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ABSTRACT

The fundamental mechanics of delamination in fiber composite laminates is

studied. Mathematical formulation of the problem is based on recently developed

laminate anisotropic elasticity theory and interlaminar fracture mechanics con-

cepts. Stress singularities and complete solution structures associated with

general composite delaminations are determined. For a fully open delamination with

traction-free surfaces, oscillatory stress singularities always appear, leading to

physically inadmissible field solutions. A refined model is introduced by con-

sidering a partially closed delamination with crack surfaces in finite-length

contact. Stress singularities associated with a partially closed delamination

having frictional crack-surface contact are determined, and are found to be dif-

ferent from the inverse square-root one of the frictionless-contaet case. In the

case of a delamination with very small area of crack closure, a simplified model

having a square-root stress singularity is employed by taking the limit of the

partially closed delamination. The possible presence of logarithmic-type stress

singularity is examined; no logarithmic singularity of any kind is found in the

composite delamination problem. Numerical examples of dominant stress singular-

ities are shown for delaminations having crack-tip closure with different fric-

tional coefficients between general eI and 82 graphite-epoxy composites.
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I. INTRODUCTION

Delamination has been a problem of significant concern in the reliable

design and analysis of advanced fiber composite laminates. Separation of

composite laminae, caused by high local interlamlnar stress and low strength

along the ply interface, can result in destruction of load transfer, reduction

of stiffness, and loss of structural integrity, leading to final structural

and functional failure. From the mechanics point of view, delamlnatlon

involves initiation and growth of macroscopic cracks between dissimilar,

strongly anisotropic solids. A rigorous mathematical study of delaminatlon is

recognized to be difficult, especially in a finlte-dlmensional fiber composite

laminate. The complexities include the inherent crack-tlp singularity, the

effect of anlsotropy of each constituent fiber lamina, and the abrupt change

of stiffness or ply orientation through the laminate thickness direction. In

addition, the three-dlmensional state of stress and deformation associated

with the composite delamlnation always gives rise to a combined opening (mode

I), In-plane shearing (mode II), and out-of-plane tearing mode (mode III)

fracture, which render the problem mathematically intractable in many

cases. The mechanics of delaminatlon in fiber composite laminates is,

therefore, not only of significant academic interest but of practical

importance. In this paper, the first of two articles in a row, the

fundamental nature of stress singularities and associated field solutions for

a delaminatlon in a fiber composite laminate are investigated.

Owing to the aforementioned complexities, studies on an interface crack

between dissimilar anisotroplc materials have been limited. Gotoh [I] appears

to be the first to examine the two-dimenslonal problem of partial debonding

between dissimilar anisotropic plates under a plane stress condition.

Clements [2] has used Stroh's approach [3] to study the problem of an



interface crack between two generally anisotropic half-spaces. Willis [4] has

also conducted a two-dimensional stress analysis of a crack on the plane

interface of two bonded dissimilar half-spaces. The analysis has been

combined with the usual local form of Griffith's virtual work argument to give

a failure criterion, involving a stress concentration vector and specific

surface energy of the bonded interface. All of the asymptotic solutions

obtained in [1,2,4] have an oscillatory displacement field that material

interpenetration on either side of the crack surface is predicted. Similar to

those found in the solutions for an interface crack between dissimilar

isotropic materials [5-9], these physically unreasonable results have led to

the argument of solution inadmissibility for the crack problem in dissimilar

anlsotropic media. To correct the unsatisfactory feature of oscillatory

stress singularity, Wang and Choi [I0] have recently reconsidered the problem

of an interface crack between dissimilar, strongly anisotropic fiber-composlte

half-spaces by introducing a partially closed interface crack model, in which

the crack is not completely open and that its surfaces are in frlctionless

contact near the tip. The formulation leads to a singular integral equation,

which is solved numerically. Numerical results from this refined model [I0]

exhibit an inverse square-root stress singularity and, therefore, physically

meaningful fracture mechanics parameters can be defined consistently with

those in fracture problems of homogeneous materials [II-13] and in the model

given by Comninou [14,15] for an interface crack between two isotroplc

media. Moreover, significantly global crack closure has been found [16] for

an interface crack between dissimilar anisotropic elastic half-spaces

subjected to mixed-mode loading--a situation that is generally experienced by
d

a delamination in finite dimensional fiber composite laminates.



In this paper, we employ Lekhnltskli's complex-variable stress potentials

[17] in conjunction with an elgenfunction expansion method to examine the

mechanics and the mathematical solution structure for a delamination with

frictional crack-tip closure in a composite laminate. Based on the general

solution structure determined, an advanced numerical method using singular

finite elements is then developed to study the detailed delaminatlon behavior

in finite dimensional fiber composite laminates with any arbitrary

combinations of lamination parameters, geometric variables, and crack

dimensions. Owing to space limitation, the numerical method and the detailed

composite delamlnatlon behavior are reported in an accompanying article [18].

In the next section, the problem definition and basle assumptions are

stated. Basic laminate anlsotropic elasticity equations and formulation of

the composite delaminatlon problem are introduced in Section 3. General

solution structures for asymptotic stress and displacement fields are

obtained. Stress singularities associated with an open interlaminar crack and

with a partially closed delamlnatlon tip with frictional crack-surface contact

are determined respectively in Section 4. Influences of frictional

coefficients on delamlnation stress singularities are examined. A simplified

model for a delamination with a very small area of crack-tip closure is also

introduced. The possibility of existence of additional singularities in

logarithmic forms in homogeneous and particular solutions is investigated.

Results are presented for delamlnations with different local crack-surface

traction boundary conditions in composite laminates containing various fiber

orientations. The eigenvalues and associated stress singularities obtained in

this study provide the most fundamental information on complete solution

structures of delamlnation stress and deformation fields, and establish a

basis for formulation of the singular finite elements used in the next paper



[18] to study the detailed delamination behavior in finite dimensional

composites with general lamination and geometric variables.



2. STAYEMENT OF _PROBI_M_ AqSI_fPTIONS

The problem considered here is a composite laminate (Fig. I) composed of

unidirectional fiber-relnforced plies of uniform thicknesses, hl, h2, h3, ...,

hn. The composite has a finite dimension with a width equal to 2b. For

simplicity and without loss of generality, we restrict our attention to the

cases of symmetric composite laminates with fiber orientations

[81/82/83/...83/82/81]. Ply thicknesses are also symmetric with respect to

the x-z plane, i.e., for each ply above the x-z plane (y) 0), there exists an

identical ply with the same ply thickness below the x-z plane (y g 0).

