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ABSTRACT

The Urbana coherent-scatter radar has been used to observe the upper

troposphere and lower stratosphere, and 134 hours of data have been

collected thus far. Horizontal wind measurements show good agreement with

balloon-measured winds. Gravity waves are frequently observed, and are

enhanced during convective activity. Updrafts and downdrafts are observed

within thunderstorms. Power returns are related to hydrostatic stability,

and changes in echo specularity are shown.
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1. INTRODUCTION

1.1 VHF Radar Probing of the Upper Troposphere and Lower Stratosphere

During the past few years, substantial progress has been made in radar-

based studies of the dynamics of the middle atmosphere ( approximately 10-

100 km altitude). Much of this progress is due to the development of the

MST (mesosphere- stratosphere-troposphere) radar technique. Many thorough

reviews of the MST technique have appeared recently (Gage and Balsley, 1978;

Green et al., 1979; Balsley and Gage, 1980; Rottger, 1980a; Harper and

Gordon, 1980 1. What follows are a short history of this technique and a 	 j

discussion of some of its advantages over other atmospheric sensing tech-

niques.

Radar-based investigation of the atmosphere has its historical roots in

the early tropospheric radio propagation experiments of the 19306. With the

help of these experiments, it was recognized that atmospheric phenomena were 	 k

responsible for the observed long distance propagation [ duCastel, 1966].
G

Many of these observations were explained through the theory of tropospheric

scatter propagation, developed by Booker and Gordon [ 1950].

The development of radar during World War II yielded radars sensitive
j

enough to probe the structure of the troposphere. Much of this work

depended upon backscatter from hydrometers at microwave frequencies.
I^

Unexplainable echoes from the clear air, known then as "angels," were also

observed, however. Some of these echoes were subsequently explained by

Hardy at al. [1966] as being caused by scattering from turbulent irregulari-

ties.

In the early 1960s, high-power VHF and UHF radars were designed and

built primarily for ionospheric research. These radars measured backscatter

Y



due to thermal motions of electrons. This type of scattering process is

known as Thomson scatter or incoherent scatter. Several facilities were

constructed, including: Arecibo, Puerto Rico, Millstone Rill (at Weslfo;d

Massachusetts), and Jicamarca, Peru.

Mesospheric observations made at these facilities indicated the

presence of backscatter which was too large to be caused by Thomson scatter

alone. Bowles [1964] suggested that these returns were due to turbulence—

induced scatter because of their similarity to ionospheric—scatter propaga-

tion signals. In 1974, the first measurements of winds and turbulence in

the stratosphere and mesosphere were reported by Woodman and Guillen [1974],

using the 50 MHz Jicamarca radar. They calculated the complex autocorrela-

tion function of the scattered signal to obtain the Doppler shift, which in

turn -+es a measurement of the line —of—sight velocity of the scattering

le;_r. The short—period fluctuations observed in these velocity measure -

ments were attributed to gravity—wave activity. Since this radar technique

uses phase information to calculate velocities, it is known as the coherent—

scatter technique.

Since 1974, many other incoherent—scatter radars have been used to

study the neutral atmosphere. In addition, many VHF radars have been

designed and built primarily for coherent—scatter studies. These include:

the Sunset radar in Colorado [Green et al., 19751; the Platteville radar,

r	 also in Colorado [Ecklund et al., 19791; the Poker Flat radar in Alaska

[Balsley et al., 19801; the SOUSY radar in Germany [Czechowsky et al.,

19761; the Urbana radar in Illinois [Miller et al., 19781; and the MU radar
i

in Japan [Fukao et al., 19801. As of this writing, several other facilities

are now in the planning stage.

i
Much attention has been focused on the MST technique because of its
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UdvaL.tages over other techniques in investigating the atmosphere. For the

upper troposphere and lower stratosphere, comparisons of wind velocities

have been made primarily with measurements by radiosondes. It has been

shown by many investigators that these winds are in excellent agreement.

However, radiosonde data are generally available only twice daily, while

radar-measured winds are available on at least an hourly basis. This

improvement in temporal resolution has several implications.

First, jet streams and fronts can be studied on a near-real-time basis.

This information may be helpful for improving the accuracy of short-term

local forecasts [Little, 1972]. The jet stream, information may also be used

by the commercial airlines to lower fuel consumption on flights. A recent

paper by Carlson and Sundararaman [1982] reports an estimated 1-3% savings

($100-300 million) in fuel cost per year with improved wind data and flight

planning.

Second, vertical velocities car be measured. These velocities have

applications in studying convective development, cloud physics, turbulence,

and transport of minor constituents. Studies of gravity waves and

atmospheric stability are also possible, as discussed later in this work

I

t (e.g. Sections 3.3 and 4.1). The first operational wind profiling system,

called PROFS (Prototype Regional Observations and Forecast System), is

I,
',.	 currently undergoing testing in Colorado [Straucb et al., 1982; Cage,

1983x].

r^
y .;	 1.2 Scattering Nechanisms

It is now recognized that several scattering mechanisms are responsible

for clear-air radar backscatter at lower VRF frequencies with near-vertical

A	 antenna beams. These mechanisms can be divided into two major groups, those

being turbulent scatter and Fresnel (or partial) reflection. Recent reviews
in.

i
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have covered these two groups quite thoroughly [Rottger, 1980b; Gage and

Balsley, 1980]. Details of scattering theory are beyond the scope of this

work. Instead, a short qualitative description of several possible scat-

tering mechanisms is given below. These mechanisms are treated in more

detail by Gage [1983b].

Two types of turbulent scattering are thought to contribute to clear-

air echoes: isotropic and anisotropic. Isotropic turbulent scattering

relies on active turbulence generating gradients of the refractive index.

In addition, the probing radar wavelength must be sensitive to thc, scales of

these gradients. The relevant theory was developed by Booker and Gordon

[1950] to explain over-the-horizon VHF radio propagation, as discussed

earlier. The largest scales of turbulence can become anisotropic, parti-

cularly in a density-stratified medium. Its horizontal correlation distance

may become much larger than that in the vertical direction, 'producing an

azimuthal dependence in echo strength.

When the radar beam is directed almost vertically, coherent structure

in stable layers of the atmosphere produces additional returns. Reflection

from a single thin layer (refractivity gradient) is known as Fresnel (or

partial) reflection. This mechanism was also well-known from early

propagation experiments. The term Fresnel reflection came about since these

layers are thought to extend horizontally over a Fresnel zone. When more

th,n one of these layers is present in the scattering volume (a random

structure in the vertical), we have what is termed Fresnel scattering.

