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1. INTRODUCTION

Volume integrals associated with the integration of inhomogeneous
Helmholtz equation are of practical interest in determining physical
quantities in acoustic, electromagnetic and elastic fields. The inhomo-

geneous scaler Helmholtz equation takes the following fomrm:
2 2, _
Ve + a“ = -4np(£? (1)

where OQE) is the source distribution or density function, V2 and a are
the Laplacian and wavenumber, respectively. It is well known [1,2] that

a particular solution to Eq. (1) is:

¢(£) = JIJ pgz') R-1 exp iaR 4V! (2)
Q

"=z -zl

in which (41rR)-1 exp iaR is the free space Green's function, and Q is the
region where the source is distributed. The source distribution function
pgs) can in general be either expanded or approximated in a polynomial

form and hence pgs') is normally written as
oz = 0t M @n” (3)

where A, u, v are integers. The integration of the vector Helmholtz
equation is analogous, [2].

The reduction of time harmonic fields of frequency w in the acoustic
and electromagnetic fields to that of integrating the inhomogeneous
Helmholtz equation over a given volume can be found in many standard texts

{3,4]. A formulation that leads to the required form of volume integration,



Eqs. (2,3) such that the elastic fields can be determined has recently been
given in [5-7]. Using the dynamic version of the Betti-Rayleigh reciprocal
theorem, an integral representation of the displacement field u, in an
elastic medium containing an inhomogeneity can be given in terms of the

1)

eigenstrains e¥, and eigenforce 113’ as:
1)

&) = - ][ Chres Byme @2 @ @

Q (4)
*
W gin(@L') (v
Q
where gjm are the spatial part of the free space Green's tensor function.
For a linear isotropic elastic medium,
1 2 .exp i8R
. (r-r') = —— gy
ng(~~ ) 4mp mZ { jm R
o
_(exp ia R expiBR]’jm] (5)
R R 3

in which o is mass density, a and B are wavenumbers for longitudinal and shear
waves, respectively. Expanding the eigenstrains and eigenforces in a poly-

nomial of position vector T yields:

* .

5 (}_:) = Aj + Ajk X * Ajkl X Xp 4 ... (6a)
*

€35 = By * Bigk X * Bijxa Mt o (6b)

and substituting it and (5) in (4), the displacement field is found to be
up(r) = £o500) Ay v £ () Ay v

* Fpiy @ Byy * Pk @ Byge * oo ™)



where

2 2
4ﬂpow fmj(r) = -B” ¢ ij + w,mj - ¢’mj

2 _ 2
4npom fmjk(r) = -B ¢k dmj + ¢k,mj - ¢k,mj

2
= [)‘0' \b:m Gij

2
4np°w Fmij(r)

2 . 2
4np°m Fmijk(r) = - [A o wk,m Gij
20 Yy mij * ¥ %k,mij!

Here, A, p are Lameé's constants, and

4(x) = J[! R exp(ior) dv',

wk(r) = J[J x]'<R-1 exp (icR) dv' ,
Ye1...s = JJJ XpXe ..xéR_l exp(icR) 4v!',

o(r) = JJJ R? exp(iBR) dv',
Q

8, () = JJJ xR exp(igR) av',

1ot 'h-l s '
= JJJ xkng"st exp(igR) dV'.

Q

This paper presents results for the volume integrals over a region

that is either an ellipsoid, a finite cylinder or a rectangular parallelpipe

2
*+ 2“ B ¢’i6mj - zu w:mij + 211 ¢’mij]

+ 2y B2 S i 8
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(8b)

(8c)

(8d)

(9a)

()

(9c)

(9d)

(9e)

(9£)



with semi-axes aj, a, and azs Fig. 1. The integrals in (9) are subsequently
referred to as the ¢-integrals and they are obtained in series form by expanding
R-1 exp (icR) in appropriate Taylor series expansions for regions r > r' énd
r <r', and by using the multinomial theorem with also the assistance of the
classical result of Dyson [8] in the case of an ellipsoid. Certain derivatives
of the ¢-integrals that are of interest are also presented.

