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PREFACE

This is Part C of the three parts comprising Volume I on an overview of Artificial Intelligence (AI).

Part A. The Core Ingredients, NASA TM 85836, June 1983

Part B. Applications, NASA TM 85838, September 1983

Part C. Basic AI Topics, NASA TM 85839, October 1983

I. Artificial Intelligence and Automation

: II. Search-Oriented Automated Problem Solving and Planning Techniques

,. III. Knowledge Representation

IV. ComputationalLogic

. Intelligence _ involved with knowledge and the access, manipulation, transformation and utiliza-
tion of that knowledge for the purposes of problem solving and responding appropriately to new
situations. Thus, to develop artificial intelligence, one must be concerned with such topics as how to

represent k-'gwledge in a computer, how to utilize it, and how to f'md an answer in a huge search space

of possible solution paths. Therefore, this part of Volum.- I endeavors to provide readily
understandable overviews of search-oriented problem solving, knowledge representation, and compu-

: tational logic. These overviews are elaborations on the basic techniques briefly reviewed in Part A, and
:" provideadditional material not covered elsewhere in this series.
. To enable the reader to relate a.n:_cial intelligence to the broader field of automation, this report

opens with a discussion of mechanization, automation and AI, and how they interrelate.
It is anticipated that this report will prove useful to engineering and research managers, potential

users and others seeking to obtain a basic understanding of artificial intelligence.
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1. ARTIFICIAL INTELLIGENCE AND AUTOMATION

A. Mechanization and P utomation

To better understand what is meant by Artificial Intelligence (AI) and robotics it is helpful to step

back a bit and first look at terms such as mechanization and automation. To do this we will try to

synthesize the views of others who have approached this problem.

The original industrial revolution was based on mechanization. Mechanization was the use of

machines to take over some of the previous muscle jobs performed by either animals or human beings.
0,

Laurie (1979) states:

When we apply ordinary production techniques--the application of leverage and power--to a process, we are
mechanizing it. Automation involves a good deal more... Automated devices are _rulyautomated when feedback

: information automatically causes the machinery to adjust to reachieve the norm. The internal adjustments of the
machine or system are made by servomechanisms (p. 355).

Automation is the achievement of self-directing productiveactivity as a result of the combination of mechanization
and computation...(p. 15).

; Peter Marsh (1981, pp. 419-420) elaborates further on mechanized machines, automatic devices and
; automated devices:
)..

_. [Theclassificationofmechanization]dependson whethermachinesorcombinationsofanimalsand peopleare
responsibleforthethreefundamentalelementsthatoccurineveryactivity(humanorotherwise)--power,actionand
control.[Simplemechanizeddevice.s]needahuman tocontrolthem.Ifamecharficaldeviceisresponsibleforcon-

"" trol,however,we haveaself-actingorautomaticdevice.Automaticdevicesarenotthesameasautoma(edones....
- automationequalsmechanizationplusautomaticcontrolplusone(ormore)ofthreeextracontrolfeatures--a"sys-
; terns" approach, programmability or feedback.

: Extrasthat makeautomation

Withasystemsapproach,factoriesmakepartsbypa._singthemthroughsuccessivestagesofamanufacturingprocess
.. withoutpeopleintervening.Thusthetransferlinesofcarfactoriesinthe1930scountasautomatedsystems.

Withprogrammability--thesecondofthethree"extras"thgtdefineautomation--anautomatedsystemcando
morethanonekindofjob.Henceanindustrialrobotisanautomated,notanautomatic,device.Thecomputerthat
controlsitcanbefeddifferentsoftwaretomakethemachinedodifferentthings--forexample,spraypaintorweld

: bitsofmetaltogether.Fir_-_iy,[external]feedbackmakesanautomaticmachinealteritsroutineaccordingtochanges
thattakeplacearoundit.An automaticlathewithfeedback--inwhich,forinstance,asensordetectsthatthemetal
itiscuttingiswronglyshapedandsoinstructsthemachinetostop--isthusanautomateddevice.Itisdearlymore
usefulthanalathewithoutthisfeature.

Y
+; B. Tools,Machines,Teleo_rators,Robots

) To extend the concepts of mechanization and automation further, we will consider tools, machines,

:! teleoperators and robots. To do this, we will utilize Marsh's (1981) basic elements--power, action
and control.

Tool: A deviceus_ toperform an action.Ifusedby a human, thepersonprovidesthe

power and control.

Machine: A devicethatutili_,esnon-human power todo an action.For asimplemachine the

human providesthecontrol.

