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This document is the final repoLt prepared under contract NAS3-23248,

"Study of Auxiliary Propulsion Requirements for Large Space Systems." There
arp three technical tasks described herein. In Task 1 a range of single
shuttle launched large space systems were identified and characterized

including a NASTRAN and loading dynamics analysis. Task 2 consisted of an
analysis of the disturkmnce environment, characterization of thrust level

and APS mass requirements, and a study cf APS/kgS interactions. In the

final task, state-of-the-art capabilities for chemical and ion propulsion
were compared with the generated propulsion requira_.^nts to assess the

state-of-the-art limitations and benefits of enhancing _urrent technology.

kEY WORDS

; Attitude Control
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SUMMARY

-"T.,eobjective of contract NAS3-21952, "Study of _]xiliary Propulsion

Requirements for Large Space Systems," was to establish key APS

requirements and state-of-the-art improvement benefits for a range of
future spacecraft. The key issues raised or examined in the study included
LEO deployment and operation, GBO stationkeeping duty cycles, structural

modeling, and the technology areas to improve. To examine these issues,
three technical tasks were performed. These tasks are shown below:

Task i: Definition of Advanced Structural Concepts

Task 2: Establishment of APS Requirements

Task 3: Asses_-nent of Technology Improve_,-_t Benefits

In Task !, six vehicle classes were analyzed including four large antenna

structures and two space platform designs. NAS_RAN analysis was conducted
to determine the mode shapes, structural frequencies, and to verify a

dynamic loading analysis. The loading analysis was conducted to determine
: the effect of primary thrust g-loading on the mass properties of each LSS.

Task 2 was accomplished in four steps. A disturbance analysis for LED
deployment altitudes and GEO operational altitudes was first performed.
The force and torque requirements for each LES were used to estcblish the

thruter requirements. These requirements indicated a need for widely

seFarated thrust levels between LEO and G_D and indicated throttling g
requirements for GEO operation of 2:1 to 6:1. In the next subtask APS mass
was characterized for monopropellant, bipropellant, and ion systems. It

was found that duty cycle played the major role in determining which

propulsion system was the most viable for GEO operation. Duty cycles of 3
hours/orbit or greater favored ion systems, whereas shorter duty cycles
required thrust levels which could not be met with state-of-the-art

/ propulsion. As a final analysis, the interaction_ of the propulsion system
with the structure were examined. For thrust levels of 7 to 30 Newtons

(depending upon the configuration) significant defocusing of amtenna
systems was found.

In Task 3 the state-of-the-art capabilities for monopropellant,
': ipropellant, and ion systems were determined. These capabilities were

C ccmpsred with the requirements generated in Task I and limitations to
current technology identified. There were four major limitations

', identified and these limitations are shown below.

• Monopropellant Isp limits mission lifetinm (<5-7 yeevs) for centaur
" G' delivery capability

; • Bipropellant need lower thrust capability (<2-5 N)

i • Ion thrusters need very long duty cycles (>3-5 hours/orbit) for GED

-: operation

# I

1
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These limitations were a key to assessing the enhanced technology benefits.

A brief listing of those technology areas which would enhance or enable the
LSS missions identified is shown below. _'

• increasing ch_idcal syste_ Isp to > 300 seconds is mission enabling

• Minimt_ fzring times of < .01 seconds yields mass advantage of jets
over l_D's for 3-axis control

• Valve cycling of 2 x 107 cycles enables jet systems for 3-axis
control

• Thruster levels of .i to .4 N enhance ion propulsion for GBO

operation

• Isp range for ion syst_ of 1000-2000 seconds opti,_ (using
state-of-the-art PPU's) !

• Ion power system mass must be reduced for ion systems to be

c(m_etitive with shorter duty cycle, higher thrust engines P

r

t

x.
ts.

='2-
D

2
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INTRODUCTION _.

With increasing fervor, plans to utilize the resources of space are being

made within NASA, DOD, and private industry. Many of these plans call for
the use of Large Space Syst6ms (iSS) to accomplish this wide variety of

goals. These LSS will zequire new technology in analysis techniques and
hardware to be enabled _qd utilized in the most cost effective fashion. To

assess the propulsion technology requirements and recommend high leverage
advances in propulsion, a study was performed examining auxiliary

propulsion requirements for a range of single shuttle launched LSS. This

study considers auxiliary propulsion only &Id will supplement othe work
exarining prime propulsion requirements (Ref. i).

This study is a more focused follow-on to contract NAS3-21952 (Ref. 2),

"Study of Electrical and Chemical Propulsion Systems for Auxiliaz_y
Propulsion of Large Space Systems." The focus of this study was narrowed to

examine only single shuttle launched LSS with two exceptions - the Space
Operations Center (SOC) and the Science and Applications Space Platform
(SALP). Also in this study, only advanced deployable LSS which had a

heritage of ongoing preliminary design were examined. To add a final
sharpening of focus, only well established propulsion options were examined
and extrapolation of their capabilities was rooted in accepted scaling laws

based on theory, test, and existing hardware. By establishing a narrow
width for analysis, the depth of the analysis was enhanced. Details of the

, effects of primary g-load on structure mass and the effect of a range of
thrust levels on antenna performance were examined. Stationkeeping duty

cycles and tolerance effects were studied and regions of operation for each
propulsion system identified. The study was also able to make specific

recommendations for auxiliary propulsion thrust level, Isp, minimum impulse
bit, and cycle number for the range of LSS identified.

Several key assumptions were groundruled in the study. These assumptions
are listed below. The first two assumptions and the propulsion option

assumption have been previously discussed.

_ • Single shuttle launched (exception SOC, SASP)

• Advanced preliminary design deployable LSS

.

• LED (300-500 km) and GHD operation

• i0 year mission life
(

• NASA neutral a_nospheric model assumed

( • Only well established propulsion options examined (mono, bipropr
ion)

; • No factors of conservatism were employed

For the antenna systems the LED altitude range given is the assumed

deployment altitude. This range corresponds to the STS delivery

( capability. These systems are then transferred to GED for the I0 year
mission operation. The space platforms examined are assumed to operate in ,
_he LEO altitude range shown.

(

( 3._. D180-27728-2
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The NASA neutral atmosphere was used as a basis of comparison for LEO

torque and drag makeup calculations. This atmosphere is a worst case, long
term density model and yields conservative _]t realistic worst case
results. Other models are discussed in Task 2. No contingency factors

were used for propellant or thrust level calculations. It was felt that
the application of such factors might vary with each mission, and because

the purpose of the study was to illuminate trends in propulsion
requirements, a solid basis of comparison was needed.

Several key issues arose in the course of the study which drove the

propulsion requirements and technology recommendations. These issues are
listed below.

• Structural modeling

• LEO deployment and operation

• GBO operation duty cycles

• APS system mass impacts

The importance of having detailed and accurate structural models became

• very clear when the issue of thruster interaction was examined. Antenna
"- defocusing analysis is sensitive to section property and mat_-_ials property

assumptions which must be modeled in NASTRAN to obtain the fundamental
frequencies and mode shapes. Small differences in wall thickness or

_J section spacing can result in significantly different interactions. The

= results presented in Task 2 are based on numerous iterations of mass

properties and section properties to match previous results of actual
hardware tests (Ref. 3).

Operational issues at LEO and GEO are primary drivers for thrust level and

: Isp requirements. LED deployment drove stationkeeping thruster size _
; propellant mass for even short stays at low altitude to such a degree tl.
• LED deployment seemed unadvisable for most IZS. GEO duty cycles wer_

another key issue in the study because as duty cycle changed from a few
minutes a week to a few hours per orbit, thrust requirements went from

chemical capability to electric thruster capability. Longer duty cycles
, would require autonomous operation or high ground in the loop software

costs.

Auxiliary propulsion system mass can be 30-50% of the total system mass

_'_ using chemical systems for i0 year G_O missions. Reductions of this
_ percentage by only 5 or 10% all_ very large mass savings and hence lower
: launch costs. To effect these changes, state-of-the-art limitations in

• chemical Isp, power processor mass, and autonomous operation must be
_. overcome as described in Task 3.

4
• D180-27728-2
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The program task flow is shown in Figure i. Task 1 determined the relevant
missions and spacecraft propertieswhich would be used to define propulsion
requirements. The NASTRAN models and loads analysis gave us an insight
into the variation of mass with primary thrust g-loading and were also used
to determine the APS/LSS interactions in Task 2. Thrust requirements,
impulse bit requirements,Isp effects, and hardware masses were determined
in Task 2. These requirementswere comparedwith current capabilities and
a set of limitationsfound in Task 3. The benefits in terms of enhanced
mission capture and reducedAPS _ass were assessed in the final a_alysis of
Task 3.

TASK 1 MISSION CONFIGURATION

SELECTION

ANALYSIS EFFECT

I

AREA, MASS &
I

STRUCTURALPROPERTIES
#

TASK 2 /
/ ENVI

, / D]

APSltSS THRUSTER APS

INTERACTIONS REQUIREMENTS CHARACTERIZATION

APS REQUIREMENTS

i' @ SOA
- LIMITATIONS

( ENHANCED

TASK 3 TECHNOLOGY

( BENEFITS

( FIGURE 1. PROGRAM TASK FLOW
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1.0 DEFINITION OF ADVANCED STRU_ OONCEFfS

The objective of Task 1 was to select and characterize classes of large
space systems. To accomplish this objective, three major subtasks were
executed. The first subtask involved the selection of configurations which
met the study assumptions outlined in the introduction. These
configurations were selected from previous studies, other relevant

literature, and personal contact with potential users of deployable LSS.

The second subtask was to perform a NASTRAN analysis of the selected
configurations. To do this, detailed section properties were formulated
using existing preliminary designs or in some cases derived section

properties from known data such as structural frequency and [samber mass

properties. NASTRAN models were then developed and a normal modes analysis
executed. The final characterization subtask estimated the effects of

changing the primary transfer acceleration for L_)-GHO transfer of the

deployed LSS. Loading equations were develoed which showed the sensitivity
of system mass to changing acceleration levels. Key assumptions in Task 1
are outlined in Table 1 below.

Table i. Task 1 Assumptions

i.i Selection of Configuration

• Civilian GHO missions (exception SOC & SASP)

• Single shuttle launched

• Preliminary designs available

1.2 NASTR_L Analysi._

" • Modeling was _one to the level of detail available

• Section mass properties & g-load were given from the
literature

,,Analysis conducted for .15 g's

r 1.3 G-Loading _ffects

_ Individual elements scaled

't

• Uniform mass distribution for each element

%
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In Subtask I.i the focus of the study is sh(_ to center around antenna

systems that are deployed in LEO by a single shuttle and then transferred _"

to GEO for their operational life• The NASTRAN analysis was conducted for
•15 g's because the section properties available showed that .i!_g's
strength produced the first modal frequency expected of .I Hz. This
frequency was determined to be reasonable based on the data available in

the preliminary designs and on the Boeing Company's previous experience

with other LSS. Ir the g-loading analysis critical elements such as
antenna support booms, solar array booms, and other truss structures were

analyzed individually which resulted in a very detailed g-load sensitivity
model. Differences in the overall scaling of mass with g-load in this

study and others (Ref. i) were attributed to this detailed modeling.

The key issues which drove the selection and characterization of each LSS

were threefold. First, the mission opportunities were made as broad as

possible. Mission selection included electronic mail, direct TV broadcast,
mobile communications, forest fire detection and others. Configurations

selected spanned all of these missions and are felt to be representative of

_: LSS for the 1990 's. Configurations _ere also selected so as to span the

range of propulsion requirements. Wide variations in center of
pressure/center of gravity, inertia matrices, and are&mass ratios were

sought. Critical structure el_mant definition was also a key issue because
it drove the NASTRAN modeling resu]ts and consequently theB

' thruster/structure interactions conclusions.

F" i.i Selection of Configurations
,[-

A set of six preliminary designs which pose a wide range of propulsion

requirements was selected in this subtask. The designs are sufficiently
detailed to allow good fidelity in defining APS requirements and APS/LSS

: interactions. At the same time, these designs may be used for a variety of
_ purposes by simply changing the electronics and/or scaling the LSS either

up or down in size. The classes and representative missions are in Table 2

• and discussed in more detail in Appendix A.

" Each of the generic classes selected fits the study ground rules of a

• single shuttle launch with the exception of the S0C which will be

considered as representative of a multiple shuttle launched LSS of the

1990's. The scaling of each LSS from the baseline also fits the ground
rules of a single shuttle launchable LSS with an assumed orbit transfer

propulsion to GBO. Figures 2, 3, and 4 show the configurations selected
_ for analysis in this study.

¢

¢-

7
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Table 2. Generic Class Selection

Class Example Mission

I Large Aperature Phase Array Personal communications,educational
Antenna TV, electronicmail

II Land Mobile Satellite System Mobile communications,space based
+ - Wrap Rib radar, jamming satellites

IiI Land Mobile Satellite System Mobile communications,personal
- Hoop Colunm communications

IV GeostationaryPlatform Contains many separate payloadsl-

, - Option 4A

< V Science and Applications Space Has 25 kw or 12.5 kw power supply
Platform (SASP) for various payloads

VI Space OperationsCenter (SOC) Manned operations center which
provides a location for construction,
flight support, servicing, research,¢

' and testing.

J:

F"
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The Large Aperture Phased Array and SASP were sized using two already

designed versions with the main difference in each design being the power
requirement. Therefore, the main sizing change is in the solar arrays.
The SOC is sized using two of its designed versions - the initial baseline

and the operational basellne. The operational baseline is a growth of the
initial baseline and has more elements, mass, and area. The other three

generic classes will be sized using scaling outlined in Appendix A.

Four generic classes were chosen to investiga_:e for their g-loading

characteristics. These are Large Aperture Phased Array Antenna, I/4SS-
Wrap Rib, I,MSS- Hoop Column, and the Geostationary Platform. Each of

these structures is designed with critical elements closely associated with
flexible members and, therefore, most susceptable to changes in mass and

packaging characteristics due to g-loading. Three g-loading designs will
! be determined for each of these four structures and sizes.
T

The SOC and SASP were not studied for g-loading effects because of their

relatively rigid structure. Their critical elements are concentrated in a

i central and rigid mass area with only the solar arrays extending from
! flexible members. Solar array suppor_ structures may be stiffened, if

necessary, without significant impact on mass or auxiliary propulsion
requirements. An additional reason not to look at varying g-loading
characteristics of tl.e two space platform designs is to avoid a

proliferation of separate designs, sizes, and g-loading parameters. Such a
large number of discrete cases would take away from the major thrust of
this study. Table 3 shows the sizes selected for each generic class.

1.2 NASTRAN Analysis

NASA Structural Analyzer (NASTRAN) models were developed to be used in the

thruster/structure interactions study conducted in Task 2. To develop
these models detailed mass property and section properties had to be
determined. Once the mass, material, and dimensions of a given element was

determined, the various sections could be linked together by specifying the

stiffness properties at the interfaces. In addition to the interfac_

point, node points along truss work, coltmms, and other elements had to be
specified. This process was a tedious one and forced the study to consider

only the antenna systems for NASTRAN modeling.

To avoid duplication and thus save time, general models of cc_nents

common to more than one class of LSS (i.e., solar arrays) were defined.

These components are combined with components unique to each class of
structure. Figure 5 shows the general model of just such a component - the

solar array. When the models were completed, we used a NASTRAN dynamic
analysis to determine the structural frequencies and mode shapes of each

( LSS design.

12
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Table 3. Generic Class Sizes

LSS Size

I Large Aperture Phase Array
Antenna

Electronic Mail i0 kw

Educational TV 65 kw

II LMSS - Wrap Rib Antenna 55 m (antenna diameter)
; 25 m (antenna diameter)

: III LMSS - Hoop Column Antenna 120 m (antenna diameter)
_0 m (antenna diameter)

IV Geostationary Platform 50 x 33 m
_. (9 payloads )
"i

'- V Science & Applications Space
Platform (SASP)

12.5 kw 12.5 kw
25.0 kw 25.0 kw

" VI Space Operations Center (SOC)

Initial 120 m x 16 m (2 shuttles)

/, Operational 120 m x 25 m (5 shuttles)

ii, I

k

13

i D180-27728-2 _.
"INP-

1984005150-025



j'

f /" SOLAR ARRAY

A

PW- panel width

PL - pane: length

-_ / NDIV - divlsions along panel length

• BO0_ / (shown as -3;

/ _ - wt/unit area of panel
STIFWT - wt,'uni£ length of stiff,_ning bar

[" at end A
_ PL 80XWT - wE�unit length of box in which panel

is stored before deployment (end B)

8AREA - cross sectional area of boom

BMOMX - area moment of inertia of boom
,L.

,_ about x axis
BMOM¥ - area moment of inertia of boom

about _ axis

BOOMWT - wt/unit length of boom

!

/
=, , R
"m

2•

FIGURE 5. GENERAL MODEL OF THE SOLAR ARRAY
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Large Aperture Phased Array &"

The following is a description of the NASTRAN model of the Large Aperture

Phased Array employed for the analysis. All components described are
labeled in Figure 6. The column, array astrcmasts, and main astrcmasts

were modeled as triangular trusses made of graphite eF_xy tubes with tie
rods. The antenna rim was modeled as a graphite/epoxy tube in twelve

segments. The lens staves and stabilizing lines were assumed to be
graphite rods. Section properties for all mmr_ers are shown in Table 4.

The three lens films in the antenna were assumed to be 2 mils (5.067 x 10.5

m) thick each Design stress for each lens was assumed to be 20 n/m 2. The
tension in the three lens was modeled with rod elements between the rim and

coltmm. Fach solary array was modeled as a bar with rigid body elements
across its width. The feed horn cluster and cylinder were modeled as a
rigid body.

The weight breakdown for the entire structure is stmmarized in _able 5.

The weight of the lens (includes the weight of the _hase shifters) _s

' distributed as follows: 50% at twelve points around the rim, 45% at the
' center of the column, and 2.5% at each end of the coltmm. The weight of

_" the antenna rim was distributed evenly along its length as was that of th_

.: column. The weight of the antenna rim was distributed evenly _Iong its
' length as was that of the column. The weight of the ,sin astromasts was

also distributed evenly along their lengths. For the array astrcmasts the

weight of the wiring and astromasts was divided in half and it_ped at

_: either end - half at the feed horn, half at the edge of the array. The
, weight of the antenna feed, all the equipment inside the cylinder was

lumped at the center of the cylinder. The array orientation equipment was
assumed to be on the main structure, so its weight was also lumped at the
center of the cylinder. The weight of the solar arrays was lumped at

: either end of the panel assuming the following breakdown:

• 82% panel

10% boom along center of panel
5% box in which panel is stored

_' 3% stiffening rod at far end of panel

Pretension loads of 6.0 N in the staves and 12.0 N in the stabilizing lines

• were applied to prevent these members from going slack tradera 0._6 g load

, applied at the antenna feed. Pretension loads in the staves and lens

:j,, produced a differential stiffness matrix. This matrix was input to a
NAS_RAN Normal Modes Analysis to find the natural frequencies and mode

: shapes of the structure. The first, second, and third mode frequencies are
.093, .ii0, and .160 Hz. Mode shapes for these three modes are shown in
Figure 7, 8 and 9.
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ANTENNA

RIM (assume 1.8 KG/M, 30.18 M) 5t_.2

LENS, STAVES, PHASE SHIFTER5, ETC. 207.2

COLUMN (1.8 KG/M, 5.t_9 M) 9.8

271.2

ASTROMASTS

; 3 @ 1.8 KG/M 21.9 M each 103.':

"_ ANTENNA FEED 109.5

CYLINDER

!_ 60.%BASIC STRUCTURE 251.I

ELECTRICAL 979.6

MISSION 52t_. 9

1755.6

"7'

; SOLAR ARRAYS

- 2@ 285.1 570. I
b

ARRAY ORIENTATION

ARRAY ORIENTATION EQUIP t_81.9

ARRAY BOOMS (1.8 KG/M, 5.76 M EACH) _t5.3

_ 527.2
m

._ TOTAL 3337 KG

i
i

TABLE5. MASSBREAKDOWN
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LMSS - Wrap Rib

The following is a description of the NASTRAN model developed from the
design of the Land Mobile Satellite System (LMSS) - Wrap Rib e_loyed for
the analysis. The components of the IMSS are labeled in Figure I0.

'lhe inbound and outbound UHF booms, boom housing, solar array mast, solar

array booms, and s-band reflector boom were modeled as triangular

graphite/epoxy trusses. The UHF feed support and s-band feed boom were
modeled as hollow graphite/epoxy tubes. The radial ribs in both reflector
surfaces were modeled as hollow, collapsable, lenticular-shaped tubes of

graphite/epuxy. The circumferential rings in both reflector surfaces were
modeled as graphite rods. The bus was modeled as a solid cylinder. The
molybenum mesh surface of each reflector was modeled as a thin membrane.
The mesh was assumed to have the stiffness of a membrane 2 mils (5.067E-5

m) thick made of Kapton (E = 1.0E9 N/m). Although the actual reflectors
will have pretension in the ribs and mesh to hold the .mesh taut, there was

insufficient design detail to incluh,; the effects of pretension at the time

of this analysis. The section properties of all m_rs are shown in Tablet

6.

Each solar array was modeled as a bar with rigid body elements across its
width. The UHF feed was modeled in the same way.

The mass breakdown for the entire structure is summarized in Figure ii.
The mass of the U_IF booms and cables was distributed evenly along ther"

c booms. The mass of each reflector was lumped at the center of each
reflector. The mass of the UHF feed was lumped as follows: 1/4 mass at ::he

top edge and 3/4 mass at the bottom edge. The mass of the s-band feed was
lumped at a point 0.3 meters from the end of the bus (0.3 meters in the x-y

plane as shown in Figure i0). The mass of the following were lumped in the
-" bus: RF electronics, control equipment and sensors, 1/2 solar array mast
._ and mechanism, batteries and power conditioner, and the bus structure,
• cabling, T/C and cage. The mass of the outbound reaction wheels and

sensors were lumped at the center of the UHF reflector. The mass of the
inbound reaction wheels and sensors and 1/2 the mass of the s-band

; reflector boom were lumped in the boom housing. The mass of the solar

i; array booms and 1/2 the mass of the solar array mast was iLm_oedat the end

of the solar array mast. The remaining mass of the solar arrays was lumped
" at either end of each panel ass_ing the following mass breakdown:

_ 82% panel
10% boom along center of pane.l
5% box in which panel is stored

_ 3% stiffening rod at far end of panel

A NAS_RAN Normal Modes Analysis was employed to find the natural

frequencies and mode shapes of the structure. The first, second, and third
< mode frequencies are 0.105, 0.iii, and 0.131 Hz. Mode shapes for these

three modes are shown in Figures 12, 13 &_d 14.

i
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2nd Mode

FIGURE13. LMSSWRAP RIB
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Based on the preliminary results, the finite element model will be modified

as follows: the U_2 feed support will be stiffened, and the mass of the UHF
reflector ribds and mesh will be distributed to several grids on the

reflector surface, rather than lumped at the ceI_ter.

LMSS - Hoop and Co!_n_.

The NAS_AN finite element model shown in Figure 15 consists of 282
grid-puints and 555 elements and has 279 dynamic degrees-of-freedom. The

central column is a telescoping open lattice truss structure made of

graphite epoxy tubes and c_bles. It has a hexagonal cross sectioA and is
modeled as 24 bar element_ all with the same cross sectional area but with

area moments which are a function of the radius of each segment. %he hoop

is modeled as a .076 m diameter, I. nlnwall hollow graphite/epoxy tube.

To reduce the number of degrees-of-freedom, the hoop is divided into 24
segments instead of the 48 segments shown in configuration drawings. The

cables which support the hoop and the reflector surface are .00127 m

diameter graphite rods (Celion fiber). To simplify the complex system of
cables used to support and manage the reflector surface's shapes, the

; surface is modeled as a single gridwork of membrane el__nts bounded by

graphite reinforcement ties (rod elements) to which the conical cable
. arrays are attached. The molybden_n mesh reflector surface cha
% characterisitcs are assumed to be approximated by a 2 rail (5.08E-5 meter)

/ thick Kapton film (E = 1.0E9 N/m2). To provide torsional stiffness to the
: antenna, the cables arranged in a "bicyle spoke" configuration. Otherwise

there would be no torsional stiffness until geometric nonlinearities become
: effective.

Each of the four feed assemblies is modeled as a lumped mass located at its

center and supported by a bar element sized to represent the

characteristics of the tripod support shown in configuration drawings.

Each solar array is modeled as a flexible bar with rigid elements across
• its width. The +Z solar array supports are modeled as .0254 m diameter

" graphite/epoxy tubes with .2 mm wall thickness. The -Z solar array support
booms are modeled as trim_gular graphite/epoxy truss beams. The section
properties of all structural elements are shown in Table 7.

,: .. The mass breakdown for the Hoop and Column LMSS is shown in Figure 16. The

mass of the column is distributed uniformly along its length (the
• circumferential and diagonal structural elements are assumed to be a small

_ percentage of the total column mass). The hoop mass and reflector mass are
_ also uniformly distributed. The feed mass is divided between the four
:: feeds and lumped at the center of each. The mass distribution for each

solar arral is as follows:

82% panel

10% boom along center of panel
5% box in which panel is stored

3% stiffner at outboard end of panel

_ The mass of the solar array support boom is divided between the inboard end
of each solar array and the bus to which it is attached. The mass of the

_ s-band feed and reflector are lumped in the +Z bus.
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FIGURE 15. HOOP & COLUMN ANTENNA (LMSS) UNDEFORMEDSHAPE
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676 Column, Cables & Electrical Cabling

304 Hoop & Insulation

99 Reflector

76 -Z Solar Panels

; 154 +Z Solar Panels
r

" 59 S-Band Reflector

,_ 116 S-Band Feed, Boom, Coaxes

116 -Z Bus Structure, Batteries, Power Conditioner
.; and Insulation

'_" 239 +Z Bus Structure, Batteries Power Conditioner
and Insulation

1070 Feeds & Electronics

.- 2909 kg Total
)

• ii I llm

k

i.
}:

<;

"T Figure 16. Hoop & Column LMSSMass Breakdown
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A NAS"RAN buckling analysis was performed to obtain the differential

stiffness matrix resulting from pretension in the hoop cables and the
reflector surface. The preloads were applied to both the forward and aft
hoop cable arrays and to the outboard edge of the reflector surface. The

tension required in each aft hoop cable to prevent the forward cables from

going slack at an orbit transfer g-load of 0.15 g is calculated to be 42.
N. A reflector surface tension force at each of the 24 hoop attachments is

aribitrarily chosen to be I0.0 N. The resulting differential stiffness

maxtrix was used in a NASTRAN normal modes analysis to determine mode
shapes and natural frequencies. The first three modal frequencies are
0.114, 0.118 and 0.138 Hz and are associated with motion of the +Z solar

arrays (Figures 17, 18 and 19). The first n_de which involves significant
motion of the hoop/coltmm is the ninth flexible mode whose frequency is 0.6

Hz. This mode is a torsion mode (Figure 20) where the col,ram (including

feeds and solar arrays) rotates about its axis and the hoop rotates in the
opposite direction.

Experimental Geostationary Platform

The dynamic analysis of the Baseline Experimental Geostationary Platform
9BXGP) is described below. Where data was available, dimensions and merber

sizes are those given by General Dynamics, Convair Division. The wrap-rib
and peta antenna booms, and the array astrc_asts were modeled as "Convair
deployable trusses." The array support booms were modeled as triangular
trusses (1/2 Convair deployable trusses). All trusses were assumed to have

graphite/epoxy longerons and graphite tie rods between the longerons. The

_ central core was modeled as a solid cylinder and was assumed to be a rigid
.- body. The radiator and experiments 301, 501, 502 and 604 are attached to
"= the core structure with "convair space rails." Each space rail was modeled

as a graphite/epoxy-honeycamb sandwich plate connected to a graphite/epoxy
longeron with graphite tie rods to form a triangular cross section (see

Figure 15). The section properties of all members are shown in Table 8.

The mass breakdown for the structure is summarized in Figure 21. The mass

of the reflector booms was distributed evenly along each boom. The mass of
each reflector was lumped at its center. The masses of the radiator,

experiments 310, 501, 502 and 604, along with 1/2 the mass of each space
; rail was lumped at the outboard end of the space rails (501 and 502 are

_: attached to the same space rail). The mass payload 401 was lumped at a
point approximately 5 meters from the center of the core. The mass of

'_ payload 123 was Itm_ed on the space rail which supports payloads 501 and

* 502. The solar array mass was lumped at either end of each panel assuming
_, the following mass breakdown:

82% Panel

= 10% Astromast along center of panel

': 5% Box in which panel is stored
3% Stiffening red at outboard end of panel
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37

_iW'- D180-27728-2 j

1984005150-049



ORI@r"_'L :/-.C_;_.IS
OF ;'OC;., £.'b',_,L!'T'¢'

r

Z"

,I

FIGURE 19. HOOP & COLUMN ANTENNA (LMSS) - 3rd MODE, 0.138 HZ
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228. Sol_r Arrays

95. Solar Array Support Booms

115. P/L 203 (Wrap-RibReflector)

92. P/L 601 (Peta Reflector)

182. Radiator

100. P/L 604 (SunflowerConcept)

; 79. P/L 501 (VAS)

C- 50. P/L 502 (DCS)

'" 228. P,L 301 (ImagingSpectrometricObservatory)

,_" 142. Sgace RaiIs
;';"

.. 1663. Core

_ 98. 2.5 m Feed (Wrap-RibFeed)

49. 1.6 m Feed (Peta Feed)

65. Wrap-Rib VerticalMast

45. Wrap-Rib HorizontalMast%

45. Peta VerticalMast

_i 250. Packing Boom

' 37. Wrap-Rib Drive Mechanism
i,
#
i,

L

3737 kg Total

,|

FIGURE 21. EXPERIMENTALGEOSTATIONARYPLATFORM MASS BREAKDOWN
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One-half the mass of the array su_Dport booms was lumped at the inboard end

of each panel. The mass of the fnllowing was lumped in the core: U_F feed,
peta feed, 1/2 each space rail, _/2 solar array support booms, 1/2 packing
boom, and the core structure itself. The other 1/2 of _e packing boom

mass was lumped at a point 5.7 meters above the core (at the top of the
packing boom). The mass of the wrap-rib drive was lumped at the
intersection of the horizontal and vertical wrap-rib trusses.