Delamlnation with a length a is assumed to occur in the form of an interface

crack between dissimilar, strongly anisotropic flber-reinforced composite

laminae with fiber orientations 8m and 8m+ I.

The composite laminate is assumed to be subjected to tractions acting in

planes normal to the z-axls and distributed uniformly along the z-axls without

variation. In the case that the finite dimensional composite laminate has a

finite length, axial loads and moments are assumed to act on the ends of the

composite body. The composite laminate is further assumed to be sufficiently

long that in the region away from the ends, end effects are negligible by

virtue of the Saint Venant principle. Consequently, the components of

stresses in the laminate are independent of the z-axls. The special case in

which all components of stresses and displacements in the composite are

independent of the z is well-known as the generalized plane deformation

problem [17].

The objectives of this study are to: (I) establish a mathematical basis

for the mechanics of delamination based on laminate elasticity theories and

interlamlnar fracture mechanics concepts; (2) determine stress singularities

and associated solution structures for composite delaminatlons with different



local crack-tip deformation configurations; (3) obtain asymptotic stress and

deformation fields governing the fundamental behavior of delamination; and

(4) study the influences of various lamination and material variables such as

fiber orientation and crack-surface frictional coefficients on the

delamination stress singularities.
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3. LAMINATE ELASTICITY BASIS FOR COMPOSITE DELAMINATION

The development of the mechanics of composite delamlnation is based on

recently established theories of anlsotroplc laminate elasticity [19,20,21]

and fracture mechanics concepts of interface cracks between dissimilar,

strongly anlsotroplc composites [4,10,16,21]. In this section, governing

partial differential equations for composite laminate elasticity problems are

established first, based on Lekhnltskli's complex-varlable stress potentials

[17]. General solutions for the laminate elasticity problem with interlaminar

cracks are introduced. Stress singularities associated with a composite

delamlnatlon having homogeneous local boundary conditions are defined.

Solution structures of asymptotic stress and displacement fields are

constructed for a delamlnatlon between dissimilar general fiber composite

laminae. Additional terms of logarithmic forms in the homogeneous and

particular solutions for the composite delamlnation problem are examined.

3.1 BasicEquations

The fundamental mechanics of delamlnation in a fiber-relnforced composite

laminate may be studied from the schematics illustrated in Fig. I. The

constitutive equations of each flber-relnforced composite lamina with

rectilinear anisotropy of a general form in the structural (x-y-z) coordinates

are denoted by generalized Hooke's law in contracted notation as

_i = Slj oj (i,j = 1,2,3,...,6), (i)

where the repeated subscript indicates summation, and Slj is a compliance

tensor. The engineering strains £i in Eq. I are defined in a Cartesian

coordinate system by



_u _v _w

€l = _ = €2 = _y €3 = _zx  fx'

_w + _v _w + _u _v + _u
€4 = Yyz = _-_ _--z' €5 = Yzx = _--x _' _6 = Yxy = 8-_ _" (2)

where u, v, and w are displacement components. The stresses ci are defined in

an analogous manner in the Cartesian coordinate system. For a composite

laminate in the aforementioned loading condition, mathematical formulation for

this class of elastostatic problems can be made using the well-known

Lekhnitskil complex-varlable stress potentials [17], F(x,y) and P(x,y),

defined as

_2F _2F _2F
0 -- , 0 = --, T = -- --

x _y2 y _x2 xy _x _y'

Txz (3)

Following the same procedure in [17,19], we can easily obtain the following

system of partial differential equations for each anlsotroplc composite

lamina:

L3F + L2P = - 2A4 + AIS34 - A2S35, (4a)

L4F + L3P ffi0, (4b)

where L2, L3 and L4 are differential operators of the second, third, and

fourth orders which have the form:

_2 _2 _2

L2 = S44 _x--_- 2345 _x _----_+355 _y2

_3 _3 _3 _3
= - --+ (325 + 346) - (SI4 + 356)--+ 815 _'

L3 324 _x3 _x2 _y _x _y2 _y3

L4 = 822 2S26 + (2S12 + $66) 2S16 --+ SII --' (5)
_x4 _x3 _y _x2 _y2 _x _y3 _yb



with

_iJ = Sij - Si3 $3J/$33 (i,j = 1,2,4,5,6). (6)

The constants A1 and A2 in Eqs. 4(a) and 4(b) characterize the bending of the

composite body in the x-z and y-z planes respectively, and A4 is the relative

angle of rotation about the z-axls.

Assume that external tractions on the lateral surface of the composite

cross section are given as %, _y and _z" The boundary conditions on the

lateral surface 5B are as follows:

o n +m n =T
x x xy y x'

_xy nx + _y ny = Ty, (7)

Zxz nx + _yz ny = %,

where ni are directional cosines of the bounding surface _B. The conditions

at the ends of the composite have the form:

ff m dx dy = If Tyz dx dy = 0, ffo dx dy = e ,B xz B B z z

If Oz y dx dy = M I, _ _z x dx my = M2, (8)
B B

ffB (_yz x - _xz y)dx dy = Mt,

where the integrals are taken over the entire area of the cross section B, and

Pz, MI, M2, and Mt are applied force, bending moments, and twisting moment at

ends of the composite, respectively.

3.2 GeneralSolutions

The general solutions for the governing differential equations have been

shown [17] to have the form as



i0

6

F = _ Fk(Zk) + Fo, (91
k=1

6

I F (Zkl+ (10) "k=1

where the complex variables Zk are defined as Zk = x + Pk y; Fo and _o are

particular solutions of the nonhomogeneous system; the prime ('1 denotes

differentiation of the analytical functions Fk with respect to their

arguments, and Pk are roots of the following algebraic characteristic

equation:

%4(_)%2(_1 - %_(p) = O, (II)

with %2(_) = S55p2 - 2S45P+ $44' (IZa)

%3(P) = SI5p3 - (314 + $56)p2 + ($25 + $46)p - %24' (12b)

%4(_) = SliP4 - 2S16P3 + (2S12 + S66)p2 - 2S26P + %22" (12c)

The _k in Eq. I0 are complex numbers equal to

_k ffi - %3(ttk)/%2(_k) = _ £4(tik)/£3(l_k). (13)

We now choose the form of Fk(Zk) as

Fk(Zk) = Ck, _6+2/[(6+I)(6+2)], (141

where Ck and 6 are arbitrary complex constants to be determined. Substituting

Eq. 14 into Eqs. 3, 9 and i0, we obtain the homogeneous solutions for stress

and displacement components in polar coordinates (r-S-z) as follows:
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3 3
(h)= _ - _ (h)= _ -
0,, k=_l(CkHlkZk+Ck+3HlkZk), T,z k_l(CkH2kZk+Ck+3H2kZkl,

_(h) _ _ _ __ o(h)- 3
- (CkH4kZ_+Ck+3H4kZkl, (15)

@r =k=lL(CkH3kZk+Ck+3H3kZk), rr k=lZ 6 - _-_

" 3

rz
k=l

3

r k=l

3

k=l

u(h) 3
k--1

where Zk = r(ei@ + Xke-i@)/(l + Xk), (17a)

Xk = (I + i_k)/(l - iBk). (17b)

The coefficients Hik($) (i = 1,2,3,...,8; k = 1,2,3) are known functions

of _, nk, _k' and Sij' defined in Appendix I.