1.3 Objectives and Scope of This Study

The major objectives of this study are as follows:

1) To use the Urbana coherent-scatter radar to obtain power, velocity,

and correlation time information from as much of the troposphere and

I'

is ..>....
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stratosphere as possible.

2) To relate the information obtained to many types of meteorological

phenomena.

3) To provide a basis from which much more detailed studies can be

undertaken.

Brief descriptions of both the Urbana radar and the various stages of

data analysis are given in Chapter 2. Chapter 3 shows observations of

clear—air w?.nds and thunderstorms. Power levels and velocities over a 36—

hour period are also shown. Further discussion of specific aspects of these

observations appear in Chapter 4. Conclusirns and suggestions for future

research are given in Chapter 5.
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2. EXPERIMENTAL TECHNIQUE

2.1 The Urbana MST Radar

2.1.1 Radar hardware. The Urbana radar is a monostatic, pulsed VHF

radar. The radar transmitter has a peak pulse output power rating of 5 MW,

although for this study it was operated at approximately 1 MW. The opera-

ting frequency is 40.92 MHz. Normal pulse widths are 10 us and 20 us, with

10 us used predominantly for this work, at a pulse repetition frequency

(PRF) of 400 Hz. More detailed descriptions of the transmitter subsystems

can be found in Gibbs and Bowhill [1979], Hess and Geller [1976], and

Herrington and Bowhill [1983].

The coherent-scatter antenna is a large array composed of 1008 half-

wave dipoles divided into six groups. It has a physical aperture of 11,000

square meters and a half-power beamwidth of 3.6 x 4.8°. The antenna is

connected to both the transmitter and receiver via a gas discharge transmit/

receiver (T/R) switch, permitting monostatic operation. The normal pointing

direction of the antenna is 1.5° off-vertical toward 36° south of east. A

more detailed description of the antenna system can be found in Allman and

Bowhill [1976].

2.1.2 Receiver recovery considerations. The monostatic operation of

the Urbana radar results in a theoretical limit as to what the lowest

observable altitude is. There are many factors which contribute to the

determination of this altitude. By far the most important of these factors

is the recovery time of the T/R switch. Gibbs and Bowhill [1979] report a

400 tisec recovery time for the T/R switch. Since R - ct/2, where R is the

range, c is the speed of light, and t is the propagation time, the lowest

observable altitude becomes 60 km (assuming range = altitude for a 1.5°

I'	 1

;.



7

zenith angle). Royrvik et al. [1982] report a lowest observable altitude

of 40 km from these considerations.

With this information in mind, it was decided to construct a bi3tatic

arrangement for low altitude observations. A 13—element Yagi antenna was

strapped in a vertical position to a telephone pole which is used to support

the antenna for the partial—reflection experiment at Urbana. A long coaxial

cable connected the antenna directly to the blanker/preamplifier unit,

bypassing the T/R switch. The lowest observable altitude for this system

was found to be 6 km. The recovery time was due primarily to receiver

I
saturation caused by the blanker pulse.

Power and velocity plots of data obtained using this system are shown

in Figures 2.1 and 2.2, respectively. It is apparent from the amount of

missing data in the velocity plot that the system is not sensitive enough.

Another indication of lack of signal strength is the lack of power returns

at stratospheric altitudes. As explained previously in Section 1.2,

stratospheric returns should be stronger due to specular reflections from

horizontally stratified layers. However, these returns were not present

above 15 km.

Several investigations were then undertaken to determine if the usual

monostatic operation of the radar could be adapted to collect low altitude

data. It was found that the T/R switch recovery time was not as long as

previously believed. Also, the scattered signal strength between 10 km and

20 km was found to be higher than that of the mesosphere, particularly near

the tropopause. This large scattered power managed to overcome the

attenuation caused by the T/R switch.

On June 17, 1982, data were taken with both the Yagi system and the

monostatic system in consecutive 2 hour intervals. Data from the mouostatic
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10

system is shown in Figure 2.3 and data from the Yagi system in 2.4. Velo-

cities below 12 km in Figure 2.3 are contaminated with interference from the

blanker and transmitter pulses. Comparison of the two figures clearly

demonstrates the greater sensitivity of the monostatic system.

To be able to observe the lowest altitude possible, the transmitted

pulse width was decreased from 20 usec to 10 usec, and the blanker pulse

width was decreased from 70 usec to 30 usec, where the former values

correspond to those used for mesospheric observation.

The monostatic system is capable of observing as low as 9 km. Scat-

tered puwer and line-of-eight velocities are routinely obtained up to an

altitude of 24 km. Figures 2.5 and 2.6 are plots of power and line-of-

sight velocity, respectively, using the monostatic system. When compared to

Figures 2.1 and 2.2 above, it is clear that the monostatic system provides a

much greater amount of useful data.

2.2 Data Analysis Techniques

2.2.1 Autocorrelation function. The desired echo power and velocity

data can be obtained through the use of either time domain or frequency

domain techniques. At Urbana, the time domain technique is used. Therefore

the autocorrelation function, formed from samples of the phase detector

outputs, provides the foundation from which all other data are derived.

Details of how the power and velocity data are derived from the auto-

correlation function, as well as how the function itself is computed are

given by Gibbs and Bowhill [1979]. What follows herein are examples of the

various stages of analysis which are available in plotted form.

2.2.2 Echo power. Scattered power at each of the 20 sample heights

is obtained with one minute time resolution. These data are both collected

and plotted in two-hour blocks. For all of the stratospheric data, scat-

j
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tered power levels are below the noise floor in the region above 25 km.
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This highest observable altitude has two determining factors. First, echo

power is know to decrease rapidly with altitude. Balsley and Gage [1980]

report a 2 dB/km decrease with altitude in hourly-averaged echo power at

Jicamarca, Peru. Second, the peak pulse power of the Urbana radar is

limited to approximately 1 MW. The combined effect of these two factors

produces a highest observable altitude of 25 km. Occasioru.11y, however,

there will be a spike return at ranges greater than 25 km lasting for 1 or 2

minutes. These are almost certainly caused by airplanes passing through

sidelobes of the antenna pattern.

Two types of scattered power plots are available. The first gives

scattered power at each sample altitude versus time. An example of this

plot is shown in Figure 2.7. A 10 dB scale is shown at right. Note that

the plotting algorithm for this diagram uses a hiding routine. For any two

adjacent altitudes, the hiding routine is such that the curve for the higher

altitude is plotted only if the power at that altitude exceeds an amount

equal to 5 dB less than the power at the lower altitude.

The second type of scattered power plot gives the scattered power each

minute versus altitude. This plot uses a hiding futine similar to the

routine discussed above. In this case, however, the previous minute has

priority instead of the lower altitude; the higher minute is plotted only if

the power at that minute exceeds an amount equal to 1 dB less than the power

at the previous minute. An example of this plot is shown in Figure 2.8.