A NASTRAN normal modes analysis was emplcryed to find the natural
frequencies and mode shapes of the structure. The model consisted of 22
lumped masses with a total of 87 dynamic degrees _f freedon,. The first,

second, and third mode frequencies are 0.096, 0.133, 0.145 Hz. Mode shapes
for these two frequencies are shown in Figure 22 and 23. The first two

modes are primarily bending of the solar array support booms. The third

mode is a combination of solar -tray support boom, and peta and wrap-rib
antenna boom bending.

1.3 G-Loading and Mass Properties

Four generic classes were chosen to investigate for their g-loading

characteristics. These are large Aperture Phase Array antenna, LMSS - Wrap

Rib, I_MSS Hoop-Column, and the Geostationary Platform. Each of these

: structures is designed with critical elelnents closely associated with
flexible members and, therefore, most susceptible to changes in mass and
packaging characteristics due to g-loading. Three g-loading designs were
determined for each of these four structures and sizes.

The SOC and the &'_P will not be studied in detail for g-loading effects
because of their relatively rigid structure. Their critical elements are

concentrated in a central and ri?id mass area with only the solar arrays
extending from flexible members. Solar array support _tructures may be

stiffended, if rmcessary, without significant i_pact on mass or auxiliary
propulsion requirements. An additional reason not to look at varying

g-loading characteristics of the two space station designs was to avoid a
proliferaticn of separate designs, sizes and g-loading parameters. Such a
large number of discrete cases would take away from the major thrust of

thisstudy.

TO define the _nge of g-loading that each of the classes will experience

in transfer from L_3 to GEO or the other orbits, it is necessary to
groundrule an OTV design. The specific characteristic of the OTV that is

important to correlate thrust level with g-loading is the burnout or dry
mass. This mass combined with the LSS mass was used to derive the maximum

acceleration that the L_S _amt endure during transfer. "hrust level will
be treated as a parameter and used only to gauge the requirements placed on

the OTV engine as a side issue. In addition to OTV mass, the size of the
CTV is necessary to define for an insight into packing requirements.

: The OTV c:_sen for this study (Figure 24) is capable of transporting a 6200
ib payload to G_D and return to LEO for reuse or a 16400 Ib payload with an
expendable OTV. Thrust levels between 150 ib and 15000 lb can be achieved

as shown in Figure 24 depending upon the degree of nozzle extension and

pump speed. An expendable (EV will be used for the ncmir_l large _ace
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FIGURE 22. EXPERIMENTALGEOSTATIONARYPLATFORM - 1st MODE, 0.096 HZ
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_'_A LUMINUMIa AVtONIC$ _,
I I.N SA,DW'CH

I ._, _'_"_ / ."----- ,_ . . , ,._; L_.._.._ UTOGENOE],STANK
:;f"_ / _ 4_" ;'- - _ " _'" _,,._'_ PRE,'SSURIZA"I*IONLINES

r f .... , , 411 \\
f ,, ,-_ I, w, _tSg_8 % _

RE_ERTHING

RCS PROBES(41
THRUSTERS

PROPELLANTLOAD:46500LBS
MIXTURERATIO:5.75:1

A. PERFORMANCE
1. THRUST:

¢ MAINb'TAGE = I5,000LB" LB.

b. PUMPED IDLE - 3.750 LB. (NOZZLE EXTENDED)
J - 7_0-1200 UL (NOZZLE RETRACTED)

¢. TANK HEAD IDLE - lEO-G00 LB. ONLY AT FIXED INLET PRESSURE

2. DESIGN POINT MIXTURE RATIO - 6.0
a. OTV MAXIMUM PERFORMANCE MIXTURE RATIO - 6.75

3. OESIGN POINT I_ - 462.6 SEC.

: I a, OFK-DESI_;N I_- SEE FIGURE 3.6.2-6.

; 4. PUMPED IDLE I_ - 462 SEC. • F - 3,760 LB. (NOZZLE EXTENDED)
• 436 SEC. • F • 3,760 LB. (NOZZLE RETRACTED)

; ( - 412-419SEC. • F • 7S_1_)0 LB. (NOZZLE RETRACTED)

TANK HEAD IDLE Is • 393-405 SEC. • F - 160_00 LB. (NOZZLE RETRACTED)

Figure24. OTV ENGINECHARACTERISTICS
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systems in this study since their weights exceed 6000 lb. A typical

sequential mass statement for a GH0 transfer mission is shown in Figure 25.

For a given thrust value, the highest steady stage g-loads will occur when
the OTV is nearly empty of fuel.

G= T

WOT v + WpL

where T = steady thrust

WOT V = OTq weight

WpL = payload weight

Using the high value of thrust in the tank head idle mode (T = 500 ib), an

OTV weight of 6560 ib and a d_ic mangification factor of 2.0 to account
for thrust start-up transients, the minimum g-load which each of the four

baseline space systems must be sized to withstand is shown in Table 9.

Table 9: Minimum Design Load Factors

,_ Satellite Class W(ib) g-load
r i |I I

: Large Aperture Phased Array 9800 .061

Wrap Rib Antenna w/Offset Feed 9695 .062

' Hoop-Column Antenna 10340 .059

Experimental Geostationary Platform 11722 .055

The g-loading with respect to thrust for each of the four flexible designs

is shown in Figure 26. The critical members of each design and the type of
: load encountered are shown in Figures 27 through 30. The location and

direction of the primary propulsion load (T) is identified also. We chose

Expressions for the loads in each of the critical elements identified were
• derived for each structure. The loads were derived as functions of g-load

and pretension parameters. A discussion of each structure follows:

_;' Phased Array Antenna

Using the Educational TV satellite as an example, expressions for the loads

" in critical elements due to g-loading are derived. Orbit transfer thrust
• is applied at the feed horn cluster module.
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USABLE MAIN PROP, MASS 36300 NOTE:MASSIN POUNDS
• VELOCITY IN FT/SEC

NOMINAL BURNOUT MASS 6279 • ISPIN SECONDS

START MISSION MASS 59390

PAYLOAD 16390

MAIN ENG. ISP = 464.6
AUX. PROP. ISP = _.O_e

EVENT DELTA U PROF. USAGE LOSSES MASS

STARTMISSION 59390

SEPERATE 10 83,8 8,8 59297.4
PHASE 0 0 13.6 59283.8
PHASE INJECT 4494 15393.4 48.2 43842.1
COAST 0 0 3.7 43838.4

,- TRANS. INJECT 3672 9548,2 19.1 34271
COAST 50 124.2 6.2 34140.7

OEO CIRC. 5828 11022.8 19.2 23098.7

_ TRIM 30 97.7 14.9 22906.1
: UNLOAD P/L 10 32.5 1.2 6562.42

PHASE 0 0 1.2 6561.18
PHASE INJECT 94 44.6 19 6497.55
COAST 0 0 15.3 6482,2B
9ISP. CIRC. 93 43.6 19 6419.65

: RESERVES 300 127.6 21.4 6270.7

m

NOMINAL MAIN PROPELLANT = 36176,9

_. RESERVE MAIN PROPELLANT = 127.6

NOMINAL AUX. PROPELLANT =, 213.989

, RESERVE AUX. PROPELLANT = 21.3989

TOTAL LOSSES = 189.435
J

'" FIGURE25, EXPENDABLEMODEGEO DELIVERYMISSION(OFF-LOADEDFOR

65 K STS) SEQUENTIALMASSSTATEMENT
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1
.... I " _ _ _ _ IhlSTAGE

14000

,_ooo....... _ ....... /_/. _.

,oooo • ,//_Y.... L--

8000

60( _ '

:_ .7 l.......
j-

!'- ' I

•; IV_'/_ PLiI_PEDID,E (NOZ.TLEIEXT-IqOE-7_) J

2000 r _k ..........
T-, .......... i. PUIIPED ID.E (NOZ;[LE RET:E'ACTED)

• , TANK FIEAD IDLE ...
" 8.0 .2 4. .6 8 1.0
• ACCELERATION, g.

_. $ EXP. GEO. PLATFORM

_: + LMSS (HOOP-COLUMN)
.- & EDUCATIONAL IV

• , LMSS (WRAP RIB)

FIGURE 26. G-LOADING vs THRUST FOR FOUR FLEXIBLE DESIGN CLASSES
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EOU=TZON_EL_VZSZO._rr_zr{

*Z SOLARARRAY I

_ _ TRUSS / ,6./--.....h_I#_.A-,,,_,E_CUI_ANCE

_}QTLACI_

7 LI_S

"_ DIMINSIONSIN I,qI'_RS

L'"

CRITICAL MEMBERSFORPRIMARYPROPULSIONLOADS

t

• i. EXTENDIBLES/A BOOMS (IF SIA'S ARE DEPLOYED)

" [BENDING]

2. DEPLOYABLEMASTS

" [AXIAL LOADS (BUCKLING)]

3. AFT STAVES

", [TENSION]
,t

'-" 4. LENS COMPRESSIONRING

[COMPRESSION]
i

\

j FIGURE 27. THE CRITICAL MEMBERSOF EDUCATIONALTELEVISION SATELLITE
.!
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WRAPRIBSPACECRAFT

llmlIN4 Allla_'_| ¢O_ANT

t

CRITICAL MEMBERSFORPRIMARYPROPULSIONLOADS

I. DEPLOYABLEBOOM

.. [BENDING]

2. REFLECTORRIBS

[BENDING]

_ 3. SOLAR ARRAY SUPPORT BOOM (IF DEPLOYED)

*_ [BENDING]

%

FIGURE 28. THE CRITICALMEMBERS OF LMSS WRAP RIB SPACECRAFT
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CRITICALMEMBERSFOR PRIMARYPROPULSIONLOADS

i. TELESCOPINGCOLUMN

'- [COMPRESSION(BUCKLING)]

2. HOOP

[COMPRESSIOmj

3. CONICALCABLEARRAYS

[TENSION]

4. SOLARPANELSUPPORTBOOMS

[BENDING]

FIGURE29. THE CRITICALMEMBERSOF LMSS- HOOPCOLUMN
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EXPERIMENTALGEOSTATIONARYPLATFORM- OPTION4A
VIEWLOOKINGTOWARDSEARTH

EO.Zm --

/PIL 203 - UHF TECHNOLOGY -
i DEMONSTRATION

f _'< P/L _1 - TECHr_L_Y
P/L 122 _ _ DEMONSTRATION (TRANSMIT) I_

/ % lr_w COMMON AJ_TENrJA
I

m4EATH, WAKE II

OdAliGING STUDIES PFL 502 - GOES L__l / '
/ P/L 123 - ENVIRONMENTAL

,,L_, .,.. __/_ / EFFECTSON._E SYSTE.S

_ LIGHTNING MAPPER

_. _ff/L IOE _ IPL

DEMONSTRATION

;-'" (RECEIVE) 10m _"'RADiATOR

:. CRITICALMEMBERS FOR PRIMARY PROPULSIONLOADS

,. 1. "DEPLOYABLETRUSS" STRUCTURE

_; [COMPRESSIONAND LOCAL BENDING]

• 2. P/L SUPPORT STRUCTURE

[BENDING]
J.

3. S/A SUPPORTMASTS

:, [BENDING] i

FIGURE 30. THE CRITICAL HEMBERS OF GEOSTATIONARYPLATFORM

r i
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Antenna Mast

The critical load in the antenna mast is compression and occurs at the aft i"

end of the mast since the total mass of the mast is supported at the aft

stave attachment. Assuming a tension, TI, in each of the 12 staves, the
preload in the mast is:

Fpt = 12 (TI)cos 8

where 8 is the angle between a stave and the mast. The g-load contribution

to the load results from the mass of the mast plus the mass of a portion of

. the lens which is attached to the mast. Assuming 25% of t_helens mass is
supported by the coltmm:

Fg = (Mmast + .25Mlen_ 9.8 g

The total compression load is the sum of these two contributions:

Fmast= 12(TI) cos@ + Mmast +.25Mlens) 9.8 g (Newtons)

with

Mmast = 9.9 kg

:: Mlens= 207.2 kg

._ o = 61.1 deg...:

Fmast = 5.79 T1 + 604.4 g

; Antenna Staves

• The highest stave tension occurs in the aft staves which must support the
mass of the mast in addition to providing pretension forces. The stave
tension is the mast load distributed to the 12 staves.

_ Fstaves = Fmast/12 cos #

= T1 + 104.2 g (Newtons)
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Antenna Rim

Stave tension (TI) and lens tension (T2) applied at each of the 12
attac_nents plus the g-load in the lense rsmnbrane results in radial loads
which are reacted by compression forces in the antenna rim.

The pretension radial load is:

FR = 2T sin# + T2

The lens under a g-load acts like a circular m_nbrane under a pressure

load. The running load in the perimeter of the membrane is:

N = (.328)(E_Rt) I/3 (N/M)

where

E = Young's modulus

R = radius of membrane

, t = membrane thickness
P

: and, the equivalent "pressure" (p)is a function of the g-load (g):

P = (Mlens/_R2) 9.8 g

E

; The resulting radial force at each attachment is:

FR - 2 RN (.75)

/; The .75 factor results from the fact that the antenna lens is supported by
the mast at the center and the membrane tension c_9_ationapplies to a

: membrane _rted only at its edge. Therefore, approximately 75% of the
; lens weight contributes to tension.

" The g-load on the staves also contributes a small amount to the radial rim
load.

FR - Mstav e sin# g

Once the total radial load at each point is calculated, the compression
load in the rim elements is:

Frim - (FR/2.) (l./sin#/12)
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where:

T1 = lens stave pretension (N)

g = g-load (g's)

Antenna Staves Tension

Fstave = T 1 + i04.2g (Newtons)

Antenna Rim (Compression)

Frim = 3.38 T1 + 1.93 T2 + 993.g2/3 + 13.6g (Newtons)

where:

T2 = lens pretension at each attachment

; Lens Support Struts (Compression)

. Fstrut = 2.0 T3 + 1204. g

: where

_. T3 - stabilizing line pretension

Solar Array Boom (Bending)

: BMs/A = 31420. g (N-m)
4

• The effect of increased g-loading on the mass of the Educational TV and
Electronic Mail were determined. Although preliminary mass statements for

this satellite are available, many assmnptions were required to establish

structural parameters (size, material, pretension loads, etc.) necessary
'+: for these calculations.

The most significant factor in determining the effect of g-loading on
spacecraft weight is the criteria used to design it. If the structure is a

•" strength design, i.e., designed to withstand a given set of loads, then any
; increase in loading will result ir resizing the s_ructure with an

appropriate increase in weight. Most spacecraft designs, however, would be

": too flexible if designed entirely using strength as a criterion. The
'+_ resulting resonant frequencies would fall in the control system bandwidth

and cause significant control and aligraent problems. Therefore, stiffness

- criteria are often used to reduce structure/control interaction and improve

satellite performance. A stiffness designed spacecraft, therefore, has
more strength capability than is required for the expected loads and could

withstand higher g-loads with no increase in weight. The magnitude of

.. g-load which would cause a resizing of a portion of the structure is
m_n_r, until a specific satellite is designed.

J
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The assumption of a strength designed structure, therefore, provides an

upper bound on the weight increase caused _I increased g-loads. The second 0'

assumption nade is that increased strength capability is accomplished by
increasing member cross sectional a_eas instead of using _igher strength

materials. For example, for the tri&ngular expandable trt_ses, the areas
of the three longitudinal elements are increased while the interconnecting

elements remain constant. Increased bending capability of the solar array
booms was also accomplished by increasing longitudinal ele_nt areas and

not by changing the triangular dimensions. The third assumption is that
the increase in structural weight of the load carrying el_ents of a n_m_ber

(axial elements in the previous example) is proportional to the increases
_n the member load. The fourth assumption is that the structure is
designed for a g-load of 0.06 g. For the triangular expandable beams, it

was assumed that half of the beam weight is in the longitudinal load
carrying elements.

Figures 31 and 32 show the effect of g-load on weight for the Phased Array

Designs Satellite and identifies the incremental weight for the structural
elements contributing to the increase. The main spacecraft body and

antenna feed comprise approximately 70 pe::cent of the tota] weight and are
assumed to be unaffected by increased g-loads.

LMSS (Hoop and Col_n)

Expressions for element loads are based on the assumption that tension in

the forward and aft hoop cables is defined by tension (Tc) in the 48 aft
: (-Z) cables and that tension in the r_flector surface (Ts) is applied at

each of the hoop attachment locations. Orbit transfer thrust is applied in
the -Z direction at the +Z Bus.

: Hoop (compression): Hoop loads are the results of pretension and g-loads

; Fhoop = 11.41 Tc + 10.64 Ts + 1063.g (Newtons)

Cables (Tension): Tension in each of the 43 cables in each of the five

conical cable arrays (ring i is closest to the column) are as fol_ows:

T1 (aft) = .32Ts + 1.07g

T1 (fwd) = .46Ts

T 2 ,, .08Ts+ 4.97g

T 3 - .15Ts + 15.43g

T4 - .35Ts + 49.09g

T5 (aft) = Tc+ 91.88g

•5 = s + .Ts.rc
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Solar Array Supports (Bending): For the +Z solar arrays, the critical ,"
loads are at the inboard end of the support.

BMs/A = 5080.g (N-M)

Feed Assembly Supports (Bending): For each of the four feed arrays, the

bending moment at the +Z Bus attachment is:

BMfeed = 7290.g (N-M)

The effect of g-loading on the mass of the LMSS (hoop and column)

spacecraft was determined using the same assumptions as the Educational TV

, Satellite described in the previous section (i.e., a strength-desired

i spacecraft, structural capability increased through increases in
cross-sectional area which are proportional to the increase in membe_ load,

etc.). Figures 33 and 34 show the effect of g-load on mass for the LMSS
(Hoop and Column) spacecrafts and identifies the incremental mass for the

structural elements contributing to the _crease. The mass of both the +Z

and -Z Bus are assumed to be unaffected by increased g-load. Also the
increase in solar"array and feed support mass contribute an insignificant
amount to the total spacecraft mass.
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LMSS (Wrap Rib)

Critical element loads are based on preloads in the antenna ribs and J"
g-loads. Orbit transfer thrust is assumed to be applied to the bus.

Ribs (Bending): Pretension in the reflector ribs is a function of the
bending stiffness (EI) and the deflected shape of each rib. Sufficient

structural detail is not available at this point to determine the preload

bending moment (BM_ at the root of each rib.

BMri b = BM o +748.g (N-M)

Boom (Bending & Compression) : With the orbit transfer thrust applied to
the bus, the critical load in the expandable boom occurs just outside of

the boom housing. The load is the result of the combination of compression
in the long boom and bending which results form the offset reflector and
short boom.

BMbocm = 1.17x105g (N-M)

; Fbocm = 5020.g (N)

UHF Feed Support (Bending): Bending in the UHF Feed support structure is
k caused by g-loading.

_ 4.0xl04g_ BM feed = (N-M)
"I

_- Solar Array Support Boom (Bending): The bending moment at the base of the

'-" solar array boom is:C
%,

BMs/A = 2.15x104g (N-M)

Figures 35 and 36 show the effects on mass of varying g-load for the two

_; wrap rib designs.

Geostationary Platform

The only elements of consequence for the geoplatform were the solar arrays

and wrap rib antenna. These elements have been described in the previous
sections. Figure 37 shows the simple relations for these elements.j-

b

_ Mass Property Summary

Table I0 summarizes the mass properties, g-loading effects, and nodal

"_ frequencies for each IZS.
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2.0 ESTABLISHMENT OF APS REQUIREMENTS

The objective of Task 2 was to establish the propulsion requirements due to
environmental, operational and structural constraints. To accomplish this

objective, four mjor subtasks were executed. The first subtask involved a
disturbance environment characterization and a stationkeeping and torqling

requirements determination at LEO and GEO. To fully define the
thrust thruster and minimum bit requirements, the second subtasks

established a set of criteria to place thrusters on each of the selected
vehicles and used this criteria to locate and size the thrusters. With the

preliminary _/_ruster requirements and locations determined, the third
subtask characterized AI_ mass and converged thrust/thruster requirements.
Both chemicai and ion mlstp_nswere used for APS scaling. In the final

subtask, the interactions between the auxiliary propulsion system and the

structure were investigated. This critical subtask gave the first
indication that barge space structure/propulsion interaction may be a
driving issue in uhe design of the structure and integrated propulsion

system. The key assumptions used in each subtask are shown below in Table
ii.

• Table II. Task 2 Assumptions
w

C
'- 2.1 Disturbance Environment Analysis

_ . NASA Neutral Atmosphere

_- . CD = 2.5, reflectivity = 1.0

2.2 Thruster Location

. Maximum moment arms
L

, . O torque AV requirements

- 2.3 APS Characterization

• Monopropellant, bipropellant, ion (Hg, SEPS)

. No resupply

2.4 APS/LSS Interactions

•_ . 10% power loss with and without APS mass
ii j

In subtask 2.1, conservation assumptions were used for the atmospheric
model, drag coefficient and reflectivity. The atmospheric model was varied

to understand effects of the model assumption on orbit decay, however, the

NAgA neutral model was employed to derive propulsion requirements trends.
This model is a long term worst case model and thus yields conservative,

but realistic answers. The drag coefficient was set at 2.5 which may be a
little on the high side. Other studies have used drag coefficients at 2.0
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to 2.7 which correspond to difference momentum exchange surface properties.

Reflectivity was set at a relatively high value which made solar pressure
torques somew,hatexaggerated for certain lower reflective surfaces. Solar

pressure did not add significantly to the torque r_lirements and only in a
few cases were stationkeeping requirements effected, therefore _nall
changes in this assumption would not affect the study conclusions.

The assumptions used to locate thrusters are decribed in more detail in

Section 2.2. The two driving assumptions were maximum moment arms and 0

torque _V requirement. Moment arm was not as important as was thought
beforehand, and, in fact actually drove minimum impulse bit requirements

for pointing control lower than the state-of-the-art. Pure aV with no
torque created a throttling requirement for thrusters which had to be
located non-symmetrically around the CG. Subtask 2.3 generated scaling

equations for monopropellant, biopropellant and ion (Hg, SEPS technology)

thrusters. These scaling equations were based on existing hardware and, in
the case of ion thrusters, accepted theory.

An assumption was made in subtask 2.4 that a 10% proven loss in the antenna

beam was the maximum structural information allowed. This assumption was

• based on discussions with the Boeing Space Antenna Systems group. For most
_ missions, a defocusing of the beam beyond 7-10% would be considered
- unacceptable.

rT

_. The driving key issues of Task 2 were threefold. First, the aerodynamic
_ disturbances in LEO were so large for most of the antenna structures

examined that operation even for short periods of time proved difficult.
_i_ LEO deployment and checkout of the large antenna systems imposed much

_ higher thrust and large _V requirements versus the GEO operationa__
requirements, second, the stationkeeping strategy at GBO drove the
state-of-the-art limitations depending on the duty cycle of thrusting. For

short duty cycles (<i hour/orbit), chemical system thrust lev_!s were

._ required. The solar array duty cycles had to become very long (>3
; hour/orbit) before ion systems were viable. The final key issue was the

allowed APS mass fraction at GEO. If the cost of transportation is more

i effected by the volume rather than mass of payload as it is in certain STS

missions, then low Isp systems are acceptable. If the mass becomes
_ critical because of STS or transfer stage capability, then higher Isp'S are
r more desirable. It was shown that the delivery systems were challenged for

_ very low Imp (200's) examined, however, delivery costs were beyond the

scope of the contract, and a firm notion of where Isp should lie will be
effected by such an analysis.

_J;_ 2.1 Disturbance _lvironment Analysis

This subtask consisted of three separate analysis which provided a detailed

. examination of disturbance torques, LEO stationkeeping forces and effects,
and GBO stationkeeping forces and effects. LEL'disturbances wire dominated

: by aerodynamic influences for both forces and L;orques. GID disturbances

were dominated by gravitational influences. G_dvity gradient torques and

solar/imlar gravitational attractior.s imposed the most significant
• propulsion requirements for systems sized foz GID operation. Solar

pressure forces and torques were of lower magnitude at C_O than
gravitational influences and orders of magnitude lower than aerodlm_Imics in
LEO.

I

i
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2.1.1 Disturbance Torque Analysis

Table 12 shows a summary of the disturbance torques relevant for _his t

study. The first three disturbances were treated in detail in this study.
Magnetic torques were shown in a previous analysis (Reference 2) to be of
only minor importance for the composite antenna structures examined. A

discussion of aerodynamic, gravity gradient and solar pressure follows:

Aerodynmric Disturbance

Aerodynamic force on the configuration was determined by the equation:

FAEBD --CD A V2p
2

where

CD = Drag Coefficient

A = Cross Sectional

p = Atmospheric Density

-_ V = Orbit Velocityl-

Atmospheric density is the most difficult parameter to accurately estimate.

_ Density is affected by two factors which relate to solar activity - the
_ geomagnetic index and the solar flux. Both of these factors vary with time

due to changes in the solar activity cycle. Actual measurements for 1979
through mid-1980 are shown in Figure 38. The solar cycle peaked in 1978
and will again reach a maximum around 1980.

: In these s+.udies,four atmospheric models were considered in deriving the
orbit decay data. See Figure 39. The nominal model is the U.S. Standard

" Atmosphere, 1976. The othe;: three model'_were generated via the quick-look
density model in Appendix B for a latitude of 0. The NASA Neutral and
Short Time Maximum Models use values suggested for space shuttle studies.

The NASA Neutral Model is a high F_)laractivity model, with a value of 230
for the mean 10.7 cm solar flux and a geomagnetic index (A) of 20.3. The

Short Time Maximum Model uses a 10.7 cm solar flux of 230 and a geomagnetic

index of 400. These conditions would occur only for a time of 12 to 36
hours during an extreme]y large magnetic storm. The MJ/_imum Model uses

figures of 73.3 for the 10.7 cm _olar flux and 10.9 for the geomagnetic

_. Zndex. The solar flux and geomagnetic index figures are the 97.7
percentile figures for June 1987 form the Marshall Space Flight Center

predictions.

The "NASA neutral" is considered to be the worst long-term or continuous
case applicable to any reasonable re,supply cycle or propellant loading
analysis.
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Gravity Gradient

Gravity follows an inverse square law, and, as a consequence, mass elements

near the earth are attracted more strongly than those farther away. When
these forces are summed over a body, the point of application; i.e., the
center of gravity, is found to be a little closer to the earth than the

center of mass. The separation is very _nall with respect to a

characteristic dimension of a structure but does lead to a gravity torque.
General expressions can be found in References 5, 6, and 7. If the body
axes are chosen as principal axes of inertia, the body axis torque

expressions simplify to

Tx_ 3_ ',I - Iyy) cos2esin2_
2P3 zz

Ty = ,, (Izz - Ixx) cos_sin20

; Tz = ,, (Ixx - Iyy) sin_sin20

L
- In these expressions, ¢, 0. and _ are the roll, pitch and yaw Euler angles,

j _ = _4eart h = 3.986xi05 km_/sec 2, and p = radius of orbit.

/

Radiation Disturbances

In the analysis of radiation disturbances for earth orbital missions, three

sources of radiation require consideration. The primary disturbance is
:- from direct solar radiation which contributes both electromagnetic forces

from _hotons and a plasma force from the solar wind. A secondary
. disturbance is earth illumination which can be ref:ected sunlight or

:- infrared _mission. Finally, small effects can resu!c from spacecraft

asymmetrical radiation emission in the form of thermal hot spots or radio

_" transmissions. This latter disturbance is many orders of magnitude lower
than the other two and was not examined.

&

_; There are a/so three factors to be considered in the determination of

forces from any radiation source. The quality of incident radiation
determined by the intensity, spectrum, and direction is the first

determinant. E -ond, is the geometry of the spacecraft including the shape
of the surface and the location of the sun with respect to the spacecraft

_. mass center. Finally, the optical properties of the surface upon which the
radiation is incident or from which it is emitted must be considered.

Table 13 summarizes _he radiation sources and force determination factors

to be used during this study.
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Direct Solar Radiation

The two sources of direct solar radiation, photon pressure and the solar

wind plasma force, are separated _ four orders of magnitude. The solar
wind is so much weaker than the photon radiation forces that its effect can

safely be ignored.

Table 13. Radiation Disturbance Factors

Sources of Radiation Force Determination Factors

I Direct Solar Radiation I Incident Radiation Properties

A. P_tons A. Intensity

B. Solar Win_ B. Spectrum

C. Direction

II Spacecraft Geometry II Spacecraft Geometry

A. Reflected Sunlight A. Surface Shape

B. Infrared Emission B. Location of Sun

III Space Emission III Surface optical Properties

A. Thermal Hot Spots A. Reflection

B. Radio or Power E. Emission

Transmission

C. Absorbtion

The sun provides essentially collimated radiation with a reasonably well

defined intensity and spectrum. The solar photon radiation may be

characterized by the solar constant 1o which is the rate of which energy at

; all wavelengths is received per unit area. The best estimate of this value

_ is 1353 _ 20 W/m _ which when converted to force yields 4.513 x 10-6 _Vm 2.
Because this constant _as uits of force per unit area, it is often called a

pressure. This terminology can be misleading as the pressure here is in
i reality a vector guantity not a s'_lar.

