15. They are
-1
0y(2) = ¥,(2) =-% tan JE? (21)

The stress functions used to approximately satisfy boundary conditions on

the external boundary Lj are
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01 (2) N

N
=vz § AZ"l: T B " (22)
Wl(z) n=1 " n=

where the coefficients A, and B, are real. The stress functions will,
of course, produce stresses on the internal boundary Lj.
The stress functions used to approximately satisfy boundary conditions on

boundary L2 are

v, (2) M i, o
M . o
Y 0,z - 2) ™+ (2 - 7)™
M .
¢ 1 itz - )™ - @ -2,)7"]
M ~ - - -
: nzl Dn[(z -z,) "+ (z - zh) n] (23)

wﬁere Chs En’ Dp, and Bn are real. In these stress functions,

poles zp and zp were located at the centers of the two holes (see

Fig. 9). The stress functions in Eqs (22) and (23) automatically satisfy the
conditions of stress-free crack surfaces and the single-valuedness of displace-
ment condition for multiply connected regions. The conditions on boundaries

L1 and Lz were approximately satisfied by the series solution using the
boundary-collocation method described in Ref 10. From a convergence study, N
was selected as 40 and M was 20.

The stress-intensity factor is given by

K = 2/27 lim vz ¢'(z) (24)
z2+0
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They were calculated for a wide range in configuration parameters. An empiri-

cal equation was fitted to the numerical stress-intensity factors and is

The equation for the correction factor, G, is

G(a,r) = (i + AlA + A2A2>/Q1 - A)3/2 (26)
- 8
A1 = 3.57 + 12.5(1 - «a)
_ 2 3
A2 = 5,1 - 15.32a + 16.58a" - 5.97q

where a =a/w, A =b/m', 0<A<a and 0.2 < a < 0.8. Equation (25) is
within £0.5 percent of the boundary-collocation results for 0.3 < a < 0.8 and
within *1 percent for 0.2 < a < 0.3. For clarity, only the results for a/w
ratios of 0.3, 0.5, and 0.8 are shown in Fig. 10. The curves were calculated

from Eq (26).
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plastic-zone size for various a/w ratios.
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Fig. 9--Crack in infinite plate subjected to pair of concentrated
forces on crack surface,
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Fig. 10--Boundary-correction factors for compact specimen with pair
of concentrated forces, Q, applied to crack surface,



. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TM-85714

4. Title and Subtitle ' 5. Report Date
October 1983
THE DUGDALE MODEL FOR THE COMPACT SPECIMEN 6. Performing Organization Code
505-33-23-02
7. Author(s) . 8. Performing Organization Report No.

S. Mall" and J. C. Newman, Jr.

10. Work Unit No.

. Performing Organization Name and Address

NASA Langley Research Center 11. Contract or Grant No.
Hampton, VA 23665

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address

Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546

15.

Supplementary Notes *Unjversity of Missouri, Rolla, Missouri.

Presented at the ASTM 16th National Symposium on Fracture Mechanics, Columbus, Ohio,
August 15-18, 1983.

16.

Abstract

The purpose of this paper is to develop the Dugdale model for the compact
specimen. In particular, plastic-zone size and crack-tip-opening displacement
(CTOD) equations were developed. Boundary-collocation analyses were used to
analyze the compact specimen subjected to various loading conditions (pin loads,
concentrated forces, and uniform pressure acting on the crack surface). Stress-
intensity factor and crack-surface displacement equations for some of these
loadings were developed and used to obtain the Dugdale model. The fesults from
the equations for plastic-zone size and CTOD agreed well with numerical values

. calculated by Terada for crack-length-to-width ratios greater than 0.4.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Compact specimen Displacements
Plastic deformation Cracks Unclassified - Unlimited
Stress functions Collocation

Fracture strength

Crack propagation Subject Category 39

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price®

Unclassified Unclassified 30 AQ3

* For sale by the National Technica! Information Service, Springfield, Virginia 22161

—






~-~-