The complete laminate elasticity solutions for the composite mechanics

problem can be written as

Ci = O_hl + C_p) (i 1,2,3,4,5,61,, = (18a)

uj = u_h) + u_p), (j = 1,2,31, (18b)

where c_pl and u_p) are particular solutions associated with the loading

condition of each individual case studied. The expressions for c (h) and c (pl
z z

can be obtained as
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o_h) c_h)/$33, (18c)= - S3j
and

o(P)

z = (AlX + A2Y + A3) - S3j c_P)/$33 (J = 1,2,4,5,6). (18d)

3.3 Asymptotic Stress and IRsplacement Fields

Using Eqs. 15 and 16 and applying local homogeneous traction boundary

conditions on crack surfaces BBc (Fig. 2) and interface continuity (matching)

conditions along 6BI, we obtain a system of twelve homogeneous linear

equations in C_)(a = m, m + i), i.e.,

D ¢ = 0, (19)

where D(6) is a 12 x 12 coefficient matrix involving 6 in a transcendental

form, and C is an unknown 12 x 1 column eigenvector. The nontrivial solution

for C~requires that the determinant of the coefficient matrix vanishes, i.e.,

,D(6)fl= 0. (20)

This leads to a standard eigenvalue problem, and the 6 can be determined from

the transcendental characteristic equation. Standard numerical methods such

as the MUller method [22] with the aid of a digital computer are needed for

this purpose. The eigenvalues determined from Eq. 20 provide important

information on the fundamental structure of stress and displacement solutions

for the composite delamlnation problem. Furthermore, the elgenvalues 6n which

satisfy the following condition:

-I < Re[6n] < 0 (21)

4

characterize the fundamental nature of stress singularities and provide the

asymptotic stress and deformation fields at the delaminatlon tip. In the case
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that local crack surface tractions are nonvanishing, for example, the crack

closure problem, Eq. 19 needs to be modified. Delaminations having crack-tip

deformation configurations with nonvanlshlng local traction boundary

conditions are discussed in detail in the next section.

For a delamlnation problem in composite laminates with general lamination

variables and fiber orientations, the algebraic multiplicity of the

eigenvalues determined from Eq. 20 may give rise to additional terms of the
6 A

m
logarithmic form Zkn(An Zk) in the homogeneous solution, as first suggested

by Dempsey and Sinclair [23,24]. In this situation, the following terms may

also be a part of the homogeneous solution in addition to Eqs. 15 and 16:

c_h) 6 DAm 6= _ _T[_ Hik _n] (i ffi1,2,4,5,6), (22a)
k=l

_6 m
n

u_h) 6 _'m (6n+l)= _ -T[ _ H(j+5)k _ /(%+i)] (j = 1,2,3), (22b)
k=l B6m

n

where %m is the order of the logarithmic multiplier in the eigenfunction

corresponding to eigenvalue 6n, and is related to the property of the D

matrix by %m = M-(N-R), in which M is the algebraic multiplicity of the root

6n, and N and R are the order and the rank of the D matrix, respectively. The

presence of the logarithmic terms, Eqs. 22(a) and 22(b), in the homogeneous

solution requires a nontrlvlal solution for Ck. Detailed discussion of the

conditions for the existence of Eqs. 22(a) and 22(b) in the composite

delaminatlon problem can be found in [25].

In the construction of asymptotic solutions for delamination stress and

displacement fields, the particular solution for the system of governing

differential equations also contributes to the complete solution. It is

apparent that the structure of the particular solution is related to the
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applied loading and deformation of the delamlnated composite. For the

convenience of further developments, we consider here the case of a composite

laminate with delaminations subjected to a uniform axial stretching, i.e.,

sz = so . Under this circumstance, it has been shown [25] that the particular

solution has a similar form as Eqs. 22(a) and 22(b),

£
8 o 5

°_p) = _ol + [_--_( _ _P) Hik Zkn)]8 =0 (i = 1,2,4,5,6), (23a)
88 o k=l n

n

%

u P)= Uoj + [-_-_% I P) n+i/(Sn+l))]8 =0 '
86 o kffil H(j+5)k n (j ffi1,2,3) (23b)

n

where the components Ool and Uoj are known quantities determined by the remote

loading condition. The %o in Eqs. 23(a) and 23(b) is the order of the

logarithmic eigenfunction at 8n = 0 and is related to the multiplicity _ of

the root 8n = 0 and the rank and the order of the matrix D by %o ffiMo-(N_R)"

[Note that Eqs. 23(a) and 23(b) contain logarithmic terms of the forms

(_n Zk) , (_n Zk)2 .... (%n Zk) o.] The necessary and sufficient conditions

for the existence of the particular solution, Eqs. 23(a) and 23(b), can be

shown [25] as

c*(L) *
~h " = o (24)

for every left eigenvector C*(L) *~h of D*(0) defined in [25], where p is a

loading vector resulting from _oi and Uoj , and the dot (-) denotes the inner

product of the two column vectors. In the case that Eq. 24 does not hold, one

needs to consider the logarithmic terms of a higher order through a higher-

(_o+I) (_o+I)
order differentiation _ /88 in Eqs. 23(a) and 23(b) A detailedn

discussion on this is given in Reference 25.
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4. DELANINATION STRESS S_ITIES IN COHPOSITK LANINATES

Based on the general solution structures given in Eqs. 15, 16, 22 and 23,

it is possible at this point to examine the detailed nature of stress

singularity associated with a delamination in a flber-relnforced composite

laminate. Because of the local nature of the stress singularity, we focus our

attention on the crack-tip region of a delamlnation between the mth and

(m+l)th laminae with fiber orientations 8m and 8m+l, respectively. Both fully

open and partially closed delaminations are considered. In the case of a

delamination with an extremely small area of crack-tlp closure, a simplified

model by taking the limiting case of a partially closed crack is introduced.

