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KINEMATIC EQUATIONS FOR RESOLVED-RATE CONTROL OF AN INDUSTRIAL ROBOT ARM

L. Keith Barker

SUMMARY

An operator can use kinematic, resolved-rate equations to dynamically control
a robot arm by watching its response to commanded inputs. In a tutorial fashion,
this paper derives known resolved-rate equations for the control of a particular six-
degree-of-freedom industrial robot arm and proceeds to simplify the equations for
faster computations. Methods for controlling the robot arm in regions which normally
cause mathematical singularities in the resolved-rate equations are discussed.

INTRODUCTION

In the Intelligent Systems Research Laboratory at the Langley Research Center,
an operator sits at a remote console with a three-axis controller in each hand and
commands the motions of an industrial robot arm. The operator has optional control
modes. In particular, resolved-rate control (ref. 1) enables the operator to
directly control the robot hand. The operator views the robot hand, decides that he
wants it to move in a certain direction, and deflects a controller. The robot hand
then moves accordingly with a velocity proportional to the amount of deflection of
the controller. Commanded hand velocities are transformed (resolved) into requisite
movements (velocities) of the individual joints in the robot arm to effect the com-
manded hand motion.

The intent of this paper is to: (1) derive the resolved-rate equations in
reference 2 from a point of view of an operator remotely controlling a robot arm; (2)
simplify these equations for real-time application; (3) leave additional parameters
unspecified in the final equations for more flexibility in modeling the robot arm;
and (4) further document a set of resolved-rate equations.

SYMBOLS

Aii_l homogeneous transformation matrix from coordinate
system 1 to coordinate system i-1

Ai, ag common normal between Z;_q7 and Z;

CAL3 Cos a3

Ci Cos 03

c23 Cos (6o + 83)

D1, D2, D3, D4, D5 functions defined by equations (52) to (56), respectively
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F1, F3, Fk, F5, F6, FT

F2

gl, g2

HW

K2, K3

M, ML, M2

M*, ¥, M2

NO

Poks PO,k

RVEL(1), RVEL(2), RVEL(3)
RV%L(l), RV%L(z), RVAEL(3)

RVEL(1), RVEL(2), RVEL(3)

Rti1

vector from coordinate system k to hand coordinate
system

dk6 in base coordinates
elbow-to-shoulder length

functions defined by equdtions (27), (29), (30), (31), (k1)
and (37), respectively

constant defined by equation (28)
vectors defined by equation (42) and (59), respectively
hand-to-wrist length

integer which indicates different axis systems and
associated parameters

constant gains
integer

matrices defined by equations (26), (43), and (58),
respectively

generalized matrix inverse of M, M1, and M2,
respectively

neck-to-base length

position vector in base coordinates from base
coordinate system to coordinate system k

point in cartesian coordinates
vector to point Q

rotational velocity of robot hand, expressed in hand axis
system

RVEL in %ase coordinates

resultant rotational velocity of that commanded and that
induced by rotations of joints 1, 2, and 3 (eq. 48)

components of RVEL
A

components of RVEL

components of RGEL

rotational transformation matrix from coordinate
system i to coordinate system i - 1



Ri, ry relative distance between coordinate system i-1 and
coordinate system i, measured along Zi_31

SAL3 Sin a3

Si Sin 64

s23 Sin (6o + 63)

SN shoulder-to-neck length

SN SN + R3

TVEL ) translational velocity of robot hand in hand axis
system

A
TVEL TVEL in base coordinates

TVEL(1), TVEL(2), TVEL(3) components of TVEL

A A A N
TVEL(1), TVEL(2), TVEL(3) components of TVEL

At time increment

A

Vi translational velocity of hand axis system
caused by rotation of joint i, expressed in base
coordinates

WE wrist-to-elbow length

X4 axis directed along common normal between Zj_y and Zj

Yy axis directed to complete right-hand axis system with
X3 and 74

Z4 axis of rotation of joint i-1

X0, Yo, Zp base coordinate system

X6, Y65 26 hand coordinate system

Xi. ¥i, 2% unit vectors along Xj, Y3, 24

AA A . .

Xis ¥Yi» 2i unit vectors xi, Yi, 2i, expressed in base
coordinates

aj angle between Z;_1 and Zi, measured positive about
Xy

91 Joint angle with initial value corresponding to initial

position of robot arm in figure 3



8'y Joint angle between Xj_j7 and Xj, measured positive

about Zj_4

vector of joint angles (eq. 12)

SNews 014 next and previous vector of joint angles, respectively
wi rotational velocity of Jjoint i about Zji_3
@i wj expressed in base coordinates

Use of a dot over a symbol indicates first derivative with respect to time, a
vector is underlined, and a caret (") above a vector means that the vector is ex-
pressed with respect to the base coordinate system.

ANALYSTS

Figure 1 represents a six-degree-of-freedom industrial manipulator. In refer-
ence 2, three of these manipulators served as legs in simulating the locomotion of a
three-legged robot over structural beams. In the current paper, based on reference
2, an operator controls the motions of a robot arm. ‘

Controlling individual joints in a robot arm to accomplish a complex task is
difficult, especially if time to complete the task is critical or if part of the
operator's attention is needed elsewhere. A more natural approach is for an operator
to command the motion of the robot hand and then automate the requisite coordination
of the individual joints in the arm (ref. 1). The relative joint geometry dictates
the basic transformation equations.