	

'	 2.2.3 Line-of-sight velocity. Velocities in the direction of the

	

I^•	 radar beam are also obtained on a minute-by-minute basis up to about 25 km.

On these plots, a negative velocity at any altitude corresponds to motion

away from the radar, and vice versa. The scale shown at right is usually

n
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1 meter/second (m/s), but it can easily be changed. An example is shown

in Figure 2.9.

2.2.4 Correlation time. Values for the minute-by-minute correlation

time at each altitude are found by taking one-half of the time necessary for

the autocorrelation function to fall to zero. An example is shown in Figure

2.10. The scale at right is 1 second and the maximum value allowed is 1.5

seconds.

2.2.5 Derived horizontal winds. Since gravity waves have a strong

vertical component and the antenna zenith angle is 1.5% the line-of-eight

velocities contain many short period oscillations. However, over periods

longer than the Brunt-Vaisala period of 5 . 10 minutes it is known that

vertical motions are negligible compared to horizontal motions [Hines,

19601. Thus, an hourly-averaged horizontal wind can be calculated by

assuming that the average line-of-eight velocity during the period is the

component of the horizontal wind in the line-of-sight direction. The

horizontal velocity is then found using simple trigonometry. Examples of

hourly-averaged horizontal wind plots are given in Figure 2.11. Note that

two profiles are shown for each hour, one each for one hourly-averaged

standard deviation on either side of the mean. The horizontal wind profiles

given in Chapter 3 represent the average of these two profiles.

The standard deviations themselves for each hour are shown below the

wind profiles. They provide an indication of the amplitude of any short-

period oscillations present during a one hour period at each sample height.

Details concerning the calculation and plotting of hourly statistics are

given in Gibbs and Bowhill [1983].

2.2.6 Hourly-averaged power levals. Minute-by-minute power returns

at each sample height are averaged for 60 minutes and plotted. Examples are
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also shown in Figure 2.11. For each hour, two profiles are plotted. The

solid line represents that power level at each sample height which is

exceeded 50% of the time during the hour. The dotted profile represents the

power level exceeded 10% of the time. Thus the dotted profile tends to show

where transient disturbances, or spikes, occur.

2.2.7 Power and velocity spectra of minute-by-minute data. Further

analysis of the minute-by-minute power and velocity data is available

through the use of a fast Fourier transform (FFT). Details of the calcula-

tions and plotting algorithms are given in Gibbs and Bowhill [1983].

Spectra of the velocity data are especially useful in the upper troposphere

and lower stratosphere because of the opportunity to compare observed velo-

city fluctuation periods with the local Brunt-Vaisala period calculated from

radiosonde data. An example velocity spectrum is shown in Figure 2.12.

Spectra such as this are discussed in Section 4.5.

2.2.8 Power spectra of coherently integrated data. In addition to

minute-by-minute data collection, it is also possible to collect the

I	 coherently integrated data directly, before it is formed into an autocor-

relation function and averaged for one minute by the PDP-15 (data collection

computer). In this case a data collection disk is filled in six minutes

instead of the usual two hours. The data consist of 40 records, each having

a length of 10 seconds.

A complete set of processing routines has been developed for these data

[Gibbs and Bowhill, 1983]. For this work, the only procedure used is an

FFT-generated power spectrum for the first 8 seconds of every 10 second

record. An example is shown in Figure 2.13. All spectral plots shown

herein are scaled so that the highest spectral peak corresponds to full

scale on the plot. Spectra such as theseare discussed in Section 4.4.

b
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3. OBSERVATIONAL RESULTS

3.1	 Scope and Extent of the Data
i
J

I
The Urbana radar was first used for lower atmospheric observation on

April 22, 1982.	 At this time, as described previously, a small Ya gi antenna

was used for receiving, yielding backscatter above the noise floor up to

an altitude of only 15 km.	 This system was used for seven days of obser-

vations.	 On June 9, 1982, the large antenna array was incorporated for both

transmitting and receiving, in the same way that it is used during meso-

spheric observations [Gibbs and Bowhill, 1979]. 	 Data were collected in this

way until December 10, 1982 on 24 days. 	 As of December 31, 1982, 134 hours

i
of lower atmospheric data have been collected on 31 days.

_..I The quality of the data shown in this section is typical of the quality

obtained in all 134 hours of data.	 The figures have been chosen as an aid

v	 i
to explain and/or verify statements in the text. 	 Wintertime measurements

ti. were hampered by ground backscatter interference, but this accounts for only

a small fraction of the total data base.

',	 I 3.2	 Comparison with Radiosonde-Measured Winds

As explained in Section 2.2.5, an hourly-averaged horizontal wind

component for each sample height toward the direction 36° south of east

can be derived from the line-of-eight velocity data. 	 These radar-derived

wind profiles are compared to radiosonde wind profiles obtained from nearby

r	 i
National Weather Service balloon sites. 	 The radiosonde wind speeds shown

are found by computing the component of the true velocity toward the direc-

tion 36° south of east.

Several examples of radar wind profiles are given in this section. 	 In

particular, two types of plots are shown. 	 The first type of plot compares
i
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radar-derived wind profiles with profiles from the two nearest National

Weather Service radiosonde sites, Peoria and Salem, Illinois. The second

type of plot compares radar-derived wind profiles to each other. These

plots demonstrate the radar ' s ability to detect changes in the wind field on

an hourly basis.

In order to give a quantitative measure of agreement between the radar-

derived and radiosonde wind profiles, one can define a variability index, Iv

for each profile comparison. The variability index is found by calculating

the absolute value of the difference in wind speed between the two profiles

at each radar sample height, and then averaging these differences over all

heights. The sample heights used extend to 16.5 km, above which radiosonde

data are unavailable. The radiosonde wind speed at each radar sample height

is approximated by using straight line interpolation between two adjacent

data points.

A comparison of radiosonde and radar-derived wind profiles for July 22,

1982 is shown in Figure 3.1. The variability index of 4.8 m/s is probably

caused by the nearly 5 1/2 hours time difference between the observations

I	 and the 168 km spatial separation between Urbana and Peoria. The agreement

is better at altitudes above 13.5 km, where horizontal winds are generally
r

more stable over time. Wind variability is discussed further in Section

,
4.3.

!	
A nearly simultaneous comparison was made on the evening of September

16, 1982 during a 36-hour run. This comparison is shown in Figure 3.2. The

profiles are nearly identical in shape, with an Iv of 4.8 m/s.

