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_ PREFACE

This is Part C of the three parts comprising Volume I on an overview of Artificial Intelligence (Al).

Part A.

Part B.

Part C.

L
II.
I11.
Iv.

The Core Ingredients, NASA TM 85836, June 1983
Applications, NASA TM 85838, September 1983
Basic Al Topics, NASA TM 85839, October 1983

Artificial Intelligence and Automation
Search-Oriented Automated Problem Solving and Planning Techniques
Knowledge Representation

Computational Logic

Intelligence .s involved with knowledge and the access, manipulation, transformation and utiliza-
tion of that knowledge for the purposes of problem solving and responding appropriately to new
situations. Thus, to develop artificial intelligence, one must be concerned with such topics as how to
represent k~owledge in a computer, how to utilize it, and how to find an answer in a huge search space
of possible soiution paths. Therefore, this part of Volums= [ endeavors to provide readily
understandable overviews of search-oriented problem solving, knowledge representation, and compu-
tational iogic. These overviews are elaborations cn the basic techniques briefly reviewed in Part A, and
provide-additional material not covered elsewhere in this series.

To enable the reader to relate artificial intelligence to the broader field of automation, this report
opens with a discussion of mechanization, automation and Al, and how they interrelate.

It is anticipated that this report will prove useful to engineering and research managers, potential
users and others seeking to obtain a basic understanding of artificial intelligence.
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I. ARTIFICIAL INTELLIGENCE AND AUTOMATION

A. Mechanization and A utomation

To better understand what is meant by Artificial [ntelligence (AI) and robotics it is helpful to step
back a bit and first look at terms such as mechanization and automation. To do this we will try to
synthesize the views of others who have approached this problem.

The original industrial revolution was based on mechanization. Mechanization was the use of
machines to take over some of the previous muscle jobs performed by either animals or human beings.
Laurie (1979) states:

When we apply ordinary production techniques—the application of leverage and power—to a process, we are
mechanizing it. Automation involves a good deal more. . . Automated devices are truly automated when feedback
information automatically causes the machinery to adjust to reachieve the norm. The internal adjustments of the
machine or system are made by servomechanisms (p. 355).

Automation is the achievement of seif-directing productive activity as a result of the combination of mechanization
and computation. ..(p. 15).

Peter Marsh (1981, pp. 419-420) elaborates further on mechanized machines, automatic devices and
automated devices:

[The classification of mechanization} depends on whether machines or combinations of animals and peopie are
responsible for the three fundamentai elements that occur in every activity (human or otherwise) — power, action and
control. [Simple mechanized devices] need a human to coatrol them. If a mechanical device is responsible for con-
trol, however, we have a self-acting or automatic device. Automatic devices are not the same as automated ones. . . .
automation equals mechanization plus automatic control plts one (or more) of three extra control features —a *‘sys-
tems’’ approach, programmability or feedback.

Extras that make automation

With a systems approach, factories make parts by passing them through successive stages of a manufacturing process
without people intervening. Thus the transfer lines of car factories in the 1930s count as automated systems.

With programmability —the second of the three *‘extras’’ that define automation —an automated system can do
more than one kind of job. Hence an industrial robot is an automated, not an automatic, device. The computer that
controls it can be fed different software to make the machine do different things — for example, spray paint or weid
bits of metal together. Finuiy, [external] feedback makes an automatic machine alter its routine according to changes
that take place around it. An automatic lathe with feedback —in which, for instance, a sensor detects that the metal
it is cutting is wrongly shaped and so instructs the machine to stop—is thus an automated device. It is clearly more
useful than a lathe without this feature.

B. Tools, Machines, Teleoperators, Robots

To extend the concepts of mechanization and automation further, we will consider tools, machines,
teleoperators and robots. To do this, we will utilize Marsh’s (1981) basic elemerits —power, action
and control.

Tool: A device used to perform an action. If used by a human, the person provides the
power and control.
Machine: A device that utilizes non-hurnan power to do an action. For a simple machine the

human provides the control.
Teleoperator: A machine capable of action at a distance under the control of a human.



Robot: A flexible machine capable of controlling its own actions for a variety of tasks
utilizing stored programs. Basic task flexibility is achieved bv its capability of
being reprogrammed. More advanced — intelligent —robots wouid be capable of
setting their own goals, planning their own actions and correcting for variations in
their environment.

C. Computation and Artificial Inteiligence

Laurie (1979, p. 15) defines a computer as ‘. . . an electronic device capable of following an intellec-
tual map. We call the map a program.”” Arden (1980, p. 9) suggests that ‘‘. . . computer science is the
study of the design, analysis, and execution of algorithms* in order to better understand and extend
the applicability of computer systems.”

Though everyone agrees that “‘Artificial Intelligence’’ (Al) is difficult to define precisely, the most
commonly accepted definition is that *‘Artificial Intelligence is the branch of computer science devoted
to programming computers to carry out tasks that if carried out by human beings would require
intelligence.”

A slightly different definition is giving by Duda et al. (1979, p. 728):

Artificial Intelligence (AI) is the subfield of computer science concerned with the use of computers in tasks that are
normally considered to require knowledge, perception, reasoning, learning, understanding and similar cognitive
abilities. Thus, the goal of Al is a qualitative expansion of computer capabilities,

Nilsson (1980, p. 2) notes that:

Al has also embraced the larger scientific goal of constructing an information-processing theory of inteiligence. If
such a science of intelligence could be developed, it would guide the design of intelligent machines as well as e::plicate
intelligent behavior as it occurs in humans and other animals. Since the development of such a general theory is still
very much a goal, rather than an accomplishment of Al, we limit our attention here to those principles that are rele-
vant to the engineering goal of building intelligent machines.

More recently, Nilsson (1981/1982) indicated that he would like to narrow the working definition of
Al even further to the central processes of intelligence. He thus states:

With regard to humans, [ am inclined to consider as centra/ those cognitive processes that are involved in reascning
and planning. Work on automatic methods of deduction, commonsense reasoning, plan synthesis, and natural-
language understanding and generation are examples of Al research on central processes.

Perhaps as important as the processes themselves is the ‘‘knowiedge’’ they manipulate. L fact, the subject of knowl-
edge representation formalisms is a good starting point for 2 more detailed explanation of just what I think Al is.

Arden (1980, pp. 22 and 23) states:

Though “intelligent behavior** is difficuit to define, and is currently understood differently by different people, there
has been some convergence of views within the Al community as the technical requicements for the computer solu-
tion of certain classes of problems becomes berter understood. To be sure, the human solution of a compiex equation
might be classified as intelligent behavior, while the corresponding action by a machine might not be so classified,
even though both machine and man had been programmed {or (learn) the process. Jue¢ possible requirement is that
there be something unstructured, something nondeterministic, for the solution process to qualify as intelligent.
Another is that it depends on the knowledge that must be used in obtaining the solution, or on the methods used. . .

Another important aspect is the use of heuristic rules*® of the kind humans use to solve problems. Although,
in general, such rules cannot be proved effective, they often lead to solutions. Some computer scientists argue that
heuristic programming better describes the ficld now called *‘artificial intelligence.”

*The Dictionary of Electronics, (Forr Worth: Radio Shack, 1975) defines algorithm as, “A set of rules or processes
Jfor solving a problem in a finite number of steps."
** Heuristics are '‘rules-of-thumb’’ (compiled experience) used 10 help guide probiem solving. They do not guarantee
a solution as algorithms do.
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Hayes-Roth (1981, p. 1) notes that:

Al provides techniques for flexible, non-numerical prob.em-solving. These techniques include symbolic information
processing, heuristic programming, knowledge representation, and automated reasoning. INo other fields or alterna-
tive technologies exist with comparable capabilities. And nearly all complicated problems require most of t.iese tech-
niques. Many forces combine to identify Al as the central technology for exploitation. Systems that reason and
choose appropriate courses of action can be faster, cheaper, and more effective and viable than rigid ones. To make

such choices in realistically complex situations, the system needs at least rudimentary understanding of mundane
phenomena.

In summary, Al is concerned with intelligent behavior, primarily with non-numeric processes that
involve complexity, uncertainty and ambiguity and for which known algorithmic solutions do not usu-
ally exist. Unlike conventional computer programming, it is knowledge based, almost invariably
involves search, and uses heuristics to guide the solution process.*

Thus Al can be considered to be built upon

1. Knowiedge of the domain of interest.

2. Methods for operating on the knowledge.

3. Control structures for choosing the appropriate methods and modifying the data base (system
status) as required. This contrasts with conventional computer programs which utilize known
algorithms for solution, are primarily numeric (number crunching) in nature rather than sym-
bolic manipulation, and in general do not require knowledge to guide the solution.

D. Relationship of Al to Automation

Artificial Intelligence may be considered to be the top layer of control on the hierarchical road to
autonomous machines. This is illustrated in Figure 1-1, derived from Marsh (1981).
However, Al includes a large area of activity which is not normally included in automation, e.g.:

natural language processing

perception and pattern recogaition
intelligent information storage and retrieval
game playing

automatic programming

computational logic

problem solving

expert systems

Nevertheless, as Computer Integrated Manufacturing and intelligent robots emerge, Al will have a
major role to play. Al contributions to perception and object-oriented programming are reviewed by
Brady (1984) for this new breed of robots.