Joint Axis Systems and Transformation Matrices

Consecutive joint axis systems in robotic manipulators can be related by the
Denavit-Hartenberg parameters (ref. 3). For rotational joints, (figure 2) these
parameters consist in three constant parameters aj, rj, aj and a variable joint
angle e{. By definition, Jjoints always rotate about their Z-axis. The Yj_j- and
Y;- axis (not shown) complete right-handed coordinate systems. (Although not
considered here, ri is the variable for prismatic joints.)

The homogeneous transformation matrix (based on figure 2) from coordinate system
i to coordinate system i-1 is (refs. 2 or 4, for example)

— 1
1
cos 6! -cos a, sin 9! sin a, sin 8! 1t a, cos 6!
1 1 i i i : 1 i
i . . 1 .
A, = | gin 6! cos a, cos 0! -sin o, cos 8! 1 a, sin 6! (1)
i-1 i i i i i i i
1
0 sin a, cos a, ! r.
i i : i
e L ——
L 0 0 0 : 1




The parameter rj plays the role of sj in reference 2 and d; in reference 3.

Let the location of a point Q with respect to the coordinate system (Xi, Yi,
Zi) be described by the vector 9i+ Then, the location of Q from coordinate
system (Xj_3, Yi_1, Z3.1) is the vector gj_j, where

in which Aii-l accounts for both rotation and displacement of (Xi, Y5, Zi)
with respect to (Xj_.j1, Yj_1, Zj_1). However, if one is only interested in the
components of q; in directions parallel to (Xj_p, Yi_1, Zi_1), such as veloc-
ity, then it is sufficient to compute:

i
. = R. .
g-1—1 1—lg1 (3)
where
cos 9! -cos «, sin 6! sin a, sin 6!
i i i i i
i R .
R = | sin 6! cos a, cos 6! -sin a, cos 6! (L)
i-1 i i i i i
0 sin a, cos a,
i i

is the submatrix of Aii_l which accounts for the rotation of (Xj, Yi, Zj)
with respect to (Xj_1, Yi_1, Zi_1)-

The Denavit-Hartenberg parameters which have been specifically assigned
numerical values and those parameters which are carried symbolically in subsequent
equations for assignment by researchers are shown in the table. In reference 2, ES =
WE, a3 = 90°, and a3 = r3 = 0. However, in the present paper, ES and WE may be
different; and different constant values (refs. 2 and 5) for a3 and r3 can be
used. Also, since preliminary measurements indicate that a3 may not be exactly 90°,
a3 1s left unspecified in the equations. A method to calculate the
Denavit-Hartenberg parameters for an assembled robot arm is developed in reference
6. (The parameter rp would be chosen as zero in reference 6 because joints (2) and
(3) produce parallel rotations; however, the nonzero value of ro used in reference
2 (and here) can also be obtained by the same basic method in reference 6.)

Notice in the table that 8'; is related to another joint angle 6;
(unprimed). The joint angles 8; (i = 1,2,...,6) are referenced to the initial
position of the robot arm in figure 3.

The transformation matrices Al;_; (in terms of 8i, 1 = 1,2,...,6) are
given in reference 2, except for A32, which is different because of the three
unspecified parameters a3, r3, and a3. However, for convenience, all these
transformation matrices are contained in appendix A. The rotational matrices
R1j_1 are simply the 3x3 submatrices in the upper left-hand corner of Al;_4,



Resolved-Rate Control Equations

Figure U4 shows the axis system (Xg, Yg, Zg) of the robot hand. (The hand
itself is not shown.) With one three-axis controller, an operator commands trans-
lational speeds TVEL(1), TVEL(2), and TVEL(3) along Xg, Yg, and Zg, respect-
ively; and, with the other three-axis controller, he commands rotational speeds
RVEL(1), RVEL(2), and RVEL(3) about Xg, Yg, and Zg, respectively. That is, the
operator commands the translational velocity

TVEL(1)
TVEL = {TVEL(Z)] (5)

TVEL(3)

and the rotational velocity

RVEL(1)
RVEL = [RVEL(E)] (6)
RVEL(3)

X6s Y6, and zg are unit vectors along Xg, Y, and Zg, respectively.
These commands are then resolved by the computer into individual joint rotations in
the robot arm to produce the commanded hand motion.

The axis system for the robot hand may be located wherever desired for conven-
ience; for example, near the tip of the robot hand (fig. 5) or, as in this paper, at
the robot hand mounting (fig. 1). In the sequel, commands of rotational and transla-
tional velocity to the robot hand are expressed in terms of joint velocities. First,
a word about notation: a vector is underlined and an overhead caret (") indicates a
vector expressed with respect to the base coordinate system (Xo, Yo, ZO). For

A, . X .
example, Xj is a unit vector along Xj but expressed in base coordinates.

Rotational velocity of robot hand in base coordinates.- By convention, Joint i in the

robot arm rotates with angular speed é'i about Z;j_31 (fig. 2). However, since
8; only differs from 6'; by a constant offset, éi = 8';y. Thus, the
rotational velocity of joint i is (fig. 6)
By =925 (1)
or, with respect to the base-coordinate system,

~ i-1 ¢
Y =Ry " 94254 (8)

The vector sum of these individual joint rotational velocities is the resultant rota-
tional velocity of the robot hand:

. 6 .
RVEL = I R 6. z. (9)
i



In vector-matrix form, equation (9) is

RVEL = | 25 22 ¢ . . . :‘55] 8 (10)
where
A o
i-1 i-1
Ziaa=R 241K [2] (11)

is the unit vector zj_j expressed in base coordinates and is simply the third
column of Rol‘l, and where

(5,

8= | (12)

De

L6

is a vector of joint velocities. (A programming notation in reference 2 is
JVEL(i) = 65)

Translational velocity of robot hand in base coordinates.- The resultant transla-—
tional velocity of the robot hand caused by individual joint relations in the robot
arm is

6 .
TVEL = £ V. (13)
i

where joint i induces the translational velocity

~ -
.