Teleoperator:A machine capableof actionata distanceunder thecontrolof a human.

I
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®

1984006737-007



[
Robot: A flexible machine capable of controlling its own actions for a variety of tasks

utilizing stored programs. Basic task flexibility is achieved by its capability of

being reprogrammed. More advanced--intelligent--robots would be capable of
setting their own goats, planning their own actions and correcting for variations in
their environment.

C. Computation and Artificial Intelligence

Laurie (1_9, p. 15) defines a computer as "... an electronic device capable of following an imellec-
tual map. We call the map a program." Arden (1980, p. 9) suggests that ", .. computer science is the

study of the design, analysis, and execution of algorithms* in order to better understand and extend
: the applicability of computer systems."
, Though everyone agrees that "Artificial Intellibence" (hl) is difficult to def'me precisely, the most

commonly accepted def'mition is that "Artificial Intelligence is the branch of computer scietlce devoted
i to programming computers to carry out tasks that if carried out by human beings would require

intelligence."
A slighdy different definition is giving by Duda et al. (1979, p. 728):

: ArtificialIntelligence(ADisthesubfeldofcomputerscienceconcernedwiththeuseofcomputersintasksthatare
normallyconsideredtorequiteknowledge,perception,reasoning,learning,understandingand similarcognitive
abilities.Thus, the goal of AI is a qualitativeexpansionof computercapabilities.

[- Nilsson (1980, p. 2) notes that:

AJhas alsoembracedthe largerscientificgoalof constructingan information-processingtheoryof/melligence.If
suchasdenceofintelligencecouldbedevelope_,itwouldguidethedesignofintelligentmachinesaswellas_cplicate

. intelJigentbehaviorasitoccursinhumansandotheranimals.Sincethedevelopmentofsuchageneraltheoryisstill
; verymuchagoal,ratherthananaccomplishmentofAI,welimitourattentionheretothoseprinciplesthatarerele-
"" vanttotheengineeringgoalofbuildingintelligentmachines.

More recently,Nilsson(1981/1982)indicatedthathewouldliketonarrowtheworkingdefirddonof
.. AI evenfurthertothecentralprocessesof intelligence.Fiethusstates:

Vc3thregardtohunmm,Iaminclinedtoconsiderascentralthosecognitiveprocessesthatateinvolvedinreasoning
; andplanmn8.Workonautomabcmethodsofdeduction,commonsensere_souing,plansynthesis,andnaturaJ-

languageunderstandingandgenerationareexamplesofAIresearchoncentralprocesses.

Perhapsasimportantastheprocessesthemselvesisthe"knowledge"theymanipulate.!a fact,thesubjectofknowl-
edgerepresentationformalismsis a goodstartingpoint fora moredetailedexplanationof just what I thinkAI is.

Arden (1980, pp. 22 and 23) states:

Though"intell;gentbehavior"isdifficulttodefine,andiscurrentlyunderstooddifferentlybydifferentpeople,there
has beensomeconvergenceof viewswithintheA/community as the technicalrequirementsforthecomputersolu-

• tionofcertain_ of problemsbecom_betterunderstood.Tobesure,thehurmmsolutionofacomplexequngon
m_htbechlssifledasintelligentbehavior,whilethecorrespondingactionbyamachinemightnotbesoclassified,

, eventhoughbothmachineandmanhadbeenprogrammedfor(learn)theprocess.,_e possiblerequirementisthat
therebe somethingunstructured,somethingnondeterministic,for the solutionprocessto qualifyas inteUigent.
Anotheristhat it dependson theknowledgethatmust be usedinobtainingthe solution,oron themethodsused...

Anotherimportantaspectistheuseofheuristicrules**ofthe kindhumansusetosolveproblems.Although,
; in _, suchrulescannotbe provedeffective,they often leadto solutions.Somecomputerscientistsargue_uu

heuri_ _g _ describesthefie.k:lnowcalled"artificialimelligence."

*The Di_onary ofElectronics,(FortFP_'th..Rodio Shack, 197.¢)definesn/_'#hm as, 'N setof rulesor proo_
for solvinga oroblemin afinite numberof steos."