The solar constant follows an inverse square law which is important for

interplanutary flight, however for earth orbit missions the only source of
distance variation is the eccentricity of the earth's orbit. The variation

i due to eccentricity changes the value by 3.5 perce_t and can, for the

purposes of this investigation, be ignored. Solar radiation, therefore, is
: taken to be a constant of 1353 W/m 2 from a collimated Eource.
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Earth lllumination (Albed¢)
._

In addition to the direct solar radiation falling on a spacecraft,
reflected radiation from the earth also exerts a pressure. The effect is a

maximum at noon and tends to partially cancel the direct radiation forces.
The earth and its atmosphere act as a diffuse reflector with the result

that the albedo radiation is not colli_ted. This considerably complicates

the determination of the resulting forces. Often these forces are ignored
on the grounds that their omission will lead to cx)r_servativeestimates of

the total direct and reflected radiation effects. While this approach is

often justified, large vehicles in relatively low o_Dits can experience
significant relief from the albedo radiation and it may be important to
include the effect.

Assuming the earth to be a perfectly diffuse reflector obeying Lambert's

cosine law, the radiation emitted from an element of area dA I is kUcos0dA 1
_/m2 per unit solid angle in a direction inclined # to the surface normal.
k can be identified as the albedo coefficient and U is the incident

radiaticn. The radiation pressure at a distance r is

; v = kUcoso dA1

_ r _

direct along r-.
!

The normal and tangential components of radiation on an area dA , as snown

_" in Figure 40 can be ex,0resssed>.

U kcos_cosa

'_ VN : _ _ r 2 -- dAI

-U kcos_r"_
._ =-_ clA1

r 3%

and

U f kcososln_ dAI
; VT = _ , r2

U _ kcoso_x(_'x _) dAI
_ r3

; where n is a unit vector from surface element dA2.
J
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Earth Radiation
p

The other source of disturbance from the earth and its atmosphere is a
diffuse radiation with a spectrum approximated by the spectrum of a 288°K
black body. Tnis temperature varies with the transparency of the

atmosphere from 218°K to 288°K with about 95 percent of the enitted
radiation originating from the earth or the lower atmosphere. The

radiation is not collimated and may be treated in the same way as the earth
reflectance problem with the following result

Ie ° f cos VJds/d 2
Ie - m Esss

where

Ie0 = global average emmission constant (243
W/m 2)

dS = element of differential area on the surface of the earth

d = distance from satellite to dS

_ --angle between the normal dS and d

'C
, Esss = earth surface as s_en by satellite

Figure 41 shows the relative values of solar radiation, earth reflectance
:: and earth radiation for a ._pherical satellite for a range or orbit radii.

Disturbance Torque Calculations

: Before .=ummarizing the complete disturbance torque analysis for each

vehicle, an example of the calculations is shown below for the 12.5 kw SASP

• configuration at 300 km. LSO altitude treated in this study ranged from
300 to 500 km. it is noted at the outset that torques at 300 km were an
order of magnitude higher than 500 km due to increased atmospheric density.

Torques at GH0 are 3 or 4 orders of magnitude lower than those at 300 km.
This sensitivity proved to make radical differences in the thrust/thruster

C requirements for torque cancelation at LEO versus GEO. The same conclusion
will be shown when stationkeeping is considered in the following sections.

_' AS an initial example, the smaller S_P (12.5 kw) configuration at 300 km
_ altitude is examined. Several assumptions were made to model the%

aerodynamic, solar radiation, and gravity gradient disturbances. Some of
these assumptions came from Reference 8. Assumptions are as follows:
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i. The positions of the forces on the satellite are described using a

spherical coordinate system (_,_). I"

2. The wind is considered to be a unit vector Jn the direction of the

translational velocity, and the solar radiation is a unit vector
exactly opposite to the wind. (This was varied for the analyses that
follows. )

3. Solar radiation pressure = 4.70 x 10-6 N/m 2

4. Coefficient of drag (CO) = 2.5

5. Gas density (Rho) = 4.0 x I0"II kg/m 3 (NASA Neutral Model) for 300 km
altitude

6. Solar radiation is either absorbed, reflected specularly, reflected

diffusely or some canbination. A combination of all three was used

with the absorption coefficient and the coefficient of diff _e
reflection, each having different values for the front and ba_

; surfaces of the satellite.

Front Back

_ Absorption coefficient 0.133 0.433

:: Coefficient of specular reflection 0.367 0.367
Coefficient of diffuse reflection 0.50 0,,20

Ca + Cs + Cd = 1.0

• For future analysis, we assumed 0 absorption, 3 diffuse, and .7 specular.
The spherical uoordinate system is shown in Figures 42 through 45.

j Aerodynamic drag and solar radiation calculations were made for ¢ values

% from 0 to 180 degrees in 15 degree increments and 8 values from 30 to 360
_ degrees in 30 degree increments. To calculate a sum of the forces, it was
• arbitrarily decided to add together the forces occurring when the wind is

" exactly opposite to the solar _.adiation, Figures 6 and 8. Later

calculations c_)nsidered a nominal position of the satellite in orbit. In
this position, a sum of forces were made using the wind vector as a
constant and varying the radiation vector, Figure 45. The spherical

coordinate system is shown overlaid onto SJ%_P in Figure 46. This also

shows the direction of the maximum force on SASP due to aerodynamic and
radiation forces at 300 km altitude.

_{ The following figures _how the variation of torque with ¢ and 0 at 300 km

altitude. Figures 47, 48, and 49 illustrate the aerodynamic, gravity
_' gradient and radiation pressure torques at low altitude. Figure 50 sums

these torques to show the RSS totals for the worst case axis. It is seen

that aerodynamics dominate the composite total. Appendix B shows a similar
analysis at 500 km. At thi_ altitude, aerodynamics is still dominant.

, However, gravity gradient is now 10% of the total. Radiation torques have

_ decreased due to the increased radius and consequently decreasing earth
reflection and albedo contribution.
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After this initial calculation was made, a change in the spherical

coordinate system was made to Cartesian coordinates and the more familiar
roll (x-axis) or nominal velocity vector), pitch (y-axis) and yaw (z-axis

or earth nadir). Nominal or operational attitudes were also compared with
worst case or entations. The sum angle was varied within appropriate orbit
constraints to find the worst case radiation oontribution in both cases.

These orientations are summarized in Table ]_.

Table 14. Nominal and Worst Case Orientations

Nominal Orientation

• 300, 400, 500 km and GEO

• Varied roll, pitch, yaw I0 in all axes - minimum bit

requirements

• Used worst case sun angle

• Selected worst case attitude and torque for this 10 range

•, Worst Case Orientation

._'- • 300, 400, 500 km and GSO

• Varied roll, pitch, yaw 360 in all axes

• Used worst case sun angle
m

-" • Selected worst case attitude, torque
¢

A summary of the disturbance torques for each vehile size is shown in
'- Tables 15-18. The mass properties for this set of tables were taken for a

g-load of .15 g's. Additional information for the other g-loads of .06 and
_; 1.0 can be found between the g-loads. This resulted from a nonlinear and

nonsymmetric addition of mass to structural m_rs for increasing g-loads.
As mass was added, inertia properties and _ momentum arms were changed

in a noncorrelating and vehicle specific manner.

_" Table 15 shows the LEO nominal orientation torques for each vehicle. Table
: 16 shows the same altltudes but in a worst case oondition. The variation

of torques by altitude is shown to be around an order of magnitude from 300

to 500 km. Variations of torques by class also vary by orders of

magnitudes due to the c_,_nging aerodynamic and mass property variations.
• The wrap rib and hoop/column designs have very high area/mass ratios and

large CP-OG offsets and are dominated by aero torques. An interesting

result for the SOC deqigns was that the initial version had higher torques
than the operational version. The cross products of inertia and the CP-OG
offset for the smaller version were greater than the more symmetric larger

'_ SOC design. This indicates that configuration optimization from a torque
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point of view could significantly reduce momentum management and

desaturation requirements.

Table 17 shows the GBO disturbance levels for each axis and the RSS total.

These torques were used to size thrust/thruster requirements (worst case)
and to investigate the implications on minimum impulse bit (nominal

orientation) for pointing control. Gravity gradient was the dominant

influence with solar pressure playing a significant role for _/_ewrap rib
and hoop/column designs. Table 18 shows _ sLmmary of t/leRSS torques for

400 kin,500 km and GEO. It is again noted that the difference between the

LEO and GEO requirements is one to two orders of magnitude. Also nominal
and worst case torques are similar for some designs indicating some
configuration optimization potential.

2.1.2 LEO Stationkeeping Requirements

Using an operational scenario of LEO deployment and checkout, the

; requiremer._s to maintain orbit altitude in LEO must be considered. To
analyze these requirements a Boeing proprietary simulation program called

_ LTESOP (Long Term Earth Satellite Orbit Prediction Program) was used. This
_" program incorporates all significant perturbations in LEO. These

C perturbations are summarized below.

• 4th order spherical harmonic expansion for earth potential

_ • Gravitational attracion of sun and moon

• Atmospheric drag

• Solar radiation pressure with shadowing from the earth

. The _V and thrust level requirements are a function of the tolerance

_. allowed for recovery to the deployment altitude. .%range of altitude

tolerances was considered from 0 (continuous thrusting) to 50 km tolerance.
Nonlinear effects from density variation, solar/lunar gravity and earth
triaxiality became pronounced for tolerances in exce_;sof 10 km.

An additional complication in this analysis was the solar array angle to
the "wind." Figure 51 shows that S/A angle has a major impact on &V

requirement for the SASP design. This angle is a function of orbit, body

_ orientation, and time of the year. An assumption was made that S/A angle

would b_= treated as a constant at 20 degrees angle of attack (90 degrees =
flat to the wind). This shallow angle was thought to be a reasonable

:: average because the array may be "feathered" on the dark side and because a
_ flat array would only occur around the terminator. It is suggested that a

complete simulation of S/A incidence angle be conducted for future analysis
to verify this assumption.

The atmospheric model and orbit altitude assumed also had a major impact in

the calculation of &V. Figure 52 illustrates these two effects for the
operational S0C design. The small oscillations in the curves are due to

the 28 day lunar cycle. As stated previously, we assumed the NASA neutral

atmosphere and examined altitudes from 300 to 500 km for each design. It
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became apparent early in this analysis that 300 km was an unreasonable

altitude to maintain for any of the classes studied. Figure 53 illustrates

the rapid decay of orbit altitude for representative classes. Based on
this initial data 300 km was dropped from any further consideration.

Altitude tolerance effects were shown to have a major impact on the aV
requirements for all vehicles. This effect is illustrated in Figure 54 for
the operational SOC design. At lower altitudes, for this design, the

increasing atmospheric density dominates the requirements and continuous
thrusting yields a lower _V. For higher altitudes the density effects are

much _naller and higher tolerances yield more efficient operation and less
_V. For the other designs less sensitivity is seen to tolerance as shown
in Tables 19 and 19-1. A s_mmary the LEO stationkeeping requirements

using a I0 km tolerance is shown in Figure 55. This figure shows that aV

for LEO stationkeeping is a linear function of area to mass. The
implications on the propellant mass required for LED operation are

illustrated in Table 19 for various Isp's and two altitudes. This data is
compiled for 90 day LEO operation. Shorter time periods would, of course,

: considerably lessen this requirement. The magnitude of the propellant
. requirements does indicate that even for short p_riod of time 100's of kg

of propellant would be required to maintain altitude. This requirement
must be traded against the benefit of LEO checkout in future studies.

The thrust requirements to maintain altitude were calculated for a range of
duty cycles or thrusting times. The propellant requirements to maintain

_ altitude for 90 days were added to the structure to understand the effect

of this increased mass on the thrust level requirement. Generally this
_ effect was insignificant as shown in the lower graph of Figure 56. This

figure shows the total thrust requirements for LED stationkeeping. It
indicates that for reasonably short periods, chemical propulsion is

required to maintain altitude. Thrust times in hours must be used to lower
the total thrust level to electric thruster range. Additional thrust level

" data for each class is contained in Appendix B.

b

• 2.1.3 Geosynchronous Stationkeeping

An analysis of the geosynchronous stationkeeping requirements for the

principal I_S designs was performed. The analysis used the area and mass
numbers presented in Appendix A. These numbers give the total area and
mass for the structure. The propellant and thruster masses were not added

6' in because they were determined in subtask 2C. When the APS mass is

determined, the stationkeeping requirements must be recalculated with the
total mass (structure + APS mass) and t/Jeresulting aV's used to adjust the

APS mass. This iterative process is performed until a converged value for

the APS mass is obtained. The _V's, propellant mass and thrust
requirements presented here are just the first cut in determining the

stationkeeping requirements. Final answers will differ by a percentage
from I0 to 20%. The trends shown in the preliminary data will remain

unchanged.
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Geostationary orbit stationkeeping requirements derive from three sources.

A North/South or inclination perturbation results from a single source -

grdvity perturbations from the sun and moon. East/West or longitudinal
_rturbations result from two sources. The first source is the earth's

triaxiality (oblateness and equatorial ellipticity) and the second is from
solar pressure disturbances. These three disturbance effects were
described in detail in Reference 9.

J

There are four standard methods of overcoming the solar pressure effect on

a geostationary erbit. These methods are described in detail in Reference

9. Meth_x] 1 is to continuously cancel the effect of solar pressure by
thrusting in a direction toward the sun. This method is highly inefficient
and results in aV's which are 20-40% higher than the other methods. Method

2 is to circularize the orbit each time the eccentricity becomes equal to

some tolerance. This tolerance can be related to a longitudinal drift
tolerance and corrected with E/W thrusting. Method 3 is to rotate the line
of apsides in such a manner that the solar pressure will cause the
eccentricity to 0._crease to zero before increasing again. The final method

maintains the eccentricity nearly equal to zero* by frequently rotating the

apsida] line in such a manner that the longitude of perigee is equal to the
longitude of the sun. Methods 3 and 4 are more complicated than Method 2

and generally the difference in _V for A/M ratios of .05 or greater between
- Methods 2, 3, and 4 is _nall. Method 2 is, therefore, the method we will

-_ assume when calculating APS mass. Figure 57 sunmarizes the GEO

'v" stationkeeping perturbations.
i

The results of the GEO stationkeeping &V requirements are displayed Jn

_ Tables 20, 21, and Figure 58. These tables illustrate the _V and

propellant mass of each LSS design. We have selected representative duty
cycles for high thrust (p=.Gl=.24 hours/day) and low thrust (p=.4=9.6
hours/day) systems for cc_parLng _V requirements. The propellant

requirements are based on the ,_otal,_V'sin Table 20 and are yearly or,
' more precisely, estimates for a 10-year mission were made when the total

APS mass estimates fed back to recalc_Jlatestationkeeping requirements.
i

Figure 58 shows that solar pressure adds significant aV for area to mass
ratios greater than around a tenth. Another feature of stationkeeping is

that N/S &V is independent of mass and area and is, therefore, a constant

for a given eorrection frequency. Also, triaxiality contributes little to
• the E/W requirement. In comparing the high thrust table with the low

thrust table, we find that changing the duty q_/cle from .01 (high thrust)
to .4 (low thrust) increases the _V requirement by approximately 7%. The

i

added _V would be more than compensated for by an increased Isp for low

,_ thrust systems.

Table 21 shows the first year propellant requirements using the total &V

listed in Table 20. As a conservative estimate, a ten-year mission would
require i0 times the numbers shown. For the Educational T_ Satellite

assuming a.hydrazine (Isp= 200 sec) system, the propellant required for a
: 10-year mlssion would be 36% of the total system mass. For other classes,

the fraction ranges from 20 to 40%. Figure 59 summarizes the yearly

propellant requirement.

|
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• 0
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_. (_ WRAPRIB
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"' (_) LAPM 65 KW

!_; (_ GEOSTAIIONARY PLATFORM

,,_ (_ _SP 12,5 KW

_" (_ SASP 25 KW
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"3

t

107
D180-27728-2

39840053 50-11



[

GSO stationkeeping thrust requirements were calculated for the two duty

cycles and for E/W and N/S requirements. Corrections to these numbers
which took into account the added mass of the APS system were made in
subtask 2c. The numbers shown in Table 22 are, however, representative of
the requirements. N/S requirements were seen to be higher in general than

E/W requirements, howver, these requirements were not trivial for the
systems considered and thrusters for N/S and E/W stationkeeping must be

added to the structure. Some currently orbiting systems ignore the E/W

components. This table illustrates the total thrust requirements.
Thrust/thruster requirements are addressed in the following section. A

summary of the GHO stationkeeping analysis is shown below:

• North/South requirements dominate up to A/M of .31

• East/West contributions 20-30% of total propellant for
selected vehicles

• Correction frequencies of once/week [equirea for future LSS -
•01o tolerance

: • GEO stationkeeping propellant requirements are 25-30% of
: payload mass for low Isp systems

2.2 Thruster Location and Sizing

To establish thrust/thruster requirements for each vehicle, the locations

of the thrusters must be determined. Locating the thrusters is recognized

as a complex process involving packaging, tank location, propellant line

length, etc. In this study, however, the primary concerns were providing
3-axis control and meeting stationkeeping _V requirements. Consequently,
seven criteria for establishing thruster locations were groundruled. These

" were:

I. Maximum moment arms used.

2. N/S and E/W stationkeeping capability from nominal
orientation.

3. Zero delta-V maneuvering capability.

4. Zero torque stationkeeping capability.

' 5. Minimal heat flux and contamination from plume impingement.

6. No thruster mounting on S/A surface or at the ends of S/A's.

: 7. Minimize the number of thrusters used.

TO meet the fifth criteria, we ground ruled that thrusters will be canted

at a minimum of 45 degrees away from critical components such as solar
arrays on antenna surfaces. The consequence of the first criteria was that

minimum impulse bits were driven below state-of-the-art capability for some
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IZS classes. Certain optimization of thruster may lessen this requirement.
F /In general however, the deployed IZS had to have long thruster moment arms

because of the OG location and large distances required to surround the C_
with thrusters. The consequence of criteria 2-5 was that a minimum of 12

thrusters were required for each LSS. In some cases up to 18 thruster

locations were needed because of canting requirements. Figures 60-64 and
associated Tables 23-28 show the locations and directions assigned for each

thruster on each configuration. The SASP design presented problems meeting
all location criteria. Three axis oontrol using thrusters could not be

achieved because the CG location and panel positions did not allow the CG

to be fully encompassed. Thrusters mounted on booms or a redesign for this
configuration was considered beyond the scope of this study. The SASP
design was dropped at this point from further consideration.

The thrust per thruster %_s calculated using a general purpose thrust

requirements computer program. This program handles arbitrary
configurations and thruster location/directions. The inputs to the program
are torque and stationkeeping requirements, configuration (]3location,

• thruster locations, thruster direction cosines and thruster purpose (such

; as E/W or X torquing). Thrusters will generally be multiple in that they
,, will provide both torque and delta-V. To assure that requirements will be

=. met and stationkeeping and torquing will be decoupled, the program must

_ solve the following simultaneous equations:

. Eq. 1 - _Thrust(x,y or z) = Required Stationkeeping(x,y or z)

JEq. 2 & 3 - IThrust(x,y or z) = 0 5tatlonkeeping

Eq. 4,5,6 - ITorque(x,y and z) = 0

; and

; Eq. 1 - ITorque(x,y or z) = Required Torque(x,y or z)

Eq. 2 & 3 - ITorque(x,y or z) = 0 Torqu'Ing

_q. 4,5,6 - ITnrust(x,y and z) = 0

If there are four thrusters available for each operation, the simulation

equations cannot be solved exactly (i.e., six equations, four m_knowns).
:-_" The unknowns were solved by using a pseudo inverse operation:

mq=S

-.** = (^T^)-IATB

where

A is the NMM matrix of coefficients (N > M).

_. X is the thrust requirement vector of order M.
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TABLE 23. LAPAA THRUSTER COORDINATES- ELECTRONIC MAIL AND EDUCATIONAL TV

Locati on (m)* Direction

Thruster # x T z x Y z

1 -4.800 0 000 21,700 O.OOO 1.000 0.000

2 -4.000 0 000 21.700 0.000 -1.000 0.000

3 4.|00 0 000 2!.700 0.000 1.000 0.000

4 4.600 0 000 21.700 0.000 -1.000 0.000

: 5 4.$00 0 000 21.700 -1.000 0.000 0.000

6 -4.800 0 000 21 700 1.000 0.000 0.000

7 0.000 2 000 0 000 -1.000 0.000 0.000

! 0.000 2 000 0 000 1.000 0.000 0.000

0 0.000 -2.000 0 000 -I.000 0.000 0.000

10 0.000 -2._00 0 000 1.000 0.000 0.000

11 0.000 2.000 0 000 -0.707 -0.707 0.000

12 0.000 2.000 0 000 0.707 -0.707 0.000

13 0.000 -2.000 0 000 -0.707 0.707 0.000

14 0.000 -2.000 0 000 0.707 0.707 0.000

i | • i i i , • | • i ........

; Locations are relative to the arbitrary coordinate system used in

the configuration drawing - not to the CG
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TABLE24. GEOSTATIONARYPLATFORMTHRUSTERCOORDINATES

Location (m) Direction

Thrust=r # x T Z x T

1 -2.200 0 T85 -2_.0o0 1.000 o 000 0.000

2 *g.200 0 78S -23.000 0.000 I 000 0.000

3 -2.2_0 0 788 -23.000 -1.000 0 000 0.000

4 -2.200 ¢ 788 -23.000 0.000 -1 OOO 0.000

_ 5 0.000 -15 I00 0 000 1.000 0 000 O.OOO

z- 6 0.000 -15 I00 0 000 0.000 0 707 0.707

_, 7 _.000 -tS.IO0 0 000 0.000 0 707 -0.7_7

$ o.o0o -1S.Ioo o 0oo -Io0O_ 0 o00 o.o0o
C"

9 0.000 -1G.|O0 0 000 0.000 0 000 1.000

10 O.OeO -1S.IO0 0 000 0.000 0 000 -1.000

11 0.000 15.|00 0 000 |.000 0 000 0.000

12 0.000 15.800 0 000 0.000 -0 707 0.707

13 0.000 15.800 0 000 0.000 -0 707 °0.707

14 0.000 15.|00 0.000 -1.000 0 000 0.000

15 0.000 I$.|00 0.000 0.000 0 000 1.000

;; 16 0.000 15.100 0.000 0.000 0 000 -I.000

= ,, i= , J i

Locations are relative to the arbitrary coordinate system used in
the configuration drawing - not to the CG

117

E D180-27728-2 ," ,
- _ ...... 4. *

1984005150-129



, - j

TABLE 25. LAND MOBILE SATELLITE SYSTEM WRAPRIB THRUSTER COORDINATES

ii • iii

Location (m) Direction

Thruster # X Y Z X I Z

1 -0.11l -7.710 s.SSo o.000 1.oo0 0.000

2 -1.ooo -7.7go _.S_o -1.oo0 o.ooo o.ooo

1 1.0oo -7.70o S.Sso _.ooo 0.o0o o.oo0

4 -0.119 11.100 0.000 -1.000 0.000 0.000

-_ S o0.119 11.100 0.000 1.000 0.000 0 000

e o0.119 11.100 0.000 0.000 -0.707 0 707

7 -0.119 -11.100 o.000 0.000 -0.707 -0 707

$ I 000 -|9.9_0 -7$.410 -I 000 0.000 0 000

I -0 119 -29.|60 -7S.410 0 000 1.000 0 000

I0 -I 000 -2|,o6o -7S.410 ! 0o0 o.oo0 0 000

11 1 000 0.000 -12,4S0 -1 000 0.000 0 000

12 -0 111 O.OCO -12.4S0 0 000 -1.000 0 000

: 18 -I 000 0,000 -t2,450 1 000 0.000 0,000

i

*
Locations are relative to the arbitrary coordinate system used in
the configuration drawing - not to the CG
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TABLE 26. LMSSHOOPCOLUMNTHRUSTERCOORDINATES

Location (m) Direction

Thruster _ X v Z X T Z

1 O,OOO -$9. ?a._ -S;. 120 1.0o0 O.0o0 O.000

;L 0.000 -$1.7S0 -87.320 -! .000 0.000 0.000

$ 19.750 0.000 -67,120 0.000 | .000 0.000

", 4 $9.730 0.000 -S7.320 0.000 -1.000 0.000

" 6 O. 000 Sg. 7;10 -87 .120 1 • 000 O. 000 O. 000

: O 0.000 511.7S0 -57.$20 -1.000 0.000 0.000

•" ? -SO. 7SO O. 000 -$7. :i20 O. 000 ! . 000 O. 000

'_' $ -S9.750 0.000 -ST 320 0.000 -1 000 0.000

t1 0.000 -4.790 $.800 -! .000 0.000 0.000

10 O, 000 -4. 7110 |. 800 1 • 000 O. 000 O. 000

_-' 11 0,000 -4.790 $.100 0.000 I .000 0.000

• 12 0.000 -4.790 $.800 0.000 -1.000 0.000

i ii

_: Locations are relative to the arbitrary coordinate system used in
'-i the configurationdrawing - not to the CG

L_

r
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TABLE 27. SPACEOPERATIONSCENTER(INITIAL) THRUSTERCOORDINATES

ii i ii i i

Location (m) Direction

Thruster _ x y z x Y z

1 o.ooo _.144 Io,414 1.ooo o,ooo o.ooo

2 0.000 9. 144 10.414 -1 .000 0.000 O. 000

3 0.000 9. 144 10.414 0.000 .O. 707 -0.707

" 4 0.000 9. 144 -7.1170 1 .000 0.000 0,000

F. 5 0 000 9.144 -7,1170 -1.000 0.000 0 000_ ° •

6 0.000 9,144 -7,070 0.000 -0.707 0 707

7 0.000 -|.144 -1.270 -1.000 0.000 0.000
!

II 0.000 -9. 144 -1 .370 ! .000 0.000 O. gO0

:. 9 O. 000 -q • 144 -1 . 270 O. 000 I • 000 O. 000

10 -1|.$00 0.000 0.000 0.000 -1.000 O. 000

11 -19.500 0.000 0.000 0.000 I .000 0.000

_. 12 -3.$00 0.000 111.000 0.000 -! .000 O. 000

13 -3. SO0 0.000 111. 000 0.000 1 . 000 O. 000

• 14 O, 000 -9. 144 -I .270 0.000 0.707 0.707

it

Locations are relative to the arbitrary coordinatesystem used in
., the configurationdrawing - not to the CG
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TABLE 28. SPACE OPERATIONS CENTER (OPERATIONAL)THRUSTER COORDINATES

ml tl I

Location (m) Direction

Thruster # x T Z x T Z

1 0.000 I).144 10.414 1 000 0.000 0 000

C, 2 ,).000 |.144 10.414 -1 000 0.000 0 000

3 0.000 t.144 -7.170 1 000 0.000 0 000

4 0,000 9.144 -7.$70 -1 000 0._00 0 000

5 0.000 -9.144 7.170 I 000 0.000 0 000

fl 0.000 -9.144 7.870 -1 000 0.000 0 000

7 0.000 -|.144 -10.414 1 000 0.000 0 000

11 0.000 -9 144 -10.414 -i,000 0.000 0.000

| -12.$00 0 000 16.300 0.000 1.000 0.000

10 -12. 500 0 000 10.300 0.000 -1.000 0.000

11 13.800 0 000 18.4100 0.000 1.000 0.000

12 12.500 0 000 I6.4100 0,000 -1.000 0.000

13 -12.S00 0 000 -1S.000 0.000 1.000 0.000

14 -12.$00 0 000 -15.000 0.000 -1,000 0.000

lS 12. 800 0.000 -lS.O00 0.000 1.000 0.000

16 12.S00 0.000 -lS.O00 0,000 -1.000 0,000

el i t
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B is the solution matrix of order N.

The pseudo inverse provides the optimal thrust levels based on decoupled
stationkeeping and torquing. The program ;:illnot allow .more than four
thrusters to perform any one maneuver. This limitation did not cause a
problem for any of the configurations and thruster locations considered.

Using the requirements generated in substask 2a, the thrust/thruster

requirements for each thruster were generated. Some thrusters had only

disturbance torque cancelation requirements, while most thrusters had both
stationkeeping and torquing requirements. If both requirements existed for

a given thruster, the thruster was sized for the higher level. This was
the stationkeeping requirement in all cases. Appendix C shows the detailed

outputs of the thrust determination program. A stmmary of this data for
each design at .15 g-loading is shown in Table 29. Because of time and
funding constraints, the small wrap-rib (25m) and hoop column (60m) were
not treated beyond this point. This table shows that LEO thrust/thruster

requirements considerably exceeded the E/W requirements at GEO. This is

also true for N/S requirements when longer duty cycles were amployed. It
also shows that to lower thrust levels to electric propulsion levels

; (.01-.i N/thruster) long duty cycles were required. This fact led to

_. conclusions whzch will be discussed in more detail in Task 3.

_; An additional conclusior can be reached from the data presented in Appendix
C. Because of the _nequal moment arms for stationkeeping thrusters,

throttling may be indicated for stationkeeping with 0 torque. This
{" consequence is illustrated in Figure 65. _hrottling ratios of 2:1 to 6:1,i

are required.

2.3 APS C_aracterization

In this subtask, the number of thrusters, thrust levels, and AV
=- requirements derived in previous subtasks were utilized to generate APS

mass and converged thrust level requirements. The first step to
characterizing APS mass was the development of chemical and electric system

scaling laws. These laws must have thrust level, Isp and propellant mass
estimates as inputs. Hardware scaling is performed by-derived scaling laws

: and then added along with the propellant estimate to the structure mass. A

r recalculation of thrust and propellant mass for the i0 year assumed mission

life was then made. Interation was performed until a 1% difference between

old and new system mass was obtained. This process is described in Figure
¢ 66.

The scaling equations for chmical systems were derived from curve fits of

• existing hardware. Table 30 shows the data base for the mono and biprop
scaling. Equations for chemical thruster mass, including thruster, valves
and mounting structure are shown below:

Mono Thrust/Weight _ 1.7 Thrust + 8.2 in kg

Biprop Thrust/Weight - .722 Thrust + 13.1 in kg
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For the electric pr_?ulsion systems, the equations were derived as foll(_s: ,"

MT = K 1 D n

JB = K2 D2

I" = K3 JB Isp

F = K4 D2 Isp

where

Mt = thruster mass

D = thrust diameter

JB = beam current

; MT = K5(F/isp)r/2

; where

i.