E. Al and Other Fields
Duda, et al. (1978, pp. 729-730) state:

Historically, Al has both borrowed from and contributed to other closely related disciplines concerned with advanced
methods for informacdion processing. Thus, links exist between Al and aspects of such theoretical areas as mathe-
matical logic, operations research, decision theory, information theory, pattern recognition and mathematical lin-
guistics. In addition, research in Al has stimulated important developments in software technology, particularly in
the area of advanced programming languages. What distinguishes Al from these related fields, however, is its central
concern with all of the mechanisms of intelligence.

*As Al matures, the expectations associated with it are increasing. Schank (1983) s:ates that it is time to demand learning
capability from Al programs. He thus suggests a new definition: *'Al is the science of endowing programs with the ability
to change themselves for the better as a result of their own experi-nces."’

3
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Newell, et al. (1978, pp. 19-20), in referring to Al as Machine Intelligence (MI), note that:

The aims of research in MI are so broad — nothing less than extendirg the capabilities of symbol processing machines
for intelligent action —that it is not always easy to identify applications as emanating specifically from research in
this field.

Consider the important contributions t:1at M1 has already made. List processing has become an integral part of pro-
gramming technology. The abstract theory of programming owes much of its early impetus to LISP. The init:ation of
verification of programs is likewise due strongly to work in machine intelligence. This is also true of the subfield of
symbolic mathematics. Even some of the concepts of structured programming can be traced back to early MI lan-
guages —concepts of extensive hierarchization and recursion, for instance. Similarly, fundamental ideas of heunstc
search are used widely in operations research programs for domains where powerful opumization techniques are
unavailable or inadequate. Heuristic search is especially necessary today for handling large combinatorial problems,
such as job-shop scheduling.

As these examples illustrate, MI applications are characterized by helping to initiate fields of application and then
becoming freely mixed with independent invention and development from within the field. For example. in opera-
tions research, branch-and-bound technicues for limiting search (analogous to alpha-beta procedures in game trees)
and optimal scheduling algorithms came not from MI, but from within operations research. Structured program-
ming and symbolic mathematics have run essentiaily independent courses from work in MI. An extreme example of
this ‘‘initiation’’ syndrome in MI applications was the strong effect of Mi on the initiation of time sharing, but with
little specific technical transfer.

The reported MI research has some ties to specific areas of applications as we note below. However, its ultimate fate
is likely to be similar to the examples atove, in which most of the applications will not be identified as MI. For
instance, work on control structures is of fundamental significance to future applications. Every intelligent system
must employ a control structure capable of using partial knowledge, discovering relevant knowledge, coping with
pervasive error, etc. But as we discover ef fective system organizations, they will become assimilated into the applica-
tion area, their further development being seen as part of the application. Similarly, progress in heuristic search,
being of general utility, will diffuse through various applications fields.

Barrow (1979, p. 3) agrees, stating:

It is probably safe to say that Al seeks Lo understand and model virtually all human intellectual acuvity. In doing so,
it has drawn from or contributed to many other disciplines, particularly psychology, mathematical linguistics, mathe-
matical logic, operations research, decision theory, pat.*m recognition, and computer science. It has stimulated
important developments in software technology, especiaily concerning advanced programming languages and
systems.

It is interesting to note that no mention is rnade of an intetz<ction of control theory and Al. As
control theory has primarily deait with analog or numeric computation in relation to servo-
mechanisms, and Al has primarily dealt with symbolic manipulation, this lack of intersection is not
too surprising. However, this situation is beginning to change. DeJong (1983) examines the role of Al
in control, and Sauers and Waish (1983) indicate requirements and architectures for future expert
systems that can operate in the real-time environment associated with control. A technique for
coordinating control and knowledge-based components for an autonomous mobile robot guidance
system is proposed by Harmon (1983).

Saridis (1979) lays out a taxonomy of increasingly sophisticated control systems on the path to intel-
ligent controls. The furthest point on the path he identified as A’ Based on Saridis, Figure I-2 indi-
cates the increasing level of sophistication in control.

Saridis (1979, p. 1179) states that, “‘Intelligent controls should represent the perfect interface
between control hardware and a digital computer for higher level decision making according to the
principle of increasing intelligence with decreasing precision in a hierarchical control structure.”’ To
state it another way, Al can provide the topmost level in a control structure. ‘‘Such systems, imple-
mented by the fast large modem digital computer, can solve problems, identify objects, or plan a
strategy for a comrlicated function of a system’’ (Saridis, 1979, p. 1129).
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Albus, et al. (1981, 1983) have developed a theory of hierarchical control that can exhibit learning
and thereby provide learned reflex responses to complex situations. It also provides for the problem-
solving and planning functions that are normally associated with the highest level of intelligent action
that is considered to be the domain of Al, and incorporates expert system rules for error correction at
the intermediate levels of the control hierarchy. It therefore appears that Al will not only be a key to
the development of intelligent robots and factories of the future, but is destined to become a central
ingredient in advanced control systems as well.
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II. SEARCH-ORIENTED AUTOMATED PROBLEM SOLVING
AND PLANNING TECHNIQUES

This chapter provides an overview of search-oriented automated problem solving and planning
techniques. It endeavors to present the basic approaches to automated problem-solving at a level
where the concepts involved can be readily understood. It also provides an indication of the state of
the art and current and future research.

A. Al as Problem Solving

One way of viewing intelligent behavior is as problem-solving. Many Al tasks can naturally be
viewed this way, and most Al programs draw much of their strength from their problem-solving com-
ponents. Al applications that have strong problem-solving components include scene analysis, natural
language understanding, theorem proving, task planning, expert systems, game playing, and
information retrieva! and extraction.

Two important types of problem solving tasks are 1) synthesizing a set of actions (a plan) to achieve
a goal and 2) deduction. The latter ir.volves deducing (or inferring) conclusions from data or a given
set of propositions (applications include theorem proving and information retrieval). In this chapter
we will restrict ourselves to action synthesis, leaving a review of deduction for Chapter IV.

Many tasks can be formulated in terms of': given a goal, how do we achieve it? If direct methods are
not available for solution, as is the usual case in Al problems, then a search procedure to select from
the various possible alternatives is required. Thus, finding efficient search methods is one of the
central issues in automated problem solving.

B. Elements of a Problem Solver

All problems have certain common aspects: an initial situation, a goal (desired situation) and certain
operators (procedures or generalized actions) that can be used for changing situations. In solving the
problem, a control strategy is used to apply the operators to the situations to try to achieve the goal.
This is illustrated in Figure II-1, where we observe a control strategy operating on the procedures to
generate a sequence of actions (called a plan) to transform the initial conditions in the situation into
the goal conditions. Normally, there are aiso constraints and preconditions (conditions necessary for a
specific procedure to be applied) which must be satisfied in generating a solution. In the process of try-
ing to generate a plan, it is necessary for the sroblem solver to keep track of the actions tried and the
effects of these actions on the system state. Figure II-2 is a restatement of Figure [I-1 in which we can
view the operators as manipulating the data base (representing the problem status) to change the
current situation (system ;tate).

C. State Graphs as an Aid to Problem Representation

One easy way to focus on the relationships between the operators and the states is through the use of
state graphs. State graphs are networks made up of points (called nodes) connected by lines (called
arcs). For our purposes, we let nodes correspor: ! to system states and arcs correspond to operators.
Figure II-3 illustrates a state graph for a simple problem (such as finding the simplest route from city A
to city D). Note that there are several sequences (of different lengths) that will achieve goal state D, as
well as a dead-end F.

The various paths through a state graph can be represented, as shown in Figure [I4, as a
hierarchical structure called a tree. The solution paths run from the initial state along the branches and
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terminate on the leaves (terminal nodes) labelled ‘‘goal state.”” We could have also generated a tree of
paths starting from the goal state, as shown in Figure II-5. From Figures 11-4 or 1I-5, it is apparent that

the plan with the smallest sequence is to first use operator R, then operator S.

CONTROL
STRATEGY

PROCEDURES

GOAL
CONDITIONS

INITIAL

CONDITIONS
SEQUENCE OF ACTIONS = PLAN

Figure II-1. Problem Solving

CONTROL ¢
STRATEGY

* GOAL

e CURRENT
SITUATION

OPERATORS
¢ PLAN THUS
FAR

DATA BASE

Figure II-2. Automated Problem Solving Relationships
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Figure II-3. State Graph for a Simple Problem
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Figure II4. Tree Representation of Paths Thru the State Graph of Figure II-3
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STATE STATE END P
INITIAL
STATE

Figure (I-5. Working Backwards from the Goal State

For a large complex problem, it is obviously too cumbersome to explicitly draw such trees of all the
possibilities and directly examine them for the best solution. Thus, the tree is usually implicit; the com-
puter generating b.anches and nodes as it searches for a solution.

D. Reasoning : orward and Backward

In searhing for a solution we may reason forward from the initial state, as in Figure 114, or we may
reasor: backward from the goal, as in Figure II-5 (or both). Forward reasoning is said to be dat: driven
or i.>ttom-up. Backward reasoning is said to be goal-directed or top-down.

11
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E. Problem Solving Using Blind Search

If a procedure for successfully generating a solution in a reasonable time (an algorithm) is known, it
is applied and the problem is solved. Unfortunately, for many important problems no such algorithm
is known and a search procedure is required.