4

	

	 Data from September 24, 1982 are shown in Figure 3.3. Here, three

hourly radar profiles taken in the morning are compared to the evening

radiosonde profile. Once again, the lack of wind variability in the lower

S

ji

r^
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Figure 3.1 Comparison of horizontal wind profiles from NWS

radiosonde and the Urbana radar.
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Figure 3.2 Simultaneous comparison of horizontal winds.
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Figure 3.3 Three morning Urbana radar profiles compared to evening
radiosonde.



stratosphere (above 15 km) is evident. The radiosonde profile, taken

approximately 8 hours after the radar profiles, shows better agreement at

the lower altitudes than in the stratosphere. This discrepancy is most

likely caused by the large temporal separation of the two sets of observa-

tions. Scattered rain showers and thunderstorms were prevalent across the

state throughout the day.

Comparisons for October 8 and October 15, 1982 are shown in Figure 3.4

and Figure 3.5, respectively. Again, considering the difference in time of

over 3 hours in each case, Iv is still less than 4 m/s.

The data in Figure 3.6 were taken with the radar antenna pointing in a

direction different than its normal operating position of 36° south of east,

1.5° off-vertical. The Urbana coherent-scatter antenna can also be phased

to point in both the south and east positions with a small feed system

change. The antenna consists of Three modules, each fed by an open-wire 	
i

transmission line [Allman and Bowhill, 1976). By inserting extra lengths

of open-wire transmission line into two of the three open-wire feeders, the

main lobe of the antenna ce.n be tipped in the E-plane, which is perpen-

dicular to 36 0 south of east. S. W. Henson (personal communication, 1983)

calculated the extra lengths necessary to tip the main lobe toward both the

east and south. These extra lengths are inserted in the feeds to the NE

and SW modules of the sntenna, with the middle module feed left untouched.
ti

Zenith angles for the Best and south pointing directions are also

calculated. Knowledge of these zenith angles is necessary to derive the

hourly-averaged horizontal winds in either of these two directions. These

zenith angles as well as necessary phase shifts and line lengths needed to

implement the various pointing directions are given in Table 3.1.
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Figure 3.4 Comparison of horizontal wind profiles from Peoria
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Figure 3.6 Comparison of horizontal velocity toward the south.
Radar data were collected with antenna pointed toward
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The most desirable arrangement would involve fast mechanical switching

of the antenna pointing direction while the transmitter was in operation.

However, as an interim measure, a manually switched system was constructed.

Only two of the three antenna modules need be phase shifted to attain the

desired pointing directions. The two outboard modules were chosen for sym -

metry purposes.

Each antenna module has one feed line attached at any one time. The

two outboard groups each have two additional feed lines available for use.

Alternate pointing positions are selected by manually disconnecting the

normal feed line and installing one of the other two, depending upon which

direction is desired. Of course, the transmitter must be off while this

change takes place. However, this change can be accomplished in as little

as five minutes, so that only a small amount of data is lost in the process.

For the data shown in Figure 3.6, the antenna was phased to point

toward the south. The zenith angle for this pointing position is therefore

2.55% For this plot, the southward component of velocity was computed from

the radiosonde data for comparison. These data were taken on October 15,

1982, approximately one hour previous to the data shown in Figure 3.5. Iv

in this case is only 1.1 m/s.

Another nearly simultaneous set of observations is shown in Figure 3.7.

In this case, a jet stream was over the northern portion of Illinois,

centered at about 11 km. This shows up clearly on the Peoria radiosonde

profile. Also shown in this figure is the radiosonde profile from Salem,

Illinois, 177 km to the south— southwest of Urbana. Very little evidence of

the jet can be seen in this profile. Since Urbana is somewhat between

Peoria and Salem, one would expect a combination of these two profiles to be

present. That is exactly what appears in the figure. Notice again that the

i^4
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Figure 3.7 Comparison of two radar profiles with morning radiosonde profiles
from Peoria and Salem, Illinois. Data were collected during jet
stream passage.



Y

^^ 1

37

tropospheric winds vary greatly between locations while the stratospheric

winds remain generally constant.

One case in which there is large variability in the stratospheric wind

over time is shown in Figure 3.8. During the morning hours of September 1,

1982, thunderstorms were present in the Urbana area. The profile at 14522

was taken during one of these storms. Notice that the winds in the lower

stratosphere are much stronger than those in any previous figure. A profile

taken at 1844Z, after the storms had subsided, compares much more favorably

to the morning balloon sounding with Iv - 2.6 m/s as opposed to 9.2 m/s for

the 1452Z profile. Thus, in this case, the large winds in the stratosphere

were probably associated with the passage of scattered thunderstorms. A

similar situation probably caused the stratospheric wind variation shown in

Figure 3.3.

Four consecutive radar wind profiles are shown in Figure 3.9. This

figure represents an excellent example of the unique ability of the radar to

follow a constantly changing wind profile. On July 15, 1982, the passage of
e

a warm front caused a significant wind shift in the 12-14 km region during

the morning hours. This change can be easily followed on an hourly basis in

Figure 3.9. Shown in Figure 3.10 are the morning and evening radiosonde

wind profiles from the same day. A comparison of Figure 3.9 and 3.10

reveals many similarities. The earliest radar profile, 1541Z, resembles

the morning balloon sounding. By the time of the latest radar profile, 	 +

1845Z, the wind structure resembles the evening radiosonde profile, espe-

cially below 15 km. Also, both plots show an area of general stability at

15 km, while the major changes take place at 16.5 km and in the 12-14 km

t
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Figure 3.8 Comparison of two radar profiles to the morning radiosonde profile.
The earlier radar profile is affected by thunderstorms in the
neighborhood of the radar.
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Figure 3.9 Four consecutive radar profiles showing significant
change in a short time period.
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In general, the Urbana radar wind profiles are in good agreement with

those of the radiosonde. Exactly specifying this accuracy is difficult

because of both the spatial separation of the two observing stations and the

limited range resolution of the radar. In addition, balloon measurements

give an instantaneous sample of the wind velocity while the radar profiles

are averaged over a one hour period.

3.3 Observations in the Vicinity of Thunderstorms

In addition to observing winds and turbulence in the clear atmosphere,

the VHF radar can also be used to study atmospheric dynamics during periods

of strong convective activity in the troposphere. The Urbana radar was

operated under these conditions on several occasions during the summer and

fall of 1982.

One such occasion was on September 14, 1982. Severe thunderstorms were

forecast for the area in the afternoon. The radar was turned on at 1218

CST, more than three hours before it began raining at the Field Station.