KI through K5 are constants

!

.0- The scaling equations used for each _ system are:E.

T/W = 1.7T + 8.2 (N2H41

T/W = . 722T + 13.1 (N204/1_-I)

thruster mass = (1/(T/W))T

thruster mass = 34000(T/Isp) -75 (Electric Ion Propulsion)

. Mp = propellant mass = Ms (e_V/GIsp -I )
to,

TV = tank volume = Mp _ v

" ,[3TvTR = tank radius = 3
, 4_

P

TA = tank area = 4_ TR2

tank mass = 5.62 TA

In addition, for electric ion propulsion
l'J

• P - power= 9.8 (Tmax) (Isp)/(2_sy s x I0001

solar array mass = 13.5 P !
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solar array area = 8.96 P

mass of power processing unit = 2.1 x 6.5 x P

where

T/W = thrust/thruster mass

T = thrust/thruster

Ms = satellite mass

The relevant scaling equations are summarized in Figure 67.

Tables 31 through 37 show the results of the APS scaling exercise in kg.
The LEO propellant mass is done at 400 km for the Electronic Mail to 1885

kg for the operational SOC design using chemical systems. It is again
noted that a high price is paid in propellant mass for short-term operation

in LHO, and LEO deployment is an issue deserving careful consideration. A

; summary of GHO operation scaling is shown in Table 38. This table shows a
n_mber of interesting conclusions. First, when considering chemical

_. systems only, the percentage of APS mass to total system mass is relatively

_ constant. For mono-propellant systems, four of the five antenna ._./istems

L- have APS percentaage of 24-29%. Bi-props are similar and range between
18-23%. The difference between the 1% and 40% duty cycles makes only a

small difference for chemical systems. Hc_ever, electric systems did not

:_. even converge which indicated that power system mass arid S/A area were
t growing so fast that the added thrust requirement due to this added mass
_. and area drove the next iteration upward just as much as the first. At 40%

duty cycle, the converged percentage of APS mass were often 1/3, and in

same cases, 1/5 of that for mono-chemical systems.

- In stmmary, the GEO scaling study showed the following conclusions:

_; • EP dominated by power system mass (thrust level)

:. • State-of-the-art electronic ion propulsin unfeasible at short

_. duty cycles (< 2-3 hr. )

• EP looks attractive at longer duty cycles
z

"_ - For .4 duty cycle:

i •EP mass savings over mono (500-1500 kg) Avg = 85% savings

•EP mass savings over bi-prop (300-1000 kg) Avg = 78% savings
• Chemical systems dominated by propellant requirements,

unaffected by duty cycle

• For .01 duty cycle:

- Bi-prop mass saving over mono (150-500 kg) Avg = 30% savings
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The effect of iteration on the thcust level reguiremerts is shown in Figure

68. This effect is very noticeable for the shorter duty cycles using

electric propulsion due to the very large power penalty associated with
high thrust levels. For chemical systems, the increase was between 30 and
40%.

Another output of the scaling exercise was electric power requirements for

electric systems. As discuss._d above, the 1% duty cycle was unrealistic

for electric propulsion (EP). For example, at a duty cycle of .01, the
increase of total LSS mass due tc the APS is about 60%. At a duty cycle of

.4, the increase is only about 4%. The decrease is attributed to the lower
thrust levels required, which leads to lower power requirement._, and

consequently, lower thruster mass, solar array mass, and power processing
unit mass. It should be noted that the propellant mass increases with

increasing duty cycle. This is expected because there are greater cosine
losses with longer duty cycle. Therefore, ch_nical APS, which do not

require as much hardware mass due to power, have mass increases with
increasing duty cycle. Since EP shows a considerable savings in mass at

the longer duty cycle, an investigation of duty cycle effects on power

system requirements was made. Table 39 shows the approximate EP power
requirements at .01 and .4 study cycles. The table shows that, in general,

the .4 duty cycle requires one to two orders of mangitude less power.

- Figure 69 shows the total power required using a 40% duty cycle as a
function of satellite mass. For the power levels being considered, the

following factors are important.

': • High voltage can cause arcing due to interactions with plasma
= near the satellite at LEO (this effect can be considered

negligible at GED).

• High currents can generate intense magnetic fields which
: interact with the earth's magnetic field causing disturbance

., torques (this may be very minor at GBO).

' • High power requirements result in large transnission lines
which will add mass to cabling systems (this mass may be very

significant if power levels are high and tranmnission lines
are long).

_, • High power requirements lead to grounding problems which can
necessitate the coating of the LSS with a conductive substance

which changes structural characteristics.

• If batteries are used they will contribute a substantial

portion of the power system mass. For instance, in the
_ proposed SOC design, batteries have been sized at 8000 ibs.

Battery mass is largely a function of the depth of discharge
(DGD). The lower the DCD the lower the battery weight

required. DOD is defined as the percentage of nn=Lgy needed
versus the total energy available from the battery. (In

general, a DCD of 50% is most desirable).
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TABLE 39. POWER REQUIREMENTSFOR ELECTRICALPROPULSION (KW)

J ill

.01 Du_y Cycle .4 Duty Cycle

Electroni ' Mai! 0.2778E+02 O. 7449E+00

; EducationalTV 0.7197E+02 0.1923E+01

LMSSWrap Rib 0.6544E+02 0,1751E+01

LMSSHoop Column 0.6271E+02 0.1675E+01
z"

2

Geostationary Plat5)m 0.8059E+02 0.2146E+01

• SOC Initial 0.1235E+04 0.3304E_02

. SOC Operationa_ O.2715E+04 O.7239r.:,.__

%

,4

m

"4
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Two options exist for APS power supplies - solar arrays and batteries. If

two batteries are used, the duty cycle and hence thrust level has little
effect on the size of battery used. This is because the total energy for

either duty cycle is about the same (energy = power x time). If solar
arrays are used a longer duty cycle has a positive effect in lowering the

required power level and the arrays may be _aller in size. A possible
negative effect from longer duty cycles may result if the payload

operations and APS power sources are the same. In most missions the peak
power load is considerably below the average power required. Solar arrays

sized for this peak power load may be used to supply power to the APS

during off peak time. As the duty cycle increases, the likelihood of being
able to draw _l this "free" power source decreases. The extent of this

penalty for longer duty cycles is very mission dependent and is noted here
only as a qualitative observation.

2.4 APR/LSS Interactions

Interaction of the propulsion system with the structure becomes a key issue

for LSS, particularly those s-jstemswhich must operate continuously. If
; the antenna beam is defocused in any way, this translates into a power or

• gain loss in the signal and a degradation of user service. The approach

taken to analyze this interaction is summarize( elow.

• Used NAST_ mode shapes to simulate dynamic interactions.
"i

t • Examined steady state and transient response.

• Modeled with and without APS mass for higher (LEO) thrust
values.

" • Thruster masses placed at thruster locations.

" • Propellant, tank masses at 03.

• Modeled without APS mass at lower (Q?.; thrust levels.
%

It was found from the LEO analysis that thruster mass had little effect on

,- degradation; therefore the GE0 thrust level analysis was made without the
APS mass to preserve resources.

_ The major areas of interest for this analysis were i) the defocusing of the
antenna, and 2) the stresses in the structural members. The structural

!_ response was computed with the NASTRAN finite element computer program,

; using the computer models developed in Task i. A modal transient analysis

_T was used to compute the forces in the structural members, the relative
] displacements, and the relative accelerations of the points on the

; structure. The mode shapes found in Task 1 were studied to determine the

number of modes to be used for this analysis. The main consideration in
_ choosing the modes was to include all modes which had significant n_dal

deflection at any thruster location. It was decided that the first ten

;_. flexible modes would provide sufficient accuracy since all higher modes

,_ _142
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were ]ocal modes of components and would therefore have little effect on

the analysis. The frequency range for the first ten flexible modes was
0.090 to 0.255 Hzo

Displacements computed with NASTRAN were verified using the following
equations.

Steac_y State Modal Response

qss = 1/m_2 _. Fj CjJ
where

qss = steady state modal response (m)

m = generalized mass (kg;

= frequency of response (rad/sec)

; F : force of point j (N)

Cj = mode shape at point j for response frequency, (m/m)

assuming damping is small

qmax ~ 2 qss

maximum displacement due to load Fj

8Jma× = Cj qmax (meters)

, Displacements calculated with these equations compared very well with the

maximum displacements calculated using NASTRAN. (NASTRAN computes an
• entire displacement versus time history, while the above equations only

compute the maximum value of displacement). The displacement calculated by

NASTRAN were used to compute re_heamount of defocusing caused by each
stationkeeping maneuver.

The question of structural integrity proved to be a non-issue. Maximum

g-loading from even the short duty cycle LBO stationkeeping thrust levels
< was well below the .15 g's t_hestructure was sized for. Figures 70 and 71
r show typical bending moment and force responses for the LMSS Wrap Rib

configuration. Tables 40 and 41 show that the percent of stress exhibited
was always less than 1% of the maximum allowable. This conclusion does not

mean defocusing did not occur, only that the flex in the structure did not

threaten the structural integrity.

To analyze defocusing effects, four geometrical definitions of defocusing

were utilized. These definitions have been previously employed on programs

such as the Space Telescope. These four effects are illustrated in Figure
72. The motion of selected grid points was summed to find the various
defocusing effects. This approach is illustrated in Figure 73.
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Sensitivity to defocusing is a function of frequency and f/d (focal

length/diameter). Power loss of 10% was considered the maximum acceptable
goal. Figures 74 through 78 show the sensitivity for the three effects

analyzed.

Stationkeeping thrusts were initially applied to the LSS without addi.._APS
mass (propellant, tank, _nd thruster masses). This enabled us to determine

the structural response (stresses and displacements) of each LSS without
biasing the results toward any particular propulsion system. The
thrust/thruster for the first load case was chosen as the highest thrust

required at any thruster to perform all stationkeeping and torquing
maneuvers at LEO. These thrust levels were applied to the four models to
determine structural response. From the displacements, three defocusing

parameters (decenter, despace and tilt) and the power loss associated with
each were calculated. Power loss was taken from Figures 74 through 78,

where the operating frequency (i.e. UHF, SI_LND)and f/d were given in the
configuration data. The results of load case one, LEO stationkeeping
thrust levels with no APS mass added to the structures, were as follows:

• Large Aperture Phased Array Antenna (LAPAA) - less than ten
• percent power loss for all three defocusing parameters.

" • Geostationary Platform (GP) - less than ten percent Dower loss

:{ for all three defocusing parameters for both the UHF and peta
antennae.

b

• Wrap Rib Land Mobile Satellite System (LMSS) - less than ten
% percent power loss due to decenter and despace, and ten to

A_ fifteen .percent power loss due to tilt.
:b

• Hoop Column LMSS - less than five percent power loss due to

despace and tilt, and ten to fifteen percent power loss due to
' : decenter.

For the second load case, the propellant system was assumed to be chemical

bipropellant. Propellant and tank masses were placed as close to the c.g.
as possible, while thruster masses were placed at each thruster location.

: Dynamic characteristics of each structure with APS mass were computed. To
:: cut expenses, only the worst case direction of stationkeeping (x or y)

found in load case one was computed for load case two. LEO stationkeeping

thrust levels used in load case one were applied to the structures and
structural response was computed. The change in defocusing parameters from
load case one to two varied from structure to structure:

,% • LAPAA - all three parameters increase.

, • GP - all parameters increase for the peta antenna; for the UHF
antenna, decanter and tilt increase, while despace decreases.

• Wrap Rib LMSS - decenter and tilt increase, despace decreases.

• Hoop Column LFSS - all defocusing parameters decrease.

m
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Time and budget prevented us from fully checking out the reasons for the

varied responses to adding APS mass. However, we feel that a more detailed
study of the dynamic characteristics cf each structure before and after the
addition of APS mass could result in a systematic way of predicting the

effect that the addition of a given APS mass distribution would have on the
performance of the structure.

The third load case was done at GEO stationkeeping thrust levels, assuming
the same APS mass distribution used in load case two. A nominal thrust
level of 2.0 N thrust/thruster was used for all four models. 'Thislevel is

currently lower than the state-of-the-art for chemical bipropellant
engines. It is also somewhat higher than those thrust levels available
from electric systems. However, this thrust level is representative of GSO

stationkeeping requirements. For this load case, all models except the

Wrap Rib LMSS showed power losses of five percent or less associated with
all three defocusing paraneters for both x and y stationkeeping directions.

The Wrap Rib LMSS had less than five percent power loss due to decenter and
despace, uut five to ten percent power loss due to tilt during
y-stationkeeping and ten to fifteen percent power loss due to tilt dI_ing

x-stationkeeping. The results of all three load cases are shown in Tables

42 through 45.

; Tilt and decenter seem to be the limiting parameters in the performance of

•_ the Wrap Rib LMSS at LEO thrust levels. Assuming that a power loss of more
,_ than ten percent results in unacceptable performance, one can find the
. average decenter at ten percent power loss between Figures 74 and 75, then

linearly interpolate between 8.12 N/thruster and 2.0 N/thruster, load oases

_ 2 and 3, respectively, on a plot of decenter vs thrust level to determine
_: that a thrust of approximately 7.3 N/thruster would produce ten percent

power loss due to decenter. Tilt, however, is a problem even at GEO thrust
levels (2.0 N) and an estimation of how low the thrust/thruster needs to be

for a power loss of ten percent or less due to tilt is difficult to make.

. For the Hoop Colu_r_, decenter limits performance at LEO. Assuming a linear
% relationship betwe__n thrust level and decenter, one can interpolate between/

30.0 N/thruster and 2.0 N/thruster to determine that a thrust of

approximately 5.0 N/thruster would result in ten percent power loss due to
decenter. See Table 44 and Figure 74, f/d = .55.

In reviewing the results it is important to keep in mind that the power
losses due to each defocusing parameter must be added to estimate the

overall power loss of each antenna. Assuming that an overall power loss of
ten percent or less is acceptable for these structures, the results can be
summarized as follows:

L

i_ • At the £_0 stationkeeping thrust levels used in this analysis
(IAPAA 6.96 N, Wrap Rib 8.12 N, Hoop Colurml 30.0 N, and Geo

Platform 7.2 N), the performance of the LAPAA and GP seem to be
?_ acceptable, while the performance of the Wrap Rib LMSS and Hoop

Column L_3S may prove to be unacceptable.

" • At G_D sta_ionkeeping thrust levels, performance of all but the
/ Wrap Rib 'LMSS seems tO be acceptable. i

&
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Although time and budget prevented us from doing so, we feel the following
would be worthy of further investigation.

|'

• A more detailed analysis of the dynamic c]mracteristicsof each
structure before and after the addition of APS mass.

• Methods of strengthening structure to minimize defocusing
effects.

• Consequ_]cesof distributingAPS mass on flexible structures.

• Utilizing distributed thrusters to perform slew maneuvers of
flexible appendages.
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3.0 ASSESSMENT OF TECHNOLOGY IMPROVEMENT BENEFITS

The objective of Task 3 was to identify state-of-the-art
adequacy/deficiency and the benefits of increasing technology capabilities.
To accomplish this objective, three major subtasks were executed. The

first subtask was to characterize the state-of-the-art propulsion

capabilities. This subtask was broadened from the more focused scaling
exercise to include such systems as inert gas thrusters, resistojets, MPD

thrusters, L02/I/42 and others. The second subtask was to determine the
state-of-the-art limitations. This was done in terms of delivery syst_n

capability (both STS and OTV), pointing control capability in terms of
minimum bit and valve cycling requirements, and thrust level/I
considerations. The third subtask was to assess the enhanced technology

benefits. _is closely paralleled the second subtask but a more indepth

examination of .momentum manag_nent versus jet control, electric propulsion
system mass, and thrust level duty cycles were considered. The key
assumptions used in Task 3 are shown below in Table 46.

; Table 46. Task 3 Key Assumptions

A) State-of-the-art characterization

• Ion propulsion -- SEPS technology

_ B) State-of-the-art limitations

• Maximum moment arms

• Uniform _'.hrust/thruster

• • 30,000 kg STS capability
/

• 4,800 kg (mix) LEO to GBO transfer capability
(Centaur G'

i

;_ C) Enhanced technology benefits

._ • Less mass means less cost

b

• Shorter duty cycles mest desirable
[" |= =

' ,
!
, 3.1 State-of-the-Art Characterization

The systems considered for comparison with the propulsion requirements

derived in Task 2 are shown in Table 47. In addition to the systems,

certain systems exist which are less characterized in terms of scaling
properties but have experimentally or theoretically verified performance

_. _'egimes. Figure 79 sh(y_s the set of established and in-development
thcuster technologies.

f
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3.2 State-of-the-Art Limitations

The limitations of the state-of-the-art capabilities fal] into two general

categories - those which constitute mission disabling lin/tations and those
which if eliminated would be mission enhancing. The limitations iuentified

are in the following areas: transfer vehicle delivery thrust, APS Tsp
impacts on STS delivery payload, minimum firing time, thruster cycling

requirements, and thrust level requirements.

Transfer Vehicle Thrust

It was found that the deployed antenna systems were sized for .15 g's. In
Task 1 it was also shown that significant penalties in structure mass

existed for increased g-loadir,g. Factors of 75% increase were found for

1.0 g's sizing. Figure 26 showed that a 2500-3000 Ibf engine was r-_/uired
for deployed LSS transfer. Current primary thrust engines, such as the

RL-10, must operate in a less efficient mode for such low thrusts. A

LO2/LH 2 engine of 3000 ibf would be mission enabling for LEO deployment and
transfer.

r

' STS/OTV Delivery Limitations

_. Total system masses for three different propulsion systems were calculated
, in Task 2. The capability of the shuttle/centaur g' to deliver a payload
_° to GEO is 4810 kg. Using this payload as a benchmark the factor of

_,. conservatism allowed for the total system was calculated. Table 48
,_: illustrates that a monopropellant AlXJallows little room for system mass

_ growth. In one case, going to a bipropellant Isp of 300 seconds is mission
enabling. ConsiderL_g the normal rate of growth of preliminary design mass

estimates, the flight ready versions of these systems will require 300

j second or greater Isp.

Minimum Firing Time

To establish the feasibility and advisability of using jet systems to

cancel disturbance torque and provide pointing control we have analyzed
_ limit cycling under the influence of disturbance torques. In previous

q analysis of momentum devices versus jet syst_ns it was concluded that at
LBO many of the configurations had momentum requir_nents that exceeded the
state-of-the-art momentum capability. It will be shown in this section

that the propellant requirements for a jet system to point under the large

= disturbance torques encountered at LED are in some cases greater than the

structure mass itself. We have also shown that stationkeeping propellant
at the lower altitudes (300-400 km) is also very great. In short, LEO

_ deployment and operation of LSS may be precluded by the large APSrequirements inherent in the LSS size and orbit altitude.

:i GEO operation is much more benign and lends itself to either momentum

management or jet control for pointing. Jet control uses limit cycling to
maintain pointing accuracy. Figure 80 shows limiL cycling fo_" no
disturbance (Method I) and under the presence of disturbance torques
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1

Method I - No disturbancetorque limit cycling (2 pulses)

; Method 2 - Small disturbancetorque limit cycle (2 pulses)

-= Method 3 - Single pulse limit cycling with a critical disturbance
torque level (Dc)

E

Method 4 - Single pulse limit cycling with a disturbance torque
;- higher than Dc

Method 5 - Continuous thrusting against dlstuY_a.nce torques

": General Comments:

• • Method 3 uses the least propellantof any method.

-. • Method 3, 4 and 5 ;,=rethe same average propellant consmiKotlon
dependancy relationwhich is a function of disturbance torque,

Isp, and moment arm.

• Method 5 has unrealisticallylow thrust level requirements.
p

- Figure 80. Phase Plane Pointing Method Guide
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(Methods 2-5). For a certain combination cf disturbance level, impulse

bit, moment arm, inertia and point accuracy, _ethod 3 results. This is a

single pulse limit cycle which utilizes the disturbance torque to provide
the second impulse rather than rely on an opposing jet as in 1 or 2.

Method 3 require the lowest amount of propellant of any of these shown.
The propellant consumption rates are defined in Table 49.

Propellant consumption is minimized by utilizing the disturbance torque to

give you a single pulse limit cycle of the longest duration. This occurs

when the disturbance torque is equal to Dc as shown in Figure 81. An
example map was calculated for a certain set of IZS sizing and impulse bit

as shown in Figure 82.

To minimize propellant consunlotion one would like to match the thrust
requirements imposed at Dc. Before examining these thrust requirements, we

have defined the propellant requirements to see if _ is advisable fo_
pointing control. It was determined that for disturbance torques of 10-

N-M or less, just ab(]t any type of propulsion system will have an
acceptable mass. For disturbances of i0-I through i0-J one is forced into

; higher ISDand longer moment arms to compete with momentum management. For

; torques a_ove i0-I N-M momentum _nagen_t will be required.

._ Reexamining Table 17 we can see that the two LMSS designs have disturbance

torque levels that preclude the use of jets for pointing for all but very

c high (~3000 or greater) Isp systems. The two SOC designs examined also
require high I_p and long moment arms to ccmpete with momentum management.
The other design._,el(ctronic mail, educational TV, geoplatform and SASP,

have much lower torques and jet systems of all three Isp'S and can yield a
significant mass advantage over momentum management devices.

APS Requirem_._ _

Minimum fJ i.g _,_-and impulse bits have been calculated for the seven?
i_S. The r:sul_s are tabulated in Table 50. Minim'_m impulse bit

• requirements are dominated by attitude control limit cycling. It was shown
4- -"#-I_above that minimum propellant consumption for the ACS (a_t__de control

system) is achieved by using a single pulse limit cycling scenario. The
' equation_ describing this type of limit cycling are as follows:

_', I ()d2

" i) Dc " _-d'
i
/,

"_ 2) = "t (Fe - Dc)d _

i
% where Dc - criti_l disturbance torque

I - moment of xnertia !

0d - desired pointing accuracy

_d = vehicle rotation rate

!
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Table 49. Pointing PropellantUsage Guide

Defi ni ti ons :

- average propellant consumption rate

F - thrust level

T thrust time on
i

e - moment arm

, 0d - pointing accuracy requirement

• I - inertia

-; Isp specific impulse

D disturbancetorque

•_ D. - critical disturbancetorque
__

_i" R - ratio of D/Fe

Method 1 - n._ disturbance torque limit cycling (2 pulse)

_ 2e:. _: (FT) D:0
4 @d IIsp

Method 2 - smal! _isturbance torque limit cycling (2 pulse)
,;

, (_ D 1 + R + (1-R)V_= - O< D< Dc
I + R (I-R)_, I-_ c

_ M_Lhod 3, 4 - _ingle pulse disturbancetorque limit cycling

i_ _ : Dl(e Isp) Dc <_.D < Fe

--_ Method 5 - continuous thrusting

_ : F/Isp D : Fe
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r

Propellant (kg)x

Dc Fe

Disturbance Torque

_ Figure 81. Propellant Map

im -- i i i i
[

Assumptions :

I - J x 105 kg-n 2 F = .1 N _ = ,1 s 0 d = .10

?

J _

k

-.,r_,._. ......' ' - '-: ..........l(..oe .l(-os .tg--_ .1(.:o,I.... ,_O6
OOSTUR_,eO:TOROUE(.'_-._)

-, Figure 82. Propellant Map Example

.
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= thruster pulse duration
!

F = thrust level

e = moment arm

The procedure used to solve for the minimum thrust time is to solve

equation (I) for °d then solve equation (2) for r. The minimum impulse bit
is F_. The values used in these equations were:

: Dc = the nominal disturbance torque calculated for each LSS

I = the x, y, or z inertia for each LSS

@d = .i degree

F = maxim_'a thruster value for each LSS multiplied by a factor of 5

e = sum of x, y, or z moment arms for each LSS

By using the calculated disturbance torques from Task i, we force the
nominal diiturbance torque to be the critical disturbance torque for

.. minimum Droepllant consumption. A maximum thruster value is used for F,
since we must size the system for the maximum thrust. The f_ctor of 5

. provides a margin of conservatism.

,_ Table 50 show, that, on the whole, the minimum firing times and impulse
: bits exceed the state-of-the-art. This implies that either the

state-of-the-art must be enhanced in this area, or alternative pointing
scenarios are needed. Some of the alternatives include making the moment

". arms smalleJt,or using two pulse limit cycling. A detailed examination of

,_ each LSS, each mission requirement, and each propulsion option is required
to adequately quantify the benefits of these options. The level of detail

'; required for this trade study was felt to be beyond the scope of the
current study.

,, Reliability of Thruster Pulsing

,' In addition to mass, reliability also has to be considered. The

state-of-the-art pulse range life for chemical thrusters lies frJm 105 to

.._ 106 pulses. The worst case number of pulses for each s_tellite for

different firing times was calculated. These are the equations used to
calculate the number of pulses.

,s

!

,t
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Single pulse -

re
Od = 2--I

t

° d

number of pulses : mission time
T

; Two pulse-

:" d : 81
I'-

., 0

_... d

- mission time x 2
number of pulses =

T

where
.._ F - thrust

e - moment arm

•" r- firing time

I - inertia

,_ 0d - pointing accuracy

°d " angular rate across the dead band

_ T - time of single cycle dead band crossing

]
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The results are tabulated in Table 51. For a firing time of .01 seconds,

most of the satellites have pulse ranges that push the state-of-the-art.
By pushing the state-of-the-art in firing times and lowering T, all of the
pulse ranges will fall into an obtainable range.

Thrust Level Limitations

The limitations of thrust level fall into the category of mission

enhancing. This is true with the exception of LEO operation. Chemical

propulsion is required to meet the disturbance torque levels and
stationkeeping requirements in LEO. The thrust level limitations are
sunmarized in Table 52.

3.3 Enhanced Technology Benefits

Having identified areas of deficiency in pointing control, APS scaling

(component and propellant mass) and thrust level, the benefits of enhancing

state-of-the-art capability were addressed. Three areas of enhancement are
discussed in the following paragraphs. The first deals with pointing

control enhancement. This study traded APS mass against momentum
_ management mass for 3-axis pointing control. The focal point in this area

was Isp and minimum firing time. The second study addressed APS mass
_; benefits from enhancing electric propulsion technology. System efficiency,

:_ PPU and S/A specific mass and thrust level availability were exanined. A
comparison of EP mass to chemical system mass was then done to m_ow the

t; degree of mass savings fo[ certain improvement ranges in the system

_- parameters. In the third analysis a compilation of state-of-the-art
characteristics for both existing and developmental systems (example MPD

and pulsed plasma) was mapped against the limits pl_ced on Isp and thrust
level by the requirements calculated for the range of configurations
examined. The development of systems in the region indicated shows the

technology enhancements needed and the benefits in terms of mission
captive, minimized structural excitation, and system mass optimization.

3.3.1 _ointing Control Enhancenent

:: Minimum firing times to allow single pulse limit cycling which produces a

minimum pointing propellant requirement were identified in Section 3.2.
The purpose of the pointing control enhancement exercise was to understand

:t the benefits of reduced firing times in terms of comparisor between
" momentum management mass versus propellant mass for 3-axis control.

- Specifically, the firing time to allow propellant _ass to be reduced to

| ' equal the momentum management mass was calculated.

Momentum management systems consits of either reaction wheel or control

moment gyros which "absorb" environmentally induced torques by either

.: spinning at higher and higher rates (RN) or by changing the axis of large
momentum vector and inducing an H_R torque ((RG's). Both systmns will

, reach a saturation point where they can no longer absorb n_mentum in a J

given axis and must be desaturated by some other torquing device. Torques i
which do not vary in a cyclic fashion will cause saturation and are called I

( 17,D180-27728-2
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secular torques. Torques which reverse sign every 1/2 orbit can be handled

quite nicely by M_D's providing they are sized to handle the momentum
buildup in half an orbit. The cyclic and secular components of torque for

our vehicles are shown in the following table.

Table 53. Nature of Disturbance Torques - Earth Oriented Vehicles

Disturbance Torques Roll Pitch Yaw
• ii t t it

Gravity Gradient Cyclic Secular Cyclic

Aerodynamic Cyclic Secular Cyclic

Solar Pressure Cyclic C_clic Cyclic

Magnetic Cyclic Cyclic Cyclic

The assumptions used to size momentum management systems are listed below:

b

'_ • Momentum _:heelsUsed (Small Torques)

: • 4 Wheels Needed for Single Point Failure

• Sized for Worst Momentum Axis

; • Cyclic Torques Behave As:

' V.." Tma sin wt dt
,;

/ Where Tmax is Maximum Nominal Disturbance

• Scaling Equations areBasedon Actual Hardware Data
i

The _ system being considered is a momentum wheel system which needs to

be sized to the maximum angular momentum needed. Equations relating mass
to angular momentum were developed based ondata from Sperry Flight Systems

D

".L" as Shown in Figures 83 and 84.

r_ For the momentum wheels,

MassMw -2.8582 x 10-6 H2 + 3.5102 x 10-2H + 10.358

.,. For the supporting electrical system,

MassEs = 2.4476 x 10-3 H + 2.6631
t

_ _ Mass = Mass MW + MaSSEs

i
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Figure 83. Momentum Wheel Mass vs Impulse
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Figure 84. MMD ElectricalSystem Mass vs Impulse
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where H = angular momentum (N-m-s)

The torques are cyclic, therefore

2Tmax T
H : _: max where =__2T;

(_ II" T

for GSOT = 86,400

so H = 2.75 x 104 Tma x

F_4Dmass was calculated for each satellite for one and four wheels. The

results are in Table 54. The total M_D system mass is the sum of the
momentum wheel mass, the supporting electrical system mass, and the secular

pitch torque propellant mass for a I0 year mission. The difference in mass

of the _4D system with the secular pitch torque propellant at Isp = 220 and

the mass at Isp = 3000 is approximately 3% of the _MD mass and can be
considered negligible. Therefore the F_ system mass is portrayed as

unvarying with Isp.