**Hem'm_ore"rubs.of.thumb'"(compiled_) uaedto help_ problemsoivinl. They do not _zantt_
a solut_nus=/ror#hmsdo.

2
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i Hayes-Roth (1981, p. 1) notes that:

AI provides techniques for flexible, non-numerical prob,em-soiving. These techniques include symbolic information
processing,heuristicprogramming, knowledge representation, and automated reasoning. No other fieldsor alterna-
tive technologies existwith comparable capabilities. And nearlyallcomplicated problemsreqmremost of c,_es¢tech-
niques. Many forces combine to identify AI as the central technology for exploitation. Systems that reason and
choose appropriate coursesof action can b¢ faster, cheaper,and more effectiveand viable than rigid ones. To make
such choices in realisticallycomplex situations, the system needs at least rudimentary understanding of mundane
_enomena.

In summary, AI is concerned with inteUigentbehavior, primarily with non=numericprocesses that
involvecomplexity,uncertainty and ambiguity and for which known algorithmicsolutions do not usu-
ally exist. Unlike conventional computer programming, it is knowledge based, almost invariably
involves search, and uses heuristics to guide the solution process.*

Thus AI can be considered to be built upon

1. Knowledge of the domain of interest.
2.Methodsforoperatingon theknowledge.
3.Controlstructuresforchoosingtheappropriatemethodsandmodifyingthedatabase(system

status)asrequired.Thiscontrastswithconventionalcomputerprogramswhichutilizeknown
algorithmsforsolution,areprimarilynumeric(numbercrunching)innatureratherthansym-

:. bolicmanipulation,andingeneraldonotrequireknowledgetoguidethesolution.

'p.

_- D. Relationshipof AI to Automation

ArtificialIntelligencemay beconsideredtobethetoplayerofcontrolonthehierarchicalroadto
.._ autonomousmachines.ThisisillustratedinFigureI-I,derivedfromMarsh(1981).

However,AIincludesa largeareaofactivitywhichisnotnormallyincludedinautomation,e.g.:

- naturallanguageprocessing
, perception and pattern recognition

intelligent information storage and retrieval
• game playing

automatic programming
. computational logic
. problemsolving

expertsystems

Nevertheless,asComputerIntegratedManufacturingandintelligentrobotsemerge,AIwillhavea
, majorroletoplay.AIcontributionstoperceptionandobject-orientedprogrammingarereviewedby

Brady0984)forthisnew breedofrobots.

E. AI and Other Fields

Duda, et al. (1978, pp. 729-730)state:,1

Historically,AI has both borrowed from and contributedto otherclo_yrelateddisciplinesconcernedwithadvanc_
methods for information processin$. Thus, links exist between A/and aspects of such theoretical areas as mathe-
matical logic, operations research, decision theory, information theory, pattern recognitionand mathematical tin.
gad.sties.In addidon, resatrch in A/has stimulated important developments in software technoio_, particularlyin
the areaof advanced prollramminlllanguages. What distinguishes AI fromthese related fields, however,is its central
concern with all of the me_'_anisrnsof intetUllence.

•As AI remnu'es,the _¢¢tationa asaociatedwith it are incrtoainz. $¢kank (198J)s:ates thet it is time to demand learninI
capabilityfrom Al protrams. He thus sughcst$a new definition: ",41is the _'cien,-¢of endowing progrant_ withfROability )
tochangethemselvcaforthebcttz,rasarfaultoftheirown ¢_¢rC"hccs.""

3
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Neweil, et al. (1978, pp. 19-20), in referring to AI as Machine InteLLigence (MI), note that:

TheaimsofresearchinMI aresobroad--nothinglessthanextendingthecapabilitiesofsymbolprocessingmachines
for intelligentaction--that it is not alwayseasy to identify applications a.semanating specifically from re._arch in
thisfield.

Comider the iml>onant contributions heat MI ha.salreadymade. Listprocessing has become an integral part of pro-
gramming technology.The abstracttheory of programmingowes much of itsearlyimpetusto LISP.The initiation of
verificationof progran_ is likewisedue strongly to work in machine intelligence.This is also true of the subfield of
symbolic mathematics. Even some of the concepts of structured programming can be traced back to early MI lan-
guages--conc_ts of extensivehierarchizationand recursion, for instance. Similarly,fundamental ideasof heunsttc
search are used widely in operations reseirch programs for domains where powerful opttmizanon techniques are
unavailableor inadequate. Heuristic searchis especiallynecessarytoday for handling largecombinatorial problems,

;. ' suchasjob-shopscheduling,

As thtemexample,illustrate,MI applicatLomarecharacterizedbyhelpingtoinitiatefieldsofapplicationandthen
becoming freelymixed with independentinventionand development from withinthe field. Fo- example, in opera-

