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MULTIDIMENSIONAL EXPLICIT DIFFERENCE SCHEMES

FOR HYPERBOLIC CONSERVATION LAWS

Bram van Leer

Delft University of Technology

Delft, The Netherlands

ABSTRACT

First- and second-order explicit difference schemes are derived for a

three-dimensional hyperbolic system of conservation laws, without recourse to

dimensional factorization. All schemes are upwind biased and optimally

stable.
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i. INTRODUCTION

For the solution of initial-value problems governed by hyperbolic conservation

equations some fine numerical techniques are available. Most methods are based on a
one-dimensional scheme

n+l n
u = L (At) u , (i)

X

integrating the system of conservation laws

ut + LJ[f(u)]x = 0 (2)

n n+l n
from time t to t = t + At. A multi-dimensional system like

]y : 0 (3)ut + [f(U)]x + [g(u) + [h(U)]z

may always be approximated by a sequence of one-dimensional steps; most commonly
used is

n+l n

u = Lz(At) Ly(At) Lx(At) u , (4.1)

n+2 n+l (4.2)
u = Lx(At ) Ly(At) Lz(At) u ,

with second-order accuracy in time at every other time-level [i].

The convenience of such a factorization is twofold. Firstly, in developing

multi-dimensional methods one may concentrate on one-dimensional operators;

secondly, multi-dimenslonal codes reduce to a sequence of one-dimensional sweeps.
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A display of the power of the above approach is found in the review paper by

Woodward and Colella [2] on the numerical simulation of two-dimensional, strongly
compressible flow.

Considering the success of dimensional factorization we may ask ourselves if there

is any point in designing genuinely multi-dimensional methods, i.e. methods that

can not be implemented as a sequence of one-dimensional operators. The answer still

is "yes", but may very well tend to "no" if computers will continue to grow, in

speed and capacity, at the current pace. The same, however, may have been said,
more than 20 years ago, on the matter of developing second-order methods. In both

cases the increase in complexity of the methods is meant to pay off via an increase
in efficiency.

Genuinely multi-dimensional schemes are most efficient in modeling essentially

multi-dimensional phenomena in a relatively small region, such as push-pull flow or
flow around a sharp corner. If such regions have a strong influence on the overall
solution, then the use of a multi-dimensional scheme is recommendable.

In the further sections of this paper I shall indicate how to construct second-

order difference schemes in two or three space dimensions. First-order schemes were

published earlier [3]; their construction is briefly reviewed.

2. A FIRST-ORDER SCHEME

In order to derive a first-order scheme for Eq.(3), consider the scalar linear
equation

ut + au + bu + cu = 0, a > 0 , b > 0 , c > 0 , (5)x y z

in combination with a piecewise uniform initial-value distribution

n n

u (x,y,z) = Uijk, xi_ ½ < x < xi+½, yj_½ < y < yj+½, Zk_½ < z < Zk+½, (6)

with xi+½_ = x.±½Axl , yj±½ = Yj±½Ay , Zk± ½ = Zk!½Az.

The exact solution of (5) at time tn+l tin terms of the initial values at tn is

n+l

u (x,y,z) = un(x-aAt,y-bAt,z-cAt). (7)

Inserting the initial values (6) into (7) yields, for sufficiently small At, the
following difference scheme:

u = A .(i I _ I
n+l [i - OxAx{l - ½Cy Y - _ CzAz) - ½CzAz(l _ CyAy)}

- c _ {i - ½Cznz(l i iY Y - _ °xAx) - ½CxAx(l - _ OzAz)}
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i - ½OyAy(l - i n- OzAz{l - ½0xAx(l - _ OyAy) _ OxAx)}]u ,

o = aAt/Ax < i , o = bAt/Ay < i , o = cAt/Az < i ; (8)
x y z

here Ax, Ay, Az denote backward (upwind) differencing in the x-, y-, z-direction.

The terms in the above formula have been especially arranged in order to facilitate

their interpretation. The terms in parentheses are one-dimensional updates over a

time-step 1/3 At, with the first-order upwind scheme. The braced terms are two-
dimensional updates over a time-step ½ At, and represent the values of u at cell

interfaces, averaged both in space and in time. The full operator, between

brackets, shows the three-dimensional upwind nature of the scheme.