Y= %20 % i (1k)

which is the cross product of the joint rotational velocity (with respect to the base
coordinate system) and the vector moment arm

41,6 =206 ~ By i1 (15)
from the origin of coordinate system i-1 to the origin of the hand axis system. For
A
example, the vector moment radiilﬁos and dj§ are shown in figure T. pox is the

. . k _
3xl vector in the upper-right corner of A%y = A10A21'°°Akk—l; that

is, the first three entries in the fourth column of Ako. In vector-matrix form,

equation (13) becomes

TVEL=[£Oxgo6£§_1xglG.:...E_z_sxg_ss]g (16)



Jacobian matrix.- Equations (10) and (16) are combined as

_____ =J 8 (17)

t
t
z, x d |2, xdo o} « o e | 2. x4
7 = =0 © —06 | 1 16 5 56 (18)
—_ — - —_— — — =
~ R | R
| '
EO I 21 | * . L] : gs
Symbolically, for nonsingular J,
. -1 TVEL
8=4 - (19)
RVEL

constitutes the set of joint angles which will produce commanded values of

A A
translational velocity TVEL and rotational velocity RVEL. For the robot arm in
figure 1, there are six joint angles so that J is a 6x6 matrix.

Control inputs in hand axis system.- In equations (17) and (19) the control inputs
are with respect to the base coordinate system (as indicated by the overhead caret).
However, in application, an operator watches the robot hand move and issues commands
to the hand itself. Therefore, the auxiliary equation

TVEL g 6 TVEL
————— =\1z-°_ (20)
RVEL 6 RVEL

is needed to transform the operator's inputs from the hand axis system to the

base coordinate system. For specific elements in R o see appendix B. Now, as
indicated in figure 8, an operator inputs translational and rotational velocities in
the hand axis system to make the robot arm move. These inputs are then transformed
(eq. 20) to the base coordinate system for use in the resolved-rate equations (egs.
17 or 19) to compute the joint velocity (8) to drive the robot arm. These Joint
velocities must be integrated to obtain joint angles; for example, the arm moves to
a new position 8yey, which is related by Euler integration to its old position

8014 by the equation

Syew = So14 + £ 0T (21)
where At is the time increment for computationally updating the joint angles in the
robot arm. The operator varies his inputs to dynamically drive the robot arm by
using feedback, such as visual, graphical, or force.



Location of Hand Axis System

Slmpllflcatlon of J matrlx.— In general, one is faced with solving equation (17) for

6, given TVEL and RVEL. Reduction in the computational complexity is beneficial for
real-time operation. Toward this end, the origin of the hand coordinate system
(X6, Y6, Zg) is chosen to coincide with the orlglns of (Xh, Yy, 21) and

(X5, Y5, Z5) in figure 3 (ref. 2). Consequently, th _56 0; and _3

and d _36 are parallel. Therefore, the three cross-product terms in the upper-right
corner of J are zero, that is

' - ' ~ .
] ! !
Zo*dop 1 2 Xdgt Zyxdyg] O 1O 1O
J = ! i i i (22)
_— —_ ___ J— ._'__ —_— — —_—] —— }— —
~ : A : A : P :« : A
I
2z ! 2z I Zs ! 53 14, I 55

Equations for translational and rotational velocities of robot hand resulting from
simplified J matrix.- From equations (17) and (22),

IVEL = (zg x dog)0) + {2y x 444)6, + (2, x 408, (23)
RVEL - 5061 - 5162 - E263 = Eseh + Ehes + 5566 (24)
Hence, equation (23) is solved for éla ég, and é3; and, with these solutions,
equation (24) is solved for éh, 65, and é6-
Solving for Joint Rates 61, ég, 53
Equation (23) can be expressed as (see appendix C)
TVEL (1) él
TVEL (2) | = M 52 (25)
TVEL (3) é3
where
-S1 F1 - C1 F2 Cl F3 Cl FL
M = Cl F1 - S1 F2 S1 F3 S1 Fh (26)
0 -F1 -F5
F1 = 2 ES + F5 (27)
F2 = SN + CAL3 WE (28)
F3 = C2 ES + Fh (29)
Fi = C23 SAL3 WE - S23 A3 (30)
F5 = $23 SAL3 WE + C23 A3 (31)



Singularities associated with M.- The determinant of M (appendix D), equated to
zero, supplies the following singularity conditions:

S2 ES + S23 SAL3 WE + C23 A3 = 0O (32)
WE SAL3 S3 + A3 C3 =0 (33)

With variations in 0 (fig. 3), the origin of the hand axis system generates a
circle about Zp. Equation (32) implies that the minimum radius for this circular
motion has been reached; that is, no further motion normal to Zp is possible. For
nominal values a3 = 0, ES = WE, and a3 = 9C°, equation (32) reduces to the singu-
lar condition S2 + S23 = 0 in reference 2.