4.I Delamination with Tractlon-Free (Fully Open) Surfaces

Assuming that the crack surfaces are fully open and that the interface

BBI between the plies is perfectly bonded along r > 0 as shown in Fig. 2, we

can immediately introduce the local tractlon-free boundary conditions along

the delamination surfaces $ = _,

= = = 0 (25a)_r_ ' _z

o_+l)(r,-_) = _(m+l)(r,-_) = _(m+l)(r,-_) = 0. (25b)r$ _z

The continuity (or matching) conditions of interlaminar stresses and

displacements along the ply interface $ = 0 read as follows:

_(m+l)
{-(m)(r,0)o_'_z-(m)(r'0)'_(m)(r'0)}r_= {u$_-(m+l)(r,0)'_z-(m+l)(r'0)' r_ (r,0)}, (25c)

(m+l)¢r u(m+l)(r,0)}. (25d)u(m+l)(r,0),u_ _ ,0), z(u_m)(r,0),u m)(r,0),u_ m)(r,0)} = { r

More explicitly, the local homogeneous boundary conditions, Eqs. 25(a) and

25(b), and continuity conditions, Eqs. 25(c) and 25(d), have the forms as
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3

Hik + _'k+3 _ik " "
k=l

3 o^(m+l). "
{C(km+l) "'ik_(m+l)(__) L_k'_(m+l)'L-n)']6+ Vk+3r(m+l)"'ik_(m+l)(-_)L_k L-_)] 6} = 0, (26b)

k=l

3 r_(m)_(m) _(m) F_k) ,r(m+l)_(m+l) r.(m+l) _k+l)]} __O.{LUk ljk + _k+3 ] - LVk rjk + Vk+3k=l

(i = 1,2,3; j = 1,2,3,4,5,6), (26c)

where

Qk(_)($) = (ei_ + _)e-i_)/(l + _)), (26d)

and

(o_ = m, re+l). (26e)

Equations 26(a), 26(b) and 26(c) consist of a system of twelve

homogeneous linear algebraic equations in C_m) and C_re+l). The existence of a

nontrlvfal solution requires that Eq. 20 holds, leading to a standard

eigenvalue problem. The solution for 6n can be obtained easily from Eq. 20

and shown to have the form,

6n = (n -1/2) • iF, (n -_2), and n, (27)

where n = 0,I,2,..._; and y is a constant related to material elastic

_(m) s(m+l)
properties, _lj and -ij , of the adjacent mth and (m+l)th flber-composfte

laminae. In general, the value of y needs to be determined numerically from

Eq. 20, which involves 6n in a transcendental form. It is important to note

that the elgenvalues of 6n obtained from Eq. 27 give critically important

information on the fundamental structure of stress and displacement solutions
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for delamlnated composite materials. We remark that the eigenvalues

(n-i/2) _ iy and (n-I/2) are single roots and that all the integers, n,

including zero, have an algebraic multiplicity of 3 in general. As mentioned

in the preceding section, the values of 6n which meet the condition Eq. 21

provide the exact strength (or order) of the inherently stress singularity for

the asymptotic stress solution at the delamination crack tip. The possible

presence of weaker singularities and related terms in logarithmic forms as

discussed in Section 3.3, i.e., (An _) o and/or _n(%n _) m, in the

homogeneous solution as well as in the particular solution will be discussed

later.

For the purpose of illustration, consider a delamlnatlon located along

the ply interface of 8/90 ° graphlte-epoxy composite laminae (Fig. 2). The

following material elastic constants of hlgh-modulus unidirectional graphite-

epoxy are used in the computation:

EL = 20 x 106 psi (137.9 GPa),

ET = Ez = 2.1 x 106 psi (14.48 GPa),

GLT = GTz = GLz = 0.85 x 106 psi (5.86 GPa), (28)

VLT = VLz = VTz = 0.21,

*These ply elastic constants are used in the computation here only to

illustrate the general nature of the current problem. (These constants are

selected for historical reasons because they have been used in many previous
studies of the mechanics of composite laminates [19,26,27].) Numerical

results based on real material constants of the commonly employed T300/5208

graphite-epoxy with

EL = 19.5 x 106 psi (134.45 GPa), ET = Ez = 1.48 x I06 psi (10.2 GPa),

GLT GLz = 0.8 x 106 psi (5.52 GPa), GTz = 0.49 x 106 psi (3.38 GPa),

VLT = VLz = 0.3, VTz = 0.49, (28a)

are also given in Tables I and 2 for comparison. The differences between the

two cases are generally very small.
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where the subscripts L, T and z denote the fiber, transverse and thickness

directions of the composite lamina, respectively. The first three eigenvalues

61(i = 1,2,3) which satisfy the aforementioned constraint condition Eq. 21 are

given in Table 1 to illustrate the exact strength of the stress singularity

associated with the delamination. To demonstrate further the general

characteristics of the stress singularities for delamination, results for an

interlamlnar crack between 30°/e graphite-epoxy composites with the same ply

properties are also shown (Table 2) for various fiber orientations e's. From

Tables i and 2, we observe that a fully opened delamination between dissimilar

highly anlsotroplc laminae always possesses three distinct stress

singularities, i.e., a pair of complex conjugates, 61, 2 = -I/2_ iy , and a

real constant, 63 = -0.5. This situation is unique and apparently different

from the cases of an interface crack between two dissimilar isotroplc media or

orthotropic solids in that the three distinct dominant stress singularities,

61 , 62 and 63, always exist simultaneously in the present flber-composlte

delaminatlon problem. In the special cases when a delamination is located in

the 90°/90 ° or 30°/30 ° composite system the classical inverse square-root

singularity for crack-tlp stresses is fully recovered as shown in the Tables,

because the composite laminate becomes unidirectional. We note here that the

imaginary part of 61 and 62, i.e., the value of y, is generally very small as

compared with the real part of 6i in all cases studied.

4.2 I)elamlnatiou with Crack-Tip Closure

From Eq. 27 and from the results shown in Tables 1 and 2, it is clearly

seen that the asymptotic delaminatlon stress field in dissimilar anlsotropic

composites possesses the well-known oscillatory singularities. The associated

displacement field also exhibits oscillatory characteristics, leading to

controversial crack-surface interpenetration or overlapping, which is



19

physically inadmissible. Similar results have also been noted by several

investigators in studying an interface crack between dissimilar Isotropic

materials. In recent studies, Wang and Chol [i0,16] have shown that for a

delamination between dissimilar, strongly anisotroplc fiber composites with

certain combinations of laminar elastic properties, ply orientations, and

loading conditions, global crack surface closure may occur. Under these

circumstances, interlaminar crack-surface contact or closure needs to be

considered.