Figure 3.11 shows the line-af-eight velocity for each altitude for the first

two hours of the eun. Gravity waves occur throughout the region. The

period of the oscillations is 4-5 minutes in the stratosphere (above 16.5

km), which corresponds to the Brunt-Vaisala period for this region (see

Section 4.5). Longer period oscillations are present in the troposphere,

corresponding to the longer Brunk-Vaisala period in this region. A moderate

horizontal wind component is present at 13.5 km from 1320 CST until 1410

CST.

Figure 3.12 is a continuation of the line-of-sight velocity for an

additional hour and 24 minutes. Note the scale of this figure is 113 that

of Figure 3.11. Thus, by approximately 1500 CST, about 1/2 hour before rain

begins on the ground, the amplitudes of the gravity waves in the lower

r.
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S45 ù7 ^,
S U N`

v oC
Ln Cl)	 0
LJ 7 •rq

{ L

530 F— ^1
v
Ĵ
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stratosphere have increased by about a factor of 3. This substantial

increase in gravity wave amplitude during thunderstorms is typical of all

thunderstorm observations at Urbana, as discussed in Section 4.2.

Another in,terestin;g feature of note in Figure 3.12 is found at the

lower altitudes. At 1508 CST, an updraft of 7 minutes duration occurs at

both 9 and 10.5 km. This is followed immediately by a downdraft lasting 	 {
1

almost 30 minutes at these same two altitudes, and about 15 minutes at 12 	 1

km. (Recall that on the line-of-sight velocity plots, a negative velocity 	 {

corresponds to a velocity away from the radar while a positive velocity

corresponds to a velocity toward the radar.) Rain began falling on the

ground at the radar site at approximately 1530 CST, which is in the middle

of this downdraft period.

A plot of scattered power at a fixed altitude versus time for the same
i

time frame as Figure 3.12 is given in Figure 3.13. PouitK levels increase

dramatically at 9 km and moderately at 10.5 km during the time at which the

updrafts and downdrafts are present. A reasonable explanation of this 	 }

increase in scattered power is that the vertical motion generates turbulence 	 }

in the region of interest. The turbulence in turn induces changes in the

radio index of refraction, causing the increase in scattered power. This

explanation is supported by a plot of correlation time at a fixed altitude

versus time, Figure 3.14, which shows a substantially shorter correlation

time between 1510 CST and 1540 CST at 9.0 and 10.5 km. This shorter cor-

relation time suggests that a turbulent mechanism is responsible for the

increase in scattered power rather than some sort of horizontally stratified

structure.

The next set of observations were taken on September 1, 1982. Thunder-

storms were located about 50 km south of the radar site. The initial 2
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hours of data taken were hampered by transmitter difficulty. However, good

data were still obtained at altitudes above 15 km. The line-of-sight

velocities for 822 CST to 1022 CST are given in Figure 3.15. Note the

velocity scale of 2 m/s. Figure 3.16 shows velocities during the period

1114 CST to 1314 CST. By this time, the weather had turned sunny and warm.

However, this figure continues to show moderate gravity wave activity.

These waves are at times in phase over as much as a 10.5 km vertical region.

An example of this can be found at 1225 CST. Also, the line-of-eight

velocities of two adjacent altitudes sometimes correlate highly with one

another. This is apparent for 16.5 km and 18 km between 1140 CST and 1210

CST, although it is more common above 18 km. Given the radar height

F	 resolution of 1.5 km, this correlation is generally not expected.

^c

	

	 A very strong thunderstorm occurred in the neighborhood of the radar

on the evening of September 17, 1982. Before reaching Urbana, the storm

produced golf-ball size hail in Decatur, Illinois, 76 km to the southwest.
i

A lightning strike on the power line caused the radar transmitter to fail at

1736 CST, shortly before it began raining at Urbana. However, some useful

data were collected before this time. Figure 3.17 shows the veloc?ties,

with a 5 m/s vertical scale. Worth noting in this figure are the significant

updrafts on two separate occasions, 1703 CST and 1727 CST. Note that a

negative line-of-sigbt velocity corresponds to motion away from the radar.

The larger of the two extends to 12 km, a higher altitude than those of

previous figures, and reaches a velocity of 2.5 m/s, larger than those

previously. The fact that the storm was more intense than the previous two

supports these observations„

The strongest thunderstorm to be in the Urbana area while the radar was

in operation occurred on June 29, 1982. This storm produced both high winds
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and heavy rains. The radar was turned on after the main storm had passed.

Figure 3.18 shows the velocity data taken during a two hour period imme-

diately after the storm had passed. Again, the scale is 5 m/s. There is

strong gravity wave activity as in the other observations. However, the
r

j
	 most interesting feature of these data is the strong updraft (corresponding

to negative line-of-sight velocity) located from 12 km to 15 km at the

i

	

	 beginning of the observation period. This updraft lasted for at least 20

minutes at 12 km and reached a velocity of almost 5 m/s at 13.5 km. At one

point the updraft extended as far up as 15 km, which clearly suggests that

this storm was stronger relative to the others. This deduction is supported

by the National Weather Service radar summary at 1735 CST, approximately 1

hour before data collection began. The summary shows cloud top heights of

1.
	 55,000 feet, or 16.7 km, in an area just west of Urbana. Thus, the obser-

E.
	

i

	 vation of an updraft at 15 km is entirely possible for this storm.

Ironically, of the four occasions during which thunderstorms were in the

is	 neighborhood of the operating Urbana radar, this was the only time that

central Illinois was not under a severe weather watch or warning.

3.4 Continuous 36-Hour Observations

Hourly-averaged power levels and horizontal velocities can be used to

study the dynamics of the atmosphere over long time periods. Observations

of power and velocity in the upper troposphere and lower stratosphere over a

36-hour period are given below.

The Urbana radar was operated continuously from 601 CST on September

16, 1982 until 1736 CST on September 17, 1982, a period of nearly 36 hours.

Data were collected on a continuous basis for two hours at a time, with a

short break between each two-hour period required to dump the data from disk

to DECtape. Hourly averaged power levels and horizontal winds for each

i
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height gate between 10.5 and 24.0 km are given in Figures 3.19-3.28.	 Data

from 2013 CST until 2217 CST on September 16 should be ignored as they were

Z
contaminated by the passing of celestial radio source Cygnus—A through the

antenna beam.	 Sharp changes in power levela at all altitudes during this

time period are caused by increased attenuation being switched into the

receiving system.

The most interesting feature of the data occurs between 0329 CST and

1711 CST on September 17, 1982 at 10.5 and 12 km (Figuree 3.19 and 3.20).

Horizontal velocities oscillate with a period of approximately four hours.