For faiily simple problems, a straightforward, but time-consuming, approach is blind search, where
we select some ordering scheme for the search and apply it until the answer is found.

The search proceeds by successively generating and examining the branches emanating from the
nodes, starting with the root node and proceeding along generated branches to new nodes. The search
tree grows as operators are applied to the nodes and the various paths explored. A node is referred to
as ‘‘open’’ if branches have not yet been generated from it.

As indicated in Figure I11-4, each node can be assigned a level, The root node is at level 0, its imme-
diate successors at level 1, and so on, with the level number being referred to as the depth.

1. Breadth-First Search

In this approach, the nodes of the search tree are generated and examined level by level starting
from the root node. No nodes at a deeper level are examined until all nodes at the previous level have
been explored. Breadth-first search always finds the shortest number of steps to the goal. (However,
this may not be the most desirabie or cheapest solution, because of the different costs associated with
applying the various operators. ee following discussion on heuristic search.)

2. Depth-First Search

As a search proceeds, new nodes are generated from the node currently being examined. These suc-
cessor nodes are called children and the generating node is called the parent. A depth-first search is one
which always continues in the parent-to-child direction until forced to backtrack. To prevent consider-
ation of paths that are too long, a depth bound is often specified.

A depth-first search does not necessarily find the shortest solution, but often can be programmed to
minimize memory requirements by only saving in memory the path currently being explored.

3. Backward Chaining

Backward chaining is a name given to depth-first, backward reasoning—an important search
strategy. An operator is chosen that would achieve the goal if selected. If it is applicable in the initial
state, it is applied and a solution has been found. If Lot, operators that wouid achieve the precondi-
tions required for its applicability are sought and the search continues recursively until a sequence of
operators are found that transform the initial state into the goal state. If the search fails, the program
backtracks and a new candidate operator is selected that would achieve the goal if applied, and the
process is repeated.

For problems requiring only a small amount of search, backward chaining strategies are often per-
fectly adequate and efficient. For larger problems, it is critical that the correct operator be chosen first
almost always, because this strategy follows out a line of action fully before rejecting it, which can
result in very lengthy searches.

4. Problem Reduction .

A generalization of backward chaining is problem reduction. Very often to satisfy a goai, several
subproblems (conjuncts) must be satisfied simultaneously. For this case of backward reasoning, apply-
ing an operator may divide the problem into a set of subproblems, each of which may be significantly
simpler to solve than the original problem.

A good example of problem reduction is readying a space vehicle for launch, as indicated in Figur
[I-6. Note that we can represent the goal —spacecraft ready to launch —as a conjunction of subgoals,
e.g., spacecraft fueled, all systems checked, power on. These in turn can consist either of a set of
simultaneous (‘‘AND’’) subgoals, or of one of several acceptable alternatives (““OR’’ subgoals). The
AND subgoals are denoted on the graph by horizontal arcs connecting the lines leading to them.
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Problem reduction often runs into difficulties without specific problem knowledge, as there is
otherwise no good reason to attack one interacting conjunct before another. Lack of suck knowledge
may lead to an extensive search for a sequence of acticns that tries to achieve subgoals in an
unachievable order.

F. Heuristic State-Space Search

Blind search does not make any use of knowledge about the problem to guide the search. In com-
plex problems, such searches often fail, being overwhelmed by the combinatorial explosion of possible
paths. If on the average there are n possible operators that can be applied to a node, then the size of the
search space tends to grow as nd, where d is the depth to be searched. Heuristic methods have been
designed to limit the search space by using information about the nature and structure of the problem
domain. Heuristics are rules of thumb, techniques or knowledge that can be used to help guide search.
Heuristic search is one of the key contributions of Al :o efficient problem solving. It operates by
generating and testing intermediate states along a potential solution path.

One straightforward method for choosing paths by this approach is to apply an evaluation function
to each node generated, and then pursue those paths that have the least total expected cost. Thus, we
can calculate the cost from the root to the particular node that we are examining and, using heuristics,
estimate the cost from that node to the goal. Adding the two, produces the total estimated cost along
the path, and therefore serves as a guide as to whether to proceed from that node or to continue from
another, more promising, node among those thus far examined.

Nilsson (1980) and Barr and Feigenbaum (1981) describe the ‘‘A* algorithm,”” whuch is guaranteed
(under appropriate condiiions) to find a solution path of minimal cost if any solution path exists. The
A* algorithm uses an evaluation function for the n-th node of:

f*(n) = g*(n) + h*(n)

where g* (n) estimates the minimum path cost from the start node of the tree to node n and h*(n) esti-
mates the minimum cost from node n to the goal. For the A* algorithm to find the minimum cost
path, the heuristic estimate of h* (n) of the cost from node n to the goal, must be non-negative and less
than the actual cost h(n). An example h*(n) for our probiem of Figure [I-3 (whose paths are repre-
sented by the tree in Figure 11-4) would be the straight line (airline) distance from node n to the goal.

Though the A* algorithm produces a minimum cost path, it does not usually minimize the search
effort, in fact usually producing an exponential running time for the search. If one leans more to mini-
mizing the search effort rather than the solution cost, one would put more emphasis on h*(n), the esti-
mate of the remaining cost to the goal, rather than on g*(n) the cost from the start node. Bair and
Feigenbaum (1981) describe various approaches to this tradeoff of speed versus solution quality, and
indicate that a considerabie reduction in running time is possible if the optimal solution requirement
is relaxed.

G. Game Tree Search

1. Representation

Most games played by Al computer programs involve two players making alternate moves. A game
representation must thus take into account the opponent’s possible moves as well as the player’s own
moves. The usual representation is a game tree, which shares many features with a problem reduction
representation. A complete game tree is a representation of all possible plays of such a game.

The root node is the initial state, in which it is the first player’s (A’s) turn to move. The successors of
the root node are the states that A can reach in one move. The successors of these nodes are the states
resulting from the other player’s (B’s) possible replies; etc. At each play, .he players must take into
account all the opponent’s possible responsive moves. This can be represented by an AND/OR tree.
Figure [I-7 is an example of such a tree from the standpoint of player A, who is to move next. Drawn

14
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Figure II-7. A Game Tree Drawn from A’s Point of View, A’s Move

from point A’s point of view, A’s possible moves under his control are represented by lines leading to
AND nodes. These successor nodes are called AND nodes since they control sets of moves all of which
A must be able to respond to. A’s nodes are called OR nodes, because A can choose any of the moves
emanating from these nodes.

2. The Minimax Search Procedure

The minimax procedure is a strategy for playing a two-person game. According to the minimax
technique, player A should move to the position of maximum value to him, B responding by choosing
a move of minimum value to player A. Given the values of the terminal positions (see Figure 1I-7), the
value (shown in parentheses) of a nonterminal position to player A is computed by backing up from
the terminals as follows:

¢ The value of an OR node is the maximum value of any of its successors.
¢ The value of an AND node is the minimum value of any of its successors.

3. Searching a Partial Game Tree

For most games, the tree of possibilities is much too large to be generated fully or searched back-
ward for an optimal move. Thus a reasonable portion of the tree is generated starting from the current
position, a move is made on the basis of partial knowledge, the opponent reply found, and the proce-
dure recursively repeated from the new position. The minimax procedure thus starts with an estimate
of the tip nodes thus far generated, and assigns backed-up values to the ancestors (c.g., values in
parentheses in Figure [I-7). The value estimates for the tip nodes are generated using a *‘static evalua-
tion function’” based on heuristics.

To reduce the number of nodes that need to be examined, various pruning techniques have been
devised, “Alpha-Beta’ (see, e.g., Marsland, 1983) being the best known. All these techniques are
based on keeping track of backed-up values so that branches that cannot lead to better solutions need
not be further explored.

15
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4. Heuristics in Game Tree Search

A ‘‘static evaluation function’’ is one that estimates a board position without looking at any of the
positions’ successors. The function is usually a linear polynomial whose variables represent various
features of the position. For chess, the features of importance include remaining pieces, king safety,
center control and pawn structure.

5. Other Considerations

Alternatives to search in choosing moves include opening or end game ‘‘book’* moves, and recog-
nizing patterrs on the board and associating appropriate playing methods with each pattern. The most
successful game-playing programs thus far, have made search, rather than knowledge, their main
ingredient. Various combinations of more extensive use of specific game knowledge to prune less desir-
able paths, and increased look-ahead have been utilized in chess in efforts to improve program success.

H. Difference Reduction (‘‘Means-Ends’’ Analysis) — Another Basic Approach

The difference reduction approach differs from pure search (which usually starts with either the
goals or the initial conditions) by instead progressively nibbling away at the problem to reduce the dif-
ferences between the initial and goal status. Difference reduction was introduced by the General Prob-
lem Solver (GPS) Program developed by Newell, Shaw and Simon beginning in 1957 (Emst and
Newell, 1969). This was the first program to cseparate its general problem-solving method from
knowledge specific to the current problem.

Figure [I-8 is a simplified flow diagram of the difference reduction approach. The analysis first
determines the difference between the initial and goal states and selects the particular operator that
would most reduce the difference. If this operator is applicable in the initial state, it is applied and a
new current state is created, The difference between this new current state and the goal state is then
calculated and the best operator to reduce this difference is selected. The process proceeds until a
sequence of operators is determined that transforms the initial state into the goal state.