: tionsrtmmrch,branch-and-boundtechniquesforlimitingsearch(analogoustoalpha-betaproceduresingametrees)
andoptimalschedulingalgorithmscamenotfromMI,butfromwithinoperationsresearch.Structuredprogram-

: mini and symbolic mathematicshave runessentiallyindependent courser fromwork in MI. An extreme exampleof
this "initiation" syndromein MI applicationswas thestrongeffect of MI on the initiationof timeshanng, but with
little specific technical transfer.

t

; The reportedMI researchhas sortmtiesto specific are_ of applicationsa, we note below. However, its ultimate fate
is likely to be similar to the examples _ve, in which mint of the applications will not be identified as MI. For

P" instance, workon control structuresis of fundamental significance to futureapplications. Everyintellilent system
mustemployacontrolstructure¢atmbleofusinlpa.,'tialknowledle,dbcoverinirelevantknowledge,copingwith

pervasiveerror,etc.Butaswediscovereffectivesystemorganization.t,theywillbecomea_imilatedintotheapplica-
tionarea,theirfurtherdevelopmentbegatseenaspartoftheapplication.Similarly,prolF'essin heumticsearch,
bcial of generalutility, will diffuse :hroagh various applications fields.

; Barrow (1979, p. 3) agrees, stating:

ItisprobablysafetosaythatAIseekstoundersumdandmodelvinuaUyallhumanintefiectualactivity.Indoin_so,
ithaldrawnfromorcontributedtomanyother_plin_J,particularlypsychology,mathematicallinguistics,mathe-

.. maticalIoltic,operationsrese_trch,decisiontheory,Imtt"rnrecognition,andcomputerscience.Ith_ stimulated
important develo_leots in software technology, especia2v concerning advanced protramminl langua_ and

: tystems.

It is interesting to note that no mention is made of an intet_..,_-'tion of control theory and AI. As

: controltheory has primarilydealtwith analog or numeric computation in relationto servo=

mecha_sms, and Al has primarilydealtwithsymbolicmanipulation,thislackof intersectionisnot

toosurprbing.However, thissituationisbeginningtochange.DeJong (1983)examinestheroleofAI

incontrol,and Sauersand Wabh (1983)indicaterequirementsand architecturesfor futureexpert

systemsthatcan operatein the real-timeenvironmentassociatedwith control.A techniquefor

coordinatingcontroland knowledge-_ components foran autonomous mobilerobotguidancei

: system is proposed by Harmon (1983).

._ Saridis0979) laysout a taxonomy ofincreasinglysophisticatedcontrolsystemson _e pathtointel-

ligentcontrob. The furthest point on the path he identified as A' Based on Sarida, Figure 1-2 indi-

cates theincre_ng levelofsophb0cationincontrol.
Sa.,,idb(1979,p, II_9)statesthat,"Intelligentcontrob should representthe perfectinterface

., between control harctware and a digital computer for higher level decision making according to the

principle of increasing intelligence with dee.teasing precision in a hierarchical control structure." To

state it another way, AI can provide the topmost level in a control structure. "Such systems, imple-

mented by the fast large modem digital computer, can solve problems, identify objects, or plan a
stratelD"for a complicated function of a system" (Saxidis, 1979, p. 1129).

1984006737-011
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Aibus, et al. (1981, 1983) have developed a theory of hierarchical control that can exhibit learning
and thereby provide learned reflex responses to complex situations. It also provides for the problem-
solving and planning functions that are normal]y associated with the highest level of intelligent action
that is considered to be the domain of AI, and incorporates expert system rules for error correction at
the _ntermediate levels of the control l_erarchy. It therefore appears that AI will not only be a key to
the development of intelligent robots and factories of the future, but is destined to become a central

ingredient in advanced control systems as well.
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II. SEARCH-ORIENTED AUTOMATED PROBLEM SOLVING

AND PLANNING TECHNIQUES

This chapter provides an overview of search=oriented automated problem solving and planning

techniques. It endeavors to present the basic approaches to automated problem-solving at a level
where the concepts involved can be readily understood. It also provides an indication of the state of
the art and current and future research.

A. AI as Problem Solving

One way of viewing intelligent behavior is as problem-solving. Many AI tasks can naturally be

• viewed this way, and most AI programs draw much of their strength from their problem-solving com-
ponents. AI applications that have strong problem-solving components include scene analysis, natural

', language understanding, theorem proving, task planning, expert systems, game playing, and
informationretrievaland extraction.