Equation (33) implies that the robot arm is at its maximum (or minimum) exten-
sion with respect to the joint angle 63. For nominal values a3 = 0 and
a3z = 90°, equation (33) corresponds to the singular condition 63 = O in reference
2. (63 = 180° is not achievable with the robot arm depicted in figure 3.) With
63 = 0 in figure 3, the robot hand can be extended no further along Zg. In
figure 3, both singularity conditions are satisifed with all the translational
velocity along X and none along Y1 and Zj.

Solution for nonsingular conditions (det (M) # 0).- When not in a singular condi-
tion, equation (25) is solved directly as

él = {[TvﬁL(l) SL - TVEL(2) c1] [FL Fs - F3 F5] }/det (M) (34)

é2 = -{FslTvﬁL(l) FT + TVEL(2) F6] + TVEL(3) ¥l Fli }/det (M) (35)

é3 = _F1[TVEL(1) FT - TVEL(2) F6 + TVEL(3) F3]/det(M) (36)
where

FT = Cl F1 - S1 F2 (37)

Generalized matrix inverse solution.- Near a singular condition (det (M) = 0), the
generalized inverse matrix solution to equation (25) can be used rather than equa-
tions (34) to (36). From equation (25),

0, TVEL (1)
62 = w* | TvEL (2) (38)
6, TVEL (3)

where M¥ denotes the generalized inverse of M. For nonsingular M, M¥ = M~1, (In
reference 2, expressions are generated for generalized matrix inverses corresponding
to the singularity conditions S3 = 0 and S2 + S23 = 0; however, the double singular-
ity which happens at S2 = S3 = 0 is not accounted for).

To reduce the computational burden and benefit real-time operation, a further
reduction in the matrix to be inverted is suggested. Multiply the first row of
equation (25) by Cl, the second row by S1, and add the results to get

10



él = [F3 6, + Fb é3 - ¢l TVEL(1) - 81 TvﬁL(z)]/Fe (39)

For the present robot arm in mind, CAL3%0 and SN#0 so that, from equation (28),

F2#0. Therefore, given ég and 63, one computes él without difficulty in
equation (39). With equation (39), the first and third rows of equation (25) can be
written as

gl =M | 6, (40)
%3
where
F6 = S1 F1 + C1 F2 (41)
gl = F2 TVEL(l) - F6(C1 TVEL(l) + S1 TvﬁL(e)) (L2)
TVEL(3)
M1 = [(C1 F2 - F6)F3 (C1 F2 - F6)Fh ] (43)
-F1 -F5
Equation (40) can be solved as
62
= ML* gl (Lh)
%

where M1* is the generalized inverse of the 2x2 matrix Ml. Then, with solutions for

ég and é3, one computes él with equation (39).

Variables held constant near singular points.- A method for avoiding singular points
is to "freeze" variables when they come within a specified region of a singular
point. A variable is held constant until a new value for the variable is computed
outside the specified region. For example, if 6o and 83 approach the singular
condition in equations (32) and (33) then the angles maintain their current values
until new values are computed outside the singular region. This type of control
excludes certain positions of the robot arm which may or may not be satisfactory,
depending upon the task, and may also cause the arm to jerk.

Auxiliary hand control.- People are limited in the speed with which they can move
their arms and hands, and there are geometric constraints which disallow certain
motions and positions. Yet, people have excellent control of their arms and hands
without being consciously aware of these limitations, which can appear as singular-
ities in mathematical equations. Therefore, it appears that some type of auxiliary
hand control is warranted near singularities to help an operator gain additional
control of the robot arm. Given a singular arm position, the auxiliary control
scheme should take into consideration what the operator would most likely want to do
in the given situation. Consider the following rudimentary scheme which may have
some favorable characteristic motions for an operator.

11



A
In the vicinity of 63 = 0, let 63 be proportional to the component of TVEL
parallel to Xo in figure 3. Thus,

A
0 if 6, = 0 and (TVEL), > O
3 —X,

K3 (TVEL)X otherwise
2

where K3 is a constant to be specified. This means that 83 will not vary in

response to an impossible outward (radial) motion command for the robot arm; whereas,

if there is a component of velocity toward the shoulder of the arm, 63 will cause

the arm to retract. Now, make

6, = -[WE/(WE + ES)]6. + K.[(TVEL), /(WE + ES)] (46)
2 3 2 ——— Y2

where Ko is a constant to be specified. The first term in equation (46) will cause
8o to vary so that the arm moves back in nearly a straight line from the hand

towards the shoulder. The second term will allow the arm to pitch in the extended
N

position in proportion to the component of TVEL in the pitching direction for the
A

arm. The components of TVEL needed in equations (45) and (46) can be extracted in
the process of computing the transformation from hand to base (appendix B). Equation
(39) specifies azimuth movement.

Another feature which should be incorporated is the ability to bend the robot
arm at the elbow in either the up or down direction. To do this, change the sign on
K3 in equation (45) each time the arm enters the singularity mode. Consequently, an
operator simply extends the arm and backs up again to reverse the directions of the
elbow bend. This scheme has not yet been evaluated. There is the prospect that this
"in-and-out" motion may be a desirable feature as the robot arm nears its maximum
extension. Perhaps, this feature may be desirable in a larger region than just in a
very small neighborhood of the singularity at the full extension of the robot arm.
Whether or not the control superimposed by this scheme will be consistent with an
operator's desired control in singular situations remains to be seen from experiment.