; Figures 85 through 91 are graphs displaying both the APS propellant mass

and the total MMD system ,ass. The trade off in mass between the two
• systems is clearly marked by the line representing the _D system mass.

The points where the lines intersect represent critical firing times and
are tabulated in Table 55. At these points, the MMD system mass equals the
APS propellant mass. For smaller firing times than the critical firing

times (or at any point to the left of the _D system mass line on the

graph), the APS propellant mass is less than the R_) system mass.

%

3.3.2 Benefits from Enhanced Electric Propulsion Technology

The goal of this exercise was to identify the high leverage t _'chnology

• enhancements for ion electric propulsion in terms of total system _ass and
" thrust level. The approach used for this analysis is described below:

" • Utilize developed software - scaling, N/S Gec st_ior_" "._, (4
, thrusters used)

: @ Take EP scaling equations and vary:

%

• Initial satellite mass 500 kg - i00,000 kg

• EP system 70-90%

• PPU and S/A specific mass (kg/kw) 13.5 - 5 kg/kw

' • Thrust level available .01 - 5 N

• Find G_D stationke_ping system mass for given asstmi_ions

• Compare EP mass to chemical mass (220, 300, 500 sec)
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The results of the unenhanced state-of-the-art pro[xllsion comparison is

shown in Figure 92. Three points (A, B, and C) have beech identified which
wil] aid in the understanding of this figure. At point A, a .i N

(thrust/thruster) ion thruster system provides a net advantage over

bipropellants for structure mass > 1000 kg. At point B a .05 N ion system
has a net advantage over all chemical systems for structure mass > i000 kg.

At point C, a factor of 2 mass advantage is seen for state-of-the-art ion
thrusters for a 2500 kg structure with a thrust/thruster of around .03 N.
It is also seen that as thrust/thruster requirements approach .5 N all

chemical systems have a mass advantage over electric ion systems. The

operational scenario of stationkeeping thrusting is, therefore, closely
tied to mass advantage. If short duty cycles are desir%d (< 1 hour/orbit),
relatively high ion thrust levels are required as <,own in Table 56.

• Table 56. One Hour Duty Cycle Requirements

4

Thrust/Thruster

': IAPAA I0 kw .05
65 kw .23

_- Wrap Rib 55 m .38

'/ Hoop Colu_m 120 m .43

Geoplatform .36

The conclusion of the state-of-the-art examination is that if short duty

cycles are desired, technology advances to increase thrust density for only
small increases in ion system mass are required.

., Figure 93 shows the approximate regions of the state-of-the-art capability

• in chemical and electric systems. The systems in development, resistojets
and stored inert gasses, were not considered in the APS scaling exercise.

Overlaid on the capabilities map is the recommended thrust and Isp regime
for the classes studied. Due to the uncertainties inherent in the

forecasts based on preliminary design, a large region of crosshatching

extends the recommended region. A fundamental lower limit in Isp for a I0
year mission results from STS-Centaur G' mass deliveLy limitations for most

of the classes analyzed. An upper limit in Isp is shown which indicates
_ power system mass (including the power source and processing hardware)

J becomes ck_nant over propellant mass for ion systems. This limit varies
; with thrust level requirements and longer duty cycles of 2-5 hours/orbit

;, would raise this limit. In addition, lower PPU specific mass would

, increase the Isp limit to include existing ion thrusters.

i
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Thrust level limitations vary greatly with LSS class and duty cycle. The

lower limit range shown is for N/S stationkeeping with a long 9 hour/orbit
duty cycle. Only the pulsed plasme class violates this range of
limitations. Thruster lifetime limits for ion thrusters are also violated

at these long duty cycles. For ion thrusters this limit is reached for a

i0 year mission at duty cycles of only 5 hours/orbit. The region of
structural interactions limits thrust/thruster to less than i0 N. This

limit only applies to the large flexible antennas which must operate during
a stationkeeping maneuver.

In conclusion, Figure 93 shows that propulsion system_ sucl_ as augmented

N2H 4 and other forms of resistojets, low thrust bipropellants, and possibly

low Isp ion s3,stems are in line with LSS requirements.
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CZNZRICCLASS NO.

LargeAperaturePhasedArrayAntenna I. Page1 of 5

I| iiiii ii I I

OBJECTIVES

Thissatelliteis to provideusefuland neededserviceswhichare marketable.
An attractivefeatureof a larger,morecomplex,heavier,and thereforemore
costlysatelliteis its complexityinversionphenomenon,whichis the satellite's
abilityto servicelargernumberso_ userswithsmallerand lessexpensiveuser
equipmentand to deliverlowerpricedservicesto thousandsof users. Applications
includepersonal,educational,or emergencycommunicationsand optical,i.e.,
opticalheatdetectionsystemsfor forestfires.

iii I II

CONFIGURATION DRAWING

OF POOR QUAL}TY

L

a

ELICIt3

-,,,)\ II ,,.oT ,

i
OlllillOII Ill

9Y
I • I

CONFZCURA_IOH_$CR!P_ZON

The antennais a seriesof threethinfilmswhichare stretchedwithin
compressionbeamsand forma groundplane,inputplane,and outputplanefor a
bootlacelens. The lensis containedwithina compressionstructuresupportedfrom
a deployablemastwithguywires. Thisis supportedto the feedhornclusterby
space-extendablebeamsto forman antennawithits lengthapproximatelytwiceits
diameter.The solararraysformtwo paddlesto be one-axisglmballedand sun
oriented.Theyare sizedfor 65 kW in LEO,whilethedistribution,conditioning,
and batteriessizedfor 50 kW at GEO. The lensportionwillbe closestto earth.
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GENERIC CLASS: Large Aperature Phased Array Antenna I. Page 2 of 5
- ElectronicMail -

ii i j ,- •

INITIAL ORBIT NISSION ORBITS LIFETIME
J

LEO LEO (300, 400, 500 km) 10 Years
600(Ikm Polar Orbit
GEO (35,871 km)

i i i

ATTITUDE STATIONKEEPING,AND SHAPE CONTROL TOLERANCES

BASELINE g-LOAD = 0.15 g
Hi

CG LOCATION (m)

; g-LOAD MASS (kg) X Y Z

.06 1181.58 0 0 4.824

.15 1291.51 0 0 5.947
" 1.0 2866.57 0 0 11.297

I_; INERTIAS (ABOUT CG, kg-m2)

,. g-LOAD Ixx Iyy )ZZ "Ixy -Ixz "IYz

.06 94,157 86,776 16i,334 0 0 0
,: .15 119,513 1!1,914 I,_,727 0 0 0

" 1.0 338,275 328,354 33,645 0 0 0

=,.

i Cp (ORIGIN AT CG, MEFERS)
)_. PLANE: XY X_ YZ

g-LOAD X Y Z X 'f Z X Y Z

.06 0 0 5.366 _ {J 4.286 0 0 -2.958• =

.15 0 0 4.243 0 0 3.164 0 0 -4.081
1.0 0 0 -1.107 0 0 -2.187 0 0 -9.432

l, l 1

.B

AREA (m2) AREA/MASS

g-LOAD XY XZ YZ XY XZ YZ

.06 154.2 21.070 102.870 0.130503 0.017832 0.087061

.15 154.2 21.070 102.870 0.119395 0.016314 0.079651
1.0 154.2 21.070 102.870 0.053793 0.007350 0.035886

L

i ii in i

i
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GENERICCLASS: LargeAperaturePhasedArrayAntenna I. Page3 of 5
- EducationalTV -

Y

ii

INITIALORBIT MISSIONORBITS LIFETIME

LEO LEO (300,400, 500 km) 10 Years
6000km PolarOrbit
GEO (35,871km)

u

ATTITUDESTATIONKEEPING,AND SHAPECONTROLTOLERANCES

OF POOR QUALITY

i |

BASELINEg-LOAD= 0.15g

CG LOCATION(m)

; g-LOAD MASS (kg) X Y Z

;. .06 3212.15 0 0 2.134
.15 3336.07 0 0 2.649

",; 1.0 5048.24 0 0 6.659

n in

i:_ INERTIAS(ABOUTCG, kg-m2)

g-LOAD Ixx Iyy Izz -Ixy -Ixz -Iyz

.06 218,339 107,557 116,554 0 0 0
_" .15 256,458 142,335 120,947 0 0 0
_' 1.0 628,081 481,999 166,294 0 0 0
.,_

Cp (ORIGINAT CG, METERS)
PLANE: XY XZ YZ

g-LOAD X Y Z X Y Z X Y Z
"b

" .06 0 0 8.056 0 0 7.987 0 0 -1.588
_ .15 0 _ 7.541 0 0 7.472 0 0 -2.103
_ 1.0 0 0 3.531 0 0 3.462 0 0 -6.113

ml l_ii i i ill

AREA (m2) ARE_'MASS

g-LOAD XY XZ YZ XY XZ YZ

.06 474.0 22.91 424.51 .147565 0.007132 .132158

.15 474.0 22.91 424.51 .142083 0.00686) .127249
1.0 _?4.J 22.91 424.51 .093894 0.004538 0.084091

i_ ii ii i el I ii
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GE_,'ERICCI.,ASS Large Aperature Phased Array Antenna I. Page 4 of 5
i i |

SCALING I.,AWS Electronic Mail

Effect of g-Load on Mass Mo = 1291.6 kg go = .15 g

Bus and Feed: MBus= 0.613 r .......,.....; ':c [3
Mo q _r,, tOF _.,i Q_ALITY

MLens=
Antenna Lens: _oo 0.0735 (g_o+ 1.0)

Lens Staves: Mstaves
Mo = 0.002 ggo

Solar Arrays: MS---_A= 0.093 + 0.0049 -L
Mo go

_ Mast: MoM_s------_t= O. 002 _ + O. 006

_ Lens Rim: _ 0.0238 + 0.00083 + 0.00074 ( )2 (g12/3

_i LensSupport Mstru_______t=o.o447+O.O23gO_oO.OlO2(gg_.o)2+O.OOOOg(gg__o)3 (9__)5/3Struts: Mo +0.002 go

L_

,b
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G_NERZC CZ..mSS Large Aperature Phased Array Antenna I. , Page5 of 5
l ml, im I ,ml m • I film i im m I )I

SCAL_VC tAWS EducationalTV

Effect of g-Load on Mass Mo = 3337 go = ,15 g ,"

MBu----Es= 0.714
Bus and Feed: Mo

MLen-----_s _ _""- ..Antenna Lens: Mo = 0.0304 (v + 1.0) OF POOR QUALITY

• Mstaves

Lens Staves: Mo : 0.0009 ggo

Solar Arrays: MSA = 0.1652 + 0.0087 g
Mo go

Mast: MMast = 0.0022 + 0.00071 g
Mo go

: 2 2/3
, Lens Rim: MRim = 0.0092 + 0.00032 + 0.00028 ( ) + 0.0064 ( )

,'_ M0
F
I

_:.. Struts: Mo -%%% go

,_ RJ_F_eCtS

"PreliminaryDefinitionand Evaluationof Advanced Space Concepts,"The Aerospace
_ Corp., Aerospace Report No. ATR-78(7674)-I,Vol. II, 30 June 1978, prepared for
• NASA/OSTS.

1
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: ¢ENERZCCZ._SS I NO.

Land'Mobile Satellite System (LMSS) -- Wrap Rib I II. Page 1 of 5
f

OB#ECTIVES

The LMSS is capable of relaying radio messages to land mobile units throughout
the ContinentalUnited States. It is intended to service units such as ambulances,
police cars, taxies -- in essence all radio dispatchedvehicles. Its position in
geosynchronousorbit avoids present radio interferencescaused by tall buildings,
hills, and other factors. By using a sophisticatedrelay satellite in space,
the mobile g_ound stations can remain small, light, and relatively inexpensiveand
still provide high quality communications.

ml

CONFIGURATIOM DRAWING
LMSSWRAPRIBSPACECIbekFT

t

IKIIINO AIIIIOIPA¢II ¢*¢)_AN_' |
m

_ UHFBORESIG'gT
._- TOIMJGASCITY "-

(_ .,,._,.,..L.-,_,,:_ (lm.S')

}; OF POOR QUALITY

,6'1

I

*'" .BUS

TO
t *Z' ..----CENTIR *

HOI_IIK 1

" $-IMI_
,; REFI.£CTO¢

- _ p_u ez.s'n1z7o.6'1

CONFZGURRrZONDZscRn_zot_

Looking at the 55 meter offset wrap rib concept,the long boom points at the
( earth's center. The shorter, vertical boom at the right points up to the north

supporting the antenna _flector. The large panel at the left is the ultra-high-
frequency feed. It and the 55 meter diameter wire mesh reflector are angled to

• point at the center of the United States near Kansas City. Multiple beams
' emanating from the feed panel are arranged to cover all contigous 48 states,

Alaska, Hawaii and parts of Canada. The solar arrays are sized for 10 kW.
-f

!
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GENERIC CLASS: Land Mobile SatelliteSystem (LMSS) II. Page 2 ot 5
- Wrap Rib, 25 meter diameter ,

INITIAL ORBIT MISSlO_ ORBITS LIFETIME

LEO LEO (300, 400, 500 km) 10 Years
5600 km Polar Orbit

GEO (36,000 km)

ATTITUDE STATIONKEEPING,AND SHAPECONTROL TOLERANCES

Attitude Control + 0.I0° OF POOR QUALITY
Pointing StabiIity ± O.030

Ill

BASELINE g-LOAD - 0.15 g

i||

; CG LOCATION (m)

g-LOAD MASS (kg) X Y Z

" .06 1970.46 -0.119 -2.184 -2.008w

" .15 2041.61 -0.115 -2.303 -2.094
'" I.0 2713.53 -0.086 -3.123 -2.679

JL

L''

": INERTIAS (ABOUT CG, kg-m2)

g-LOAD IXX Iyy IZZ -IXY -IXZ -IYZ

,; .06 251,546 222,341 38,661 1030 -4.0 -33,792
.15 274,274 242,180 42,957 1058 16 -39,383
1.0 ,485,720 428,454 81,447 1250 153 -90,676

.,

:" Cp (ORIGIN AT CG, METERS)
PLANE: XY XZ YZ

g-LOAD X Y Z X Y Z X Y Z-b
%

•06 0.0627 -3.60 -13.14 -0.093 -1.872 -12.920 0.0276 -9.566 -29.232
-. .15 0.0587 -3.481 -13.054 -0.097 -1.753 -12.835 0.0236 -9.446 -29.146

1.0 0.0297 -2.661 -12.469 -0.126 -0.933 -12.249 -0.005 -8.627 -28.561
,__ ii ii

AREA (m2) AREA/MASS

g-LOAD XY XZ YZ XY XZ YZ

.06 135.352 103.385 49.914 0.068691 0.052467 0.025331

.15 135._52 103.385 49.914 0.066297 0.050639 0.024448
: 1.0 135,352 103.385 49.914 0.049880 0.038010 0.018395

A8
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i GENERIC CLASS: Land Mobile SatelliteSystem (LMSS) II. Page 3 of 5
- Wrap Rib, 55 meter diameter .-

i i

INITIAL ORBIT MISSION ORBITS LIFETIME

LEO LEO (300, 400, 500 km) 10 Years
5600 km Polar Orbit
GEO (36,000km)

ATTITUDE STATIONKEEPING,AND SHAPE CONTROL TOLERANCES O_,r_t _C-_ I_
Attitude Control + 0.100
Pointing Stability ± 0.030 OF pOCR QUALITY

| |i m

BASELINE g-LOAD - 0.15 g
i i i,= m

: CG LOCATION (m)
W

g-LOAD MASS (kg) X Y Z

• .06 2897.06 -0.208 -3.823 -11.029
,: .15 3036.41 -0.198 -4.318 -12.001
_ 1.0 4352.52 -0.138 -7.432 -18.109

i m

t
INERTIAS (ABOUT CG, kg-m2)

g-LOAD IXX Iyy IZZ -Ixy -Ixz -Iyz

.: .06 2,437,290 2,223,871 275,508 4961 4032 -559,971
• .15 2,781,766 2,523,995 345,003 5259 4617 -'58,662

1.0 '5,798,378 5,170,587 952,443 7133 8293 -1,599,345
i

Cp (ORIGIN AT CG, METERS)
PLANE: XY XZ YZ

g-LOAD X Y Z X Y Z X Y Z

".. .06 0.097 -6,380 -20.278 -0.216 -3.798 -19.263 0.0267 -19,680 -51.452
'" .15 0.087 -5.885 -19.306 -0.226 -3.303 -18.292 0.0167 -19.185 -50.481
_' 1.0 0.027 -2.771 -13.198 -0.285 -0.189 -12.184 -0.0433 -16.071 -44.373
- 4 * I I I BBB

:L

%

AREA (m2) AREA/RASS
o

; g-LOAD XY XZ YZ XY XZ YZ
m_

.06 270.703 206.770 99.825 0.093441 0.071372 0.034457

.15 270.703 206.770 99.825 0.089152 0.089152 0.032876
, 1.0 270.703 206.770 99.825 0.062195 0.047506 0.022935

I ii I I i
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GENZR:C CZASS Land Mobile Satellite System (LMSS) - Wrap Rib II. Page 4 of 5
i • ml I ml I I

SC_CrNG Z,aWS 25 Meter Diameter

Effect of g-Load on Mass Mo = 2041 kg go = .15 g

MBus
Bus, etc.: IT---= 0.439

o ORIuI.,IALI_.'Kt:__

MHu---_b= 0.0436 OF POOR QUALITY
Hub, etc.: Mo

MFee_d= O.386 + O.043 _--
Feed and Support: Mo go

MRefl __

•_ Ribs and Reflector: M-o---= 0.0103 go

• MSA - Jl_

;; Solar Arrays: _- 0.0432 + 0.0048 go

MB°°m for 0 < _--<_.3.6
Booms: IT--- = O.0304 , - go'.:-. o

},

0.0152 + 0.0112 (a_'- -2.6) + 0.00264 (a_- -2.6) 2MBoom _

"" _0 _0 . _0" 1 - 0.0431 (-_-- 2.6)
go

for _-->3.6
..,, go

i

.I°

J

,I
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6_ERZC CZ,_$ Land Mobile Satellite System (LMSS) -- Wrap Rib II. Page 5 of 5

scAzzt/6LAWS 55 Meter Diameter

Effect of g-Load on Mass Mo = 3040 kg go = "15 g

MBus _

Bus, etc.: oiT_- 0.393 CT?_*'¢L Pf'_i,=:I3

OF E,CUE C,JAL.ITY
MHub

Hub, etc.: Mo = 0.09

MFeed g

Feed and Support: Ro - 0.345 + 0.038 go

MRefl = 0.0329 g
Ribs and Reflector: Mo go

Solar Arrays: MSA
_ = O. 049 + O.0055 "q"-go

MBoom
; Booms: _ 0.045 for 0 • g

o go .=2.5
iJ.-

,. MB_o_" _ 0.0225 + 0.0160 (g- 1.5) + 0.0056 (g- 1.5)2go go
M0 1 - o.o25(-q--- ].5)

go

: for gJ--> 2.5
0
IN

RE¥£RENC£S

"Configuration Development of the Land Mobile Satellite System (LMSS) Spacecraft,"
Third Annual Technical Review, Boeing Aerospace Co., Nov. 16-19, 1981, presented
to JPL LSST Antenna Organization.
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GENERIC CLASS NO.

Land Mobile Satellite System (LMSS) -- Hoop Column Ill. Page I of 5

ifin ml

OB,7£CT.rVZ$

The LMSS is capable of relaying radio messages to land mobile units through_ut
the Continental United States. It is intended to service units such as ambulances,
police cars, taxies -- in essence all radio dispatchedvehicles. Its position in
geosynchronousorbit avoids present radio interferencescaused by tall buildings,
hills, and other factors. By using a sophisticatedrelay satellite in space,
the mobile ground stations can remain small, light, and relatively inexpensiveand
still provide high quality communications.

i

CONFIGb'RATION DRAWING

LMSSHOOPCOLUMNSPACECRAFT OR,GI,_'tLr,%_ ;s
OF POOR QUALITY

I_IIIWI Mq_LL£| L'_PAWV

ills GAS,TANKAG£.THRUSTERS TANI(A_Ei THIIUST(RS/llk-_, "_" _ _- --:--'--r-

; IE.4CTIOftWHEELS / _L iIA1"TEIII($, POWERCIRD(QUIP / _l ] ,
48 CAOLJ( l

• ? IUr ELECTRONICS / _ COR! t

/ 15,\ ..o.
c: ., I _'_,L_llt \\ (-J,'i

1 /
t D . -"- \X\ /

s.u,o_ \ \ i'//,,.z,us:.
" IFLICmR \ \ I //_ us.T_NU_._s_

....... '_ \ _" // _ (LrCTIIOflI(_. S(N$O_

.._._!'.."" \ H// u_t,[s. ,.,it _o [_,,,
_ \ I f / I {OLLPINPELOADSECTIO_

' X D// .LI _(U

r

-" _FIGURATZON DE$_IOW

• The 120 meter hoop column concept features independentpower units one at either

end. The central column points at the center of the United States near Kansas City.
! Each of the four feed panels at the upper left project a multiple beam pattern

onto its assigned quadrant on the large, molybdenum-meshreflector. There are
i uplink and downllnk feeds for both the eastern and western halves of the country.
• The radio beams ere arranged to cover all contlgous48 states, Alaska, Hawaii, .

and parts of Canada.
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{ GENERIC CLASS: Land Mobile S_tellite System (LMSS) Ill. Page 2 of 5
- Hoop Column, 60 _r_ters-

Ill i I

INITIAL ORBIT MISSION ORBITS LIFETIME

LEO LEO (300, 400, 500 km) 10 Years
5600 km Polar Orbit
GEO (36,000km)

. im i

AI-[ITUDESTATIONKEEPING,AND SHAPE CONTROL "OLERANCES
C_;C._,, . . ._

Attitude Control ± 0.100 OE Pb_E C_, ::TY
Pointin(jStability ±0.030

n nl •

BASELINE g-LOAD - 0.15 g
4

CG LOCATION (m)

; g-LOAD MASS (kg) X Y Z

.06 1813.80 0 0 -10.642
: .15 1872.72 0 0 -11.155
,- 1.0 2658.35 0 0 -15.552

i ii

C INERTIAS (ABOUT CG, kg-m2)

g-LOAD Ixx Iyy Izz -Ixy -Ixz -Iyz

.06 451,670 392,790 129,822 0 0 0

.15 479,689 480,810 148,658 0 0 0
_ 1.0 ,745,805 746,925 326,535 0 0 0

i i.

,, Cp (ORIGINAT CG, METERS)
PLANE: XY XZ YZ

g-LOAD X Y Z X Y Z X Y Z
i i|

.06 0 0 -16.782 0 0 -9.756 0 0 -9.75 _
_ .15 0 0 "16.269 0 0 -9.243 0 0 -9.243

1.0 0 0 "11.8/2 0 0 -4.846 0 0 -4.846
• ,J

AREA (m2) AREA/MASS

g-LOAD XY XZ YZ XY XZ YZ
i i ill

.06 194.02 81.851 81.851 0.106969 0.045127 0.045127
• 15 194.02 81.851 81.851 0.103603 0.043707 0.043707
1.0 194.02 81.851 81.851 0.072985 0.030790 0.030790

iii I i _ i i
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GENERIC CLASS: Land Mobile Satellite System (LMSS) Ill. Page 3 of 5
- Hoop Column,120 meters-

- -. i ll ii

INITIALORBIT MISSIONORBITS LIFETIME

LEO LEO (300,400,500 km) 10 Years
5600 k_ Polar Orbit
GEO (36,000 km)

ml ,, iii i i i _ i

ATTITUDE STATIONKEEPING,AND SHAPE CONTROL TOLERANCES

Attitude Ce;,trol + 0.10° OF POOR QUALITY
Pointing Stability +_0.03o

BASELINEg-LOAD- 0.15g

CG LOCATION(m)

; g-LOAD MASS (kg) X Y Z

.06 2753.52 0 0 -25.319

.15 2907.47 0 0 -26.927
,- 1.0 4988.83 0 0 -37.899

illl i

_ INERTIAS(ABOUTCG, kg-m2)

g-LOAD IXX Iyy IZZ -Ixy -Ixz -Iyz

.06 3,209,198 3,216,963 1,052,428 0 0 0
_: .15 2 _99,882 3,507,647 1,270,291 0 0 0

1.0 6,238,758 6,246,521 3,328,003 0 0 0
°

i Cp (ORIGINAT CG, METERS)
PLANE: XY XZ YZ

g-LOAD X Y Z X Y Z X Y Z

.06 0 0.00176-28.761 0 0 -18.772 0 0 -18.772
: .15 0 0,00176-27.153 0 0 -17.164 0 0 -17.164

i_ 1.0 0 0.00176-16.181 0 0 - 6.193 0 0 - 6.193

AREA (m2) AREA/MASS

v-LOAD XY XZ YZ XY XZ YZ
ii i u i m_,,

.06 756.6 219.66 219.66 .274776 0.079774 0.079774
• 15 756.6 219.66 219.66 .260226 0.075550 0.075550
1.0 756.5 219.66 219.66 .151659 0.044030 0.044030

i i ii ill i i ii

_.
r
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I GENERIC cz_ss LandMobileSatelliteSystem(LMSS)- HoopColumn Ill.Page4 of 5
i ii II I|

SCACrNGZ.AWS 60 MeterDiameter
;e
I

Effect of g-Load on Mass Mo = 1873 kg go = .15 g

M �z

Œand Solar Array: Mo = 0.658

M_z m_,,,,r.',r....-....
-Z Bus and SolarArray: M - 0.067 OF v_.__"C.L",;;

0

O.338_--
Column: MC°----_I= 0.170 + goM

o 98.2- "g
go

i Hoop: MH°°P= 0.0133g_o+ 0.0678) Mo
i

MRefl- 0.0133_--
Reflector Surface: Mo gob

; MCablesCables: = 0.0064 "q---
": MO go

f
.P

i

' A15
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GmNERZC¢Z.,CSS LandMobileSatelliteSystem(LMSS)-HoopColumn Ill.Page5 of 5

SOA_TNGrJWS 120MeterDiameter

Effectof g-Loadon Mass Mo = 2909 go = .15g

M+Z - 0.563
+Z Bus and SolarArray: Mo

M.Z
-Z Bus and SolarArray: _ = 0.066

0

MCoI _ 0.1981+ 0.0125g + 0.00286(g_o)2
Column:

R_-- go
o 1- O.0472g

go

Hoop: _ = 0.0184g + 0.0861
Mo go

ReflectorSurface: MRefl
Mo = 0.034g _ ,_'::_L_;_ ISgo uR:,-.......OF POOR QUALITY

Cables: MCab]es

Mo : O.0082ggo

REFERENCES

"ConfigurationDevelopmentof the LandMobileSatelliteSystem(LMSS)Spacecraft,"
ThirdAnnualTechnicalReview,BoeingAerospaceCo.,Nov.16-19,1981,presented
to JPL LSSTAntennaOrganization.

A16
D180-27728-2

1984005150-224



i m:i i i
I

, GSNSRZCCLASS J _0.

Baseline Experimental Geostationary Platfom I IV. Page 1 of 3 -in,

OBJECTIVES

The geostationaryorbit is rapidly becoming an extremely valuable and limited
earth resource. The objective of the geostationaryplatform is to make maximum
use cf a single geostationaryorbital slot by providing common power and house-
keeping services for a number of coexistent communicationssystems.

O[ ?u,_-Q',.:kLITY

--, , i

CONFIGURATION DRAWING

BASELINEEXPERIMENTALGEOSTATIONARYPLATFORM

VIEW LOOKINGTOWARDSEARTH

-X
l P/L Z03 - UHFTECHNOLOGY

• [ DEMONSTRATION• PIL 601 - TECHNOLOGYDEMONSTRATION
: I (TPANSMIT,4 GHZ)I-

•_" 15 M COMMONANTENNA

':" P/L 123 - ENVIRONMENTALEFFECTS
ON SPACE SYSTE_

P/L 604 - IPL_. . 502 - DCS
2.4N'SUNFL_ER

_NCEPT 501 - V_
J.

,_ NORM L _

.'. 112 - SOL_ PANELS (2) 401 - LIGh"rNINGMAPPER
4.36 _ _

301 - I_GING SPECTROMETRIC

PAD _SERVATORY

,•_ I= '/L601 - _CHNOLOGY DEMONSTRATION

• 10 M _TENNA

L_

: CONFIGURATION DESCRIPTION

1 The platform carries nine payloads with the active antenna elements (feed arrays)

( being hard mounted to the central core and the passive (reflector)elements on a
deployable structure. The "wrapped-rib" concept was used for P/L 203 and 601

, which also share the 15 m antenna for their transmitoperations. The I0 m truss
, ( antenna structure provides greater rigidityand maintenanceof surface accuracy
, which are needed for some applications. The solar arrays are supported by a

deployable-boom,and are sized for 8 kW. The remainderof the payloads are mounted
, on three rigid structures. The solar arrays will be closest to earth.