Godunov [4] has indicated how to transform upwind differencing for a scalar linear
convection equation into a method for a nonlinear hyperbolic system of the form

(2). For scheme (8) his recipe implies replacement of o A u by
xx

At

A_x [(Axf)+ + (Vxf)-] (9.1)
or

At Ax(f+)A-_ [ + Vx(f-)] , (9.2)

where V denotes forward differencing and the superscripts + and - indicate the

splitting of a flux-difference or a flux in parts associated with forward and

backward signals, respectively (see [5] and [6]). The expressions OyAyU and OxAx u
are replaced analogously.

Note that (8) can be factorized exactly as indicated in (4):

n+l n

= (l-OzAz)(l-_yAy)(l-_xAx) uijk . (i0)Uijk

While this property in general is lost when extending the scheme to a linear or

nonlinear hyperbolic system, it nevertheless shows that dimensional splitting

basically is a sound idea.

3. SECOND-ORDER SCHEMES

Second-order schemes for Eq. (3) may be derived, again, by extending schemes for
Eq. (5). In order to achieve second-order accuracy in time and space we must use a

piecewise linear initial-value distribution (see [7]), i.e.,

x-x. Y-Yi Z-Zkn i n n n

un(x,y,z) = uij k +--A-_-x6xUijk +-_--y 6yUij k +-_-z _zUijk ,
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xi_ ½ < x < xi+ ½ , yj_½ < y < yj+½ , Zk_ ½ < z < Zk+½ ; (ii)

here 6 u, 6 u and _ u represent locally averaged differences of u, e.g.
x y z

x = ½(Ax+Vx)"

Combining (ii) with the exact solution (7) of (5) reveals that the second-order

scheme contains terms up to O[(At) 2] when restricted to one dimension, up to

O[(At) 3] in two dimensions, and up to O[(At) 4] in three dimensions. The two- and

three-dimensional schemes therefore can not be equivalent to products of steps with
the one-dimensional scheme.

For simplicity, consider first the two-dimensional scheme; with the terms arranged
as in (8) it reads

2 I

n+l [i - + - - ½o A _[i + (½ - _ Ox)6x + (½ - _ Oy)_y]}uij k = _xAx {I ½(i _x)_x Y Y

2 i n

- OyAy{l + ½(i - oy)6y - ½OxAx[l + (½ - _ Oy)6y + (½ - _ Ox)_x]}]Uijk,

o < i , 0 < i , 0 < i. (12)
x y z

When changing this scalar scheme into a scheme for a nonlinear system, we must
n

replace Ox_xUij k by

At __ n __ n
_-_ { f[(l+26x)Uijk] - f[(l-26x)Uijk] } , (13)

a central difference of fluxes inside of volume (ljk). The resulting method is
unattractive because of the many intermediate steps needed for a full update;

moreover, it is not clear that all steps are relevant for a non-diagonalizable
hyperbolic system.

A slight simplification results when the third-order terms on the right-hand side
of (12) are taken together, yielding

_xOyAxAy[½(l-ox)_ + ½(i-_ )6 ,] (14)x y y '

and then redistributed in a more convenient fashion over the expressions in braces,

e.g. with weight ½ in each expression. The most drastic simplification results by

omitting all third-order terms. This does not appear to affect the stability

condition of the scheme. Its short-wave stability is still dictated by the first-

order scheme (8), while its long-wave stability is slightly improved (dropping (14)
causes the long waves to slow down).

The three-dimensional scalar linear version of this simplemost scheme is
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n+l 1 1

uij k = [i - CxAx{l + ½(I - Ox)_ x - ½OyAy(l - _ CzAz) - ½OzAz(I - _ OyAy)}

- c n ,{i+ ½(i _ ½Cznz(1 i _ ½OxAx(I IY Y - Oy)_y - _ OxA x) - _ CzAz)}

i - ½OyAy(l i n- OzAz{l + ½(i - Cz)_ z - ½CxAx(l -7 OyAy) -7 CxAx)}]Uijk'

c < i , c < i , c < i. (15)
x y z

It turns out that a two-dimensional version of this scheme for the Euler equations

was derived independently by P. Collela (private communication, 1983) and has

already been applied successfully to an aerodynamics flow problem in a curvilinear

grid [8].

4. CONCLUSIONS

In the preceding sections it has been shown that fully three-dimensional difference

schemes for hyperbolic systems of conservation laws can be constructed on the basis

of a simple convection principle.

The resulting schemes are explicit, upwind biased and stable under a combination of

one-dimensional Courant-Friedrichs-Lewy conditions. The latter property they share

with dimensionally factorized schemes.

A two-dimensional second-order scheme of this kind has been put into practice by

Colella and Shreeve [8]. A numerical comparison between factorized andEidelman,
non-factorized schemes remains to be made.
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