Solving for Joint Rates éu, 65, 56

Equation (24) can be written as

-~ - ~

Z36h + Zhes + 5596 (h7)

RVEL

where

~ ~

Zo% - 239, - 2583

RVEL = RVEL - (48)

is the resultant rotational velocity of that commanded and that induced by the
rotation of the first three joints. Equation (47) simplifies to the following three

simultaneous equations in 6), 65, and 65: (see appendix C)

é5 = -ch D5 - Sk Db (49)

12



S5 56 = -Sh D5 + Ch4 Db (50)

8, + C5 8 = SAL3 D3 - CAL3 D2 (51)
where

Dl = C1 RVEL(1) + S1 RVEL(2) (52)

D2 = S1 RVEL(1) - C1 RVEL(2) (53)

D3 = 8§23 DL + C23 RVEL(3) (54)

Db = C23 D1 - 523 RVEL(3) (55)

D5 = CAL3 D3 + SAL3 D2 (56)

Equation (49) clearly shows that there is no difficulty in computing 65; and

equations (50) and (51) show that the only difficulty in computing 8¢ and then 6),

is when 6c = 0. In this case the mathematics cannot decide which angle to vary to
produce a rotation about Zg (fig. 3). Some type of maximum angular rate penality

may be needed to avoid excessive rates near singular points; that is, when S5=0 in
equation (50).

Generalized matrix inverse.— Write equations (50) and (51) as

g = [éu] (57)
%
where ] '
M2= [ o s5 (58)
|1 CS]
g2 = [ -sk D6 + cu DY (59)
| SAL3 D3 - CAL3 D2 ]
Then,
N M2* g2 (60)
%

where M2% is the generalized inverse of the 2x2 matrix M2. Again, 65 is computed
with equation (L49).

A total solution for 6; (i =1, 2, ..., 6) is provided by equations (39), (L),
(49), and (60). Hence, only the generalized inverses of two 2x2 matrices are
required. For some kinematically redundant manipulators, control based on general-
ized matrix inverses can lead to undesirable arm configurations (ref. T).

13



Choose which angle to rotate near singularity.- When 65 = 0, equation (51) becomes

éh + 66 = SAL3 D3 - CAL3 D2 (61)

and equation (50) is useless. The generalized matrix inverse solution actually
splits the rotational task equally between 8) and 6 when 85 = 0. Another

approach is to make éu = 0 when 65 is less than a prescribed amount and let

é6 = SAL3 D3 - CAL3 D2 (62)

Then, for additional rotational capability when 6g reaches a limit, continue rota-
tion with

éh = SAL3 D3 - CAL3 D2 (63)

Uncoupled arm and wrist motions.- An approach to avoid the wrist singularity that

occurs when 65 = 0 is to: (1) position the wrist with éla ég, and 63 (eq.

23); and (2) individually command the joint velocities éh, éS’ and é6 at the
wrist of the robot arm.

DISCUSSION

Visual observation of robot hand orientation.- In implementing resolved-rate control
on an industrial robot manipulator with a symmetrical hand, the following annoyances
were observed:

1. Keeping track of the positive hand axes: (Painting the hand might help
alleviate this problem.)

2. Keeping track of wrist orientation angles to avoid hitting limits.
(Displaying the angles to an operator will help, but this only increases his
workload. Perhaps, a better solution is to add appropriate hierarchical
control to handle this "out-of-range" problem for the operator.)

Large angular rates.- Another nuisance experienced in the teleoperator control of a
robot arm is the occurrence of large angular rates near mathematical singularities.
Hopefully, a hierarchical control structure on top of the operator's control will
eliminate this problem.

Different designs of robot arm.- Other robot arm designs may offer certain control
advantages.

Ability to record trajectory segment.- Current robot manipulators can be "taught"

a trajectory to be repeated later upon command. Hence, a recent trajectory segment
can be reversed to provide an operator with the option of a speedy and effortless
evacuation of the robot hand from a congested workspace.

It appears that some type of auxiliary hand control structure would be useful
in aiding a human operator (or computer) in the control of a robot arm. For
instance, such control should be formulated to produce the motions that are probably

1k



what an operator would like to do in a current predicament and to allow alternatives
based on his responding inputs. Of course, in future path planning with constraints,
hierarchical control would be of additional assistance to the operator.

CONCLUDING REMARKS

Kinematic equations for resolved-rate control of a robot arm are simplified to
allow faster computations, and control in singular regions is discussed.

15



APPENDIX A

HOMOGENEOUS TRANSFORMATION MATRICES

When the parameters in the table are introduced into the general transformation
matrix (eq. 1), the following six transformation matrices result. These matrices are
the same as those used in reference 2, except for notation and A32, which has
three additional unspecified parameters a3z, r3, and az. In the following
matrices, A3 = a3z, R3 = r3, SAL3 = sina3, CAL3 = cosaz, Cl = cos6;, S1 =
sinf;, etc.