,. Two important types of problem solving tasks are I) synthesizing a set of actions (a plan) to achieve
a goal and 2) deduction. The latter ir.volves deducing (or inferring) conclusions from data or a given

_- set of propositions (applications include theorem proving and information retrieval). In this chapter
we will restrict ourselves to action synthesis, leaving a review of deduction for Chapter IV.

Many tasks can be formulated in terms of: given a goal, how do we achieve it? If direct methods are
_ not available for solution, as is the usual case in AI problems, then a search procedure to select from

the various possible alternatives is required. Thus, finding efficient search methods is one of the
; central issues in automated problem solving.

B. Elements of a Problem Solver

.. _ All problems have certain common aspects: an initial situation, a goal (desired situation) and certain
operators (procedures or generalized actions) that can be used for changing situations. In solving the

•, problem, a control strategy is used to apply the operators to the situations to try to achieve the goal.
This is illustrated in Figure II-1, where we observe a control strategy operating on the procedures to

generate a sequence of actions (called a plan) to transform the initial conditions in the situation into
the goal conditions. Normally, there axe also constraints and preconditions (conditions necessary for a
specific procedure to be applied) which must be satisfied in generating a solution. In the process of try-
ing to generate a plan, it is necessary for the ,groblem solver to keep track of the actions tried and the

" effects of these actions on the system state. Figure II-2 is a restatement of Figure II-1 in which we can

' view the operators as manipulating the data base (representing the problem status) to change the).

current situation (system "rate).

: C. State Graphs as an Aid to Problem Representation

_. Oneeasywaycofocuson therelationshipsbetweentheoperatorsand thestatesisthroughtheuseof
stategraphs.Stategraphsarenetworksmadeup of points (callednodes)connectedby lines(called
arcs). Forour purposes,we let nodes correspor,' to systemstatesand arcs correspondto operators.

: Figure II-3 illustrates a state graph for a simple problem (such as finding the simplest route from city A
to city D). Note that there are several sequences (of different lengths) that will achieve goal state D, as
well as a dead-end F.

.., The various paths through a state graph can be represented, as shown in Figure II-4, as a
hierarchical structure called a tree. The solution paths run from the initial state along the branches and
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terminate on the leaves (terminal nodes) labelled "goal state." We could have also generated a tree of
paths starting from the goal state, as shown in Figure II-5. From Figures II-4 or II-5, it is apparent that
the plan with the smallest sequence is to first use operator R, then operator S.

CONTROL
STRATEGY

_ROCEDURE:

" @
,' GOAL

30NDITION=
; SEOUENCE OF ACTIONS = PLAN

- _ Figure II-1. Problem Solving

CONTROL
; STRATEGY

L'

. i

-_ * GOAL
it.

-"_" • CURRENT
OPERATORS , _ SITUATION

• PLAN THUS
FAR

DATA BASE
b

F_g,ure II-2. Automated Problem Solving Relationships
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: Figure 11-3. State Graph for a Simple Problem
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i GOALSTATE

S X

_ R Q T

'; INITIAL
STATE

: P P U T
L

_: INITIAL INITIAL DEAD
STATE STATE END

INITIAL
STATE

Figure/I-5. Working Backwards from the Goal State

For a large complex problem, it is obviously too cumbersome to explicidy draw such trees of all the
possibilities and directly examine them for the best solution. Thus, the tree is usually implicit; the com-

:i puter generating b,'am;hes and nodes as it searches for a solution.

D. Reason/n_ _orward and Backward

In searching for a solution we may reason forward from the initial state, as in Figure II-4, or we may
rea.so_backward from the goal, as in Figure II-5 (or both). Forward reasoning is said to be dam driven
or _,}from-up. Backward reasoning is said to be goal-directed or top-down.

II
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E. Problem Solving Using Blind Search

If a procedure for successfully generating a solution in a reasonable time (an algorithm) is known, it
ksappliedandtheproblemissolved.Unfortunately,formany important,problemsno suchalgorithm
isknown and a searchprocedureisrequire..

Forfaalysimpleproblems,a straightforward,buttime-consuming,approachisblindsearch,where
we selectsome orderingschemeforthesearchand applyituntiltheanswerisfound.

The searchproceedsby successivelygeneratingand examiningthebranchesemanatingfrom the
nodes,startingwiththerootnodeandproceedingalonggeneratedbranchestonew nodes.The search

treegrowsasoperatorsareappliedtothenodesand thevariouspathsexplored.A nodeisreferredto
as"open" ifbrancheshavenotyetbeengeneratedfrom it.