Consider the case that a delamlnation a is located between the mth and

(m+l)th laminae and a portion of the crack surface, c, is closed as shown in

Fig. 3. Frictional coefficients associated with T_z and rr_ on the interface

$ = 0 are denoted by _z and _r$' respectively. An exact analytical complete

elasticity solution for the delamination problem with crack closure is

generally difficult to obtain because the unknown contact stress distributions

along the crack-closure region need to be determined as a part of the final

solution [I0,14]. However, the local stress singularities, asymptotic field

solutions, and associated characteristics can still be determined exactly by

using the same procedure discussed in Section 4.1 but with some

modifications. Referring to Fig. 3 for a partially closed delamination,

instead of using Eqs. 25(a) and 25(b) we can introduce the local boundary

conditions in the crack-closure region (- c < r < 0) as follows:

(m)(r,_) - -(m+l)(r,-_) = 0,
(m)(r,_) - -(m+l)(r,-_) = 0, _z _z

_(m)r_(r,_) - _(m+l)(r'-_)r_= O, u_m)(r,_) - u_(m+l)(r,-_) = O,
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(m)(r,= -fez a€¢TCz , (29)

(a = m, m%l).

T(m)(r'_) = - _r¢ (m)(r'_)re _€¢ '

Along the ply interface _ = 0, the same continuity conditions Eqs. 25(c) and

(a) and (a) (a m+l) are
25(d) for oi uj = m, applicable.

Using Eqs. 25 and 29 and following the same procedure given in Section

4.1, we can immediately determine the elgenvalues 6n for a composite

delamlnatlon with crack-tlp closure. The numerical example of a delaminatlon

located along the interface of e/-8 graphlte-epoxy composites is studied here

first. Stress singularities associated with the partially closed delamlnatlon

crack tip with different values of frictional coefficients _r¢ and f#z are

shown in Table 3. The crack-tlp stress singularity is found to be always -0.5

with an algebraic multiplicity of 2 (i.e., double roots 61 = 62 = -0.5) for

the delamlnation having crack surfaces in frictlonless contact (i.e., _r_ =

_¢z = 0). In fact, the inverse square-root stress singularity, 6 1 = 62 =

-0.5, is found for all delamlnated e/-O fiber composites with frictlonless

crack-surface contact. In the cases of _r# # 0 and/or _#z # 0, stress

singularities always possess an invarlant constant 61 = -0.5 (single root) as

in the aforementioned frlctlonless contact case, and a 62 (with 62 # -0.5,

single root), which depends on values of the frictional coefficients (Tables 3

and 4). In Table 3, values of 62 for all delamlnated e/-8 fiber composites

studied are observed to be slightly larger than -0.5, when _@z > 0 is

considered. That is, frictional contributions lead to a weaker delamlnatlon

stress singularity 62 than that in a frlctionless contact case and in a

conventional homogeneous open crack case. We note here that for a

delamination between e/-e graphlte-epoxy composites, the stress singularities
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are always independent of the value of the frictional coefficient _r_' because

of the symmetry (and antlsymmetry) of components in elastic stiffness matrices

of the 8 and -8 plies and the decoupling of Txy from Oy and Tyz in the

formulation. This phenomenon is clearly seen in Table 3, where 6 1 is always

-0.5 and 62 differs from -0.5 gradually as the value of _z increases. Note

further that deviations of 62 in the frictional contact cases from the

conventional square-root singularity are rather small for all 8/-8 graphite-

epoxy delaminatlon problems.

Stress singularities are also determined for delamlnatlons in more

general cases of 81/82 fiber composites with 81 _ 82 . For illustration, the

results of a delamlnation between 30°/90 ° graphlte-epoxy composites are

presented in Table 4 for various values of _r_ and _z" It is seen from the

Table that the double roots 61 = 62 = -0.5 also appear for a delamination in

81/82 composites with crack surfaces in frlctionless contact (_r_ = _z = 0).

However, in the cases of a delaminatlon with crack surfaces in frictional

contact, 62 is apparently influenced by the values of both _r_ and _z" In

Table 4, values of 62 for the partially closed delamlnation in 30°/90 °

graphlte-epoxy composites with different _r_ and _#z are observed to be

smaller than the classical square-root stress singularity. Thus, 62 can be

either greater or smaller than the conventional inverse square-root

singularity, depending upon the values of _r_ and _$z and fiber orientations

of the composites. Owing to the complex algebraic structure of the

transcendental characteristic equation, Eq. 20, it is generally not possible

to predict in explicit form whether 62 > -0.5 or 62 < -0.5 for a delaminatlon

with crack surfaces in frictional contact without solving the transcendental

equation numerically. We remark that in the case of a delamlnatlon with crack

surfaces in frictionless contact between dissimilar anlsotroplc media, the
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dominant stress singularity, 6 = -0.5, has also been determined independently

by using a singular integral equation approach in [I0,16]. Furthermore, a

similar phenomenon of stress singularity 6 > -0.5 or 6 < -0.5 has been

observed in studying the interface crack between dissimilar isotropic media

with crack surfaces in frictional contact [28].

4.3 Dela_natlonwlth a Very Small Area of Crack-1_Ip Closure

The delamination with open crack surfaces between dissimilar fiber

composites has been shown mathematically in Section 4.1 to possess

controversial oscillatory crack-tlp stress and displacement fields. This

abnormality is thought to be artifacts resulting from the method of approach

by using eigenfunction expansion in the formulation and solution. As first

pointed out by England [7], Malyshev et al. [6], and later by Wang and Chol

[I0], the region of oscillatory solutions for a delaminatlon with open crack

surfaces in a nominal tensile field is generally extremely small in comparison

with the size of the interface crack and this very localized abnormality may

not be significant in practical terms of linear fracture mechanics. In fact,

using the partially closed crack model, Wang and Chol [i0] have shown that a

composite delamlnatlon in a tensile field has an extremely small crack-tlp

closure with c/a _ 0(10-6). A simplified model which disregards the small

closure (or oscillatory) region and approximates the asymptotic field by an

inverse square-root stress singularity is, therefore, proposed for this

situation and shown to provide excellent results comparing with those

determined by using a partially closed crack model [I0].

Under certain loading conditions other than pure tension, however, an

interlaminar crack may also possess a very small area of crack-tip closure,

depending upon loading modes and material elastic properties of the dissimilar

composite laminae [16]. A simplified solution for this case can be obtained
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by taking the limit of the crack-closure length, i.e., c + 0, in the results

derived from a partially closed delaminatlon. In particular, the delaminatlon

stress singularity can be taken directly from the partially closed crack model

(with frlctionless crack surface contact) as an inverse square-root one.