-_'

!
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: GENERIC CLASS: Baseline ExperimentalGeostationaryPlatform IV. Page 2 of 3

|

INITIALORBIT HISSION ORBITS LIFETIME

LEO Leo (300, 400, 500 km) 16 Years
GEO (36,000 km)

i|

AI'FITUDESTATIONKEEPING,AND __HAPECONTROL TOLERANCES

Attitude: Pitch + 0.10 Roll + 0.10, Yaw + 0.10 vr,,_,,._,_P_GE IS

Stationkeeping: ConstellationLongitude +__0.030 OE POOR QUALITY
ConstellationLatitude +_0.030

BASELINE g-LOAD - 0.15 g

CG LOCATION (m)

g-LOAD MASS (kg) X Y Z ;

_L .06 3722.75 -0.568 -0.148 -3.991
. .15 3736.60 -0.593 -0.146 -4.048

I.0 3944.38 -0.81] -0.126 -4.484

i

L.-o

.: INERTIAS (ABOUT CG, kg-m2)

g-LOAD IXX Iyy IZZ -IXY -IXZ -IYZ

.06 294,449 194,594 191,637 -1.011 -37.174 7.271
f_ .15 299,130 200,547 192,915 -0.986 -38.754 7.364

1.0 387,514 255,189 227,592 -0.774 -53.460 8.165

Cp (ORIGIN AT CG, METERS)
.L PLANE: XY XZ YZ

g-LOAD X Y Z X Y Z X Y Z

.06 -3.968 0.194 -4.482 -2.045 0.601 -7.008 -1.113 0.780 -1.445
: .15 -3.943 0.192 -4.425 -2.020 0.599 -6.951 -1.088 0.778 -1.388

1.0 -3.725 0.172 -3.989 -1.802 0.579 -6.515 -0.870 0.758 -0.952

;_ ' ,

2)AREA (m AREA/MASS

g-I gAD XY XZ YZ XY XZ YZ
i

• 06 196.600 70.700 134.400 0.052810 0.018991 0.036102
.15 196.600 70.700 134.400 0.052615 0.018921 0.035969
1.0 196. 600 70.700 134.400 O.049843 O, 017924 O.034074

i ii ii

AI8
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GENERIC CLASS Baseline ExperimentalGeostationaryPlatferm IV Page 3 of 3

i
SCALING LAWS

Effect of g-Load on Mass Mo = 3737 kg go = "15 g

All experiments and appendages are g°°d-f°rsg/g° =- - embl 10.0 except the 15 m wraprib antenna assembly and the solar array =s ies.

MBus

- 0.8435 , for g_--_10.0Bus and Constant Weight Structure: Mo o

Wrap Rib Antenna Assembly:

• MRib

; Mo - 0.064 + 0.0062 ggo , for O_< ggo_8"9

MRib• Mo = 0.0611 + 0.0062 + 0.00294 (_---go7.9) ' f°rg>go 8.9

Solar Array Assembly:

MSA (I

Mo - 0.0864 , for_-_n_ 4.6

o
Mo

for _ > 4.6
_0

REFERENCES

"GeostationaryPlatfom Systems Concepts DefinitionStudy," General Dynamics
Convair Div., Report No. GDC-GPP-79-O06(II),June 1980, prepared for NASA/MSFC.

"GeostationaryPlatform Systems Concepts Definition F_ ......On Study," General
Dynamics Convair Div. and Comsat General Corp., Report _u 9C-GPP-79-012,
28 July 1981, presented to NASA/MSFC.

"GeostationaryPlatform Systems Concepts Definition Follow-On Study," Vol. lIB
( Technical Report, General Dynamics Convair Div. and Comsat General Corp.,

Report No. GDC-GPP-79-010 (lIB), September, 1981, prepared for NASA/MSFC.

L A19 "

D180-27728-2

i 984005i 50-227



GEN_RZCCZ,ASS t_O.

Scienceand ApplicationsSpacePlatform(SASP) V. Page 1 of 3

OBJECTIVES

The purposeof SASP is to providea longdurationfree-flightplatformin low
earth orbitwhichwill I)avethe flexibilityto effectivelyaccommodatea broad
varietyof payloadsand the routine,dedicateduse of theorbiterfor delivery,
revisit,and exchange. Payloadsincludethosewhichpreviouslyflewon Spacelab
pallets,thoserequiringperiodicearthreturn,on-orbitmodification,maintenance
or replenishment,and largepayloadsrequiringa centralizedorbitrendezvous,
assemblyand resourcefacility.

CONFIGURATION DRAWING

FIRST-ORDERPLATFORM CONFIGURATION
'_ " _G_-JI_

i,OWERSY_ OP,l(31h,-tP.'"=, --

• _"_/ ._,.ToR OF POOR QUALi_'Y
"1" s- r

II_WER t _ llll ,' ' ._,,_" I :
_r'$TEM,_. _ _ "illl ,,._ r_ i I,, ._" !

I'111 / "._<"v/41111 "_.,...L/,,m.._"ll'ti'_w..,_._._\ "UMOILICALPANEL

" I I I I . _ '-" I II I i .., __'_', _-",,,."_.-,_PAYLOADBERTHINGSYSTEM I

I'

COHF.rGURA_ZONDSSCRZPTZON

The FirstOrderPlatformconsistsof threestubarmsattacheddirectlyto the
PowerSystemaft section. Attachedto thesearmsare deployable,rotatable
payloadberthing_yste)nsto whichpayloadelemeni_smay be connected.The deployment
and/orrotationof the payloadberthingsystemswillprobablyoccurwhen theyare
beingattachedand thepositionswill not be commandableduringflight. Power
Systemsubsystemswillprovidepayloadsupport. The solararraysare sizedfor
25 kW. The vehicleorientationwill be variable.

A20
D180-27728-2

1984005150-228



ili i i i

: GENERIC CLASS: Science and Applications Space Platfom (SASP)
Size: 12.5 kw

i

INITIALORBIT MISSION ORBITS LIFETIME

LEO 57°/400 km 10 Years
28.5u/400 km
980/705 km
GEO (36,000 km) ....

ATTITUDE STATIONKEEPING,AND SHAPE CONTROL TOLERANCES

Body Pointing Accuracy I-I0 E
Stability i-I0 i
Jitter Ra_e 0.6-1.5 _/s

BASELINE g-LOAD = 0.15 g

i i L

CG LOCATION (n;)

; g-LOAD MASS (kg) X Y Z

= 8780. 5.401 0 -0.874
1- -'_-

F'

ill

_" INERTIAS (ABOUT CG, kg-m2)

g-LOAD IXX Iyy IZZ -Ixy -Ixz -Iyz

,w 89,463 131,563 116,532 0 9.115 0

•_,D i

Cp (ORIGIN AT CG, METERS)z

PLANE: XY XZ YZ

g-LOAD X Y Z X Y Z X Y Z

L.

:. -5.2739 0 .8395 -1.567 0 -4.518 -5.129 0 .839
i_-_j

.L • , i

:2.

AREA"(m2) AREA/MASS

g-LOAD XY XZ YZ XY XZ YZo

359.64 123.770 353.440 0.040961 0.014097 0.040255

!

III i I i im iii I J
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G_NERIC CLASS Science and ApplicationsSpace Platform (SASP) V. Page 3 of 3

SCALING LAWS

t

¢

REFERENCES

,-. "Conceptual Design Study Science and ApplicationsSpace Platform (SASP), Vol. II
Technical Report," McDonnell Douglas AstronauticsCo., Report No. MDC G9246,
October 1980, prepared for NASA/MSFC.

"Payloads Requirements/AccommodationsAssessment Study for Science and Applications
i Space Platforms, Second Quarterly Review," TRW, June 10, 1980, prepared for
= NASA/MSFC.
?.

"PayloadsRequirements/AccommodationsAssessment Study for Science and Applications
Space Platforms,Vol II: Technical Report," TRW, Report No. 36254-6001-UE-00,
26 November 1980, prepared for NASA/MSFC.

: "Analysis of Requirementsfor Free Flying Spacelab-TypePayloads, Vol I--Design
Reference M_ssions and STS Operations,"Teledyne Brown Engineering,Report No.
SP81-MSFC-2!i65,November 1981, prepared for NASA/MSFC.
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(;El#ERIC CLASS NO.

Space Operations Center (SOC) VI. Page 1 of 3

i | i el

OB3ECTIVES

The SOC is a manned operations center supporting a crew of four which wi]] be

rotated every 90 days. It provides a location for construction, flight support,
satellite servicing, science and applications research, space technology testing,

spacecraft test and checkout, and for military derivatives. Some applications are:

a payload storage facility used to check out and mate upper stages with their
payloads; the retrieval of "small" satellites to the SOC for servicing and then

replacing them in their orbital slot; and servicing a communications platform
with a manned servicing vehicle.

--., ii
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GE_rERICCCCSS Space OperationsCenter (SOC) VI. Page 2 of 3

m i i iii

I"

SIZE AND MAX G RANGES

SCALING PARAMETER SIZE MAX G ALLOWED

III Ii

INITIAL ORBIT NISSI_R ORBITS

LEO (300, 400, 500 km)
LEO Molntyn

GEO (36,000_)
Sun Synchronous

in IIIIII I

,,,=s .,_,,._z_r.zooo,_=:_
s=x _Iss I_ z,_, z,= -z_ -z= -z,,

Initial Baseline 57242 2564 2163 2211 -143 -202 104

,_ Operationa]
Baseline 125500 8884 12840 9269 52 116 0

IiII II

•: ATTITUDE, STXTIGNKEEPId_Gt AND SHAPE CONTROL TOLERANCES LIFETIRE

10 years

$ II ,,, I

SIZE Z ¥ Z X2 _ ZZ 72

Initial Baseline -6.2 0.47 4.3 3.8,-10.9 38.8,-2.8 508 539

._' Operatlona]
: Baseline -1.5 0.0 4.0 O.61,-8.7 0.0,-3.9 838 1113

xRcx/_ss

: ,¢z y=
=.

Initial Baseline 0.008875 0.009416

Operational
Basel tne O.006677 O.008869

..... I I • i ...... ".' '_-- _ ....

_lZ.I,UXIT$ ARE NKS
_1 I III

A2_
• DI80-Z7728-2 "
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GENERZCcrass SpaceOperationsCenter (SOC) VI. Page3 of 3
ii HI Ill I _l

SCALING LAWS

W

REFERENCES

"SpaceOperationsCenterSystemAnalysis,"Midtem Briefing,BoeingAerospaceCo.,
ReportNo. D180-26715-I,October15, 1981,preparedfor NASA/LyndonB.Johnson
SpaceCtr.

"SpaceOperationsCenterSystemAnalysis,"MonthlyProgress_eportNo. 3, Boeing
AerospaceCo.,DecemberI, 1981,pr._aredfor NASA/LyndonB. JohnsonSpaceCtr.

"SpaceOperationsCenterSystemAnalysis,"FinalReport,Vol.I, ExecutiveSummary,
BoeingAerospaceCo.,ReportNo. D180-26495-3,July,1981,preparedfor NASA/
JohnsonSpaceCenter.

t
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Disturbance Environment Data
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ORIG_,,,I...... _ ,'_
OE POC,_ Q'.., " ._/

LAPAA-__eccronlc Mail and EducationalTV

i

Location (m)* Direction

Thruster # x y Z x Y z

I -4.100 O.OOO 21.700 0.000 1.000 0000

• | +4.100 0.000 21.700 0.000 -I .000 0 000

l 4.100 0.000 21.700 0.000 1.000 0 000
W

|o
4 4.100 0.0C0 21.700 0.000 -1.000 0 000

1 4,100 0.000 21.700 -1.000 0.000 0 000

e -4.100 0.000 21.700 1.000 0.000 0 000

_ 7 0.000 2.000 0.000 -I.000 0.000 0 000

1 0.000 2.000 0.000 1.000 0.0C0 0.000

I 0.000 -|.000 0.000 -I.000 0.000 0.000d

10 0.000 -|.000 0.000 !.000 0.000 0.000

_! 11 0.000 2.000 0.000 -0.707 -0.707 0.000

12 0.000 |.000 0.000 0.707 -0.707 0.000
+,

15 0.000 -2.000 0.000 -0.707 0.707 0.000

14 0.000 -2.000 0.000 0.707 0.707 0.000

.+

,_ * Locations are relative to the arbitrary coordinatesystem used in
the configurationdrawing - not to the CG

Table A! LAPAA Thruster Coordinates

i
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Thrust/ThrusterRequirements(N)

ElectronicMail (LAPAA),g-load = .15

LEO StationkeepingRequirementsat 400 Io_
Thrustlng
Time

Thruster # (Hrs) .5 5 I00
• i| • •

1 OoTSOE*O0 O.7SOE-O! o.:esi-02

2 O.TSO_+O0 0.TSO[-O! 0.385E-02

3 0.TSOE*O0 0.TSOE-OI O.SeSE-02

4 0.7SOE*O0 0.750[-0! o.se$|-o2

_. 5 O.O00E*O0 O.O00E*O0 O.O00E*O0

i- 6 O.O00E*O0 0.000[*00 0.000[*00

7 O,OOQE*O0 O.O0_E+O0 O.O00E+O0

_+ 8 O.OCOE*O0 0.000[*00 O,O00E+O0
+" _ O.O00E+O0 O,O_OE*O0 O.OOOE*O0

• 10 O.O00E*O0 O.O00E*O0 O.O00E*O0

Jl 0.211E+01 0.211E+00 0.1STE-O1

12 O.lll|*O! 0,211[*00 0.1S+TE-01

_3 O,|ll[*#: 0.2l|E*O0 0.1_7E-01/
,. 14 0.21+_*0! 0.211|*00 O.lST[-O!

r_

+

Table A2 StationkeepingThrust Requirements - ElectronicMail
L
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j D180-27728-2
.+',i.. ....: -.' •....... +"',

1984005150-260



OF pCO_ QL;/,L.IIY

Thrust/Thruster Requlremen_ (N)
Electronic Mail, g-load = .06

GEO StationkeeplngRequlre_nts
Correction
F_quency Once/Week Once/Day

Thruster

# Duty Cycle .01 .4 .01 .4

1 0.44eE-02 o.i|m|-o| 0.448E-02 0.111E-05

| 0.448E-02 O.lttt-O$ 0.448E-02 0.11|E-05

$ 0.44St-O| 0.11|E-05 0.44eE-02 0 illE-O$

4 0.448E-0| 0.11ti-05 0.446[-0| 0.110[*OS

I 0.$_2E¢00 O,|||E'02 0.474[-0| 0 1teE'O=

i" i "0.$$2[*00 O.Ili['O| 0.4;4E-01 0 128['02

T 0.43t[*00 0.11|E'01 0.8||[*01 0 117E'02
F

I 0.450E*00 0.115E'01 0.025E-01 0 107['0|

O 0.4||[*00 O.|liE'O! 0.821[*01 0 liT['O|
r

I0 0.45|[*00 0.11|E-01 O.e2iE-Ot 0 li7|-02
11 0.1i71-01 0.447[*05 0.1t?F-01 0 447E-05

12 0.1i?[-01 0.447|-0| 0.1i?E-O1 0.447E-0|

IS 0.IS?E-Of 0 447E*01 O.li?i-OI 0.447[-01

14 0.187[-01 0.447E-0| 0.1e?E-01 0.447E-0|

i

• Table A3 StatlonkeeplngThrust Requirements

,£ Electronic Mail
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0_.,

Thrust/Th_ster _u1_nts (N) C_ _-... :={

ElectronicMail, g-load = .15

J

G[O StatlonkeeplngRequlrements
Correction
Frequency Once/Week Once/Day

Thruster

# Duty Cycle .01 .4 .0] .4

1 0.4|7E-0| 0.150E-05 0.4|7E-02 O.I$OE-O|

2 0.487E-0_ 0.150E*05 0.4|7|*0| 0.110|-05

$ 0.457E-0| 0.150E-05 0.457E*0| O.l$Ol-Ol

4 0.417E-02 O.]$Oi-Ol 0.487|-02 0.150[*0|

S O,lt2E*O0 0.|71E-0| O.IllE-01 0.140[-03

0 0.102[*00 e.t71E-02 0.$11[-01 0.140[-02

7 0.471E*00 0.111[*01 O.ili[*01 O.11S[_',"

8 0.47||,00 0.1|8[*01 O.ili[*O! 0.185|*02

; 0 0.471E,00 O.l|lE-01 0.010E-01 0.100[-02
\

10 0.470E,00 0.120|o01 0.080[-01 0.1|S[-02

11 0.152E-01 O._II[-OS 0.1|2[*01 0.4li|-O_

' 12 0.182E-01 0.4|8E-01 0.18||-01 0.405[-05

/ 15 0,1||E'01 0.4i8[-05 0.182|-01 0.480|-0|

14 0.1i|/*01 0.4liE*O$ 0.1|_E-01 0.4liE-O|

C Table A4 StatlonkeeplngThrust Requlr_ments
E1ectronlcMail

t

b"

_ . t

t

t
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OF POOR _LIrY

I

Thrust/Thr_strr R_iulrements (N)

ElectronicMail, g-load = 1.0

iillr
,m,,,

GEO StationkeepingRequirements
Correction

Frequency Once/Week Once/Day
Thruster

Duty Cycle .01 ,4 .01 .4

i 1 o.Io1[-ol o.211[-o$ o._oH-o_ o _u[-os

= o.+oi[-o_ o.2sIE-ol o.Ioi[-o_ o =i_[-os
)

I 0.101[-01 0.|I11-01 0.I01E-01 0 211[-01

; 4 0.1011-01 O.llli-ll 0,101E-01 0 |lll-Ol

$ O.lOI[*O0 0.|1S|-01 O.11SE*O0 0 107E-02

I O.lOe[*O0 0.21S[-01 0.115E*00 0,_07E-02

1 0.107[*01 0.|1$1"01 0.1S21*O0 0.40it-02

I 0,107E*01 O._lSE-Ol 0.182E*00 0 40e[-02

: | 0 107|.01 0.115[-0! 0.152E*00 0.406[*02

10 0 107[.01 O.tlS[-01 0.152[*00 0.406|-07

11 0 404[-01 OmIOIE-O| 0.404[*01 0.101E-O2

:: 12 0 4041"01 O.|Ol[-O| 0.404¶-01 O.|OlE-02

-+ I$ 0 404|°ei 0.101E-O| 0.404E-0! 0.I011-02

14 0 404E-01 O.lOl|-O| 0.404E-01 0.1011-02

c i m

,. Table A5 $tatlonkeepingThrust Requirements

; ElectronicMail
; .

i

b
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G_' "5- '_
,+ • j

OF ,-',_. ,+-_/

Thrust/ThrusterRequirements(N)

Electron_c hlail, g-load = .06

Jln ,

DisturbanceTorques

Nomlnal Worst Case
Thruster

# 400 km 500 fan C_EO 400 Ion 500 km GEO

1 O_II$i-O_ O.111E-02 O.lOOE-08 O.IllI-Ol ©.1S8[-02 0.|77E-04

2 o Zt3E-02 O.+SS[-02 0.I00[-05 0,21TE-O+ 0.e59[-02 O.S'_,-04

I O.++S[-02 0.18S+-02 O.IO0+-OS 0.2+it-O+ O.eS,[-02 O.Sttt-O4

4 0.|II[-01 0.15+[-02 O,lOO[-OS O.|iTE-O+ O.ISgE-02 0,|77E-04

:- _ O.llO[-O$ 0 SllE-02 0.|14E-04 0.408[-01 0.1eli-O! 0.67i[-04
k

*_ I 0,160E-01 O,SllE-O+ 0.234E-04 0,406E-01 0.161[-01 0.575E-0_q

7 0.741E-0| 0.2i4E-02 0.117E-04 0.|03E-01 0.138[-02 0.211E-04

_+ I 0.749[-n4 0+214[*02 O,ll?E-O4 O.|OaE-O1 0,831E-02 0,211[-04

+ 0.749E-02 0.294[-0| 0.117[-04 0.203E-0! 0.138[-02 0.211E-04

10 0.74|[-0+ 0.2|4[-02 0.1_7E-04 0.|03E-01 0.138[-02 0.211E-04

11 0.801E-0| 0.115E-02 0.113Eo04 0.|07E-01 0.121[-01 O.S$4E-04
w

t| 0.301['02 0 'liE-O| 0.11|['04 0 lOPE-O! 0 +21E'01 0 SS4E'04

1_ _1 0.|0_[-02 0.111|-02 0.11||-04 O.IOT[-01 0.121E-01 O._S4E-04

;4 O.tOl[-02 O.|ll[-O| 0.111|-04 0.107[-01 0.121|°01 O.St4E-04

r_ R i I il .

+
P

,+
t

+; Table L6 Disturbance Torque Thrust_r Requirements

ElectronicMail '

i

F

o
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OF PO.OR _.;,/: _.,:':'f "

Thrust/Thruster Requlre_ents (R)

Electronic Mail, g-load = .15

Dtsturb._nce Torques

Nominal Worst Case
Thruster

# 400 bn 500 _ GEO 400 _ 500 km GEO

l Q.414E-02 0.215E-02 O./STE-O5 O.l|lE-01 0.140E-02 0.$60E-04

2 0,414E*02 0.2|SE-02 0.7|7E-05 0.111[-01 0.140E-02 0.$60E*04

$ 0.414_-02 0.215E-02 0.7$TE-05 0.11|[-01 O.I40E-O| 0.$60E-04

4 0.414[-0| 0.21$E-0| 0.757E-0S O.lllE-01 0.040E-02 0.360E-04

5 0,$41E-01 0.104E-01 0,174E-05 0.$41E-01 0.125E-01 0.175E-03

4 O,141E-Ol 0.104E-01 0.174E-05 4.$41[-01 0.125E-01 0 175E*05

7 0.170E-01 O.S10[-02 0.|72E-04 O.170E-O1 0.61_E-0= 0 076E-04

| 0.170[-01 0.519E-02 0.$72E-04 0.170E-0! 0.014E-02 0 176[-04

O 0.170E-01 0.519E-02 0.|72E-04 0.170[-01 0.014E-02 0 $76E-04

10 0.170E-01 0.519[-02 0.072E-04 0.170E-O1 0.614E-02 0 $78E-04

11 0.$iS[-02 0.$04E-02 0.107E-04 0.266E-01 0.11gE-01 0 SOgE*04

12 O,SISE-O| 0.$04E-02 0.107E-04 0.2eeE-01 0.110E-01 0 S09E-04

lS O.6lS[-O| 0.$04[-02 0.107E-04 0.266E-01 0.119E-01 0 S09E-04

14 0.S$SE-02 0.$04E-02 0.107E-04 0.266E-01 0.119E-01 0 S09E-04

L

Table A7 Disturbance Torque Thruster Requirements i.

_, ElectronicMail,
.s"

- i
4
I *

"%
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OF POOR QU/_LIi'Y

t

Thrust/ThrusterRequirements(N)

ElectronicMail,g-load= 1.0

DisturbanceTorques

Nominal WorstCase
Thruster

# 400 fun 500 fan GEO 400 Ion 500 k_ GEO

1 0,1leE-01 0.630E-02 0.242E-04 O.SlgE-01 0.177[-01 0.710E-04

2 0.116E-01 0.$30E-0| 0.242E-04 0 $11tE-01 O. 177E-01 0.710E-04

| O. 118E-01 0.150E-02 0.242E-04 0 $11)E-01 O, 177E-01 0.710E-04
t

4 0.1leE-01 0.6S0[-02 0.242F-04 0 SllIE-01 O. 177E-01 0.7101:-04

II O. IlOE-01 0.$26E-01 O. 4211E-03 0 II1|E-01 0.422E-01 O. 4113E-05
r_

z- I O.llOE-01 O.S28E-01 0.4211E-OS 0 91SE-01 0.422E-01 0,4$SE-03

_ 7 O, 440E-01 O. 165E-01 0.214[-0S 0 457E-01 0.211[-01 O.21eE-O:

"' II 0.440[-01 O. ltlS[-01 0.214E-03 0.457E-01 0.211[-01 0.216[-0S

It 0.440[-01 0.163[-01 0.214E-03 0.457E-01 0.211E-01 O.216E-OS

10 0.440E-01 0.18SE-01 0.214E-07 O.4S7E-01 0.211E-01 0.216E-03

11 O. 16SE-01 O.IIB2E-Og O.S43E-04 0.491E-01 0.2SOE-01 O. IOOE-OI

:. 12 O. 1tl5E-01 0.1192E-02 0.$43E-04 0.481E-01 0.2S0[-01 0.100E-OS

_" 13 O. 11i$E*01 O.IIt2E-02 0.$4SE-04 0.451E-01 0.250E-01 _.100E-05

14 0.16SE-01 O, 11112E-02 O,S43E-04 0.4SlE-01 0.250E-01 O. IOOE-OS

- i

|

J.

Table A8 DisturbanceTorqueThrusterRequirements

ElectronicMail

C9

D180-27728-2

i

1984005150-266



OF POOR _',.JJLFI'Y

Thrustllhru_ferRequirements(N)

Educational TV (LAPAA), g-load = .15

LEO StationkeepingRequirementsat 400 km

Thrusting
Time

Thruster # (Hrs) .5 5 I00
ill ii i i

l O.el4E+O0 0,6|4E-01 0.$43E-02

2 0.684E_00 0.684E-01 0.343E-02

3 0,684E_00 0.654E-01 0,$43E-02

4 0.684Et00 O.G$4E-01 0.$43E-02

; 5 O.O00E_O0 O.O00EiO0 O.O00E+O0

6 O.O00E+O0 O.O00E*O0 O.O00E_O0

7 O.O00E+O0 O.O00E*O0 O.O00EiO0

_" 8 O.O00E_O0 O.O00EiO0 O,O00E*O0

_; 9 O.O00E*O0 O.O00E*O0 O,O00EtO0

_; 10 O.O00E+O0 O.O00E+O0 O.O00E!_ II 0.696E_01 0.696E+00 0.341E-Oi

_. 12 o.elee+ol O.$g6E*O0 0,348E-01

13 0.696E*O1 0.696E_00 0.$45E-01

:, 14 O.ei6E+Ol 0.6g6EiO0 0.$45E'01

i

?

f
r

i

Table A9 StationkeepingThrust Requirements- EducationalTV

$

i
¢
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Thrust/ThrusterRequirements(N)

EducationalTV, g-load= .06

GEO Stationkeeplng Requirements
Correction

Frequency Once/Week Once/Day
Thruster

# Duty Cycle .01 .4 .01 .4

1 0.619E-02 0.147E-0| 0.$38E-02 0.147E-03

| O.S3gE-02 0.147E-03 0.$ITE-02 0.147E-05

t O.SSgE-02 0.147E-0| O.SSgE-O2 0.147E-05

4 O.SSgE-02 0.147|-0| 0.$$|E-02 0.147E-05

t 8 0.402[*00 0.107E-01 0.$74E-01 0.|84£-02

,- 6 0.402E*00 O.107E-Oi 0.174E-01 0.154[-02

7 0.144[*01 0.I|6E-01 0.106[*00 0.$5SE-02

! 0 lleE-O! 0.20eE.O0 O.SSSE-OI: 0.144[*01 "
=-

_ | 0.144E*0! 0.$|6E-_I O.I06E*O0 0.$65[-02

10 0.144E*01 0.156E-01 O.106E*O0 O.SSSE-02
_ II 0.S48['01 0.149E'02 0.S45E'01 0.14i['02

O.S4|E'01 0.141E'0| 0.1481"01 0.149E'0|

O.i4S['01 0.14tE-02 0.84|E-01 O.14iE'O2
• 14

_, 0,S4|[-01 0.14g[-0| O.S4|E-01 0.149E-02
• i i i

F
g_

.L Table AIO StationkeepingThrustRequirements

_- Educational TV

t

2
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Thrust."h_ster Requirements (N)

i
Educational TV, g-load : 15 _','-,-, r

OF POOF/ _','

GEO StatlonkeeplngRequirements
Correction

Frequency Once/Week Once/Day
Thruster

# Duty Cycle .01 ,4 .01 .4

1 O.SIO[-02 0.18+E-01 0.$60E-02 O.iSl[-O$

2 o.seoe-oQ o._ss/-oa o.s6o/-o2 o._sse-o=

s u.seoe-o2 O._6+e-Oa o.seoe-o2 o._s=e-oa

4 O.$BOE-02 O.iSSE-Oa 0.560E-02 0.153E-05

: 6 0.41|E*00 0.112E-01 0.59eE-01 0.1eOE-02
L

8 0.41|E*00 0.112E-01 0.S96E-01 0,160E-02

7 0.I$0E+01 0.401E-01 0,214E+00 0,$75E-02

J I O.l$OE+Oi 0.401E-Ol 0,214E+00 0.S75E-02

9 0.$SOE*01 0.401E-01 0.214E*00 0.57SE-02

10 0.150E+01 0.401E-0! 0.214E+00 0.575E'02

•_ 11 0.569E-01 0.15SE-02 0.$69E-01 0.155£-02

12 0.56gE-01 0.155E'02 0.S89E-01 0.155E-02

, 13 0.$69E-01 0.155E-02 0.$89E-01 O. 155E-02

" 14 O.SGgE-01_: O.lSSE-02 O.S69E-01 0.155E-02

Table All StatlonkeeplngThrust Requirements
.'_

EducationalTV

"L

!

t
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Thrust/Thruster Requirements (N)

Educational TV, g-load = 1.0 " '

GEO Statlonkeeping Requirements
Correction

Frequency Once/Week Once/Day
Th,'uster

# Duty Cycle .01 .4 .01 .4

1 0.149E-02 0 226E.05 0.|49E-02 0.226E-08

2 0.$49E-02 0 226E-05 0.14|[-02 0.226E-OS

| 0 849E-02 0 2|6E-05 0,|49E-02 0.22eE-Ol

4 0 148E-02 0 226E-03 O.ligE-02 0.226E-0|

5 ¢ $31E*00 0 188E-01 0.902E-01 0.242E-02

6 0 651|'00 0 169E'01 O.|02E'O1 0.242E'02

"_- 7 0 227E*01 0.806E-01 0.$24E*00 0.|89E-02

:_ | 0 227E*01 O.80eE-01 O.S24E*O0 0.869E-02

'- I 0 227E*01 O.eOaE-Cl 0.824E*00 0 |SgE-02

10 8 227[,01 0.808[o01 O.S24E*O0 0 88g[-02

11 0 leSE-01 0.230E-02 0.183E-01 ¢ 2SOE-02

12 0.153[-01 0.230E-02 0.188E-01 0 250E-02

iS 0.188[-01 O.|SO[-02 O.$OS[-O1 0 250E-02

'. 14 0,868[-01 0.2S0[-02 O.llSE-O1 0 2SOE-O_
• I

Table A12 Stationkeeping Thrust Requirements

• Educational TV

C"
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ORIGt,'q?/ *_ :_:" !3 i
OF POOR Q_:/_ ,TV

Thrust/Thruster Requirements(N)

Educational TV, g-load : .06

• = L | ,

DisturbanceTorques

Nominal Worst Case
Thruster

# 400 km 500 l_n GEO 400 lom 500 km GEO

| 0.4SSE-02 0,145E-02 0.116E-05 O.112E-OI 0,246|o01 O.ISPE-04

2 0.45SE-02 0.145E-02 0.316E-05 o.|12E-01 0.246E-01 0.117[-04

; I 0.4$5E-02 0.14SE-02 O.||6E-OS 0.812E-01 0.246E-01 0.157E-04

4 0.4SSE-02 0.145E-02 O.$|SE-OS 0.812E-01 0.246[-01 O.IS7E-04

S O.S47E-01 0.1$5E-01 0.276E-OS 0.1e_E*O0 0.54|E-01 0.271E-OS

i] | O.S47E-01 O,16SE-O! O._76E-OS 0.1t$E*00 O.S4$E-01 0 |76[-0a

.; 7 0.274E-01 0.125E-02 0.1SIE-OS 0.|17E-01 0.274E-01 0 l$lE-O|

i_ 0 J74E-01 0.|26E-02 0.15|E-08 0 817E-01 0.|74E-01 0 |$I[-OS

_ i 0.274E-01 0.126[-02 0.188E-03 0.817E-01 0.274E-0! 0 I$iE-O_

10 0.274E-01 0.|26E-02 0.I1|E-05 0.817E-01 0.274E-01 0 tlSE-O1

I1 0.643E-02 0.20S[-O| O.|60E-OS 0.115[*00 0.348[-01 0 1|1E-01
12 0.645E-0| 0.205E-02 0.$10E-05 0.115E*00 0.$4|E-01 0 I|IE-OS

_" 15 0.645[-02 0.205E-0| 0.$60E-0$ 0.11S|*00 0.$4|E-01 O.t2tE-O|

'_ 14 9.i45E-O2 0.2_SE-02 O.|lOE-OS 0.11i[*00 0.|4|[-01 O.|tlE-O$=_

• ii i

3

,2

;, Table AI3 Disturban- Torque Thruster Requirements
,T

Educational TV '

*

Ib •

¶

C14

D180-27728-2 f-

1984005150-271



C.'-;"C":.