As indicatedinFigureII-4,eachnodecanbeassigneda level.The rootnodeisatlevel0,itsimme-

diatesuccessorsatlevelI,and soon,withthelevelnumber beingreferredtoasthedepth.

1. Breadth-First Search

: In this approach, the nodes of the search tree are generated and examined level by level starting
' from the root node. No nodes at a deeper level are examined unSJ all nodes at the previous level have

been explored. Breadth-fast search always f'mds the shortest number of steps to the goal. (However,
' this may not be the most desirable or cheapest solution, because of the different costs associated with

_. applying the various operators. 3ee following discussion on heuristic search.)

2. Depth-First Search

As a search proceeds, new nodes are generated from the node currendy being examined. These suc-
_, cessor nodes are called children and the generating node is called the parent A depth-f'trst search is one

, which always continues in the parent-to.child direction until forced to backtrack. To prevent consider-
at.ion of paths that are too long, a depth bound is often specified.

- A depth-fast search does not necessarily f'md the shortest solution, but often can be programmed to
minimize memory requirements by only saving in memory the path currently being explored.

3. Backward Chaining

Backward chaining is a name given to depth-fast, backward reasoning--an important search
: strategy. An operator is chosen that would achieve the goal if selected. If it is applicable in the initial
: state, it is applied and a solution has been found. If hOt, operators that would achieve the precondi-

tions required for its applicability are sought and the search continues recursively until a sequence of
operators are found that transform the initial state into the goal state. If the search fail% the program
backtracks and a new candidate operator is selected that would achieve the goal if applied, and the

; process is repeated.
For problems requiring only a small amount of search, backward chaining strategies are often per-

fectly adequate and efficient. For larger problems, it is critical that the correct operator be chosen fast
almost always, because thic strategy follows out a line of action fullybeforerejectingit, which can

; result in very lengthy searchcz.

4. Problem Reduction
¢

A generalizationof backwardchainingisproblemreduction.Veryoftentosatisfya goal,several

; subproblems (conjuncts) must be satisfied simultaneously. For this case of backward reasoning, apply-
: ing an operator may divide the problem into a set of subproblerns, each of which may be significantly

simpler to solve than the original problem.
A goodexampleofproblemreductionisreadyinga spacevehicleforlaunch,asindicatedinFigur-.

I1-6. Note that we can represent the goal--spacecraft ready to launch--as a conjunction of subgoals,
' e.g., spacecraft fueled, all systems checked, power on. These in turn can consist either of a set of

simultaneous("AND") subgoals,orofoneofseveralacceptablealternatives ("OR" subgoals).The

AND subgoalsare denotedon the graphby horizontalarcsconnectingthe lines leadingtothem.
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Problem reduction often runs into difficulties without specific problem knowledge, as there is
otherwise no good reason to attack one interacting conjunct before another. Lack of suck knowledge
may lead to an extensive search for a sequence of actions that tries to achieve subgoals in an
unachievable order.

F. HeurislicState-SpaceSearch

Blind search does not make any use of knowledge about the problem to guide the search. In com-
plex problems, such searches often fail, being overwhelmed by the combinatorial explosion of possible
paths. If on the average there are n possibleoperators that can be applied to a node, then the si=eof the
search space tends to grow as nd, where d is the depth to be searched. Heuristic methods have been

:. designed to limit the search space by using information about the nature and structure of the problem
domain. Heuristics are rules of thumb, techniques or knowledge that can be used to help guide search.
Heuristic search is one of the key contributions of AI _o efficient problem solving. It operates by

generating and testing intermediate states along a potential solution path.
One straightforward method for choosing paths by this approach isto apply an evaluation function

" to each node generated, and then pursue those paths that have the least total expected cost. Thus, we
can calculate the cost from the root to the particular node that we are examining and, using heuristics,

; estimate the cost from that node to the goal. Adding the two, produces the total estimated cost along
; the path, and therefore serves as a guide as to whether to proceed from that node or to continue from
'p.