Mathematically, this is equivalent to finding an analytical solution for a

fully open crack by following the same formulation and procedure for a

partially closed crack case with infinitesimal closure length, and the

approximation introduced has the effect of smoothing the oscillatory

singularity to an inverse square-root singularity for the composite

delamination. Therefore, interlamlnar stress intensity factors and strain

energy release rates can be defined in a manner consistent with those for a

homogeneous crack and for the refined model of an interface crack between

dissimilar isotropic solids introduced by Comninou [14]. As will be shown

later [18], this simplification leads to a very effective and efficient

approach to the complex problem of delamlnation with a fully open crack tip or

with a very small area of crack-tip closure, and provides meaningful

information on the fundamental mechanics of delaminatlon problems in composite

laminates under general loading conditions.

4.4 Logarithmic Stress Singularities

As mentioned in Section 3 that besides the power-type stress

singularities given in Sections 4.1, 4.2 and 4.3 for various conditions in the

crack-tip region, weak logarithmic-type singularities may also appear in the

homogeneous and particular solutions for the delamlnatlon stress field. Since

the particular solution is related to the remote loading applied to the

delamlnated composite, it has to be considered and constructed for each

individual case. To study the possible presence of the logarithmic stress

singularities in a delamination mechanics problem, we consider a symmetric
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composite laminate subjected to uniform In-plane stretching with

Ez ffi_o for simplicity and without loss of generality. Also, we restrict our

attention at this point to delaminatlons located in the following three

composite systems: 8/-8, 8/0 °, and 8/90 ° graphlte-epoxy composites. Based on

the preceding theoretical developments and the conditions for the presence of

the logarithmic terms given in [25], we address each individual case

separately.

(I) Delamination between e/-8 composites (8 _ 0° and 90°)

Numerical calculations by using the ply elastic constants given in

Eq. 28 provide the following:

N = 12, R = 9, M = 3 (6n = integer), (30a)

N = 12, R = LI, M = I (6n _ integer). (30b)

Applying both Eq. 30(a) and Eq. 30(b) to the condition £ = M-(N-R), we obtain
6 £m

%m = 0. Thus, logarithmic terms of the form Zkn(%n _) m with £m ) I do not

appear in the homogeneous solution for this class of problems.

Also, carrying out the computations of constructing the left

c*(L) and the loading vector p , we find that, for all three setselgenvector h

of J_(L) at 6n = 0 in this case, Equation 24 is satisfied identically.

(£o+1)
Therefore, logarithmic terms of the form (_n Zk) do not occur in the

particular solution either.

(2) Delamlnatlon between 8/0 ° or 8/90 ° composites (8 _ 0° and 90°)

In these two cases, following the same procedure and computations as

discussed in (I) but with minor modifications, we obtain similar results as

those in the 8/-8 case, i.e.,

N = 12, R = 9, and M = 3, (6n = integer) (31a)

N = 12, R = II, and M = I, (6n _ integer) (31b)
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and, also, £m = 0. Moreover, Eq. 24 also holds for this problem. Thus, we

conclude that no logarithmic singularities of any kind would appear in the

asymptotic solutions for delamlnatlon in 8/90 ° and e/0 ° composites; only

power-type singularities Zkn occur in these problems.

" We further remark that, in fact, it has been shown in [25] that no

logarithmic terms of any kind would occur in the solutions for a general case

of a delamination located between eI and e2 fiber composites with eI and e2

being any arbitrary fiber orientations.
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5. SSMMARYANDCONCLUSIONS

The mechanics of delamlnatlon in fiber composite laminates has been

studied. Formulation of the problem is based on Lekhnltskii's complex-

variable stress potentials and basic relationships in laminate elasticity

theory for anlsotroplc fiber composites. The elgenfunctlon expansion method

used in this study appears to be a suitable approach to determine delamlnatlon

stress singularities and fundamental structures of stress and deformation

field solutions. Stress singularities for a delamlnatlon are found to be

related to adjacent ply material properties and local traction boundary

conditions. Numerical results for interlamlnar cracks in commonly used

graphlte-epoxy composites with different fiber orientations and crack-tlp

conditions are shown to illustrate the basic nature of stress singularities

and general solutions for the composite delamlnation problem. Based on the

information obtained, the following conclusions may be reached:

(I) Assuming the delamlnation is fully open and free from surface

traction, we find that delamlnatlon stress singularities always possess an

oscillatory form by simultaneous presence of three distinct elgenvalues,

-I/2+iY, -I/2-1y, and -I/2. The oscillatory stress singularities and field

solutions for composite delamlnation are physically inadmissible because of

interpenetration of crack-surface displacements.

(2) For a delamlnation with partially closed crack surfaces in

frlctlonless contact, the present elgenfunctlon expansion approach always

gives an eigenvalue 6 = -1/2 with an algebraic multiplicity of two (i.e.,

double roots), indicating the classical square-root stress singularity is

recovered in the closed crack case.
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(3) In the case of a delamlnation with crack surfaces in frictional

contact, crack-tlp stress singularities depend not only on material elastic

constants and fiber orientations of adjacent plies but also on frictional

coefficients _r$ and _z along the delamination surface.

" (4) The crack-surface friction may lead to either a stronger or weaker

stress singularity than the conventional inverse square-root one, depending

upon fiber orientations of the adjacent plies. Present numerical results, for

example, show that a weaker stress singularity, i.e., 0 > _ > -i/2, occurs for

a delamination between any 8 and -6 fiber composites, but a stronger

singularity, i.e., -1/2 > 6 > -I, occurs for a delaminatlon between 30° and

90° composites, if _r_ > 0 and _z > 0.

(5) In the situation that the delamination contains a very small area of

crack-surface closure (e.g., c < 10-6), a simplified model with the crack-tip

stress field having an inverse square-root stress singularity, as determined

by finding the solution from the limiting case of a partially closed crack

solution, is suggested and later used for solving the complete boundary value

problem.

(6) Examining the multiplicity of eigenvalues and the rank and order of

the coefficient matrix in the elgenfunctlon solution, we find that no

logarithmic stress singularities of any kind would appear in the homogeneous

and particular solutions for the composite delamination problem; only power-

of the form Zkn couldtype singularities occur.