- —Cl1 0 -s1
Aé - -s1 0 c1 (a1)
0 1 NO
L o 0 1
- -S2 -C2 0 -ES 82 9
Af _ c2 -S2 0 ES C2 (a2)
0 1 SN
L o0 0 0 1 J
-S3 -C3 CAL3 C3 SAL3 -A3 S3 7
Ag - c3 -S3 CAL3 S3 SAL3 A3 C3 (A3)
0 SAL3 CAL3 R3
0 0 0 1
~Ch 0 -Sh 0
Ag _ | -st 0 Ch (AL)
0 1 0 WE
0 0 0 1
~-C5 0 -S5 0 W
Ay = |7 ° © 0 (A5)
0 1 0 0
L0 0 0 1
" C6 -s6 0 0 -
6 - | s6 c6 0 (6)
> 0 0 1 HW
- 0 0 0 1~
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APPENDIX B

TRANSFORMATION FROM HAND TO BASE (THTOB)

Operator inputs for controlling the robot arm are resolved in directions
parallel to the base-coordinate axes by

TVEL Rg TVEL
. =1 —_—. (B1)
RVEL Ry RVEL

where the rotational matrix can be associatively grouped into products of matrices as

6 _ 1 3 L, 56
R = [RO(RfRZ) Bl Ry (RR.)] (B2)
where
Q1 Q3 clh S5 7
Rg(RERg) = Q2 Qb sh S5 (B3)
-S5 C6 S5 $6 c5 |
P1 -P2 CAL3 P2 SAL3 7]
RiRg = P2 PL CAL3 —P1 SAL3 (BY)
0 SAL3 CAL3
-Cl P1 Cl P2 CA3 - S1 SAL3 -C1 P2 SAL3 - S1 CAL3
Ré(RiRg) = -S1 P1 S1 P2 CA3 + Cl SAL3 -S1 P2 SAL3 + C1 CAL3 (35)
P2 P1 CAL3 -P1 SAL3
where
QL =Ch C5 C6 - Sb s6 (B6)
Q2 =S4k C5 C6 + C4 S6 (BT)
Q3 = -Ch C5 S6 ~ sS4 C6 (B8)
Q4 = -sh C5 S6 + Cb ¢6 (B9)
Pl = -C23 (B10)
P2 = -823 CAL3 (B11)
Multiplying equation (B3) on the left by equation (BS) produces a matrix L
(identical to RS). Let
T1 = C1 CAL3 P2 - S1 SAL3 (B12)
T2 = -C1 P2 SAL3 - S1 CAL3 (B13)
T3 = S1 CAL3 P2 + C1 SAL3 (B1k)
Th = -S1 P2 SAL3 + C1 CAL3 (B15)

17



Then the elements of L are:

L(1,1) = -C1 PL Q1 + T1L Q2 - T2 S5 C6 (B16)
L(2,1) = S1 P1 Q1 + T3 Q2 - T4 S5 C6 (B17)
L(3,1) = P2 Q1 + P1 CAL3 Q2 + P1 SAL3 S5 C6 (B18)
L(1,2) = -C1 P1 Q3 + T1L Q4 + T2 S5 S6 (B19)
L(2,2) = -S1 P1 Q3 + T3 Q4 + T4 S5 S6 (B20)
L(3,2) = P2 Q3 + P1 CAL3 Q4 - P1 SAL3 S5 S6 (B21)
L(1,3) = -C1 P1L Ck 85 + T1 Sk S5 + T2 C5 (B22)
L(2,3) = -S1 PL Ck S5 + T3 Sk S5 + Th C5 (B23)
L(3,3) = P2 Ck S5 + Pl CAL3 Sk S5 -~ P1 SAL3 C5 (B2L)

The translational and rotational velocities of the robot hand are then resolved
ig directions parallel to the base coordinate system by equation (Bl), with
R 0 = L.

The rotational transformation matrices (Ri;_;) are the 3x3 submatrices in

the upper left-hand corner of the homogeneous transformation matrices (Aii—l) in
appendix A. The inverses of these rotational matrices are also their transposes.

Thus, - -
€1 -S1 0
Rg = 0 0o 1 (B25)
s1 o]
[ls2  c2 o]
R; = _02 -S2 0 (B26)
0 0 1
_l

N A d N AN
TVEL(1), TVEL(2), and TVEL (3) are the somponents of TVEL with respect to the
base coordinate system (Xg, Yo, Zg). Let (TVEL)XQ, (TVEL)Yz, and

A A
(EXEE )Z2 be the components of TVEL relative to the coordinate system (X2, Yo,
Zg). Then, these components are related by the transformation equation.

RTVEL)X i [ TVEL(1) ]
2

(weL), | = mp R0 | mvEL(2) (B27)
2

(TvﬁL)Z TVEL(3)

=3 2- d -l

A
Therefore, in the text, the components of TVEL in equation (45) and (46) are as
follows:

(TVEL)X = s2[c1 TVEL(1) - S1 TVEL(2) + c2 TVEL(3)] (B28)
2

(qgéy)y = c2 [c1 WEL(1) - s1 EL(2) - s2 VEL(3)] (B29)
2
18



RVEL = 2z Bh

RVEL = RVEL -

velocities of the robot hand.

-

249,

The third column of RKy is

k
0

0

6 + z

[

APPENDIX C

-
*

Z

- 2%
is the resultant rotational velocity of that commanded and that induced by
rotations of joints 1, 2, and 3.

Equivalently, 2k is the third column of

k -1

0

=5 6

RESOLVED-RATE EQUATIONS

Joint rates are computed by solving equations (23) and (47) for commanded
These equations, repeated here for convenience,

- —293

gk, which is easily seen from
0
0

if the fourth element in the third column is disregarded.