If at any point, the operator chosen cannot be applied in the current state, a new intermediate goal
state is established that is the precondition for the chosen operator to be applied. The difference be-
tween the current state and this new intermediate goal state is then used as before. It the new inter-
mediate goal cannot be achieved, a new operator is chosen to reduce the initial difference and the
problem proceeds recursively until a solution is achieved.

The difference reduction approach assumes that the differences between a current state and a desired
state can be defined and the operators can be classified according to the kinds of differences they can
reduce. If the initial and goal states differ by a small number of features and operators are available for
individually manipulating each feature, then difference reduction works. However, there is no inherent
way in this approach to generate the ideas necessary to plan complex solutions to difficult problems.

1. More Efficient Tactics for Problem Solving

For more efficient problern solving than the methods described above, it is necessary to devise tech-
niques to guide the search by making better use of initial knowledge about the problem or of the infor-
mation that can be discovered or learned about the problem as the problem solver proceeds through
the search. These techniques are reviewed in the Non-Deductive Problem Solving Approaches Section
of Chapter III of Part A of this volume.

J. Future Directions for Research
Sacerdoti (1979; suggests the following lines of research as being especially important for the future.
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Figure II-8. Simplified Flow Diagram of the Difference Reduction Approach
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1. Integrating a Significant Number of Tactics

This approach, if successful, couid result in a very powerful problem solver, particularly where
hierarchical planning provides the framework and all the other techniques can be applied at each level
of planning in the hierarchy. (Some of the more complex expert systems have taken such an approach.)

2. Flexible Control Structure

in the real world, unexpected events occur frequently, so it is often more appropriate to only rough
out a plan, creating only its critical components in detail. Then, when the plan is executed, detailed
plans can be developed using real world feedback.

3. Planning for Parailel Execution

It appears that problem solvers that distribute plan generation and execution tasks will be one of the
major waves of the future. Pseudo-reduction tactics create plans that are partially ordered with respect
to time. Therefore they share with hierarchicai plan structures the virtue of being particularly amenable
to planning in parallel by multiple problem solvers and to execution in parallel by multiple effectors.

4. Partial Goal Fulfillment

Thus far, problem solvers have been designed to fully satisfy their goals. However, in the real world,
full goal satisfaction during execution is often impossible. Thus it becomes important to be able to
prioritize goals and plan for their partial satisfaction. (This is further explored in Part B, Chapter VI
on Problem Solving and Planning.)

5. Feedback of Lessons Learned from Plan Execution to Plan Generation

Lessons learned fiom plan execution can be extremely valuable for future plan generation. Therefore
focussing on integrated systems for plan generation, execution and repair may be one of the best
approaches to advancing the state of the art. Particularly, developing catalogs of successful plan gener-
ation tactics can be valuable in dealing with complex, interactive environments which kave been
beyond our capability thus far.

K. Current Research

Table [I-1 presents an indication of current research activities in search-oriened automatic problem
solving and planning techniques. A more detailed view of current research in this area is provided by
the Special Issue on Search and Heuristics of the Arrificial Intelligence Journal (Pear!, 1983).

L. Current State of the Art

Real, complex problems tend to have the characterisdc that their search space tends to expand expo-
nentiaily with the number of parameters involved. This ‘NP Complete’’ type of problem still is out of
bounds for searches that do not have powerful heuristics to guide them. Chess has been one indicator
of the state of the art in problem solving emphasizing search (though computer capability has been an
equally important factor). Berliner (1981) reports that 1981 chess programs (emphasizing look-ahead)
had reached an expertise of 2300 points compared with roughly 2500 points for the best human experts.

Current problem solvers emphasizing search have thus far succeeded only in solving elementary or
toy problems, or very well structured problems such as games. Thus, the Al community’s emphasis
has shifted toward expert systems (Duda, 1981) as probiem soivers, where the emphasis is on knowl-
edge rather than search.® In addition, there are trends toward distributed problem solving systems and
toward interactive problem solving systems where humans make the major decisions and the computer
program offers choices and works out the details.

* Even in chass, there is beginning (o be 3n emphasis on knowiedge as evidenced by the CHUNKER Progrem (Campbeil
and Beriiner, 1983) where the incorporation of knowiedge about patterns of chess positions drasticaily reduces search
requirements in appropriate situations.
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TABLE II-1. Examples of Current and Recer.: Research in Search-Oriented

Problem Solving b i jues

Techaique Program -atvitute Resesrcher Funding
Heunstiw .<arch Heuristic Search Theory Ll A J. Pear] NSF
Efficiency in Backtracking v, ina Univ. C.A. Brown NSF
P.W. Purdom
Blockhead A4 CA D. Kibler NOSC
roine P. Morris
B Algorithm for Heunstic S¢ ~¢ch .fungarian L. Mero
Academy of
Science
DELTA MIN for Backtro . CMU 1. Carbonell ONR
Constraint Satisfaction {nvasion Procadure UBC R. Seidel
and Relaxation
Algorithms
Multipie Agent Distributed Al SR{ K. Konolige ONR
Planning Systems N.J. Nilsson
Multi-Agent Flanning Synchronization of Multi- Stanford U. J.S. Rosenchein ONR
Agent Plans
Parallel Search Algorithm for Parallel Processing MIT W.A. Kornfeld
in Heuristic Searck
Parallel Search Efficiency Several
Canadian
Researchers
Minimax Game Tree Algorithm for Games with Duke B.W. Ballard AFOSR
Search Chance Events
Game Playing §SS* Minimax Algorithm U. of MD L. Kanal ’ NSF
Algorithms V. Kumar
Bruts Force Intelligence CMU H.J. Berliner ARPA
SNA Optimum Search
Branch and Round General Formulation U.of MD D. Nau et al. NSF
Analytical Evaluation Unified Approach Indiana U. P.W. Purdom & NSF
of Search Methods C.A. Brown
Gensralization of A Distributed Hierarchical UCLA J. Pearl NSF
Bayes Rule Approach
" Coordinatea Muitiple Unifying Data-Directed and U. of MA D.D. Corkill NSF
Blackboard Global Goal-Directed Control in a V. Lesser
Data Bases Muiti-Level Co sperating
Knowiedge Source Problem
Solver
Distributed Problem Meta-Level Control U. of MA V. Lesser et al. NSF
Solving ARPA
Other KAMP Planning System Using SR! D.E. Appelt ARPA
Procedural Network
M. Forecast

It is expected that within the next five years, the increased speed and capability of computers and the
ability to do parallel searches could have as much effect on search performance as new search
methods. However, as search usually grows expone.tially with depth, heuristics to restrict the paths to
be searched will also be of continuing importance. It is also expected that techniques to combine
shallow and deep reasoning (e.g., non-monitonic reasoning, causality, first principles, theorem
proving) will be major contributors to limiting ar.d guiding search.
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Schank (1983) states that **. .search is one of the key Al problems. However, . . .the approaches to
search have been inadequate. Searching massive amounts of information requires not efficient algo-
rithms but representations that obviate the need for these algorithms.”’ (Knowledge representation is
the subject of the next chapter.)
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III. KNOWLEDGE REPRESENTATION

A. Introduction

Artificial Intelligence views knowledge as the key to high-performance intelligent systems. Thus the
representation and management of knowledge is a central topic in Al today.

Newell (1981) defines knowledge as the information used by intelligent agents (human or machine)
to make rational decisions.* Further, Newell states that ‘‘knowledge is not just a collection of symbolic
expressions plus some static organization; it requires both processes and data structures.’’ Thus knowl-
edge representation consists of a system for providing access to a body of knowledge—a data structure
for representation in memory and a means (the computational process) for accessing that knowledge.

Structure and access are thus intertwined, with ideally a representation being chosen that simplifies
access to the knowledge for the particular task at hand. Thus, a variety of knowledge representations
exist, arising from the search for the most useful representation for the class of problems for which
they have been devised.

Myopolis (1981, p. 5) states that, ‘‘the basic problem of knowledge representation is the develop-
ment of a sufficiently precise notation for representing knowledge.’” To this must be added the require-
ment for efficiency and rapid access.

For the purpose of knowledge representation (KR), Myopolis treats a knowledge base as a model of
a world/enterprise/slice of reality. The Heuristic Programming Project (1980, pp. 5-6) indicates that
the knowledge base (KB) of Al programs contains both factual knowledge of the task at hand and
heuristic knowledge representing the tacit judgmental knowledge comprising domain expertise, and
often meta-knowledge of how to solve problems efficiently and effectively.

B. Purpose

The purpose of knowledge representation is to organize the information required into a form such
that the Al program can readily access it for making decisions, planning, recognizing objects and situ-
ations, analyzing scenes, drawing conclusions, and other cognitive functions. Thus knowledge repre-
sentation is especially central to ‘‘expert systems,”’ ‘‘computational vision,”” and ‘‘natural language
understznding.”’

C. Techniques

Representation schemes** are classically classified into declarative and procedural ones. Declarative
refers to representation of facts and assertions, while procedural refers to actions, or what to do. It is
virtually impossible to come up with a pure system of either type as ultimately both assertions and
what to do with or about them are involved in the data structures and the access mechanism in any
knowledge representation.

A further subdivision for declarative (objest oriented) schemes includes relational (semantic net-
work) schemes and logical schemes.

The principal KR schemes are briefly discussed in the following paragraphs and summarized in
Tables III-1.