_. another, more promising, node among those thus far examined.
Nilsson (1980)and Barr and Feigenbaum (1981)describe the "A* algorithm," v,hachis guaranteed

(under appropriate conditions) to find a solution path of minimal cost if any solution path er.ists.The
A* algorithm uses an evaluation function for the n-th node of:

f*(n) = g*(n) + h*(n)

where g*(n) estimates the minimum path cost from the start node of the tree to node n and h* (n) esti-
mates the minimum cost from node n to the goal. For the A* algorithm to find the minimum cost
path, the heuristic estimate of h* (n) of the cost from node n to the goal, must be non-negativeand less
than the actual cost h(n). An example h*(n) for our problem of Figure II-3 (whose paths are repre-

._ sented by the tree in Figure II-4) would be the straight line (airline) distance from node n to the goal.
Though the A" algorithm produces a minimum cost path, it does not usually minimize the search

: effort, in fact usually producingan exponential running time for the search. If one leansmore to mini-
mizing the search effort rather than the solution cost, one would put more emphasis on h*(n), the esti-
mate of the remaining cost to the goal, rather than on g*(n) the cost from the start node. Ban"and
Feigenbaum (1981)describe various approaches to this tradeoff of speed versus solution quality, and
indicate that a considerable reduction in running time is possible if the optimal solution requirement

_ is relaxed.

G. GmmeTreeSe_n:h

: 1. Representation
Most gamesplayedby AI computer programsinvolve two playersmakingalternate moves. A game

representationmust thus take into account the opponent's possiblemoves as wellas the player's own
._ moves. The usual representation is a game tree, which shares many features with a problem reduction

representation. A complete game tree is a representation of all possible playsof such a game.
The root node is the initial state, m which it is the fast player's (A's) turnto move. The successorsof

the root node are the statesthat A can reachin one move. The successorsof these nodes arethe states
resulting from the other player's (B's) possible replies; etc. At each play, '.heplayers must take into

' account all the opponent's possibleresponsive moves. This can be represented by an AND/OR tree.
Figure II-7 is an exampleof such a tree from the standpoint of playerA, who is to move next. Drawn

14
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OR

NODE (WIN)
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NODE B (WIN) SE)

NOD IN) A (WIN) AW) SE)
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DRAW WIN WIN LOSE DRAW LOSE LOSE LOSE

NODE

Figure II-7. A Game Tree Drawn from A's Point of View, A "sMove

from point A's point of view, A's po_ible moves under his control are represented by lines leading to
AND nodes. These successor nodes are called AND nodes since they control sets of moves all of which

A must be able to respond to. A's nodes are called OR nodes, because A can choose any of the moves
emanating from these nodes.

2. The Minimax Search Procedure

The minimax procedure is a strategy for playing a two-person game. According to the minimax

technique, player A should move to the position of maximum value to him, B responding by choosing
a move of minimum value to player A. Given the values of the terminal positions (see Figure II-7), the
value (shown in parentheses) of a nonterminal position to player A is computed by backing up from
the terminals as follows:

• The value of an OR node is the maximum value of any of its successors.
• The value of an AND node is the minimum value of any of its successors.

3. Searching a Partial Game Tree
For most games, the tree of possibilities is much too large to be generated fully or searched back-

ward for an optimal move. Thus a reasonable portion of the tree is generated starting from the current

position, a move is made on the basis of partial knowledge, the opponent reply found, and the proce-
dure recursively repeated from the new position. The minimax procedure thus starts with an estimate

of the tip nodes thus far generated, and assigns backed-up values to the ancestors (_:.g., values in
parentheses in Figure II-7). The value estimates for the tip nodes are generated using a "static evalua-
tion function" based on heuristics.

To reduce the number of nodes that need to be examined, various pruning techniques have been

devised, "Alpha-Beta" (see,e.g., Marsland, 1983) being the best known. All these techniques are i
basedon keepingtrack of backed-upvaluesso that branchesthat cannot leadto better solutionsneed
not be further explored.

15
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4. Heuristics in Game Tree Search

A "static evaluation function" is one that estimates a board position without looking at any of the
positions' successors. The function is usually a linear polynomial whose variables represent various

features of the position. For chess, the features of importance include remaining pieces, king safety,
center control and pawn structure.

5. Other Considerations

Alternatives to search in choosing moves include opening or end game "book" moves, and recog-
nizing patten'As on the board and associating appropriate playing methods with each pattern. The most
successful game-playing programs thlis far, have made search, rather than knowledge, their main

: ingredient. Various combinations of more extensive use of specific game knowledge to prune less desir-
able paths, and increased look-ahead have been utilized in chess in efforts to improve program success.

: H. Difference Reduction ("Means-Ends" Analysis) -- Another Basic Approach

The difference reduction approach differs from pure search (which usually starts with either the
goals or the initial conditions) b) instead progressively nibbling away at the problem to reduce the dif-
ferences between the initial and goal status, Difference reduction was introduced by the General Prob-

_ lem Solver (GPS) Program developed by Newell, Shaw and Simon beginning in 1957 (Ernst and
NeweL1, 1969). This was the first program to s,:parate its general problem-solving method from

il knowledge specific to the current problem.
Figure II-8 is a simplified flow diagram of the difference reduction approach. The analysis first

determines the difference between the initial and goal states and selects the particular operator that

would most reduce the difference. If this operator is applicable in the initial state, it is applied and a
new current state is created. The difference between this new current state and the goal state is then

calculated and the best operator to reduce this difference is selected. The process proceeds until a7
sequence of operators is determined that transforms the initial state into the goal state.