Velocities at 10.5 km lead those at 12 km by one hour. This wave motion is

superimposed upon a gradual increase in velocity caused by a jet stream

passage (Figure 3.7). A 6 dB decrease in scattered power occurs at 12 km at

737 CST. From Figure 3.7, 12 km lies near the core of the jet. High wind

velocities at this altitude are a possible cause for this power decrease.

In contrast, power levels at 13.5 km (Figure 3.21) increase slightly during

this time. Shear—induced turbulence above the jet could be the cause of

this increase.

Little power or wind variability exists at 15 km (Figure 3.22),

although it appears that this altitude has become more stable after approxi -

mately 2321 CST on September 16. Some evidence of the jet can be seen in the

velocity plot at 1155 CST on September 17.

The high power levels at 16.5 km suggest that we are in the vicinity of

the tropopause height. Most power levels at this height are in excess of 90

!.'i	
dB, more than 20 dB above the noise floor. In the velocity plot, some

t`	 evidence of long—period wave motion can be found after 737 CST on September

f'	 17.
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Wave motion is also present during this time period in velocities at 18

and 19.5 km. These waves have periods which are approximately twice those

at 16.5 km. As we go up in the stratosphere, power levels are observed to

decrease 3-4 d8 per 1.5 km, as explained earlier. Also, velocities are less

variable on an hour-to-hour basis than they were in the upper troposphere.

Estimates of hourly averaged velocities at 22.5 and 24 km become worse

because low signal levels at these altitudes prevent the calculation of all

sixty minute-by-minute velocities needed for the average.
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4.
	 AND DISCUSSION

4.1 Scattered Power Level and Atmospheric Stability

Many groups using VHF radars have reported enhanced returns at vertical

incidence. These returns are thought to be caused by specular reflections

from horizontally stratified layers in the lower stratosphere as opposed to

scattering from isotropic turbulence, which is not aspect sensitive [Gege

and Green, 1978]. Scattering at VHF wavelengths is caused by changes in

the radio index of refraction [Rottger, 1980b]. In the upper troposphere

and lower stratosphere, electron concentration and humidity are negligible

contributors to this index so that (n-1) - 77.6 x 10 -6P/T, where n is the

radio index of refraction, P is the pressure in millibars (mb), and T is

absolute temperature. Thus, sharp gradients of temperature with altitude

cause a large change in n.

The most common and easily detectable sharp temperature gradient is the

tropopause. The tropopause height is easily recognized on Urbana power

plots as an altitude which exhibits constantly strong power returns over

time. An important characteristic of inversions is that they are hydro-

statically stable. That is, very little vertical mixing is present. Gage

and Green [ 1980] have shown evidence of a relation between the magnitude of

the enhanced vertical returns and the level of hydrostatic atmospheric

stability present at the time.

In this section, similar comparisons made with the Urbana radar are

shown. Hourly-averaged power levels of the radar sample heights are com-

pared to profiles of the change in potential temperature with altitude, 80/8z

The potential temperature is defined as 0 - T(1000/P) 2/ 7 , where T is the

absolute temperature and P is the pressure in mb. The potential temperature

17
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j is calculated from data available from nearby National Weather Service

balloon soundings at five points common to the range probed by the radar.

The change in 8 between succeosive heights is then calculated and plotted

4.1 as an average value throughout each layer.	 These values are directly

f'
proportional to the amplitude of the inversion.

Several of these comparisons are shown in Figures 4.1-4.9. 	 As with the

y
horizontal wind comparisons, the temporal and spatial differences between

jthe observations most likely cause some discrepancies.	 However, many

fi figures have excellent agreement. For instance, Figure 4.3 shows a very

stable layer present between 14.2 and 16.7 km.	 As a result, the power level

at 15 km shows as 11 dB increase over that at 13.5 km.

More convincing evidence is found in Figures 4.4 and 4.5.	 Here, a

. '•	 stable layer can be seen forming at 120OZ at an altitude of 10 km, 	 By OOOOZ

ion July 23, the layer has moved up to between 11 km and 12 km in altitude,

i(	 and has increased in stability. The power levels observed at 18282, also

F-{
shown in Figure 4.4, indicate that this upward movement actually occurred

f	
before midday. Power levels at 2133Z in Figure 4.5 also show this layer at

12 km. Thus, indications are that this stable layer persisted at 11-12 km

for at least a six-hour period.

Figure 4.7 shows a stable layer detected in the middle of the obser-

vation range at 12.5 km. Again, the power return follows the temperature
i

gradient closely. Figure 4.9 shows a bifurcation similar to those of Figure

4.4 and 4.5. Multiple layers of stability are a fairly common occurrence at

Urbana. The power levels here also show excellent agreement.

4.2 Vertical Velocity Variations

In Section 3.3 it is observed that ineneral gravity wave amplitudeg	 , g	 Y	 P

is larger during periods of convective activity. More data are shown here

_	 I

:.	 is
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to support this observation.

The hourly-averaged standard deviation of line-of -sight velocity is a''

convenient measure of wave amplitude during the hour. A compilation of

standard deviations of line-of - sight velocities at 19 . 5 km during both

"storm" and "non-storm" conditions is shown in Figure 4.10. The altitude of

19.5 km is chosen because significant gravity wave activity can be found

there on a near daily basis. Non-storm data consists of 36 hourly -averaged

standard deviations collected on 12 separate days. Storm data consists of 8

hourly-averaged standard deviations collected on 4 days when a thunderstorm

was at or near the radar site. The number of standard deviations which

occur in each 0.10 m/ s range are then plotted, with the storm occurrences

shaded.

It is easily seen that the standard deviations of velocities collected	 f

during thunderstorms dominate the right-hand portion of the chart. The

average of all non-storm standard deviations is 0.15, whereas for storm 	 I

standard deviations it is 0.36. This indicates that, on the average,	 ^$

gravit , wave amplitudes at 19.5 km are larger during convective activity by

a factor of approximately 2.4.

4.3 Hourly Variability of Horizontal Winds

Observations shown in Chapter 3 indicate that horizontal winds in the

lower stratosphere vary less over time than winds in the upper troposphere.

In particular, comparisons of horizontal winds measured by balloon versus

t
those measured by the Urbana radar generally show good agreement in the

lower stratosphere, even though the respective observations are considerably

separated in both time and distance.

Horizontal wind data collected over a 36-hour period are used to test

the hypothesis that the better agreement in the lower stratosphere is caused 	 {

^'^

'L -.
r

^I

`.d' ^1
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at least in part 'ny the decreased wind variability over time in this region.

Hour-to-hour changes in horizontal wind speed toward the southeast are

calculated for each of the bottom eight height gates (9-19.5 km). The

resulting 33 hour-to-hour changes are then averaged for each altitude.