(7) After determining of all the eigenvalues for each individual

delamlnation case, general solution structures for composite deformation and

stress fields can be established immediately. Numerical methods such as the

singular flnlte-element technique, which can incorporate exact delamlnation

stress singularities in the element formulation, can be easily developed to
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solve the complete boundary-value problem for delaminations in composite

laminates with any arbitrary combinations of lamination, geometric_ and crack

variables. One of such methods employing displacement-based singular crack-

tip elements is given in the associated paper [18].



29

6. ACKNOWI.EDGI_S

The research work described in this paper was supported in part by

National Aeronautics and Space Adminlstration-Langley Research Center (NASA-

LaRC), Hampton, VA under Grant NAG 1-286. The authors are grateful to

Drs. T. K. O'Brien and N. Johnston of NASA-LaRC for their support and fruitful

discussion.



30

7. REFERENCES

[i] Gotoh, M., "Some Problems of Bonded Anisotropic Plates with Cracks

along the Bonds," International Journal of Fracture, Vol 3, 1967,
pp. 253-264.

[2] Clements, D. L., "A Crack between Dissimilar Anlsotropic Media,"

InternationalJournalof EngineeringScience Vol. 9, 1971 pp. 257-263. ' '

[3] Stroh, A. N., "Dislocation and Cracks in Anisotropic Elasticity,"
PhilosophicalMagazine,Vol. 3, 1958,pp. 625-646.

[4] Willis, J. R., "Fracture Mechanics of Interfaclal Cracks," Journal of
Mechanicsand Physicsof Solids,Vol. 19, 1971, pp. 353-368.

[5] Williams, M. L., "The Stresses Around a Fault or Crack in Dissimilar

Media," BUlletinof the SeismologySocietyof America Vol. 49, 1959,
pp. 199-204.

[6] Malyshev, B. M. and Salganik, R. L., "The Strength of Adhesive Joints

Using the Theoryof Fracture,"InternationalJournalof Fracture,
VOI. I, 1965, pp. 114-128.

[7] England,A. H., "A Crack betweenDissimilarMedia,"ASME Journalof
AppliedMechanics,Vol. 32, 1965,pp. 400-402.

[8] Erdogan, F., "Stress Distribution in Bonded Dissimilar Materials with

Cracks," ASME Journal of Applied Mechanics, Vol. 32, 1965, pp. 403-410.

[9] Rice, J. R. and Sih, G. C., "Plane Problems of Cracks in Dissimilar

Media," ASME Journalof AppliedMechanics,Vol.32 1965, pp. 418-423.

[I0] Wang, S. S. and Choi, I., "The InterfaceCrack betweenDissimilar
AnisotroplcCompositeMaterials,"ASMEJournal of AppliedMechanics
VOI. 50, 1983,pp. 169-178.

[II] Irwin, G. R., "Analysisof Stressesand StrainNear the End of a
Crack Traversinga Plate,"ASME Journalof AppliedMechanics,Vol
24, 1957, pp. 361-364.

[12] Paris, P. C. and Sih, G. C., "StressAnalysis of Cracks,"ASTM
SpecialTechnicalPublication38A AmericanSocietyfor Testingand
Materials, 1965,pp. 30-82.

[13] Sih, G. C., Paris, P. C. and Irwin, G. R., "On Cracksin
RectilinearlyAnisotropicBodies,"InternationalJournalof Fracture
Vol. I, 1965, pp. 189-202.

[14] Comninou,M., "The InterfaceCrack,"ASME Journalof Applied
Mechanics,Vol. 44, 1977, 631-636.



31

[15] Comnlnou, M., "The Interface Crack in a Shear Field," ASME Journal
of Applied Mechanics, Vol. 45, 1978, pp. 287-290.

[16] Wang, S. S. and Chol, I., "The Interface Crack Behavior in Dissimilar

Anlsotroplc Composites under Mixed-Mode Loading," ASME Journal of
Applied Mechanic8, Vol. 50, 1983, pp. 179-183.

[17] Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic
• Body, Holden-Day, Inc., San Francisco, CA, 1963.

[18] Wang, S. S. and Choi, I. "The Mechanics of Delamlnation in Fiber-
Reinforced Composite Materials, Part II - Delamination Behavior
and Fracture Mechanics Parameters," NASA CR-172270, November 1983.

[19] Wang, S. S. and Choi, I, "Boundary-Layer Effects in Composite
Laminates: Part I - Free-Edge Stress Singularities; Part II - Free-

Edge Stress Solutions and Basic Characteristics; ASME Journal of
Applied Mechanics, Vol. 49, 1982, pp. 548-560.

[20] Wang, S. S., "Elasticity Solutions for a Class of Composite Laminate

Problems with Stress Singularities," in Mechanics of Composite

Materials, (Proceedings of IUTAM Symposium on Mechanics of Composite
Materials, Blacksburg, VA, Aug. 16-19, 1982), Z. Hashln and C. T.
Herakovich, Eds., Pergamon Press, NY, 1983, pp. 259-281.

[21] Wang, S. S., "Edge Delaminatlon in Angle-Ply Composite Laminates,"

NASA Contract Report NASA-CR-165439, NASA-Lewls Research Center,
Cleveland, OH, 1981; also AIAA Journal, Vol. 21, No. ii, 1983.

[22] Muller, D. E., "A Method for Solving Algebraic Equations Using an

Automatic Computer," Mathematical Tables and Computations, Vol. 20,
Oct. 1956, pp. 208-215.

[23] Dempsey, J. p. and Sinclair, G. B., "On the Stress Singularities in

the Plane Elasticity of the Composite Wedge," Journal of Elasticity,
Vol. 9, No. 4, 1979, pp. 373-391.

[24] Dempsey, J. P. and Sinclair, G. B., "On the Singular Behavior at the

Vertex of a Blmaterlal Wedge, Journal of Elasticity, Vol. II No. 3,
July 1981, pp. 317-327.

[25] Wang, S. S., Im, S. and Choi, I., "Asymptotic Solutions and

Associated Stress Singularities for Anisotropic Fiber Composite

Laminates," submitted to ASME Journal of Applied Mechanics, November
1983.

[26] Pipes, R. B. and Pagano, N. J., "Interlaminar Stresses in Composite

Laminates under uniform Axial Extension," Journal of Composite
Materials, Vol. 4, 1970, pp. 538-548.



32

[27] O'Brlen, T. K., "Characterization of Delamlnatlon Onset and Growth in

a Composite Laminates," Damage _n Composite Materials, ASTM SIP 775,
K. L. Reifsnlder, Ed., American Society for Testing and Materials,
1982, pp. 140-167.

[28] Comnlnou, M., "Interfaclal Crack with Friction in the Contact ZoneD"
ASME Journal of Applied Mechanics, Vol. 44, No. 4, 1977, pp. 780-781.