The identity homogeneous transformation matrix is

0

416105 + (25 x dy4)0,

1
0
0

From equation (Al) in appendix A,

o i O

e ————

0
0
1

are

(c1)

(c2)

(c3)

(ck)

(c5)

(c6)

(c7)

(c8)

19



The third column (ignoring the fourth element) of the product

[ Cc1 s2 c1 c2 Ss1 ) Escls2-sNsl ]
[ ]
[ ]
2 12 i
AG = Ajhy = | s1s2 S1 C2 CL ! ES S1 52 + SN Cl
1
c, -s2 0 i ES C2 + NO
—— ? —-—
0 0 0! 1
yields
-~ -Sl
Zy = c1
0
In a similar manner,
R Cl S23 SAL3 - S1 CAL3
23 T | 51 $23 SAL3 + Cl CAL3
C23 SAL3
. —C1 c23 sk - C1 S23 CAL3 Ch - S1 SAL3 Ch
K -S1 €23 Sk - S1 S23 CAL3 Ch + C1 SAL3 ch

S23 sh - €23 CAL3 Ch

[ c1 c23 cb S5 - C1 S23 CAL3 Sk S5 - S1 SAL3 Sk 85 7]
+ Cl S23 SAL3 C5 - S1 CAL3 C5

= S1 C23 Ch S5 - S1 S23 CAL3 Sh S5 + €1 SAL3 sh S5
+ S1 S23 SAL3 C5 + Cl CAL3 C5

g

| -523 Ch 85 - €23 CAL3 Sk S5 + C23 SAL3 C5

The fourth column AKy (again, exclude the fourth element) provides Poxs &

(c9)

(c10)

(c11)

(c12)

(c13)

vector in base coordinates from the base-coordinate system to coordinate system k.

From equation (Al) in appendix A,
0
2oy T 0

NO

20
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From equation (C9),

oo =

ES C1 82 - SN s1
ES 81 82 + SN C1
ES C2 + NO

In a similar manner,

where

Po3 =

~

SN =

Cl €23 A3 + Cl ES S2 - S1 SN
S1 C23 A3 + S1 ES S2 + Cl SN
=523 A3 + ES C2 + NO

-

Cl 523 SAL3 WE - S1 CAL3 WE + Cl C23 A3 + Cl ES S2
Py, = S1 523 SAL3 WE + Cl CAL3 WE + S1 C23 A3 + S1 ES S2
C23 SAL3 WE - 523 A3 + ES C2 + NO

—Cl 523 SAL3 WE - S1 CAL3 WE + Cl1 C23 A3 + Cl ES S2
205 = |S1 523 SAL3 WE + Cl CAL3 WE + S1 C23 A3 + S1 ES 82
C23 SAL3 WE - 523 A3 + ES C2 + NO

SN + R3

Since coordinate systems 5 and 6 coincide,

Lo = Bos

- S1 SN
+ CL SN

- S1 SN
+ Cl SN

(c15)

(c16)

(c1T)

(c18)

(c19)

(c20)

A vector (in base coordinates) from coordinate system k to the robot hand-axis

system is
Hence,
d =p
06 06

e

k6 = Pog = Box

[ CL S23 SAL3 WE - S1 CAL3 WE + Cl C23 A3 ]

+ Cl ES 82 - S1 SN

S1 523 SAL3 WE + Cl1 CAE§ WE + S1 C23 A3
+ 51 ES 82 + C1 SN

C23 SAL3 WE - 523 A3 + ES C2 + NO

(c21)

(co2)

21



Cl 823 SAL3 WE - S1 CAL3 WE + Cl C23 A3
+ Cl ES 52 - 51 SN

46 = Ros ~ Eoy 51 S23 SAL3 WE + Cl CAL3 WE + S1 C23 A3
+ 51 ES 52 + Cl 8§

(c23)

C23 SAL3 WE - S23 A3 + ES C2

[ C1 523 SAL3 WE - S1 CAL3 WE + Cl C23 A3
- S1 R3

dog = Pog = P = S1 S23 SAL3 WE + Cl CAL3 WE + S1 C23 A3 (c2k)
+ Cl1 R3

i C23 SAL3 WE - S23 A3 o

Cl S23 SAL3 WE - S1 CAL3 WE
= Byg = B3 = S1 S23 SAL3 WE + Cl CAL3 WE (cas)
C23 SAL3 WE

436

A A A
By design, coordinate systems 4, 5, and 6 coincide so that_ghs =,§56 = dgg = 0.

Translational velocity equations.- The required cross products in equation (Cl) are:

-

[-51 523 SAL3 WE - Cl CAL3 WE - S1 C23 A3
-S1 ES 82 - C1 SN

zy % dog = Cl S23 SAL3 WE - S1 CAL3 WE + CL C23 A3 (c26)
+ Cl ES S2 - S1 SN
. 0 |
C1(ES C2 + SAL3 C23 WE) - C1 S23 A3
z; x 4, = | SL(ES C2 + SAL3 C23 WE) - Sl 523 A3 (caT)

-SAL3 WE S23 - ES S2 - C23 A3

Cl WE C23 SAL3 - Cl S23 A3 (c28)
S1 WE C23 SAL3 - S1 S23 A3
-S23 SAL3 WE - C23 A3

S

iy

)Y
]

22



With equations (C26), (C27), and (C28), equation (Cl) can be expressed as

TVEL (1) -S1 F1 -~ C1 F2 Cl F3 Cl Fh él
TVEL (2) = Cl F1 - 81 F2 S1 F3 S1 Fh 62 (c29)
TVEL (3) 0 -F1 -F5 63
where
F1 = 82 ES + F5 (c30)
F2 = SN + CAL3 WE (c31)
F3 = C2 ES + Fh (c32)
Fh = €23 SAL3 WE - S23 A3 (c33)
F5 = S23 SAL3 WE + C23 A3 (c3k)