Professors C. P. Yang and C. Saltzer of the Department of Physics and
Mathematics at The Ohio State University, respectively, participated in many

helpful discussions.

2. SERIES REPRESENTATION OF THE ¢-INTEGRALS

-1 . . -
Let R © exp iaR be expanded in a Taylor Series expansion for T' as

r-1 exp iaR = E (-,Hn [x! -Q—Jn[r-l exp iar] . (10)

i ax.
n=0 3 i
for r > !

and in a Taylor Series expansion for T as

@ n n
r-1 exp ioR = XO £:%%- (xi 527-) [(r')‘l exp iar'] s an
n= i
forr < '

in which the summation convention is observed and i = 1,2,3.
Employing the multinomial theorem as suggested in Ref. [1],

the ¢-integrals can be explicitly written as triple sums:

N S R ey
> n=0 220 ke %! KI (=TT S g, X n-t-k T }
I oF @R sy ar
Q
forr > r! (12)



and

@ n n-t n
= (-1) L8k n-f-k |
@ = nZO zzo kZO Tkl (mz-kyr -~ * Y 2
[If otxtyt2t) ——2 exp dart |,
M x’ ’z >
o ax'%ayrKaz M2k { A

for r < r!

The Taylor series representations given in Eq. (10) and Eq. (11)

converge for the region r > r' and r < r', respectively. The

integral ¢, (r) in Eq. (12) is normally used to evaluate physical quan-
tities measured at large distance from the region Q. The apparent singu-
larities present in Eq. (13) appear as 2n ¢, E_l, 5_2,... where € is a
small positive number. These singularities disappear, however, if e is
taken to be the radius of a sphere centered around the origin. In evalu-
ating ¢_ (z) for an ellipsoid, care must be taken in determining the con-

tribution to the integral from the lower limit e. A further note on this

is given at the end of Section 3.

3. INTEGRATION OVER AN ELLIPSOIDAL REGION

The integrals in (12, 13) are of either one of the following forms:

!}

o JIT &P yn? @9 avr
Q

¢S - fjf p(x' y' Z') an {Sin arv} qv'
Q ax'zay'kaz'“'l'k z!

oC = [If ox',y',2") " {Cos ar! } av'
Q ax'Yay1Xaz M2k !

(13)

(14)

(15)

(16)



These integrals can be further evaluated as follows:

(a) °0 - fff (X')f ()")g (z,)h av!
Q

e Uy 4 R(£/2)R(g/2)R(h/2)
~ (Zm+3) (2m+1) R(m) (17)
0 If any one of the superscript power f,g, or h is odd.

where al, az, a; are the axes of the ellipsoid, and
2m = £ + g + h

This result was first obtained by Moschovidis [9].

(b} n = 0, ¢S:

¢° - ] etxt,y',2") ‘;_;ﬁ‘—'
Q

L--] -1 2 )
) Iy plxt,y',2") mzl(-l) ammor T 2 avr
® -1 a2m-1
= mzl(—lj. T Sap sy
where
Sm P ] =’ Y @’ (x'2+y-2+zv2)m'1 dv’
? Q
aX+lau+lav+1
1 2 3 4

(A+p+v+2m+l) (A+p+v+2m-1)



2m. 2m 2m .
bt (m-1)1 a, "a, "ag (2my+2) ! (2my+p) 1 (2mg+v) ! [2(m=1) +A+u+v]/2!
Z m1!m2!m3! (2m1+l)/2! (2m2+u)/2! (2m3+v)/2! [2(m-1)+A+p+v]!

m; ,m,,m,
m1+m2+m3 =m-1 , if A,p,v all even, (19a)

=0, if A,u, or v odd.