33

TABLE 1

DOMINANT STRESS SINGULARITIES FOR DELAMINATION

BETWEEN e/90° GRAPHITE-EPOXY COMPOSITES

e 61 62 63

00% -0.5 + 0.051101i -0.5 - 0.051101i -0.5
(-0.5 + 0.032924i) (-0.5 - 0.032924i) (-0.5)

15° -0.5 + 0.050349i -0.5 - 0.050349i -0.5
(-0.5 + 0.032484i) (-0.5 - 0.032484i) (-0.5)

30° -0.5 + 0.0451381 -0.5 - 0.045138i -0.5

(-0.5 + 0.025764i) (-0.5 - 0.025764i) (-0.5)

45 ° -0.5 + 0.034504i -0.5 - 0.034504i -0.5

(-0.5 + 0.015604i) (-0.5 - 0.015604i) (-0.5)

60 a -0.5 + 0.021119t -0.5 - 0.021119i -0.5

(-0.5 + 0.008067!) (-0.5 - 0.008067!) (-0.5)

75° -0.5 + 0.0088991 -0.5 - 0.008899! -0.5

(-0.5 + 0.0042651) (-0.5 - 0.004265i) (-0.5)

90 °± -0.5 -0.5 -0.5

(-0.5) (-0.5) (-0.5)

*Values in the parentheses are for T300/5280 graphite-epoxy with laminar

elastic constants given in Eq. 28(a).

#These eigenvalues are for 00/90 ° and 90=/90 ° composites in a general loading

condition. In the cases of 0°/90 = and 90_/90 = composites under uniform

stretching £z = £o, 63 = -0.5 does not appear because of rxz = ryz = 0 and
being decoupled from other stress components.



34

TABLE 2

DOMINANT STRESS SINGULARITIES* FOR DELAMINATION

BETWEEN 30°/8 GRAPHITE-EPOXY COMPOSITES

8 61 62 63

0° -0.5 + 0.012451i -0.5 - 0.012451i -0.5
(-0.5 + 0.009456i) (-0.5 - 0.009456i) (-0.5)

15 ° -0.5 + 0.010491i -0.5 - 0.010491i -0.5

(-0.5 + 0.007920i) (-0.5 - 0.007920i) (-0.5)

30 o -0.5 -0.5 -0.5

(-0.5) (-0.5) (-0.5)

45 ° -0.5 + 0.015968i -0.5 - 0.015968_ -0.5

(-0.5 + 0.011608i) (-0.5 - 0.011608i) (-0.5)

60 ° -0.5 + 0.030943i -0.5 - 0.030943i -0.5

(-0.5 + 0.020441i) (-0.5 - 0.020441i) (-0.5)

75° -0.5 + 0.041030i -0.5 - 0.041030i -0.5
(-0.5 + 0.024664i) (-0.5 - 0.024664i) (-0.5)

90° -0.5 + 0.045138i -0.5 - 0.045138i -0.5
(-0.5 + 0.024764i) (-0.5 - 0.025764i) (-0.5)

*Values in the parentheses are for T300/5280 graphite-epoxy with laminar

elastic properties given in Eq. 28(a).
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TABLE 3

DOMINANT STRESS SINGULARITIES* FOR DELAMINATION
WITH CRACK-TIP CLOSURE IN 8/-8 GRAPHITE-EPOXY COMPOSITES

15o 30° 45° 60° 75°

O.0 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5 -0.5 -0.5 -0.5 -0.5

0.2 -0.5 -0.5 -0.5 -0.5 -0.5
-0.4994 -0 .4962 -0.4940 -0.4941 -0.4964

O.4 -0.5 -0 .5 -0.5 -0.5 -0.5
-0.4977 -0.4923 -0.4881 -0.4881 -0.4928

O.6 -0.5 -0.5 -0.5 -0.5 -0.5
-0.4965 -0.4884 -0.4821 -0.4822 -0.4892

O.8 -0.5 -0.5 -0.5 -0.5 -0.5
-0.4954 -0.4846 -0.4762 -0.4763 -0.4855

*61 and 62 are found to be independent of the value of fr_"
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TABLE 4

DO_FINANT STRESS SINCULARITIES FOR DELAMINATION

WITH CRACK-TIP CLOSURE IN 30°/90 ° GRAPHITE/EPOXY COMPOSITES

_,_-" 0.0 0.i 0.3 0.5 0.7z

0.0 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5 -0.5010 -0.5031 -0.5051 -0.5072

0.i -0.5 -0.5 -0.5 -0.5 -0.5
-0.5036 -0.5046 -0.5067 -0.5087 -0.5108

0.3 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5108 -0.5118 -0.5138 -0.5159 -0.5179

0.5 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5179 -0.5189 -0.5210 -0.5230 -0.5251

0.7 -0.5 -0.5 -0.5 -0.5 -0.5
-0.5251 -0.5261 -0.5281 -0.5302 -0.5322
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7. LESTOF FIGURECAPTIONS

Fig. 1 DelaminatlonsIn a [81182/83/.../83/82/81]Flber-ReinforcedComposite
Laminate.

Fig. 2 Coordinatesand Geometryof a Delamlnatlonwith OpenCrackSurfaces
between 0m and 8m+ 1 Plies.

p

Fig. 3 Coordinates and Geometry of a Delamlnation with Finite Length of

Crack-Surface Closure between 8m and 8m+ I Plies.



2b
'- b _'- b -'I- -I .... "1

I" 2W
t f

"y 4"

Fig. I Delamlnatlons in a [el/e2/e3/.../e3/e2/el] Fiber-Relnforced Composite
Laminate.
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APPENDIX 1

Expressionsfor coefficientsHik(_) in Eqs. 15 and 16 are as follows:

Hlk (Uksln_ + cos_) 2= , H2k = -nk(Bksin _ + cos_),
/

H3k = -(_ksin@ + cos_)(_kCOS _ - sin_), H4k = (_kCOS_ - sin_) 2, (A-I)

H5k = nk(_kCOS_ - sin_), H6k = PkCOS_ + qksin@,

H7k = -Pksin@+ qkcos@, H8k = tk,

where _k and nk are defined in Eqs. II, 12 and 13, and Pk, qk and tk are

complex constants related to laminar elastic constants Sij by

Pk = SIIB_ + S12 - Sl4nk + Sl5_kBk - _16Bk '

qk = Sl2_k + $22/_k - S24nk/_k + S25nk - S26' (A-2)

tk = Sl4_k + S24/Uk - _44nk/_k + _45nk - _46"
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