Figure 4.11 shows these averages as a function of altitude. There is a

significant decrease in the hourly change above 13.5 km. This supports the

observation made in Chapter 3 of better agreement between radar and balloon-

measured winds above 13.5 km. Lack of wind variability in this region would

lead to better agreement between the two measurements.

Fukao at al. (19821 suggest that differences between rawinsonde and

radar-measured winds in the lower stratosphere are caused primarily by

errors inherent to the rawinsonde technique. This error is also almost

certainly present in the balloon data shown ir. Chapter 3. Fukao at al.,

also suggest that differences in the upper troposphere measurements can be

accounted for by spatial and/or temporal variations in the wind field,

:rix.reas this effect is not as substantial in the lower stratosphere.

Results shown in Figure 4.11 certainly support this hypothesis.

4.4 Effects of Gravity Waves on Specular Reflections

Power spectra of coherently integrated data provide a convenient method

of observing short period fluctuations in the specularity of the received

7	 echo. At Urbana, a 64-point FFT is applied to sixty-four 1/8 second samples

yielding power spectra of 8 seconds of coherently integrated data.

Data shown in this section was collected on July 15, 1982 from 13:35:20

r,, l`,	 CST to 13:37:10 CST. Minute-by-minute data were collected shortly prior to

this time. Power and velocity plots of the minute-by-minute data are shown

in Figures 4.12 and 4.13, respectively. These data are characteristic of a

somewhat active day at Urbana, with line-of-sight velocity oscillations
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reaching amplitudes of t0.5 m/s, peak-to-peak.

Power spectra for a two-minute period beginning at 13:35:20 CST at an 	 yy
t;

altitude of 16.5 km are shown in Figures 4.14a - 4.19b. Plots are scaled

such that the peak of the spectrum lies at full scale. All twelve plots

show a strong return which is slowly changing from negative to positive

Doppler frequency. This movement is attributed to gravity wave activit y in

the radar beam. The highest line-of-eight velocity reached is less then 1

m/s. This is consistent with the minute-by-minute observations shown in

Figure 4.13.

Another interesting feature of the spectra is the variation in spectral

width with time. The spectral width is large at 13:35:30 (Figure 4.14b),

whereas it is quite small at 13:36:20 (Figure 4.17a). Another large spectral

width occurs at 13:36:50 (Figure 4.18b). Gage et al. [1981] have observed

similar spectral width fluctuations at Poker Flat, Alaska. 'They suggest two

ways in which gravity wave activity can effect specular echoes such as those

shown here. The first effect is a modulation in the received signal caused

by the movement of the specular point with the phase of the wave. The

second effect is that the structure responsible for the specular echo

becomes incoherent, resulting in the disappearance of the specular echo.

The data shown here suggest the possibility of the presence of both

effects. Evidence of the first effect, systematic modulation of the

received signal caused by gravity wave tilting the coherent structure, can

be seen in the second half of the data (Figure 4.17a to 4.19b). The scaling

factor given on each plot, which is proportional to the maximum value of

power plotted, first decreases almost two orders of magnitude and then

increases during this period. If this modulation is caused by a tilting of

the horizontal structure one would expect a maximum power return when the
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Figure 4.15(a&b) Power spectra of 8 seconds of coherently integrated
data at 16.5 km for 13:35:40 and 13:35:50 CST on
July 15, 1982.
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July 15, 1982.
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structure is not tilted, i.e., zero vertical velocity, and a minimum power

return when the structure is at maximum tilt, i.e., maximum vertical velo -

city, [ Gage et al., 1981). Thus, the power fluctuations should modulate at

twice the frequency of the velocity fluctuations. Further analysis of these

data to give simultaneous velocities will enable this point to be checked.

Evidence of the second effect, destruction of coherence by gravity

wave—generated turbulence, is found in Figure 4.14b. The scaled power in

this figure is more than an order of magnitude less than that of both the

previous figure and the following figure. Since these figures are separated

by only 10 seconds, this phenomenon is very short—lived. Comparison of

Figure 4.14b with 4.14a and 4.15a shows that the slightly negative line—of -

sight velocity apparent in Figures 4.14a and 4.15a is joined in Figure 4.14b

by both a larger negative velocity and a positive velocity. It is suggested

that turbulence associated with the gravity wave has produced the large

spectral width seen in Figure 4.14b.

4.5 Relationship of Gravity—Wave Spectra to the Brunt —Vaisala Period

It is possible to determine the period of oscillation of the line —of-

sight velocity by calculating the power spectra. These spectra vary

significantly with both altitude and time.

Line—of— sight velocities for a two—hour period beginning at 0911 CST on

July 15, 1982 is shown in Figure 4.20. Velocities for a second two—hour

period beginning at 1115 CST were shown previously in Figure 4.13. Sub -

stantial short —period oscillations are present between 15 km and 21 km.

Longer—period oscillations are apparent at the lower altitudes, due to the

change in the Brunt—Vaisala frequency, wB . This is a characteristic

oscillation frequency of a horizontally stratified atmosphere, and is given

by wB = [(g/ e)(ae/az)]/2 . Here g is the acceleration due to gravity and 6 is

Ow
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the potential temperature. Therefore, the Brunt-Vaisala period, 27T/wB,

decreases with increasing stability; and shorter-period oscillations are

found in the stratosphere than in the troposphere.

The power spectra of the first two hours of velocity data are shown in

Figures 4.21-4.23, one plot for each of three adjacent altitudes. The
'r

local Brunt-Vaisala period, calculated from data provided by the morning

f

(0600 CST) radiosonde ascent, is shown on each plot. Note that the

Brunt-Vaisala period is calculated as an average value over a rather large
r

range of altitude, in the same way that potential temperature differences

	

,I	
are calculated in Section 4.1.

w	 In examining Figures 4.21-4.23, it is obvious that there are signifi-

cant changes in the spectra with altitude. At 13.5 km, Figure 4.21,

F

	

"t	
spectral peaks are located at 14.2 min and 12.8 min. A smaller peak is

	

F:f	 also located at 5.6 min, near the Brunt-Vaisala period of 5.8 min. Notice

that short period oscillations of leas than approximately 4 minutes are not

present. This corresponds to the forbidden area of peLiodic wave motion,

	

I?i	 between internal gravity waves and acoustic waves [Beer, 1974). The spec-

trum for 15 km is shown in Figure 4.22. The main spectral peak has moved to

k.	 y 4.9 min, quite close to the Brunt-Vaisala period of 5.0 min. The difference

	

{I	in oscillation period between 13.5 km and 15 km can easily be seen in Figure

^•^,	 4.20. The spectrum for 16.5 km is given in Figure 4.23. This spectrum is

much cleaner than that of Figure 4.23, with a peak at 5.1 min, again very

close to the Brunt-Vaisala period.