(19b)

in which the multinomial formula

(T')zm = (x'z +y'2 +z'2)m

= ml:é ,m "T:‘;'_W &0 )2 21y s (20)

2’73
is used. In (20), the sums are taken over all non-negative integers m,, m,
and mg for which m; +m,+m, = m.
(cn=0 |, o©
o€ = f‘{fzf p(x',y',z") wi%r' vt (21)

-]

L

2m |
D" g ] et o e - S ave

m=0 r!

Using the multinomial formula and letting the integral in (21) be denoted by
c. =[] a0t o @0 @t av
m,p 2

2my +A 2mo+ 2m3+

m! ' 1 ' 2FU oy eM3+Y

B Rl o S ) Ao Miialic A Sulll 20 ar (22)
my,m,, My, 23 T

The volume integral in Eq. (22) may be viewed as the potential of variable

densities observed at the origin, r=0. Applying the results on volume



integration over an ellipsoid given by Dyson [8], Eq. (22) can be

written as

c = ) (m)! 2my+A, 2my+u_ 2mg+v
m,p Taaa, * —p—7—7 a a a
’ my M, My, 17273 m ! om,! m,! 1 2 3
© 2m_ +\ 2m,+u
wm+p 5m+p alx 1 azy 2
' 220P) (nup) t (mape1) aley | e ’
o pJ: P 1 2
2mz+v
, [23 LAy if A,u,v, all even (23.a)
—2'— Q » > > 2 .
a,+y
3
=0 ’ if A,]J,\), is odd (23-b)
where 2p = (A+u+v)
2 2
Q? = (@2 +9) (a3 + ¥) (af + W)
2 2 2
5 - aj+y d2 . a,*y d2 . ag+y d2
R 20 gyt 2 g?
1 3 y 3z ¢z
62 =§ -4
L1, 2 %2/, 23
! a,+y 82+¢ 8-3+lll
st = ] : 7 7
L.1e 12! 2 °
21,12,23 1°72°73 a, a, ag
2%
. d , (24)
a2 a4y 22 471203




in which the sums are taken over non-negative values of % L. 23 for which

1’ 72
%, + &, * Ly = g. Using the definition of §*, (24), and noting that
2m, +A 2m,+u
' 1 a,y! 2
2my*A L 2mptu . 2mz+v [ 1% 2
Fe (x0T @0 [ 5— -
a.+y a,+y
1 2
2m_+v
3
1
. 332
2
az+y
it can be easily shown that
L} L} L}
mp a;x ay' agz
S F 2+ ’ 2+ ’ 7+
aprd aytv agh
(m+p)!

i WD T, /D Tagro7n T (Bmy ) (Zmpru)tEngo)t -

m1+A/2 1 m2+u/2 m_+v/2

. 1 1 3 (25)
al+\p a§+¢ a.3+\b
Finally, forn = 0
o] " T;;;T c (26)
m=0 ; m,p

where

nm!(2ml+k)!(2m2+u)!(2m3+v)!

C =
m,p ml’gz’ms’ m1!m2!m3!(m1+A/2)!(m2+u/2)!(m3+v/2)!




2my+A+1 | 2mp+p+l | Zmz+v+l
a, a, ag

o m+P
2 mi+rf2 . 2 dﬁ /2 2 mz+v/2 (27)
) (ag+y)1 (aj+¥)"2 (ag+y) 377 %Q
()
@ nfo, o
S 2" sin or' ...
¢ = féfp(x',Y':z') ax'zay,kaz,nd.-k T'
© 2m-1
m-lu (28)
=m§1 D DT Sn,p
where
s = fIf Yot - — 3nk e )2 ay
mP g ax' ay' 8y’
(m-1)! (Zml)! (Zmz)! (st)!
B 2T K (n-L-K)1 :
m,,m,,m
1272°73
S MR gurImack (g veZmsonedek gy, (29)
Q

in which the multinomial formula is used and m,, m,, m3 are summed over all

integers greater than and equal to unity and m; +m,+m, are summed over all
integers greater than and equal to unity and my+m,+my = {m-1). The integral
in (29) can be obtained by using the formula given in (17), and is easily

shown to be

10



g

(m-1)! (2m1)l (Zmz)! (2m3)!
2! k! (n-2-k)!