Thr_st/ll_r_sterRequirlments (N)

EducationalTV, g-load = .15

i , i

DisturbanceTorques

Nominal Worst Case
Thruster

# 400 km 500 k_ GEO 400 k_n 500 i_ GEO

1 0o116[*01 O.$eg[-02 0 122E-04 0.759E-01 0.242E-01 0.|42[-04i

4 2 0.116[-01 0.$69E-02 0 122E-05 0.?|9E-01 0.242E-01 0.|42E-04

1 0.116[-01 O.Seg[-02 0 122[-04 0.719[-01 0.242E-01 0.|42E-04

4 0.116E-01 O.|llE*02 0 122E-04 0.7|lE-01 0.242[-01 0.042E-04

r 5 0.125E*00 0.401E-01 0 410E-05 0.197E*00 0.661E-01 0.4SGE-O3

6 0.1|$[*00 0.401E-Of 0 410E-03 O,1ITE*O0 0.60|E*01 0.416E-03

7 0.026E-01 O.lOOE-O! 0 205E-03 0.013[-01 0.314E-01 0.21|E-03

$ 0.026[-01 0.200[-0| 0.205E-03 0.0|3[-0! 0.|34[-01 0.21|E-03

v I 0.626E-01 O._OOE-01 0.205E-05 0.|$3_-01 0 $34E-01 0.21|E-05

10 O.O2OE-O1 0.100[-01 0.205E-03 0.913E-01 0.334E-01 0.210E-03

11 0.164[-01 0.5|2E-02 0.172[-04 0.112[+00 0.$43E-01 0.119E-03

12 0.164E-01 0.S22[-02 0.172[-04 0.112E*00 ,3.143E-01 0.119E*03D

13 0.104E-01 0.522[-02 0.172E°04 0.112E*00 0.$45E-01 O.11eE-O$

• 14 0.164E'01 O.S|2E'02 0.172E'04 0.112[*00 0.$45[-01 0.119E'93

i ii i i i i

,t

Table AI4 DisturbanceTorque Thruster Requirements

: EducationalIV
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OF PO,:,I,_QUALITY

Thrust/ThrusterRequirements (N)

Educational TV, g-load : 1.0

DisturbanceTorques

Nomlnal Worst Case
Thruster

# 400 km 500 k_n GEO 400 k_n 500 km GEO

1 0,225[-01 0.|55[-07 0.125[-04 0.605E-01 0 252E-01 0.S39[-04

| 0.22SE-01 O.|llE-02 0.325E-04 0 8OSE-OI 0 252E-01 0.939E-04

1 O._:sl*ol o.ess[-o2 o.s2s[-o4 o ios[-ol o 2S2E-01 O.Sie[-04

4 0 225E-01 0.155[-02 0.32SE-04 0 605E-,01 0 252[-01 0.130[-04

$ 0 |11E+00 0.6|2[-01 0.101E-02 0 212[*00 0 e90[-01 0.10|[-02

O 0 |11|.00 0.612E*01 0.101E-02 0 212E*00 0 SLOE-01 0.101[-02

7 0 106E*00 0.$41E-01 O,I41E-OI 0 I06E*00 O.S4SE-C_ 0.840E-05

| 0 lOS[*O0 0.S41[-01 0.541E-03 0 108E*©0 0,345E-01 O.S4OE-OS

9 0 lOS[*O0 0.$4|[-01 0.$41[-0| 0 106E*O0 0.$4S[-0! O.I4OE-O3

10 0 105E*00 O.S41E-01 O.S41E-O| 0 106E*O0 0.345E-01 O.840E-OS

11 0 |lIE-01 0.1SSE-01 0.400E-04 0 |SSE-01 0.$66E-01 0.1|3[-03

12 0 |10E-01 0.15S[-01 0.460[-04 O.|SSE-01 0.356E-01 0.151[-03

13 0 $1|E-01 0.1$SE-O1 0.400E-04 O.|5SE-Ol O.$SSE-O! O.lSSE-03

14 0 $1|E-01 0.1SSE*01 0.460E-04 O.|SS[-Ol O.$5OE-O! 0.158[-03

Table AI5 Disturbance Torque Thruster Requirements

Educational TV

!
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Land Mobile Satellite Syste(nWrdp Rib

i

Location (m) Direction

Thruster # x I Z x I Z

1 -0.111 -7.7|0 $ • $$f, 0.000 1 000 0.000

| -1.000 o7.7t0 S.SSO ol .000 0 000 0.000

| 1.000 -7.7|0 $.$$0 l.O00 0 000 0.000

4 -0.111 11.100 0.000 -1.000 0 000 0.000

;_ I -0.11l 11.100 0.000 1.000 0 000 0.000

-_ I -0.110 11.100 0.000 0.000 -0 707 0.707

;" 7 -0.11| 11.100 0.000 0.000 -0 707 -0.707

l 1.000 -|1.160 -75. 410 -1,000 0.000 0.000

_. I -0. 111 -21. leO -7S.410 0.000 1.000 0.000

_" 10 -1,000 -21.iiO -7S.410 1 •000 0.000 0.000

I1 1,000 0,000 -e2,410 °1.0_0 0.000 0.000

12 -0.11| 0.000 -|2.480 0.000 -I .000 0.000

,,_ 1| -1.000 0.000 -|_1.4$0 I .000 0.000 0.000

T

r*

._ Table A16 LMSS Wrap Rib Thruster Coordinates

* Locationsare relative to the arbitrary coordinatesystem used in
.,._ the configurationdrawing - not to the CG
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ORIG_']AI. .-.'.:/ ""
OF POOP, Q3_-L(_ Y

Thrust/Thruster Requirements (N)

Land Mobile Satellite System Wrap Rib

g-load = .15

Thrusting LEO Statiorke_ping Requirements at tOO kmTime

Thruster # (Hrs) .5 5 100

; 1 O.O00E*O0 O.O00E_O0 O.O00E*O0

2 O. 812E*01 O. 727E+00 O. 352E-01

_" 3 O, 812E �l�0.727E*00n.._$2E-O1
h.

_- 4 0.328E*01 O. 294E*00 O. ! 42E-01

5 0.328E+01 0.294E*00 O. 142E-01

i" 6 O.UOOE*O0 O. O00E*O0 O.O00E*O0

7 O.OOOE+O0 O.O00E+O0 O.O00E+O0
tb

8 O. 134E+01 O. 120E „581E-02

9 O.O00E*O0 O.O00E*O0 O.O_OE_O0

10 O. 134E*'.}I O. 120E 581E-02

,.. 11 O. 134E',01 O. 120E*O0 O. 581E-02

12 O. O00E*O0 O. O00E*O0 O. O00E*O0

• 13 O. 134E*01 O. 120E,O0 O. $81E-02

Table A17 Stationkeeping Thrust Requirements

;. LMSS Wrap _,_
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Thrust/ThrusterRequirements(N)

LMSSWrap Rib, g-load : 06 OF_--" , T.

CI" i':'OO#_"4.... :TY ,"

GEO StationkeepingRequirements
Correction
Frequency Once/Week Once/Day

Thruster

# Duty Cycle .01 .4 .01 .4

0.||2I_02
1 0.252E*01 0.$4eE-01 0.SSIE*O0

0.121[-02
2 0.45|E-01 0.127E-02 0.4$eE-O_

0.121E-02
3 0.45|E-01 0.127E-Q2 0.489[-01

0.4liE-03
4 0.185E-01 O.SlSE-OS 0.11SE-O1

0.410E-OI
S 0.1|S[-01 0.511E-0| 0._$5E-01

: O.llO[-O2
I 0.17l[*01 0.501E*01 O.:SSE*O0

O.elOE-02
7 0.170E*01 0.601£-01 0.255E*00

0.200E-OS

;_ 0 0.7S9[-02 0.210[-0S 0.759[-02 0.241E-0_
_" O 0.$$4E*00 0.178E*01 O.lOS(-Ot

0,200E-05
_L 10 0.7Sl[-02 0.210[-0| 0.759E-02
_ " 0.200E*03
-t 11 O.TSSE-02 0.210[-05 0 _9_ _2

0.11=E-O:
12 0.42SE*O0 0.111E-01 0.606E-01

IS O.TSli'02 0.|10[-0_ 0,759E'02 0.200['05
c

m

!,

"r

. Table AIB StationkeepingThrust Requirements
! LMSS Wrap Rib

i
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ORIG,_,I?.LIL',,t_I._

OF POOH _),-_L!i-Y

Th Jst/Thruster Reqult_-ments (N)

LMSS Wrap Rib, g-load = .15

GEO Stationkeeping Requirements
Correction

Frequency Once/Week Once/D_y
Thruster

# Duty Cycle .01 .4 .01 .4

I 0.S45[*0! 0.641['01 0.$47[*00 0.121E-02

2 0.411['0t 0.127E-02 0.481['0! O.t27E-02

0.411['01 0.127['0| 0.411E'01 0.127['02

; 4 O.lt4E*01 O.St3E'OS 0.114E'01 0.513['03

$ 0.154|'01 0.515[-03 0.It4[-0! O,SlSE-O;

6 0.11?E*O! 0.801E-01 0.268[*00 0.716E-02

* 7 0.It7[*01 O.S01E-O! 0.2it[*O0 a. TleE-02k
I 0.79S[*02 0.310E-03 O.?lS[-02 0,210[-0S

• I O,li4E*O0 0.17|[-01 0.|$0[-01 0.254E-02

10 0.7i5[-02 0.210E-0| O.TtSE-02 0.210[-03

11 0.7|_ *02 0.2!0[-03 0.705[-02 0.210E-03

12 " _ 0.110[-01 0.i36[-01 O._?OE-02

lS _.')_,_-4| 0o|10[-05 O.TgS[-O| 0.210|-05
o . • ,q

Table AI9 Stationkeeping Thrust Requirt_nents

" LMSS Wrap Rib

b

t
t

k
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Thrust/ThrusterRequlrements(N)

tMSSWrap Pib, g-lo_d : !.0

,i i,i

GEO StationkeepingRequirements
Correction
Frequency Once/Week Once/Day

Thruster
# DutyCycle .01 .4 .01 .4

! 0.129E-01 0.497E.00 0.1|3E-0!0,_48E+01

2 0.11_'02 Q.Ii2E-O1 0.114E-02
0.092E-01

i 0.1|4E-02 0.6|2E001 O.l|4E-OZ
; o Og_E-01

4 0,745E-05 0.210E-01 0.745E-Oa
O.;lOE-Ol

I 0.745E-03 0.250E-01 0.74_£-05
,_ 0.2lOf-el

"_ | 0.716E'01 O._|3[ �l�0.I02E-01;- O.16|E*01

>" 7 0.716E'01 0.313E*0_ 0.I03E-01
' 0.26PE*01

_; I 0 |05E-OS O. 14E-01 0 305E-05
_- 0.114E-01 ' "

_r | 0.2S4E'0! 0.I$6E H363E-02
_, 0.952E*00
• |o 0.305E-03 0,114E-01 0 $05E-05

0.114E-01
I1 O.$05E-OS 0.114E-01 0 $OSE-OS

0.114E-0!

_ 12 0.63eE*O0 0.1?0E-01 0.911E-01 0 |45E-02
11 0,$05E-03 0 I05E-OI/

_= 0.1 liE-01 0,114E-01
r

i! Table A20 Stat_onkeepingTh_st Requirements

. LMSSWrap Ribi

_

/.
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OF POOR QUA,.JTY

Thrust/Thruster Requirements (N)

LMSS Wrap Rib, !j-load= .06

DisturbanceTorques

Nominal Worst Case
Thruster

# 400 km 500 kan GEO 400 fun 500 km GEO

1 0.1168E-01 0,4:17E-01 0.197E-05 0.182E*00 0.$43E-01 0.563E-OS

2 O. _5E €472E-01 O.Sl 1E-OI 0.15SE*O0 0.720E-01 O. $40E-03

:1 0.1;SE .,00 0.472[-0_ 0.511E-05 0.1S3E*O0 0,720E-01 0.6&0[-08

4 0.924[-01 0.332['01 0.400E-05 0,105[*00 0.482['01 0,410['03

5 0.t24['01 C.:132E'01 0.462E'01 (_.410E-08"" 0.400E-03 O. I05E*00 "

{_ il 0 $40[-01 0 S61[-01 0,163E-08 0.1SOE*O0 0,696E-01 0,464[-03

}, 7 0 S4OE-01 0 S61E-01 0,163E-0tl 0.150[.00 0.696E-01 0.4il4E-03

'" I 0 1124E-01 0 3S2E-01 0 462E 01 0.410E-05i 0.400E-05 0.10SE*O0 •

_: I 0 764E-01 0 5101[-01 0.230E-05 0,212E*00 O.Jl4E-01 0.1158E-03

10 0 1124E-01 0:132[-01 0.400E-05 0 105E*00 0,482E-01 0.410E-05

., 11 0 125E*00 0 o72E-01 O.S11E-O3 0.1$3E*00 0,720[-01 0.540E-03

" 12 0.1S$_-01 0 487E-01 0.t43E-01 0.583[-03O. 197[-0l 0.112E*00

1 " 11 0.12S[*00 0.472E-01 0 S11[-08 0,1S$[*00 0.720E-0I 0.$4G[*03

,

i"
L

,C"

:'1L

,. Table A21 Disturbance Torque Thruster Requirements

_- LMSS Wrap Rib

I
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ORIG_",!_,L '" _"" ""

OF' POOR Qi-*AI..ITY

Thrust/ihrusterRequirements (N}

LMSS Wrap Rib, g-load = .i5

w .if i ,i

Dlstu;-bace Torques

No_,inal Worst Case
Thruster

# 400 km 500 km GEO 400 ion 500 km GEO

1 0.$|3E-01 0 2S9[-01 0.10g[-O| 0.1lSk,O0 0.|15E-01 0,675E*05

| 0.127|,00 0 $12E-01 O.S24E-O$ O.15eE*O_ 0.76gE-01 O.S66E-O$

= 0.127E*00 0 112E-01 0.$2".E-08 0.15eE*O0 0.7eg[-01 0.SeeE-OS

4 0 121E-O| 0 25gE-01 0.$6S£-05 0 157E+00 0,774E-01 0 $87[-05

$ 0 125E-01 0 251[-01 O.le3[-OS 0.187[,00 0.774E-01 O.SITE-03

6 O.Sg4E-01 0 191E-0_ 0.900E-04 0.155E,00 O.T22E-01 0.47_E-0_

_L 7 0,324E-01 0 191[-01 0.900E-04 0.155E*00 0.722E*01 0.475E-03

i: | 0.|25E-01 0 259E-01 0.$65E-0_ 0.157[*00 0.774E-01 0.1|7[-03

_ _ 0.45|E-01 0.279[-01 0,127E-08 0,219E_00 0.102E*00 0.071E-05

10 0.023E-01 0.2SIE-01 0.$83E-03 0.157E*00 0.774E-01 0.$87E-¢_

- 11 0.127E*00 0.612E-01 0._24E.-03 0,158E*00 0.789E-01 O.$eSE-03

? 12 0.I|8[-01 0.2agE-01 O.IO|E-OS V.!_lE*O0 O.|TSE-01 0.$75[-01

11 0.127E*00 O,Sl2E-01 0.524E-03 0.1$OE*O0 0.769E*01 0.S06[-03

P

; Table A22 Disturbance Torque Thruster Requirements

I.MSSWrap Rib ""
' •

F

£
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Thrust/Thrus*.erRequi__r_e.mrs (N)

LMSS Wrap Rib, g-load = 1.0

i,

DisturbanceTorques

Nominal Worst Case
Thruster

# 400 km 500 km GEO 400 km 500 km GEO

1 0.11IE_O0 0,|$0E'01 O,42IE'OS 0.1eSE*O0 0.154E*00 0.707E'0|

2 0.122Et00 0.$15E-01 0.821E-03 0.176E*00 0.11SE_O0 0.6_IE-OS

3 0,122E*00 0.$13['01 0.521E'03 0.176E*00 0.115E*00 0.661['01

4 _.853E-01 0.410E'01 0,$$2E o03 0,117E*00 0o797E'0! 0,417E'05

S 0 183E-01 0.410E-01 0.392E-0_ 0.11TEtO0 0.717E-01 0.417E-03

6 0 073E-01 O,IOSE-01 0.352E-03 0.101E*O0 0.1olE*O0 0.5|3E-03

7 0 173E-01 O.IOIE-¢| 0.352E-03 O,||IE*O0 0.111E*00 0.583E-0_

1 0 IS3E-01 0.410E-01 0.392E-05 0.117E*00 0.797E-01 0.417E-03

| 0 13|E_00 0.114E_00 0.4HE-03 0.22|E*00 0.187E*00 0.|24E-03

0.797E-010.4|7E-03

11 0.122E x�O.Sl3E-OIO.S21E-08 0.176E+00 0.115E*00 0.668E-05

12 0.115E*00 O.t$OE-O! 0.427E-03 0.195E_00 0.134Et00 0.707E-0_

13 0.122E*00 O.SI3E-01 O.S21E'03 0.178Et00 0.115Et00 0.6eSE-O$

in ,

w

_ Table A23 Disturbance Torque Thruster Requirements
*

_" LMSS Wrap Rib

I
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(,-, |

LMSS Hoop Column

Location (m) Direction

Thruster # X v I X v Z

; 1 O 000 -SO 7SO -17.S20 1.000 0.0o0 0.000

2 0 000 -$| 7|0 -I?.S20 -1.¢00 0,000 0.000

_ S $0 710 0 000 -17.320 0,000 1.000 0.000
_. 4 II 790 "0 000 -97.S20 0.000 -1.000 0.000
%-

9 0 000 |g 7SO -97,920 1.000 0.000 0.000J

L. 6 0 000 99 730 -57.920 -1.000 0.000 0.000
7:

_' ? -gt 790 0,000 -S7.920 0.000 1.000 0.000

1 -$9 130 0,000 -$7.920 0.000 -1._00 0.000

9 0,000 -4.790 9._? -1.000 O.OOO 0.000i

10 0,000 -4.790 9.900 1.000 0.000 0,000

11 0.000 -4.710 9.900 0.000 1.000 0.000
12 0,000 -4.7g0 9.900 0.000 -1.000 0.000

i

;_ TableA24LMSSHoopColumnThrusterCoordinates

* Locations are relative to the arbitrary coordinate system used in

._ the configuration drawing - not to the CG

{
e_
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Thrust/Thruster Requirements (N)

LMSSHoop Column, g-load = .15

Thrusting LEO StationkeepingRequirementsat 400 km

Time
(Hrs) .5 5 I00

1 O.O00E*O0 O.O00E*O0 O.O00E*O0

_- 2 O.O00E*O0 O.O00E*O0 O.O00E*O0

;- 3 f 144E*02 0.740E*00 O,$SlE-O1
i

4 0.144E*02 0.740£*00 0 $$2E-01

_- 5 O.O00E*O0 O.O00E*O0 0 O00E*O0
L

6 O.O00E*O0 O.O00E*O0 0 O00E*O0
7 0.144E*02 0.740E,00 0 $52E-0!

,' 8 0.144E*02 0.740E*00 0 352E,01

'* 9 O.O00E*O0 O.O00E*O0 0 O00E*O0

I0 O.O00E*O0 O.O00E_O0 0 O00E*O0

" II 0.286E*02 0.146E*01 0 697f-01

'_ 12 0,2t0E*02 0.146E+01 0 697E-01

i.

:_. Table A23 StationkeepingThrust Requirements

! LMSS Hoop Column

i;
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Thrust/Thruster Requirements(N) ,.i_ , : :._.j(
LMSS Hoop Column, g-load = .06 _"

I

GEO Stationke_pingRequirements
Correction
Frequency Once/Week "Once/Day

Thruster

Duty Cycle .01 .4 .01 .4

i 0.653E_00 0.174E-01 O,g33E-01 0.2SOE-02

2 0,8S3E*00 0,174E-01 0.9$$E-QI 0.2SOE-02

3 0.1OOE-O! 0.S03E-03 0.190E-01 0.50:E-05

4 0.1|0E-01 0.503E-03 0.190E-01 0.503E-03

6 0.75S£t00 0.205E-01 0.109E*00 0.293E-02

6 0.765Et00 0.205E-01 0.109[*00 0.293E-02

4- 7 0.110E-01 0.503E-03 0.190E-01 0.503E-03

_ O 0.190E-01 0.503E-03 0.190E-01 0.503E-03
C

'_. | U.140E.01 O.STSE-01 0.200E*O0 0.S$7E-02

'r 10 0.140E*01 0.37SE-01 0.200E*O0 0.S$7E-02

11 O.STeE-Ol 0.99SE-05 0.$76£-01 O.gg$E-O$
|-

12 0.|76E-01 0.99SE-08 0.376E-01 O.DgSE-OS

t.
i

Table A26 StationkeepingThrust Requ,rements

LMSS Hoop Column

:_.

+.

f
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OF POOR Q_'.LII'Y
Thrust/ThrusterR_qulrements(N)

LMSS Hoop Column, g-load = .15

i m i m

6EO StationkeepingRequirements
Correction
Frequency Once/Week Once/Day

Thruster
# Duty Cycle .01 .4 ,01 .4

1 0.890E_00 0.184E-01 0.986E-01 O.264E-Q2

2 Q.69OE*00 0.184E-01 0.986E-01 0.264E-02

3 0.201|-01 0.$25E-03 0.201E-01 _.523E-0_

; 4 0.201[-01 Q.S2|E-03 0.201E-01 0.528E-05

; 5 0.|0||+00 0.216E-01 0.116E �x�0.309E-02

*_ e O.|O|E*O0 0.216E-01 0.116[*00 O.aOgE-G2

;f 7 0 201[-01 0.528E-05 0.201E-01 0.52|E-05_ .
I 0.201E-01 0.$28[-05 0.201[*01 0.$21E-05

i"

i: | 0.148E*01 0.196[-01 9,212E*00 0.561E-02
f.

!_ 10 0.14|E,Q1 0.$96E-01 0.212E*00 0.557E-02

11 0.197E-01 O.lO_E-02 0.$97E-01 0.104E-02

' 12 0._87E*01 0.I04E-02 0,_g7[-01 0.104E-02

t
• i i i i i _ l i

t

Table A27 StationkeepingThrust Requirements

iL LMSS Hoop Column
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Thrust/ThrusterRequirements?_)P_'n,_-.. "" _-J

LMSSHoop Column, g-load : 1.0 l

GEO StatlonkeepingRequirements
Correction
Frequency Once/Week Once/Day

Thruster

# Duty Cycle .01 .4 .01 .4

1 0 118E*01 0.$17E-01 0.1eQE*O0 0.4S1E-02

2 0 115E_01 O.S17E-01 0.169E_00 0.451E-02

$ 0 S44E-01 0.930E-05 0.$44Eo0! 0,|30E-03

4 0 $44E-01 0.950E-03 O,$44E-r 0.93bE-05

S 0 ISDE*O! 0.372E-01 0.198E*00 0.529E-02

_ 8 0 13tEe01 0.372E-01 O.19|E*O0 0.529E-02

;" 7 0 344E'01 0.|$0E'03 0.$44E-01 0.|30E'03

• | 0 |44E-01 0.950E'03 0.344E-01 0.950E'03

0 0 254E*01 0.0|1E'01 0.$64E*00 0.970E'02

_'" 0.2S4Et01 O.OI1E-01 0.$64E*00 0.970E'02

: 11 0.611E-01 0.114E-02 O.ellE-01 0.184E-02

12 0.681E_01 0.114E-02 0.851E-01 0.114E-02

Table fi28 StatlonkeepingThrust Requirements
F_

LMSS Hoop Column

e_

i

,C
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" '' " =T'/OF pbOR {a,- ,,L

Thrust/Thruster Requirements (N)

LMSS Hoop Column, g-load = .06

Disturbance Torques

Nominal Worst Case
Thruster

# 400 lun 500 kan GEO 400 l_n 500 Yah GEO

I 0.146E¢00 0 $20E-01 0.418E-03 0.242E_00 0.964E-01 0.491E-03

; 2 0.146E*00 0 520E-01 0 41|E-03 0.242E_00 0.964E-01 0.498£=03

; 3 0.314E-01 0 167E-01 0 7SIE-04 0.225Et00 0,194E-01 0.462E-03

: 4 0.|14E-01 0 _67E-01 0 758E-04 0.225E*00 0,854E-01 0.462E-03

i* 3 0,124E_00 0 443E-01 0 SS6E-O$ 0.206E_00 0.821E-01 0.424E-03

- 6 0.124E*00 0 443E-01 0 356E-0_ 0.206[*00 0.121E-01 0.424E-OS

_" 7 0.314E-01 ,2 167E-01 0 758E-04 0.225E*00 0.194E-01 0.462E-03

_ | G.S14E'01 0.187E'01 0 7S|E'04 0.225_*00 O.894E'01 0 4e2E'03

I 0.270E_00 O.$e3E'01 0 774E'03 0.44gE*O0 0.17gE*O0 0.123E'03

10 O.|70E*O0 0.963E'01 0 774E-03 0.449E*00 0.171E*O0 O.V23E'OS

11 O.IZ|E'OI 0.334E'01 0 I$2E'03 0.449E*00 0 171E*O0 0 924E'03

_, 12 0.82|E-0! 0._34E-0! 0 1S2E-05 0.449E*00 0.179£ �p�0.924E-03

:Jr

.. Table A29 DisturbanceTorque Thruster Requirements
i

_';. LMSS Hoop Column
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Thrust/Thruster Requirements(N)

LMSS Hoop Column, g-load : .15

|i i . , ,.u ,. . i i

DisturbanceTorques

Nominal Worst Case
Thruster

,4_ =_ L_ GEO 400 km 500 km GEO

1 O.137EtO0 0.495E-0! O._IOE-O$ 0.231f.00 0 138!-01 0.4751-05

2 0.1|7E.00 0 415E-01 0.IgOE-03 0.231E_00 0 gIIE-01 0.47SE-03

$ 0.302E-01 0 186E-01 0.751E-04 0.214Et00 0 170E-01 0.440E-0|
; 0 751E-04

4 O.$OgE-01 0 156E-01 • 0.214E*00 0 170E-01 0.440E-03

5 0.116[*00 0 422E-01 O.S32E-03 0.197E*O0 U 7liE-01 0.404E-05

_ S 0.116E*00 0 422E-01 0.$$2E-03 0.197E*00 0 711E-O; 0.404E-05

_. 7 O.102E-01 0 166E-01 0.TILE-04 0.214E*00 0 170E-01 0.440E-OS

'; 8 0.$02E-01 0 186E-01 0.7S1E-04 0.214E*00 0 170E-O1 0.440E-05

I 0.255E_'0 0 I17E-01 0.722E-03 _.428E*00 0.174E*00 0.!79E-03

10 O.l$$EtO0 0 917E-01 0.722E-03 0.428E*00 0.174E,00 O.17lE-03

11 O,t04E'01 0 $32E-01 0.1SOE'03 O.42IEtO0 0.174E*00 O.ItOi'03_

_: 12 O.IOdE'01 0 $32E'01 " 0.421E_00 0.174E*00 O.IIOE'03 I
¢

!,
ko

g,.