* More precisely, Newell (1981, p. 20) defines knowledge as ‘‘Whatever can be ascribed (o an agent, such that its be-
havior can be computed according to the principle of rationality.”’
** The discussion of KR techniques given in this section is based primarily on Myopolis (1981), Barr und Feigenbaum
(1981, pp. 141-222) and Graham (1979, pp. 188-208).
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1. Logical Representation Schemes

The principal method for representing a knowledge base logically is to employ first order predicate
logic. In this approach, a knowledge base (KB) can be viewed as a collection of logical formulas which
provides a partial description of the world. Modifications to the KB results from additions or deletions
of logical formulas.

Examples of logical representations are:

IN(SHUTTLE, ORBIT) = The shuttle is in orbit.
V(x). EXTRA-TERRESTRIAL BODY (x)—~POSSESSES (x, NO KNOWN LIFE)

= For all x, where x is an extra-terrestrial body, x possesses no known life. Or more simply, all extra-
terrestrial bodies have no known life.

Logical representations are easy to understand and have available sets of inference rules needed to
operate upon them. Table IIl-1a summarizes the various aspects of logical KR’s.

2. Semantic Networks

A semantic network is an approach to describing the properties and relations of objects, events,
concepts, situations or actions by a directed graph consisting of nodes and labelled edges (arcs con-
necting nodes). Because of their naturalness, semantic networks are very popular in Al.

In a semantic net, the program can start at a node of interest and follow arcs to related nodes, and in
turn follow arcs to still more distant nodes. This approach is very natural —being reminiscent of
human thinking. However, the multiplicity of pathways, as we go further from the starting node,
makes it easy to get lost in the maze, unless a strong organizing or guiding principle is used (such as the
‘‘beam-search’’ approach employed by the HARPY speech-understanding system).

The various aspects of semantic networks are summarized in Table III-1b.

3. Procedural Representations and Product.on Systems

In procedural representations, knowledge about the world is contained in procedures —small pro-
grams that know how to do specific things (how to proceed in well specified situations). Classification
of procedural representation approaches are based on the choice of activation mechanisms for the
procedures, and the forms used for the control structures.

The two common approaches consist of procedures representing major chunks of knowledge —
subroutines (see Table III-1c)—and more modular procedures, such as used in PLANNER (Hewlitt,
1972) and the currently popular production rules. The common activation mechanism for procedures
is matching of the preconditions needed for the procedure to be invoked. In PLANNER, this is referred
to as ‘‘pattern directed procedure invocation.” The main difference between PLANNER and the
more recent ‘‘production rules’’ is that PLANNER's elemental procedures (called theorems) can
communicate direcily with each other, while the communication between production rules is only by
modification of the pattern in the Global Data Base (GDB) for the individual production rules to
observe.

Production rules (PR) are characterized by a format of the type:

Pattern, Action

If, Then

Antecedent, Consequent
Situation, Procedure

A PR system consists of a knowledge base (KB) of rules, a global data base (GDB) which represents
the system status, and a rule interpreter (control structure) for choosing the rules to execute. In a
simple production rule system, the rules are tried in order and executed if they match the pattern in
the GDB.
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However, in more complex systems, such as used in expert systems, a very complex control structure
(see, e.g., Gevarter, 1982) may be used to decide which group of PR’s to examine, and which to exe-
cute from the PR’s (in the group) that match patterns in the GDB. In general, these control structures
work in a repetitive cycle of the form:

1. Find the conflict set (the set of rules which match some data ir the GDB).
2. Choose a rule from among the conflict set.
3. Execute the rule, modifying the GDB.

Because of their modular representation of knowledge and their easy expansion and modifiability,
PR’s are now probably the most popular Al knowledge representation, being chosen for most expert
systems.

Table 11I-1d summarizes the central aspects associated with producticn rule systems.

4. Analogical or Direct Representations

In many instances it is appropriate to use natural representations such as an array of brightness
values for an image, or a further reduced sketch map of the scene delineations in a computer vision
system. This ‘“‘homomorphism’’ (structural similarity) is evident in the use of maps, geometric models,
etc. These direct representations are analogous to some properties of the situation being represented.

These natural representations are useful in computational vision, spatial planning, geometric rea-
soning and navigation. One even notices analogical aspects in musical notation where the rise and fall
of the musical frequency is apparent in the representation of the notes in the score.

This form of representation has the advantages of being easy to understand, simple to update, and
often allows important properties to be directly observed, so that they don’t have to be inferred. A
direct or analogous representation can usually be more exhaustive and specific, making for more effi-
cient problem solving. It also can facilitate search and working with constraints. However, this form of
representation is clumsy fcr some tasks, particularly when generalization is needed.

Table I1I-1e summarizes the attributes of direct representation.

5. Property Lists

One approach to describing the state of the world is to associate with each object a property list; that
is a list of ali those properties of the object pertinent to the state description. The state and therefore
the object properties can be updated when a situation is changed.

Table III-1f briefly indicates the attributes of such a representation.

6. Frames and Scripts

Humans are able to handle with relative ease a large variety of circumstances in everyday life
because to a great extent our days are filled with a series of stereotyped situations such as going to
work, eating, shopping, etc.

Minsky (1975) conceived of ‘‘frames,”” which are complex data structures for representing stereo-
typed situations. A frame has slots for objects and relations that would be appropriate to the situation.
Attached to each frame is information such as:

— how to use the frame
— what to do if something unexpected happens
— default values for slots.

Frames can also include procedural as well as declarative information. Frames facilitate expectation-
driven processing—reasoning based on seeking confirmation of expectations by filling in the slots.
Frares organize knowledge in a way that directs attention and facilitates recall and inference.
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An example of a frame is:

Airplane Frame:
Specialization of: Aerospace vehicle

Typ&srango::: (fighter, transport, trainer, bomber, light plane, observation)
Manufacturer:

range: (McDonnell-Douglas, Boeing. . . .)
Empty Weight:

range: (500 Ibs to 250,000 lbs)
Gross Weight:
range: (500 1bs to 500,000 Ibs)
if needed: (1.6 X empty weight)
Name:
if needed: (Choose name satisfying type and manufacturer)
Max Cruising Range:
if needed: (Look up in table cruising range appropriate to type and gross weight)

Number of Cockpit Crew:
range: (11t03)
default: 2

Scripts are frame-like structures designed for representing stereotyped sequences of events such as
eating at a restaurant or a newspaper report of an apartment fire.
Table [11-1g summarizes the central aspects of frame representations.

7. Semantic Primitives:

For any knowledge representation scheme it is necessary to define an associated vocabulary. For
semantic nets, there iias been a real attempt to reduce the relations to a minimum number of terms
(semantic primitives) that are non-overlapping. A similar effort has emerged for natural language
understanding.

A natural language is an attempt to describe all of the world’s aspects important to humans. Unfor-
tunately, as these languages evolved naturally, rather than being scientifically ordained, a great deal of
ambiguity has entered *he languages, such that the meaning is often dependent on context and back-
ground knowledge. Several attempts have been made to describe all of the world’s aspects in terms of
primitives that are unique, unambiguous representations into which natural language statements can
be converted for later translation into another language or for other cognitive actions.

Wilks (1977) has proposed a system designed to be used for language translation. His system is cen-
tered around a dictionary for distinguishing among the various senses of the words that can appear in
the input text. Definitions in the dictionary are defined in terms of some 80 semantic primitives
grouped into the following five classes:

Class Example Primitives
Entities man, stuff, part
Actions cause, be, flow
Cases to, in
Qualifiers good, much
Type Indicator now, kind
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The completed representation of a text is in terms of sernantic formulas constructed from the primi-
tives. For example:

‘“‘Some spacecraft sprout large antennas’’.
AGENL @t (L]0 <=t ObjECT
Entities or actions: [spacecraft]ss=——s=[sprout) «—[antennas)
Qualifiers: [some] [large]

where the terms in square brackets would be replaced by semantic formulas representing their appro-
priate sense.

Wilks has also incorporated inference rules and other structures to assist in clarification and organ-
ization of the resulting text representation.

Schank (see, e.g., Schank and Riesbeck, 1981) has developed a *‘conceptual dependency’’ theory as
an attempt to provide a representation of all actions in terms of a small number of primitives.
Schank’s goal is broader than language translation, the representation being task-independent so as to
be applicable to inferring, paraphrasing and answering questions as well.

Schank’s primitives are intended to be unambiguous and unique. The system relies on 11 primitive
physical, instrumental and mental ACTs (propel, grasp, P trans, A trans, speak, attend, etc.), plus
several other categories, or concept types.

Detailed rules are provided in conceptual dependency for combining the elements into represer:ta-
tions or meaning. There are two basic kinds of combinations or conceptualizations. One involves an
actor doing a primitive ACT; the other involves an object and a description of its state. Attached to
each primitive act is a set of inferences that could be associated with it.

More recently, Schank has added clarifying elements in terms of goals, scripts, plans, themes and
social acts, designed to provide additional meaning, purpose and context to the representations.

An example of a representation in conceptual dependency is:

Armstrong flew to the moon.

Actor: Armstrong
Action: ' flew
Direction to: the moon
From: Unknown

The use of semantic primitives allows propositions to be stored in canonical (standardized) form,
with resultant computational advantages for many uses.

D. Representation Languages

A number of programming languages have been designed to facilitate knowledge representation.
Table I11-2 lists some of the more popular ones.