st = 3
WP po,m,,m
1°72°73

4

a1l+2m1-£+1 azu+2m2_k+1 a3\)+2m3-n+2+k+l
"(2p+2m+1-n) (2p+2m-n-1)

RC5(A+2m, -2+1) JRCs(u+2m,-k-1) )R C5(v+2m -n+2eke1))

R(:(p+m-1-n/2))

if (A-2), (u-k), (v-n+g+k) all even

=0 if (A-2), (u-k) or (v-n+2+k) is odd
where
2p = A+u+v
(e nfo, ¢
C o fff plxtyyta) —p o STl gy,
' Q ax'zay' az'ME- r
v m a2m n
= L (D mmr G
m=0
where
n
n A u_,v 3 2m-1
c. = [[[ x"y¥z (r") v
m,p Q ax'lay'kaz'n'z-k

11

(30.a)

{(30.b)

(31)

(32)



When n # 0, it is not as easy to find a compact form for these integrals.
For the determination of the elastodynamic fields of an ellipsoidal inhomogeneity
as formulated in [6,7] it is sufficient to determine ¢<(r) for a finite number
T Bijk’ and Aj, Ajk’ ;.. in [6,7]. For example,
* if it is necessary to determine the eigenstrains eij up to a second order

of n's in determining the Bi

distribution, it is then sufficient to find o for 1 <n <6,

The integral ¢<(r) in (13) can be replaced for n = k by

1 z m M ()
¢ (r) = 3+ x_Xx -
@ =7 L OO e G G3)
where
k 2m-1
x)y _ A u v 3 (")
“m,p = Igfzf ) ) ek Y 4
P q u
The substitutions of the derivatives of (r,)Zm-l in Eq. (34),
lead to integrals that can be easily evaluated by using
Eqs. (23,24,25), for the casesm> 1, k =1, 3 andm > 2, k = 4, etc.
Special attention must be given to the casesm =0, k = 2,3, and m = 0,1
k = 4,
Using the notations given in Ref.[10} and noting that
dV' = dx' =dr' dS = dr'-r'2 dw , (35)

we obtain

1 172
T (2) = (E> (36)

where

12



g = zilai » &= Xy 37)

and f = 0, e = 1 due to the fact that here we consider the source point

being situated at the origin, i.e. r = 0. Volume integrals associated with

Eq. (32), 1 <n < 4, can be written into surface integrals by using Eq. (35).

and finally reduced to simple integrals through the work of Routh [11], e.g.

loen 3 ave = ffor @2 v ar - r?
Q

<fffe - @l ar a

If p = 1, [11, p. 901],

I/ 3 av ﬁ!{ln T'(2,) - e} dow

- ff{%- tn g + 2n e} du
z

Aq (39

fff @™ avr -%ff{[r'czl_v]‘z - e da
Q T

-1 dw + A
ngg * A,

=-%'aa * Ay (39)
i’i
-1 .
The surface integral of the type ff E.T 2; 9.]; g = dw can be reduced to simple
z

jntegrals as well by using the work of Routh [7] in the same manner as

listed in Ref. [6] and therefore will not be repeated here. The constants

13



The constants Al and A2 are equal to 4ﬂ(£na - lne) and +(2n/3)(s-2),
respectively for a sphere of radius a, where £ is a small positive number.

The coefficient of these types of terms, £n e, e‘l, e-z, ..., in the ¢-integral
can be shown to be identically ;ero in a straight forward manner if Q is a
sphere. When Q is an ellipsoid, the lower limit of integration should be taken
from the surface of a small sphere with radius e, (38,39). The contribution

to the ¢-integral from the lower limit can therefore be identified as zero.

14
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inhomogeneity : Ay u’; »°
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wave

Fig. 1 An ellipsoidal region

of integration.
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