Power spectra corresponding to the line-of-sight velocities in Figure

4.13 are shown in Figures 4.24-4.27. The dominant periods at 10.5 km are 32

min and 18.3 min, as shown in Figure 4.24. The Brunt-Vaisala period at this

altitude is approximately 12.9 min, somewhat shorter than the observed
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dominant periods. This discrepancy is most likely caused by the temporal

separation of the observations. When Figures 4.20 and 4.13 are compared, it

is evident that the wave period became longer with time. In parti.culr,r„

periods prior to 1000 CST in Figure 4.20 are in the 10-12 min range, much

closer to the observed Brunt-Vaisala period.

In contrast to the shift to longer periods at 10.5 km, Figure 4.25

indicates that at 13.5 km a shift to shorter periods is taking place.

Spectral peaks are located at 11.6 min and 5.3 min, as compared to 14.2 min

and 12.8 min for the previous two-hour time period (Figure 4.21). The

spectrum at 15 km, Figure 4.26, shows a main spectral peak at 5.3 min, near

the Brunt-Vaisala period of 5.0 min. A longer period component has also

appeared at 6.4 min. Thus it seems as though a slight shift toward longer

periods is occurring at 15 km. This contrasts with the shift toward shorter

;•":,ods occurring at 13.5 km.

Minute-by-minute velocities for the spectrum shown in Figure 4.27 were

given previously in Figure 3.16. These data were collected after thunder-

storms had passed south of the radar site. This is a nearly monochromatic

spectrum with a main peak at 4.6 min. This shows that when convective

activity is present, one altitude may have line-of-sight velocity fluc-

tuations which occur at nearly a single dominant period for as long as two

hours.

(i)u
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5. SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

5.1 Summary

The results of this work can be summarized as follows:

1) The Urbana coherent-scatter radar can be used to study the dynamics

of the upper troposphere and lower stratosphere on a daily basis.

2) Comparisons of radar- and radiosonde-measured horizontal winds show

good agreement. This agreement is generally better in the lower strato-

sphere where there is less temporal variation in the horizontal winds.

3) Observations in the vicinity of thunderstorms indicate that gravity

wave amplitudes increase substantially during periods of intense convective

activity. Also, updrafts and downdrafts associated with the storm can be

observed.

4) Hourly-averaged scattered power lev(:ls are correlated with the

hydrostatic stability of the upper troposphere and lower stratosphere.

5) Power spectra of coherently integrated data show changes in echo

specularity over both short and relatively long time periods. This is

evidence for at least two distinct mechanisms for these changes.

6) Power spectra of line-of-sight velocities clearly show the effects

of the change in Brunt-Vaisala period with altitude. In the lower strato-

sphere, wave spectra can become nearly monochromatic for periods of at least

two hours,

5.2 Suggestions for Future Research

5.2.1 Increased a`.tituo;, resolution. During the course of this

work, the Urbana radar was limited to an altitude resolution of 1.5 km for

two reasons. First, the transmitter pulse width could not be made shorter

than approximately 10 usec. Second, on the receiving end, the conversion

I

I

i

^t
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4	 ^^

time of the HP 5610 analog -to-digital converter (ADC) is 1C psec.

There are many obvious advantages to improving the altitude resolution

beyond 1.5 km.	 Stable layers could be studied in much greater detail.

'	 r Detailed studies of the structure of turbulent layers would be possible.

These turbulent layers are thought to have thicknesses on the order of 100 m

[Woodman and Guillen, 1974 1. 	Horizontal wind structure could be observed

with much greater precision.	 At present, in the altitude range 9-16.5 km,

i

radar profiles contain only 6 points while radiosonde profiles contain 13 or

14.	 Thus, with improved altitude resolution, a more accurate comparison of

the two profiles could be made.

'ft Improvements must be made at both the transmitting and receiving ends

' of the radar system in order to effectively increase altitude resolution.

One method commonly used is phase-coding of the transmit pulse. 	 One coding

scheme, Barker code, is now available for the Urbana radar [Herrington and

Bowhill, 1983 1. 	This Barker code has a baud length of 6 psec, corresponding

i
to an altitude resolution of 900 m. 	 On the receiving end, a dedicated

' I
t'

I
preprocessor has been designed and built by Zendt and Bowhill [1982]. 	 The

preprocessor has two ADCs, one for each output channel of the phase

^.	 + detector.	 Each ADC has a conversion time of 1 psec, corresponding to an

altitude resolution (on the receiving end) of 150 m.	 In addition, the

i

f:
preprocessor performs si coherent integration of a user -selectable number of

j. radar pulses.

CC

	

i

`f These two improvements can be utilized to construct a system with an
I a•o

altitude resolution of 900 m.	 However, the phase-coding method holds a

I
possible disadvantage for lower-atmoapheric studies.	 In order to code the

transmit pulse, the total pulse width must be lengthened. 	 Consequently, the

lowest observable altitude may increase.

^V

h

^l'
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	A better alternative exists, however. The recent addition of a voltage	

'i

overshoot filter on the primary of the pulse transformer allows the transmit
i;

pulse width to be decreased to 7 psec (S. W. Henson, personal communication,

1983). Replacing the present pulse transformer with an available smaller

one should allow the pulse width to be decreased to 3 uses, which is the

specified lower limit of the transmitter. Together with the preprocessor,

this yields an altitude resolution of 450 m, more than 3 times the resolu-

tion used for this work.

5.2.1 Low altitude observations. Another important improvement to

the present system would be a substantial decrease in the lowest observable

altitude. The present lowest altitude of 9 km is still above the altitude

at which most weather systems are located. Lower altitude capability would

permit studies of merry interesting phenomena. For example, frontal passages

could be studied on a real—time basis, of course, increased range resolu -

tion would also be essential to a study of this type. The temperature

gradient at the frontal boundary will show up on the radar power returns.

Another example would be a study of fair weather cumulus convection and how

it affects the dynamics of the atmosphere above.

5.2.3 Faster data analysis. Finally, improvements are needed in the

data analysis system. At the present time, collected data must be channeled

through 4 separate computers at 2 different locations before it can be

plotted. This process usually takes at least 2 full days to complete. A

i^
	 system which employs the same computer, or same type of computer, to do both

i_•

	

	

the collection and processing of the data would be desirable. In addition,

the computer used to collect the data could also provide some real—time

analysis capability. This analysis could be displayed to aid the operator

in pinpointing trouble with the radar system or in helping him make adjust -

ments to the radar system so that the best possible data can be collected.
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