It will be observed thax usually one form of knowledge representation (such as production rules or
frames) is chosen as central to the language, though some (such as UNITS) provide for multiple
representations.
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TABLE III-2. Programming Tools Facilitating Knowledge Representation

Tools Orgsan.zation Nature

OPS § CMU A, programming language, built on top of LISP, designed to
facilitate the use of production rules.

ROSIE Rand A jeneral rule-based programming language that can be used
to develop large knowledge bases. Translates near-English
into INTERLISP.

UNITS Stanford U. A knowledge representation language and interactive knowl-
edge acquisition system. The ianguage provides both for
‘‘frame’’ structures and production rules.

KRL Xerox PARC Knowiedge representation language developed to explore
frame-based processing

SAM Yale A system of computer programs to analyze scripts.

FRL MIT A frame representation language that provides a hierarchiczi

knowledge base format consisting of frames whose siots carry
comments, default values, constraints, and procedures that
are activated when the value of the slot is needed.

KL-ONE BBN A uniform language for representation of natural language
conceptual information, based on the ides of structured in-
heritance networks. Networks use epistemological primitives
as links.

NETL cMU A comprehensive, domain independent, knowledge-base sys-
tem. [t uses a parallel intersection technique for searching
rapidly t~rough large bodies of knowiedge.

DAWN DEC A general programming and system dacnpuon language with
automated help perocedures.

owL, MIT A semantic network knowledge representation language for
use i natural larguage question answering and for building
expert systems.

FRAIL Brown U. A KR language that combines predicate calculus with frame

representation for use in natural language undersianding.

E. State of the Art

Though production rules have emerged as the dominant KR for expert systems, and semantic net-
works for image understanding, KR is still in a state of flux with many researchers, various representa-
tions, and no clear genera! understanding of which representations are most appropriate for which
problems. As a result, KR research is one of the most active areas in Al today.

F. Issues

SIGART"s (1980) ‘‘Special Issue on Knowledge Representation,” indicates that there are many
areas of concern (pp. 114-115). Virtually every aspect of KR still is an issue. A few of these issues are:
1. First Order Predicate Logic (FOPL) as a Standard of Representation.

Many researchers such as Kowalski (p. 44) feel that FOPL is the only language suitable for KR —
whether declarative or procedural. Correspondingly Kowalski maintains there is only one intel-
ligent wuy to process informnation—and that is by applying deductive inference methods.

Others such as Sloman (p. 48) declare that there is ‘‘No such thing as an ideal representational
formalism. . . No one formula is equally adequate for all things for all purposes. . . No doubt ail
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knowledge representation can be embedded in predicate calculus, but this may be of little practical
importance.”

Zadeh (p. 48) observes that most human knowledge is imprecise in nature. Therefore two valued
logic and associated representation techniques are not appropriate — fuzzy logic being necessary.

How to provide everyday context and common-sense know-how in representations? Drefus
(p. 42) observes that the background context continually varies, while rule behavior tends to
assume ‘‘everything else being equal.”

Need to consider representations in a broader sense, such as holograins which can be used to
process information, but is not a data structure.

Hobbs (pp. 43-44) declares that, ‘‘Standard practice in the representation of knowledge is the
scandal of AI. . .Ninety percent of what is done in the representation of knowledge is reinvention,
most frequently in predicate calculus.”” There is 2 multitude of items for similar aspects. ‘“The
consequence is a jungle of incomparable resuits.”

In this regard Newell (1981) observes in regard to the SIGART KR survey that, ‘“The main result
was overwhelming diversity —a veritable jungle of opinions. There is no consensus on any ques-
tion of substance.”

Doyle (p. 41) declares that there is a need to consider intention, action, purposive communication
and the processes of problem solving in KR. Also needed are systems which are self-referent (both
to descriptions and parts and to belief systems). Better KR’s for learning processes and belief revi-
sion also need to be developed.

Need (o clarify which KR’s are best for which purposes.

7. How do we find the most appropriate representation for givén problems?

10.
11.

12.
13.
14,
15.

16.

G.

l
2
3

Problem of selecting the appropriate level of abstraction for a problem —scope and grain size
(Davis, 1982).

KR’s that facilitate knowledge acquisition.
Designing KB’s to facilitate updating— modularity.

Need for multiple representations for different aspects (or at different stages of problem solving)
of the same problem.

Problem of incompleteness inherent in ali KR's.
Understandability — transparency.
Lack of a theory of KR.

Houw to represent knowledge so as to enable Al programs to behave as if they knew something
about the problems they solve.

How best to choose a representation to provide the greatest efficiency in deductive reasoning
(Moore, 1982).

Some Research Needs:

. Standardization of nomenclature and techniques

Methods of matching representations to problems
Methods to handle imprecise knowledge
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Methods to evaluate efficiency of representation
Need to be able tc conveniently represerit intentions, beliefs, etc. in representations.
Metheds to provide self-knowledge in representations.
Methods for quantification —the ability to specify properties of arbitrarily defined sets.
Representation methods for people’s beliefs.
9. Representations of procssces that consist of sequenced actions over time.
10. Representations for complex and amorphous shapes.
11. Techniques for indexiig into a large data base of models.

© N e

H. Who Is Doing It

Review of SIGART’s (1980) ‘‘Special Issue on Knowledge Represc.tation’’ indicates that the fol-
lowing are the principal organizations involved in KR research.

1. Universities

Stanford University

University of Hamburg (West Germany)
CMU

Simon Fraser University (Canada)
University of Paris

University of Pittsburgh

MIT

Yale

niversity of Toronto (Canada)
University of Maryland

SUNY, Buffalo

University of Ottawa (Canada)

Rutgers University

University of Amsterdam (Netherlands)
Undversity of Essex (England)
University of California (Berkeley)

N. Dakota State University

2. Other

IBM
DEC
SRI

BBN

1. Future Directions

The knowledge represen:ation field has begun to exhibit some structure — rule-based systems pre-
dominating in Expert Systems, but network representations also being important. For image under-
standing systems, direct representations (such as line sketches) are common, witk network representa-
tions being widely employed.

In the future, we will probably see increased standardization of terminology, standardized primi-
tives, and the use of multiple types of representations in a single problem. We can al*o expect increasea
emergence of self-reflective system.: that can reason about their own structure and knowledge.



Also emerging will be knowledge representation systems that are appropriate for learning, general-
ization and abstraction —currently difficult subjects.

KR languages are on the increase, which should help in constructing knowledge-based systems and
enccurage standardization of representations.

Within the next five years, we can expect a clearer understanding of which representations are
appropriate for which problems.

We can also expect KB’s to vastly increase in size with KR techniques being developed to ease the
addition of knowledge to them and the retrieval of knowledge from them.
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IV. COMPUTATIONAL LOGIC

A. Introduction

It is frequently necessary to develop computer programs to deduce facts that are not explicitly
represented but that are implied by ccher represented facts. An intelligent robot may have to use
logical facts about its environment, e.g., to deduce when a goal state has been reached or how to reach
the goal state in the first place. A data base query system may have to deduce desired information from
other information in the cata base.

Computational logic has been developed to address such problems. In addition, the associated
predicate calculus expressions have proven to be a powerful means for knowledge representation for
Al programs. Computational logic is thus an important Al area and is briefly reviewed in this chapter.

Raphael (1976, pp. 110-111) states:

A typical task pcsed for a logical system is the following. Given some logical sentences representing premises, and a
sentepce called a theorem, which represents some assertion whose truth we wish to determine, demonstrate whether
the theorem is guaranteed to be true provided only that the premises are true. If such a demonstration can be obtain-
ed, it is called a proof ot the theorem from the given premises, and we say that the premises imply the theorem.

Ther= are two approaches to attempting to construct proofs. One, called the semantic approach, depends heavily
upon the meanings of the symbols in the [logical statements]. In a sense, when we use a semantic proof, we reason
primarily by considering all the possible interpretations of the logical statement to be proved. In the other approach,
called syntactic, we totally ignore the meanings of the symbols; instead, we use formal symbol-manipulation rules of
the logical system to construct new [logical statements] out of old ones. The syntactic approach is frequently easier to
use, especially for a computer, because one can apply rules in a mechanical way ‘vithout having to think about what
they mean. .

A logical system consists of both a specification for the structure of the [logical statements] of the system, and a set of
rules, called the rules of inference of the system, for constructing proofs. Many different logical systems have been
invented; in fact, each mathematician is free to invent his own as he sees fit.

Traditional computational logic—a computational approach to logical reasoning—is divided into
two principal parts, the simpler “propositional logic’’ and the more complex “‘predicate logic.’’

B. Propositional Logic

In logic a *‘proposition’’ is simply a statement that can be true or false. Rules used to deduce the
truth (T) or falsehood (F) of new propositions from known propositions are referred to as ‘‘argument
forms.” The interesting and useful things we can do with propositions result from joining propositions
together with connectives such as OR, AND, NOT, and IMPLIES to make new propositions. The
symbols for these connectives are given in Figure IV-i.

The simplest argument form is the ‘‘conjunction,’’ which utilizes the connective AND. It states that
if proposition p is true and proposition q is true, then the conjunction “p AND q”’ is true. In symbolic
form we have

P (premise)
q (premise)
PAq (conclusion).

which simply states that for a conjunction, the conclusion is true if the premises are true.
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Connective Symbol Meaning
And AorN both
Or VorU either or both
Not Tlor ~ the opposite
Implies D Or = If the term on the left is

true, then the term on the
right will also be true.