!_ Table A30 DisturbanceTorque Thru._terRequirements

*t LMSS Hoop Column

D180-277_8-2

J

1984005150-288



.( . j

Thrust/Thruster ReQuirements(N)

LMSS Hoop Column, g-load = 1.0

, , , i

DisturbanceTorques

Nominal Worst Case
Thruster

! 400 km 500 km GEO 400 km 50'0km GEO

1 0.7S6E*01 0 337E-Ol 0.202£-03 0 155E,00 0.791E-01 0.343E-03

2 0 756E-01 0 $37E-01 0.202F-03 0 155[,00 0.791E-01 0._43E-05

; $ 0 2_¢E-0t 0 171E-01 0.744E-04 0 144E_00 0.753E-0i 0.|14E-05

4 0 |$4E-01 0 171E-01 0.744E-04 0 144E_00 O.T$$E-bl 0.|14E-03

_, S 0 $44|-0! 0 217E-01 0.172|-03 0 112E_00 0.873E-01 0 292E-05

_-- 6 0 644E-01 0 2|7E-01 0.172E-03 0 132Et00 0.673E-01 0.292E-03

7 0 234E-01 0.171E-01 0.744E-04 0 144E*00 0.733E-01 0.$14E-03

_" 8 0.234E-01 0.171E-01 0.744E-04 0 144E*00 0.733E-01 0.$14E-05
o.e$4E-o_

9 O.140E*O0 0.|24(-01 0.374E-0| 0 211E*O0 0.146E*_
! b

10 0.!40E*_0 0.024E-01 0.374[-05 0 2lIE*00 0.146[*00 0.e_4|-05

11 0.467E-01 0.|41|-01 0.14gE-03 ¢,211E_00 0.147E_00 _,O27E-O$

12 0.467E-01 0.341|-01 0,149[-05 0.2||[*00 O.147EtO0 rJ.O27E-O3

• L
, i , H • | ,, iH

*_ Table A31 Disturbance Torque Thruster Requirements
2

LMSS Hoop Column

e
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Geostationary Platform

L_cation (m) Directio,,

Thrust_r # x v Z x T z

1 -2 200 0.TEl °23.000 1.000 0 000 0.000

2 -2 _oo 0.718 -2S.OoO o.ooo 1 oo0 o.00_

3 -2 200 0,711 -23,000 -! 000 0 000 0.000

; 4 o2 200 0.781 -23.000 0 000 -1 000 0,000

S 0 000 -15.100 0.000 I 000 0 000 0.000

6 0 000 -15.100 0.000 0 000 0 707 0.707
,t
L 7 0 000 -15.|00 0.000 0 000 0 707 -0,707

'" I 0 000 -15,|00 0.000 -! 000 0 000 0.000

I 0 000 -15.100 0,000 0 000 0 000 ,.000

" 10 0 000 .._$ IO0 0.000 0 000 0 000 -1.000
_:

11 0 000 15.$00 0.000 1 000 0 000 0.000

12 0 000 15.100 0.000 0 000 -0 707 0.707

_" 13 0 000 1S.100 0.000 0 000 -0 707 -0,707
1

14 0 000 IS.|O0 0.000 _1 000 0 000 0.000

- lS 0 000 15.100 0.000 0 000 0 000 1.000

- 16 0.000 15.100 0.000 0.000 0 000 -1.000

I

_ TableA32 GeostationaryPlatform Thruster Coordinates

' * Locatlons are relative to the arbltrary coo,-dlnatesystem used In
the confIguratlondrawing - not to t_e CG

*-, C33
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Thrust/ThrusterRequirements(N)

GeostationaryPlatform

g-load = .15

LEO StationkeepingRequiremPntsat 400 km
Thrusting

Thruster # (Hrs) .5 5 ]00

1 0.3_E'.01 O. 2114E*00 O. 148E-01
i.

2 O.O00E*O0 O. O00E*O0 0. 0001: L_O
i,-

" 3 O. 301E*01 O. 294E*00 O. 148E-{)1

i- 4 O.O00E*O0 O. O00E*O0 O. O00E*O,)

5 0.711E*01 O. 700E*O0 O. $47[. 01

(- 6 O.O00E*O0 O.O00E*O0 O.O00E*O0

c 7 o. O00E *00 O. O00E*O0 (}. O0()E*00

8 0,711E*01 O. 700E',O0 0._47E-01

9 O. O00E *00 O. O00E *00 O. 000[ ,0_)

• 10 O,O00E*O0 O,O00E*O0 0 _100£*00

11 0.61llE*01 0.614E*00 0.334E-01
.:.
*" ] 2 O. O00E * O0 O. O00E*O0 (,. O00E*O0

,- 13 O.O00E*O0 O. O00E*O0 O.O00E*O0

/,4 0.6111E*01 (_ 674[*00 0.334E*01

,:' 15 O. O00l*O0 O. O00E*00 O. O00E*O0

16 O.O00r*O0 O.O00E*O0 O.O00E*O0

J_

%
i
+

TableA33 Statio_epin9 Thrust Requirements

• * GeostationaryPlatfo_

i

3.
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Thrust/Thr_s_r R_ulr_ents (N)

GeostdtionaryPlatform, g-load = .OG

| •

I

GEO StetionkeepingRequ(rements )Correction
IFrequency Once/Week Once/Day

Thruster

Du_v Cycle .01 .4 .01 .4

, 0.180E-01 0.475E-03 0.1tOE-01 0.478E-05

" O.II2f!+O0 0.2a6E-01 O. 126E �Ð�• O._IS7E-02

8 O. 110E-01 0.475E-03 O. IIOE-OI 0.475E-0|

• 4 O.llSE*O0 O.:SeE-OI O. l:6E*O0 O.$llE-02

8 U.428£-01 O. 115E-02 0.421E-01
O. 111[-02

| 0.226E*01 41.604[-01 0.$23E,00
L- O.i6SE-02

7 0.1|1[*01 0.413E-01 0,25|E*00' 0.61)IE-02

,_- I e, 428E-01 O. 1 i $E-02 O. 4'JIE-O1
i: O. 115E-0|
;_ I O. 000[ *00 O. O00E +00 O. O00E *OO

O.O00E+O0
_ 10 O.O00i*O0

O. OOOE*00 O. O00E +00 O. OIdOE 4�11 0,412E-01

O. 109E-02 0.412E-01 O. 101)E-02
._ 12 i 0.|26[*01

, 0.604E-0| 0.$2_[,00 0.164[-02
_' 11 0.111[*01

0.4||E-01 0.2Sl[*O0 0.'91[-02
_,' 14 4.4121[-01

O. 101E-02 r,. 4 llE-O I O. 109[-02
"" I_S O.O00E'O0

" O. O00E*O0 O. O00E+O0 O. O00E*00
18 0.000[+00

, O. O00E*00 O. O00E* O0 O. O00E*O0
r*

i i i L ii

,, Table A34 StationkeepingThrust Requirements

Geostationary Platform

._

*
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Thrust_hruster Require_nts (N)

GeostationaryPlatform,g-load= ,15

GEO Stationkeeping Requiremen%s
Correction

Frequency Once/Week Once/Day
Thruster

# DutyCycle .01 .4 .01 .4

1 0.1511-01 0.47SE-03 O.l|lE-Ol O.SlOE-O$

2 O.IliE_O0 0.216E-01 0.126E*00 O.Z$6E-02

$ 0.1liE*01 0.47SE-05 0 1|1E-01 0.$10E-05

4 O.II7E*O0 0.|$6E-01 0 127E*00 0.$$7E-02

S 0.452E'01 0.111E-02 0 452E-01 0,122[-02

" 6 0.227E*01 0.804E'01 0 824E_00 0.912E'02

7 0.111E*OI 0.485E-01 0 25gE*O0 0.721E-02

| 0,432E'01 0.113[-02 0 432E-01 0.122E-02

g O.O00E*O0 O.O00E_O0 0 O00E*O0 O.O00E*O0

10 O.O00E ��|�O.O00E*O0O.O00E*O0 O.O00E*O0

11 0.418E-01 0.101E'02 0.416E-01 0.117E-02

_2 0.227E*01 0.604E-01 0.$24E_00 0.|11E-02

• 13 0.I|1E_01 0.4|3E-01 0.259E_0 0.729E-02

14 0.41eE-01 O,IO|E-O| 0.416E-01 0.117[*02

15 O.O00E+O0 O.O00EtO0 O.O00E*O0 0.000_*00

16 O.O00E*O0 O.O00E_GO O.O00E*O0 O.O00E*O0

Table A35 StationkeepingThrustRequirements

GeostationaryPlatform
J

!

t

I)
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Thrust/ThrusterRequlrements(N)

GeostationaryPlatform, g-load = 1.0

GEO StatlonkeepingRequiremen_s
Correction

Frequency Once/Week Once/Day
Thruster

# Duty Cycle .01 .4 .01 .4

1 0.190E-01 0.510E-OS 0.190E-01 0.510E-OS

2 0.93SE*O0 0.249E-01 0.13$EtbO 0.856E-02

3 0.190E-01 0.610E*05 0 1|0E-01 0.510E-05

; 4 0.936E*00 0.2SOE-01 O 154E*00 O.SSTE-02

6 0.45SE-01 0.122E-02 0 453E-01 0,122E-02

-_ 6 0.259E*01 0.840E-01 0 342E+00 O.112E-O|

_" 7 0.1|1E*01 O.S11E-01 0.274E*00 0.729E-02

- I 0.453E-01 0.122E-02 0 453E-01 0,122E-02

{*" e 0.000[*00 O.OOOE*O0 O.O00E*O0 O.O00E*O0
__T

_ O.O00E*O0
_. 10 O.O00E_O0 O.O00E*O0 O._OOE*O0

11 0.437£'0_ 0.117E'02 0 487E-01 0.117E-02

12 0.142E_00 O.g11E-02
0.|_9E*01 0.i39E'01

r 1$ 0.1i|E*01 0.$11E-01 0.|74E*00 0.729E-02

_. 14 0.48TE-01 0,117E-02 0.457E-01 0.117E-02

1S O.O00E*O0 O.O00E*O0 O.O00E*O0 O.OOOE*O0

le O.O00E*O0 O.O00E*O0 0.000[*00 O.O00E*O0

b

_'_' Table A36 StationkeepingThrust Requirements

i_ GeostationaryPlatform
,;J

',
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Thrust/Thruster Requirements (N)

Geostationary Platform, g-load = .06

i i _ ,, iii

Disturbance Torques

Nominal Worst Case
Thruster

# 400 km 500 bn GEO 400 k_n 500 km GEO

| 0.Sill-O! 0.1SOE-01 0 116E-0! O.021E-01 0.332E-01 0,|24E-05
2 O.O00E*O0 O,O00E+O0 0 O00E+O0 O,O00E*O0 O.O00E*O0 O.O00E*O0

I 0.191[-01 0 +lOE-01 0 116E-01 0 121E-01 0,332E-01 0.824E-OJ
L 4 O.O00E*O0 O.O00E*O0 0 O00E*O0 0 000[*00 O.O00E+O0 O,O00E+O0
+_ S 0.110[-01 o.esgE-02 0 ISSt-02 0.441E-0! 0 ISLE-01 0.1A4E-Ob

e 0 0o0[,ooO.O00E*O0 0 O00E+O0 0 O00E*O0 , O.O00E*O0 O.O00E*O0
,_ 7 O.O00E*O0 a O00E*O0 0 O00E*O0 0 O00E*O0 0 O00E*O0 O.O00E*O0

I O.+l|E-01 0 659E-02 0.555E-02 0,441E-01 0.ISLE-01 0.154E-05
l 0 516E-02 0 1426-02 0 114E-04 0.444E-01'b . , 0.155E-01 0.144E-03

10 0,518E-02 0 142E-02 0.114E-04 0,444E-01 0.I$5E-01 0.144E-05
11 0 209E-01 0 720E-02 0.811Eo02 0 457E-01¢,_ • 0.174E-01 0 I?OE-O_

", 12 0.0002+00 0 OOOE*O0 O.O00E*O0 O.O00E*O0 O.O00E+O0 0 O00E*O0

_. lS O.O00E*O0 0 O00E*O0 O,O00E*O0 O.O00E*O0 O.O00E*O0 O.O00E+O0
_" 14 0.209E'01 0 729E-02 0.111E-02 0.417E-01 0.174E-01 0.170E-03

IS 0.516E-02 0 142E-02 0.114E-04 0.444E-01 0,185E-01 0.144E-03
" 10 0.516E-02 0 142E-02 0.114E-04 0.444E-01 0.115E-01 0.144E-08

_." Table A37 Disturbance Torque Thruster Requirements

Geostationary Platfo,'m

t

b
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Thr-_st/ThrusterRequirements(N)
i

GeostationaryPlat_m, g-load = .15

,, . im

DisturbanceTorques

N_i hal Worst Case
Thruster

# 400 km 500 k_n GEO 400 km 500 km GEO

1 O.$OOE-01 0 137E-01 0.113E-03 O.121E-O/ O.S_2E-01 0._22E-05

2 O.O_OE*O0 0 O00E*O0 O.O00E �t�O.OOOE*O0O.O00E*O0 O.O00E*O0

S 0.3'0E-01 0 157E-01 0.113E-0_ 0.t21E'01 0.$$2E'01 O.a22E-03
t

4 O.O00E.O0 0 000£.00 O.O00E*O0 O.O00E*O0 O.O00E*O0 O,O00E+O0
?.

S 0.1|6E-01 0 851E-02 O.SlTE-04 0,437E-01 O.IS|E-OI 0.153E-03

;_ 6 O.O00E*O0 0 O00E*O0 0 O00E*O0 O.O00E*O0 O.O00E*O0 O.O00E*O0

;" 7 O.O00E_O0 0 O00E,O0 0 O00E*O0 O.O00E*O0 O.O00E_O0 O.O00E*O0

_" | 0.1|5E-01 0.$51E-02 0 537E-04 0.437E-01
_. 0,15|E-01 0.15_E'05

_-: 9 O.S14E-02 0,16SE-02 0 116E-04 0,442E-01 0.|$6E-01 0.151E-03

_ 10 0.514E-02 0,183E-02 0 118E-04 0,442E-01 0.156E-01 0.151E-03

11 0.205F-01 0.720E-02 0 Sg3E-04 0.413E-01 0.174E'01 0.169E-03

_. 12 O.O00E*_O O.O00E*O0 0 000[*00 O.O00E*O0 O.O00E*O0 O.O00E*O0

C_ 18 O.O00EtO0 O.O00E_O0 0 O00E+O0 O.OOOE*O0 O.QOOEtO0 O.O00E*O0

_; 14 O.20SE-O! 0.720E-02 0 S93E-04 0.4|$E-01 0.174E-01 0.169E-03

15 O.S14E-02 0.16SE-02 0 118[-04 0.442E-01 0.156E-01 0.1_1E-03

• 16 0.514E-02 0.163E-02 0,118E-04 0 442E-01
' 0.I$6E-01 0.151E-03 mm

[,

i_ Table A38 Disturbance Toque Thruster Requirements

_IIt Geostatlonary Plat'form

i
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Thrust/ThrusterRequirements (N)

Geostationary Platform, g-load = 1.0

i ii i fill i ii iii i ii

DisturbanceTorques

Nominal Worst Case
Thruster

# 400 km 500 ion GEO 400 Io_ 500 km GEO

I 0.$42E-01 0.1|$E-01 0,960E-04 0.||4E-01 0.$49E-01 O SI3E-O$
L

2 O.O}OE*O0 O.OOOE*O0 O,O00E+O0 O.O00E*O0 O.O00E+O0 0 O00E*O0

3 0.$42E-01 0.115[-01 0.960E-04 O.II4E-O! O,14gE-Ol 0 $1SE-05

4 O.O00EtO0 0.000[_00 O.O00E+O0 O.O00E*O0 O.O00E*O0 0 O00E*O0

"- I 0.162E-01 0.650E-02 0,4$6E-04 0.420E-01 0,166E-01 0 149E-05

"_ 0 O.O00EtO0 O,O00[tO0 0.000[+00 0 000|+00
{_. O. _oo[ ,o0 O.000[ +oo

? O,O00E*O0 O.O00E+O0 O.O00E+O0 O.O00E*O0 O.O00E+O0 0 O00E*O0

I 0,102E-01 ¢ 650E-02 0.458E-04 + 0.420E-0! 0.168[-0! 0 149E-03

9 0.458E-02 0.174E-01 0 120E-04 0 415£-01 0 155E-01 0 136E-OS

10 0.451E-02 0 174E-01 0 1|0E-04 0 415E-01 0 I$SE-01 0 I_$E-OS

*' 11 0,179E-01 0,_35E-02 0 604E-04 0 464E-01 0 153E-01 0 164E-05

+ 12 O.O00E*O0 O.O00E*O0 O.O00E*O0 0 O00E+O0 O.O00E*O0 O.O00E*O0

15 O.O00E+O0 O.O00E*O0 O.O00E*O0 0 O00E+O0 O.O00E*O0 O.O00E*O0

+. 14 0.179E-01 0.616E-0| O.SO4EoO 4 0 464E-01 0.1|3E-0! 0.164E'05

"+ 18 0.461E-02 0,174E-01 0.120E-04 0 4|6E-01 O.+lSE-Ol 0.158E-03

18 0.451E-02 0.174E-01 0.120E-04 0.415E-0; 0.185E-01 O.ISEE-OS
_" + i m i j

i;_ Table A39 Dlsturbance Torque Thruster Requlrements

.+, Geostationary Pl_tfarm

+
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Space Operations Center -Initial

m ,. ml i i i i i

Location (m) DIrectlorl

Thruster # x y Z x Y Z

I 0.000 0.144 10 414 1.000 0.000 0.000

2 0.000 9.14.4 10 414 -I.000 0.000 0.000

3 0.000 1.144 10 ,114 0.000 -0.707 -0.707

• 4 0.000 1.144 -7 170 1.000 0.000 0.000

$ 0.000 1.144 -1 170 -I .000 0.000 0.000

6 0.000 9. 144 -7 170 0.000 -O.70T 0.707'

_. 7 0.000 -ti.144 -I 270 -I.000 0.000 0.000

. II 0.000 -9. 144 -I .270 I .000 O. 000 0.000

;;: 9 0.000 -9.144 -1.270 0 000 1.000 0.000

,;" 10 -19.500 0.000 t"J.O00 0 000 -I.000 0.000

_" 11 -10.S00 0.000 _.;00 0 000 1.000 0.000

., 12 -3.$00 0.000 Iil.000 _ 000 -I.000 0.000
C,,'

13 -I.SO0 0.000 11.000 0 000 1.000 0.000

, 14 0.000 -g.144 -1.270 O 000 0.707 0.707

_ • i m

I

' Table A4OSOC-Initial Thruster Coordinates

* Locations are relative to the arbitrary coordinate system used in
the configurationdrawing - not to the CG
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Thrust/ThrusterRequirements(N) ,.

Space Operations Center-Initlal

LEO StationkeepingRequirements at 400 km
Thrusting
Time

Thruster # (Mrs) .5 5 100

I 0.5_1E_02 0.$61E ��t�0.274E_00

2 0.561E*02 0.561E_01 0.274E*00

3 0.000[_00 0 O00E*O0 O.O00EtO0

4 0.3SSE_01 0 355Et00 0.174E'01
i

i 5 0.355E 355E �t�0.174E-01

I 6 o.ooos,oo o ooos°oo O.O00EoO0
!

7 0.558E_02 0 S3eE*01 U.26$EtO0

i 8 O.SSSE*02 0 538E*01 0.163E*00
t

9 O.O00E �tO.O00E*O0

I0 O.O00E*O0 O.O00E*O0 O.O00E*O0

ii O.O00E,O0 O.O00E*O0 O.O00E*O0

12 O.O00E*O0 O,O00E*O0 O.O00E*O0

-' 13 O,O00E*O0 O.O00E*O0 O.O00E_O0

14 O.O00E*O0 O.O00E_O0 O.O00E*O0

Table_IStatlonkeeplng Thrust Requirements- SOC-Initlal
1

-j
-j
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lhrustlThru.,,terR_ui_ts (N)

I

Space Operations Center - Initial

GEO StationkeepingRequirements
Correction
Frequency Once/Week OncelDay

Thruster

# Duty Cycle .01 .4 .01 .4

1 O.YT6E*O0 O.201[-O1 O.77eE*O0 O.,OIE*OI

| 0.7?6E*00 0.|0|[-01 0.771E*00 O.|OSE-Oi

$ 0,_14E*02 0.$75E*00 O.lOiE*O! O.IlIE-01

i 4 0.4tiE-Q1 0,151E-02 0.491[-01 0,151[-02
S 0.4liE-01 0.151[-02 0.4ilE-01 0.151[-02

| _.21_E*02 0.|75E*00 O.|OOE*O1 @.|17E-01

? O.74SE*O0 0.1liE-01 0.745E*00 O.ll|E-01

| 0.745[*00 0.199E'01 0.745|*00 O.lltE'Ol

| _.|70E*02 0.721[*00 0.|05[*01 0.103E*00

10 0.105[*02 0.442E*00 0.256[*01 0.I$1[-01

11 0.160[*01 0,42S[*00 0.|28['01 0.103 r'O1

11 O.11eE*02 @.ll|EtO0 0.170E*01 0.4SlE-O!f
II 0.15||+02 0.426[*00 0.227[+01 0.80|[-01

_. 14 O.O00l*O0 O.O00l*O0 O.O00l*O0 O.O00E*QO

, i i
.S

'S

i Table A42 StationkeepingThrust Requirement_SOC- Initial

/,
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Thrust/ThrusterRequirements (N)

Space Operations Center- Initial

DisturbanceTorques

Nominal Worst Case
Thruster

# 400 km 500 k_m GJEO 400 km 500 km GEO

1 0.214E*¢0 O.SllE-O1 O.Ill|-Ol 0.415[*00 0.1$$E*00 0 105E-02

2 0.214E*00 0.$11E-01 0 _$1E'08 0.415E*00 0.165E*00 0 103E'02

$ 0.18SE*01 0.555E*00 0.158[-01 0.407E*01 0.150E.01 0 111E-01

• 4 0.214E*00 0,511E-01 0.111[-01 0.415E*00 0.155E*00 0 103E-02

;- $ 0.214E*00 0.$11E-01 O.Illi-Ol 0.41SE*O0 0,18S[*00 0 105E-02

: I 0.1_SE*01 0.$01[*00 0.111['02 0.168['01 0.$31[*00 0 150[-02

_- 7 0 O00E*O0 O.OOOE ��p�O.O00E*O00.000[*00 0.000[*00 0 O00E*O0

'" I 0 O00E*O0 0.000|*00 O.O00E*O0 O.O00E*O0 0.000£*00 0 O00E*O0
i:

i 0 171f'01 O.SAe[*O0 0.101['02 0.1|2|'01 0.$75[*00 0.S21[-02

!_ 10 0 ll2E*01 0.S16[*00 0.172[-02 0.11S[*01 O.elSE*O0 0.116E-02

11 0 16tE*01 0.515[900 0.856['02 0.172E to1 0,$42[90_ 0.060[-02

," 1| 0 $07E*00 0.I15E*00 0.417E-01 O.ltgE*O0 O._20E*O0 0.272E-02

, 15 0 128EtO0 0.$|$[-01 0.141[-01 0.1|$[.00 0.408E-01 O.6SO[-OI

;' 14 0.1i2E*01 0.$S$[*00 O.ll|[-O_ 0.407E*01 0.I$0E*01 0.111E-01

P

". Table A43 Disturbance Torque Thruster Requirements

.; SOC - Initial '

r_

p
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Space OperationsCenter-Operational

r, i|, in in in

Location (m) Direction

Thruster # X Y Z X Y Z

1 0 000 |.144 |0.414 1 000 0 000 0 000

2 0 000 1.144 10.414 -1 000 0 000 0 000

1 0 000 1.144 -7.870 1 000 0 _ 0 000

4 0 OOG t.144 -7.170 -1 000 0 000 0 000

S 0 000 -0.144 7.170 1 000 0 000 0 000

1 O 000 -|.144 7.170 -1 000 0 000 0 000

7 0 000 °1.144 -10.414 1 000 0 000 0 000

1 0 000 -9.144 -I0.414 -I 000 0 000 0 000

I -12 SO0 0.000 11.$00 0 000 1 000 0 000

10 -12 SO0 0.000 11.100 0 000 -! 000 0 000

11 12 SO0 0,000 11.|00 0 000 I 000 0 000

12 12 500 0.000 I1,100 0 000 -1 000 _ 000

11 -12._00 0.000 -15.000 0 000 1 000 0 000

14 -12.S00 0.000 -IS,000 0 000 -1 000 0 000

15 12.50C 0,000 -15,O00 0 000 1 000 0 000

11 12.100 0.000 -18.000 0 000 -1 000 0 000

TableA44SOC-OperationalThruster Coordinates

V_
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Thrust/Thruste_Requirements :NI

Space Operations Center - Operational

L

Thrusting LEO StationkeepiT1gRequire_nentsat 400 km
Time

Thruster * (._rs) .5 I0C

1 0.108F+03 0.105E,02 0 500E,UO
,,

2 O. 10@E*03 0.105E_02 0 500E*O0

3 0.305E*01 0.152(_U0 : 0 ISOOE-O!

4 O,$OSEtGI 0 75:.*00 0 600E-01

c 0.523E*02 0 567E*01 0 306E*00• .J

, _ 0.523E*02 0 507E_01 0 306E*_P

-" 7 0.600E*02 r 0 S55E*01 0 254E*00

_ 8 0.600E*02 0 555E*01 0 254E*00

- 9 O.O00E*O0 0 O00E*O0 00(_OE*O0

t' 10 O.O00E*O0 0 O00E*O0 O. 000[*00
L

"_. II 0,000_*00 0 O00E*O0 O.O00E*O0

12 O.O00E'O0 0 OUOE*O0 O. O00E*O0

' 13 O.O00E*O0 0 O001E*O0 O.O00E'*O0

:" 14 O.O00E*O0 0 O00E,O0 O.O00E*O0

-" 15 O. O00E*O0 0 O00E,O0 O. 000[*00

16 O.O00E*O0 0 O00E*O0 O. O00E*O0
ii • i

,b

Table A45StatlonkeepingThrust Requirements

', SOC-OperationaI

!
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Thrust/Thruster Requlr_nts (N)

Space Operations Center - Operational

GEO Statlonkeeping Requlrements
Correction

Frequency Once/Week Once/Day
Thruste-

# Duty Cycle .01 .4 .01 .4

1 0 154E*01 0 427£-01 0.1S4[*01 ¢.427E'01

2 0 154E*01 0 427E-01 0 1S4E*01 0.427E-01

l 0 181E*00 0 $36E-02 0 181E*00 0.$36E-02

4 0 111E*00 0 $3e[-02 0 111E*00 0.316E-02

$ 0 95|E*00 0 236E-01 0 9_|E*OO 0.236E-01

l 0 I3|E*O0 O 236E-01 0 I$IE*O0 0.|36|-01
"k

7 0 ?17i,00 0 225E-01 0 7I?E*O0 0.22SE-01
t

¢
k l 0 717E*00 0 22SE-01 0 717E*00 0.22SE-01 .

I 0 392E*02 0 104E*01 0 559E*01 O.149E*OO

.,;- 10 0.$|2E*02 0 1_4[*01 0 55gE*01 O.149E*O0
?

11 O.St2E*02 0 104E*01 0.5S9E*01 0.149E*00

12 0.$12E+02 0 104E*01 0.559E*01 O.141i*O0

_" 15 0.$31E*02 0 112E*O0 0.472|.01 0.126E*00

14 0.151[*0| O lOCi*On 0.472E*0_ O.IleE*O0

;' 15 0.17eE*02 0 t,eOE*O0 0.2S1[*01 0.069E-0!

10 0.176[*02 0 469E*00 0.251E*0! O.lil[-OI

Table A46 StationkeepingThr_'.tRequirements

Soc - Operational
p

!
h
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ORIGinAL P_ - IS
OE poOR QUALITY

Thrust/ThrusterRequirements t,N)

Space Operations Center - Operational

m i ,,,,

Disturbance Tor_ s

Nominal Worst Case
Thruster

# 400 km SO0 k_ GEO 400 k_ SO0 km GEO

1 0.215[*00 0 174_-01 0.114E-02 0.$21E*00 0.112E*00 0.114,E-02

I 0.213[*00 00?4E-Ul 0,114E-02 0.325E*00 0,112[*00 0.114E-02

| 0.25_E*00 0 |74E-01 0.114E-0| O,121E*O0 0o112L*00 0.114[-02

; 4 O,ll3i*O0 0 tT4E-01 0.114E-02 0.128E*00 0,11!E*00 0,114E-02

; S 0.205|*00 0 174E-01 0.114E-01 O.t_li*O0 0,11_E*00 0.114E-02
P

_" I 0.255[*00 0 |74E'01 0.114E-02 0.'$2|E*00 0.112E*00 0.114E-02

t 0.2|3[,00 0 |74[-01 0.114[-0| 0 |2|[,00 0.112E*0_ l.|14E-O:

I O._tSE_O0 0.17_E-01 0,114E-02 O.121E*O0 0.112[_00 0.1_4_o02

c: | 0.864E-01 0.441E-01 0 222E-05 0.271E*00 0,14|E*00 G.122E-02

: 10 0.854[-01 0 441E-01 0 |22[-08 O,|71EtO0 0 141E*O0 O.122E-02
%

11 0,654[-01 '41[-01 0 222[-0S 0.175E_00 0,148E.00 0.112[-0|

1| O.e54E-01 _.441E-01 0 |i:£-05 O.|71E*O0 O.I_IE*O0 0,112[-02

_" 13 0.654E-01 O.441E-01 0 222E-05 0.278[*00 0.141E*O0 0.122E*02

_. 14 0,¢$4E_01 0.441E-01 0 |22[-05 O.|?l[*O0 0.141[*00 O.l|lE*02

15 O.IS4E-01 0,441E-01 0 222[-0t O.|71E*CO 0.14|E*00 0.122[-02

16 o.e54l-Ol 0,441[-01 0 |22E-01 O.|TIE*O0 0.141[*00 0.122E-02

!_ Table A47 DisturbanceTorque Thruster R_qulrements

SOC - OperatIona,]
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