Rotational velocity equation.- With equations (Cl1), (C12), and (C13), equation (C2)
becomes

RVEL (1) Cl S23 SAL3 - S1 CAL3  -C1(C23 Sh + Ck S23 CAL3)
- 51 ck sAL3
RVEL (2) | = | S1 523 SAL3 + C1 CAL3  —S1 (C23 sh + cl S23 CAL3)
+ Cl1 Ch saL3
RVEL (3) 023 SAL3 523 Sb - €23 ch CAL3
(C1 c23 ch - S1 sk SAL3 - C1 S23 Sk CAL3)SS + (Cl S23 SAL3 éh
- 81 CAL3)C5
(81 c23 ch + C1 sk SAL3 - S1 S23 Sk CAL3)S5 + (Sl S23 SAL3 és (c35)
+ Cl CAL3)CS
-(823 cb + Cc23 sb CAL3)S5 + C23 SAL3 C5 66

Equation (C35) is now simplified considerably as follows. Multiply the first row
of equation (C35) by Cl, the second row by S1, and add the results to get

D1 = S23 SAL3 éu - (Cc23 sk + ¢cb s23 CAL3)é5

] (c36)
+[(C23 ¢4 - sS23 Sh CAL3)SS + S23 SAL3 cs]e6

where

DL = Cl RVEL (1) + S1 RVEL (2) (c37)
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Now, multiply equation (C36) by S23, row three of equation (C35) by €23, and add to
get

D3 SAL3(eh + C5 96) - C),CAL3 6, - sk CAL3 S5 96 (c38)

5

where

S23 D1+ C23 RVEL(3) (c39)

D3

Multiply row 1 in equation (C35) by S1 and subtract Cl times row 2 to obtain

D2 -CAL3(éh + C5 66) - C4 SAL3 &_ - Sh SAL3 S5 66 (cko)

5
where

D2 = S1 RVEL(1) - Cl1 RVEL(2) (ch1)

Multiply equation (C36) by C23 and subtract S23 times row 3 of equation (C35) to
produce

Db

—sh 65 +ch S5 B (ck2)

where

D4 = C23 D1 - S23 RVEL(3) (ck3)

Multiply equation (C38) by CAL3 and add to SAL3 times equation (CLO) to get
D5 = ~Ch és - sk s5 & (chl)

where

1}

DS = CAL3 D3 + SAL3 D2 (chs)

Finally, multiply equation (CLlL) by -CL and add to -Sb times equation (Ch2) to obtain

és = —Ch D5 - SL Dh (cu6)

Then, multiply equation (CLL4) by -Sb and add Ch times equation (Cl2) to obtain

S5 66 = -shk D5 + c4 DL (chT)

The end result is obtained by multiplying equation (C38) by SAL3 and subtracting
CAL3 times equation (CLO). Thus,

éu + C5 66 = SAL3 D3 - CAL3 D2 (cL8)

Therefore, equation (C35) has been simplified to the three scalar equations (cue),
(ck7), and (Ch8).
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APPENDIX D

DETERMINANT OF M

In this appendix, the determinant of M (eq. (26)) is expanded explicitly in

terms of the joint angles and robot arm parameters. The determinant

-S1 F1L - CLF2 C(Cl1LF3 ClFL
det(M) = det ClFl -S1LF2 S1F3 S1Fh
0 -F1 -F5

expands to
det (M) = F1[F5(F3 - F4) - F4 S2 ES]
But, from equations (28) and (29),
F3 - Fh = C2 ES
Therefore,
det(M) = F1 ES(F5 c2 - Fh s2)
From equations (30) and (31),

FS C2 - F4 s2 = SAL3 WE(S23 C2 - C23 s2)
+ A3(C23 C2 + 823 s2)

which, with the trigonometric identities
823 C2 - C23 82 = 83

C23 C2 + 5823 82 = C3

becomes

FS C2 - Fi S2 = SAL3 WE S3 + A3 C3

(p1)

(Dp2)

(D3)

(Dk)

(D5)

(D6)
(D7)

(p8)

With equations (D8) and equation (27) for F1 in the text, the determinant of M in

equation (D4) is expressed simply as

det(M) = (82 ES + F5)(SAL3 WE S3 + A3 C3)ES

(D9)
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TABLE

- ASSUMED RELATIVE JOINT PARAMETERS

Joint, a;, a; r., 6{, ei limits,
1 deg in. in. deg deg
1 90 0 NO 6, +180 | +160
2 0 ES SN 6, + 90 +165
3 ag ag ry 03 + 90 +135
4 90 0 WE 8), + 180 | +135
5 90 0 0 85 + 180 | 4105
6 0 0 HW B¢ +270

Neck-to-base length (NO).

Elbow-to-shoulder length (ES).

Shoulder-to-neck length (SN).
Wrist-to-elbow length (WE).
Hand-to-wrist length (HW).
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Figure 1.- Robot arm with rotational joints.
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Figure 3.- Initial position of robot arm, joint axis systems,
and commanded robot hand velocities.
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Figure L.~ Robot hand translational and rotational
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Figure 5.- Robot hand axis system.
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Figure 6.- Rotational velocity components of robot hand
induced by individual joint rotations.
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Figure 8.- Illustration of information flow in robot arm control.
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