Equivalent = has the same truth value

Figure IV-1. Typical Mathematical Logic Symbols.

Deduction means obtaining solutions to problems using some systematic reasoning procedures to
reach conclusions from stated premises. (In mathematical logic, deductive procedures are sometimes
referred to as ‘‘formal inference.’’)

One simple form of deduction can be represented as a mathematical form of argument called
“Modus Ponens’’ (MP):

p (premise)
p IMPLIES q (premise)
q (conclusion)
An example of MP is:
I’m feeling very sick (premuse)

When I'm feeling very sick, [ must call the doctor  (premise)

I must call the doctor (conclusion)

The conclusion is usually stated as a theorem to be proved.

The method of truth tables is the best-known method for proving theorems in propositional cal-
culus. This is a semantic method, in which all the possible combinations of interpretations for the
propositional variables are examined.

Graham (1979, pp. 165-168) enlarges on this:

Suppose we are given some expression involving propositions and logical connectives. Suppose further that we know
whether each individual proposition in the expression is true or false. We would like to be able to calculate whether or
not the proposition represented by the entire exprassion is true or false.
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We can do this in two steps. First we assign each proposition in the expression a truth value of either T or F. True
propositions get the value T and false ones get the value F.

Second, we treat the connectives AND, OR, NOT and IMPLIES as operators operating on T and F, just like the +,
-, X, and / in an algebraic expression operate on numbers. In other words, we do **logical arithmetic’’ to calculate
the truth value of the entire expression.

The proposition
pORgq
is true if p is true, if q is true, or if both are true. This gives us the following truth table for OR:
P 4 pORgq
T T T
T F T
F T T
F F F

Another argument form, the “‘implication relation’’ is defined such that if p IMPLIES q then when
pis true, q will be true, and nothing more. The implication relation does not say that p and q have any
cause-and-effect relationship to one another. When p is false, nothing whatever is asserted about q.
Therefore, the only way in which p implies q can be false is if p is true and q i< false. The resuitant truth
table is:

p q p IMPLIES q
T T T
T F F
F T T
F F T

A large number of argument forms are available in traditional logic. All these forms can be easily
verified using simple truth tables.

Raphael (1976, pp. 113-114) observes:

The task of constructing a truth table can certainly be programmed f{or a computer, and the truth-table method

will work to prove or disprove any theorem of propositional calcvius. However, this method is not entirely satis-

factory, becauce it can be extremely inefficient. If n different propositional variables occur in the premises and the

theorem, then a table with 2" rows must be filled out; a problem with ten variables requires more than 2 thousand

lines.

Wang (1960) at Harvard University developed a syntactic method that is about as efficient as any
general method for propositional calculus can be. It produces exactly the same results as truth
tables, usually requires much less computational effort, and is easy to program.

C. Predicate Logic

Propositional logic is limited in that it deals only with the T or F of complete statements. Predicate
logic remedies this situation by allowing one to deal with assertions about items in statements, and
allows the use of variables and functions of variabies.

Propositions make assertions about items (individuals). The “‘predicate’’ is the part of the proposi-
tion that makes an assertion about the individuals. A proposition is conveniently ‘vritten as:

arguments of the predicate
Predicate (Individual, Individual,...)
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“The box is on tiie table.” (proposition) is denoted as:

ON(BOX, TABLE)

The predicate, together with its arguments, is a proposition. Its value is T or F, and any of the
operations of propositional logic may be applied to it.

A variable stands for any individual. Variables allow us to make statements that would not ke
possible in propositional logic. For a proposition containing variables to be true, it must be true for
any individual names that are substituted for the variables.

Using variables, if we want to write the English sentence:

“If xisby yand z is on x, then z is also by y.”’
as a predicate logic expression, it would tale the form:
BY(x,y} AND ON(z,x) IMPLIES BY(z,y).

Substituting the name of a particular individual for a variable is known as “‘instantiation.”” It is
called instantiation because the individual is a particular ‘‘instance’’ of the variable. We can assert
that something exists by making up a name for it (e.g., a, b — individual constants) and use that
name in our expression. For example, to state that ‘‘a’’ is a box, we write

BOX(a).
We can instantiate our previous expression (for the case of a window, table and ball) as:

BY(TABLE, WINDOW) AND ON(BALL, TABLE)
IMPLIES BY(BALL, WINDOW)

which translates as: if the table is by the window and the ball is on the table, then the ball is also by the
window.

Sometimes the individual whose existence we wish to assert will depend on some other individual;
then we can use functions (f, g, h) to do this. For example:

The mother of a =f(a).
More generally, if we want to assert that every person has a mother, we can write:
PERSON(x) IMPLIES MOTHER (f(x),x)
which can be read as:
If x is a person, then there exists an f(x) that is x’s mother.

D. Resolution

Resolution has been the primary technique used in modern computational logic programs. Resolu-
tion is a syntactic method of deduction which replaces all the many argument forms of traditional
logic. Resolution is a simple concept but to discuss it, a few additional definitions will be helpful.

Atom: aproposition that cannot be broken down into other propositions (i.e., a proposition that is
not formed from other propositions by using connectives).

Literal: an atom (e.g., @) or an atom preceded by NOT (e.g., NOT @)

Clause: a series of literals joined by OR, e.z.: (NOT p) OR q OR (NOT r)
[Duplicate uterals in clauses can be eliminated. This process is called factoring.]
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Resolution Principle (R): an argument form that applies to clauses:

pORIORmOR... (prernise)
(NOT p)ORnOR o0 OR... (premise)
IORmORNnOROOR... (conclusion)

(If the premises are T, then by resolution (the cancellation of contradicting literals between clauses)
the conclusion is T.)

Empty Clause: () indicates a contradiction:

p
NOTp

O @®yR)
Equivaience: Two propositions are equivalent if they have the same truth value.

Idertiry: States that two propositions are equivalent (proved by using a truth table):
e.8., NOT(NOTp)=p (identity)

After first putting the original premises and the conclusion into clause form using standard
identities, we are ready to prove the truth of a conclusion from a set of premises using resolution. Start
by negating the desired conclusion (the theorem to be proved). Then derive new clauses using unifica-
rion* followed by factoring and resolutioan, working toward deriving the empty clause. If the empty
clause is derived, then (as a result of this proof by contradiction) the desired conclusion folluws from
the original premises. If we stop before the empty clause is derived, then eithe: the conclusion does not
follow from the premises or we gave up too soon.

Graham (1979, pp. 186-187) observed:

Resolution is complete in the sense that if the conclusion does follow from the premises, then repeated unification,
tesolution, and factoring will eventually derive the empty clause.

Resolution can be more easily programmed on a computer, and the resulting program is more efficient tnan was the
case with any previous computational-logic programs.

[At present, resolution programs] cannot handle such complex tasks as proving deep mathematical theorems,
verifying computer programs, or aiding a robot to cope with the complexities of the real world (as opposed to a
lirnited laboratory world). For these tasks the resolution program uses up the available time or memory before
deriving the empty clause.

The trouble, as is usual in Al, is a combinatorial explosion. Unification, resolution, and factoring derive many
clauses that are not relevant to deriving the empty clause, The program wastes its time following lines of reasoning
that come to a dead end.

Because of these difficulties some people have given up the possibility that computational logic can handle complex
theorem-proving tasks. Others seek restrictions on the way resolution and factoring are done that will reduce the
number of clauses generated without destroying compieteness. Still others (including the author) feel that the answers
lie in using powerful heuristic and planning techniques to guide the resolution program to its goal of deriving the
empty clause.

*Unification is the name for the procedure for carrying out instantiations. [ unification we attempt to find substitutions
for variables that will make two atoms identical.
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E. Computational Logic Today

Computational logic has evolved into several distinguishable subareas: theorem proving, logic pro-
gramming, non-monotonic logics, and multi-valued and fuzzy logics.

1. Theorem Proving

This branch of computational logic is an outgrowth of resolution theorem proving with additional
techniques and modifications added to attempt to restrain combinatorial explosions. With restrictions
on resolution clause generation, theorem proving approaches can be made sufficiently efficient to be
used in practical problems. An outstanding example of this is the AURA (AUtomated Reascning
Assistant) theorem proving system (Wos, 1983) that has successfully been applied to real applications
in mathematics, formal logic, program verification, logic circuit design, chemical synthesis, database
inquiry and robotics.

Three techniques (used in the AURA systemn) that have had a major impact on making theorem
provers practical are:

(1) Demodulation: Employing rewrite rules to simplify or canonicalize the expressions to achieve a
normalized form.

(2) Subsumption: A technique that recognizes and discards many equivalent or weaker rules or
facts than those that have already been generated.

(3) Strategy Rules: Ordering strategies that direct the system as to what to do next.

These three powerful techniques in AURA are domain independent (though the strategy rules have
provision for weighting so that \ne user can assign priorities to concepts).

Other strategies have been important for further reducing the expressions that are generated or re-
tained during the proof process. One class is restriction strategies which provide guidance as to which
operations can be skipped. For example, there is the ‘‘set of support’’ strategy that discourages look-
ing at facts that don’t have support (e.g., general information used alone, unsupported by other facts).

There are indications that there remain many important domain-incependent inference rules yet to
be discovered. Examples of research in theorem proving are given by Table IV-1.

2. Logic Programming

It was realized in the early 1970s that iogic representations could also function in a precedural mode
by using the technique of unification to search for instantiations that would satisfy stated goals. This
has led to the PROLOG programming language (see, e.g., Chapter III, Vol 1A).

As the manner in which the representations are written and the order (e.g., top to bottom, and left
to right) chosen for the execution of the logic statements can have an important influence on the effi-
ciency and effectiveness of executing the program, such representational and ordering choices can be
thought of as a form of programming, hence the name logic programming. PROLOG, and logic pro-
gramming in general, has become very popular in the last few years. .

An indication of current research in Logic Programnming is given by Table IV-2.

3. Non-Monotonic Logic

One of the popular issues in Al problem solving has been concerned with how to handle lines of
reasoning and conclusions that may have to be retracted when new information is received. For exam-
ple, it is usually reasonable to conclude that if a creature is a bird, then it can fly. However, if it is later
learned that the bird is a penguin or is dead, the conclusion must be reconsidered. Recent research ef-
forts on how to handle such situations are indicated in Table IV-3. Etherington and Reiter’s (1983)
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TABLE IV-1. Examples of Research in Theorem Proving

Technique Program Institate Researcher
Resolution-based automated reasoming  AURA (AUtomated Reasoning Argonne Nat. Laboratory L. Wos
program Assistant) Argonne, IL R. Overbeek
Set of procedures for tailoring LMA (Logic Machine Architecture, NW Univ. E. Lusk
an automated reasoning machine from which a portable reasoning Evanston, IL W. McCune
to given specifications program, [TP, was built) R. Overbeck
A strategy for semantic paramodulaton NUTS (NW U. Theorem-proving NW Univ. W. McCune
of Horn Sets System) Evanston, IL L. Henschen
Special purpose program for program Univ. of TX R. Boyer
verification Austin, TX J. Moore
Use of examples in automated theorem Univ. of TX W. Bledsoe
proving to help guide proof discovery Austn, TX
and to cetermine instantiation of set
variables
Many-Sorted Calculus based on Univ. of Karisruhe C. Walther
resolution and paramodulation W. Germany
A very fast algorithm for unit TERMINATOR Univ. of Karlsruhe G. Antoniou
refutation for the MKR-Procedure W. Germany H. Ohlbach
Superposition-oriented theorem L.LT.P. L. Fnbourg
prover Paris, France
Associative-commurative operators U.of IL N. Dershowitz
for a refutationally<omplete theorem Urbana, IL N. Josephson
prover D. Plaisted

SUNY J. Hsiang
Stonybrook, N. Y.
Procedures for building non-equational SRI Inter. M. Stickel
theories into a resolution theorem-
proving r-ogram
Improving the expressiveness of Many U. of Warwick A. Cohen

Sortea Logic Coventry, England

Sources: IJCAI-83, AAAI-3

work on providing a formal semantics for networks of inheritance hierarchies with exceptions appears
particularly promising.

4. Multi-Valued and Fuzzy Logics

Conventional logics deal with the truth or falsity of statements. However, this binary approach
is often inadequate for situations in which degrees of certainty are involved as, for example, in
medical diagnosis. Thus, work in multi-valued and fuzzy logics has been undertaken to attempt to
address this problem. Table IV-4 provides an indication of research in these areas. Several
approaches for handling degrees of certainty have already been successfully incorporated into
expert systems such as MYCIN and PROSPECTOR.

F. Future Directions

Moore (1982) argues that a number of important features of commonsense reasoning involving
incomplete knowledge of a problem situation can be implemented only within a logical
framework. Thus logic-based systems will continue to be an important element of Al.
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TABLE IV-2. Examples of Research in Logic Programming

Technique Program Institute Researcher
PRCLOG Development PROLOG =~ "~~~ 77 Faculte des A. Colmerauer
Sciences de Luminy
Marseille, France
Development of a QUTE U. of Tokyo M. Sato
PROLOG/LISP type of Japan T. Sakura
programming language
Inclusion of assertions M.LT. W. Kornfeld
about equality in Cambridge, MA
PROLOG
Use of PROLOG for IBM W. Wilson
semantic code analysis Poughkeepsie, N.Y. C. john
of assembiler listings
Extension of PROLOG to PROLOG/EX1 IBM A. Walker
increase range of San Jose, CA
explanation capability
Augmentation of PROLOG Weizmann Inst. E. Shapiro
to include uncertainties Rehovot, Israel
Addition of algorythmic LOGAL U. of Nouingham D. Dodson
control structures 0 Med. School A. Rector
PROLOG U.K.
A method for building Batl Labs. A. Feuer
libraries of routines Murray Hill, N.J.
and data in PROLOG
[ntegrating PROLOG into the POPLOG Univ. of Sussex C. Mellish
POPLOG environment Brighton, U.K. S. Hardy
An interpreter for logic U.of CA J. Conery
programs which executes frvine, CA D. Kibler
goals in parallel
An experimental tool for PRISM U. of MD S. Kasif
parailel execution of College Park, MD M. Kohli
distributed Al problem J. Minker
solvers based on logic
programming
A simple unification algorithm Inst. for New K. Mukai
for infinite trees for Generation Computer
structure sharing implementarions Technology (ICOT)
of logic programming languages Tokyo, Japan
A program to debug Uppsaia Univ. A. Edman
logic programs Sweden S. Tarnlund
Source: 1JCAL-83

The advent of powerful resolution-based theorem proving systems (such as AURA) — utilizing
both domain-independent and domain-dependent inference rules to constrain combinatorial
explosions — has resulted in opening up practical applications for such systems. However, much
research remains to be done to discover more effective strategies, to devise methods for linking
rules together to take larger reasoning steps, to explore parallel processing approaches, to build
user-friendly interfaces, and to develop more rapid and improved knowledge representation

techniques.
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TABLE IV-3. Examples of Research in Non-Monotonic Reasoning

Activity Institute Researcher
Data Dependencies on Equalities Yale U. D. McDermott
Inhentance Hierarchies with Univ. of BC D. Etherington
Exceptions using Default Logic Canada R. Reuter
Default Reasoning as Univ. of TX E. Ricl
Likelihood Reasoning Austin
Default Reasoning using Tulane U. J. Nutter
Monotonic Logic
Reason Maintenance Carnegie Mellon U. 1. Doyle
(CMU)
Pittsburgh, PA
Semantic Considerations in non-monotonic SRI International R. Moore

Logic

Source: AAAL-31, [JCAL-83

TABLE IV-4. Examples of Research in Multi-Vaiued and Fuzzy Logics,
and Plausible Reasoning Techniques

Activity

Institute

Researcher

Approximate Reasoning Techniques
Consi :ten:y and Plausible Reasoning

Propagation of Uncertainty

Heuristic Reasoning about
Uncertainty

*Evidence Space’’ for Dealing
with Uncertain Reasoning

Use of Baysian Statistics in
Common Sense Reasoning

Fuzzy Logic
A Method for Computing Generalized

Bayesian Probability Values for Expert
Systems

Universite Paul Sabatier
Toulouse, France

Rand
Santa Monica, CA

Advanced Information
& Decision Systems
Mt. View, CA

Stanford U.
Stanford, CA

Tech. Univ. of Berlin
Fed. Rep. of Germany

Brown U.
Providence, R.1.

U. of CA
Berkeley, CA

SRI International

H. Prade

§. Quinlan

R. Tong
D. Shapiro
J. Dean
B. McCune

P. Cohen
M. Grinberg
C. Rollinger
E. Charniak
L. Zadeh

P. Cheeseman

Sourcs: {JCAI-8)

The advent of portable theorem proving systems opens up the opportunity for much increased
experimentation, which should be instrumental in rapidly advancing the field. Wos (1983)
predicts that as a result, automated reasoning systems with the capability for being used ina wide ‘ ,
variety of real applications will be commonplace within five years.

As expert systems technology pushes forward toward employing causality and structure, in
addition to empirical association rules, deeper levels of reasoning will be required. It is
anticipated that advanced theorem proving systems will play an important role in this arena.

- - - - — — -



PROLOG, the rapidly proliferating language for logic prcgramming, has been earmarked for
the Japanese Fifth Generation Computer project. The powerful inference rules (such as the set of
support strategy) used in advanced thcorem provers are now being considered for use with
PROLOG. These, coupled with domain-specific control strategies and making provisions for
taking advan:age of many of the features of LISP (as in LOGLISP) may well make a hybridized
PROLOG the dominant Al language within the next decade.

Examination of Tables 1V, and the associated textual comments, indicate that the basic
reasoning problems of non-monotonic reasoning and reasoning in the presence of uncertainty,
are beginning to succumb to some of the recent research. We can :thus conclude that
computational logic, which earlier appeared doomed by the combinatorics generated by the pure
resolution approach, has become revitalized with new representational approaches, inference
rules, domain heuristics, and advanced computers and will play an increasingly important role in
future Al applications.

Additional material on computational logic ficm an Al point of view can be found in Boyer
and Moore (1979), Kowalski (1979), Nilsson (1980), Clocksin and Meiiish (1981), Robinson and
Sibert (1981), Coben and Feigenbaum (1982), Clark and Tarnlund (1982), Rich (1983), and Wos
et al. {1984).
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