If at any point, the operator chosen cannot be applied in the current state, a new intermediate goal
state is established that is the precondition for the chosen operator to be applied. The difference be-
tween the current state and this new intermediate goal state is then used as before. If the new inter-
mediate goal cannot be achieved, a new operator is chosen to reduce the initial difference and the

problem proceeds recursively until a solution is achieved,
" The difference reduction approach assumes that the differences between a _ent state and a desired

state can be defined and the operators can be classified according to the kinds of differences they can
reduce. If the initial and goal states differ by a small number of features and operators are available for
individually manipulating each feature, then difference reduction works. However, there is no inherent

way in this approach to generate the ideas necessary to plan complex solutions to difficult problems.

I. More Efflcit_at Tactics for IDroblem Solving

For more efficient problem solving than the methods described above, it is necessary to devise tech-
i niques to guide the search by making better use of initial knowledge about the problem or of the infor-

mation that can be discovered or learned about the problem as the problem solver proceeds through
the search. These teclmiques are reviewed in the Non-Deductive Problem Solving Approaches Section
of Chapter III of Part A of this volume.

J. Future Directions Io¢ Research

Sacerdoti (1979_)uggests the following lines of research as being especially imponznt for the future.
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1. Integrating a Significant Number of Tactics

This approach, if successful, could result in a very powerful problem solver, particularly where
hierarchical planning provides the framework and all the other techniques can be applied at each level
6f planning in the hierarchy. (Some of the more complex expert systems have taken such an approach.)

2. Flexible Control Structure

In the real world, unexpected events occur frequently, so it is often more appropriate to only rough
out a plan, creating only its cridcal components in detail. Then, when the plan is executed, detailed
plans can be developed using real world feedback.

3. Planning for Parallel Execution

It appears that problem solvers that distribute plan generation and execution tasks will be one of the
major waves of the future. Pseudo-reduction tactics create plans that are partially ordered with respect
to time. Therefore they share with hierarchical plan structures the virtue of being particularly amenable

; to planning in parallel by multiple problem solvers and to execution in parallel by multiple effectors.

4. Partial Goal Fulfillment

Thus far, problem solvers have been designed to fully satisfy their goals. However, in the real world,
full goal satisfaction during execution is often impossible. Thus it becomes important to be able to
prioritize goals and plan for their partial satisfaction, (This is further explored in Part B, Chapter VI

f" on Problem Solving and Planning.)

_. Feedback of Lessons Learned from Plan Execution to Plan Generation

Lessons learned flora plan execution can be extremely valuable for future plan generation. Therefore

focussing on integrated systems for plan generation, execution and repair may be one of the best
approaches to advancing the state of the art. Particularly, developing catalogs of successful plan gener-

- at.ion tactics can be valuable in dealing with complex, interactive environments which have been
beyond our capability thus far.

K. Current Resmrch

: Table lI-1 presents an indication of current research activities in search-orienled automatic problem
solving and planning techniques. A more detailed view of current research in this area is provided by

. the Spet._al Issue on Search and Heuristics of the Artificial Intelligence Journal (Pearl, 1983).

L. Current State of the Art

Real, complex problems tend to have the characterisdc that their search space tends to expand expo-
nentially with the number of lmrarneters involved. This "NP Complete" type of problem sdU is out of
bounds for searches that do not have powerful heuristics to guide them. Chess has been one indicator

of the state of the art in problem solving emphasizing search (though computer capability has been an
eqtmlly important factor). Berliner (1981) reports that 1981 chess programs (emphasizing look-ahead)

" hadreachedanexpertiseof2300pointscomparedwithroughly2500pointsforthebesthuman experts.
Currentproblemsolversemphasizingsearchhavethusfarsucceededonlyinsolvingelementaryor

toy problems, or very well structuredproblemssuchas games.Thus, the AI community's emphasis
hasshifted toward expert systems(Duda. 1981)as problem solvers,where the emphasi_is on knowl-
edgeratherthansearch.*Inaddition,therearetrendstowarddistributedproblemsolvingsystetmand
towardinteractiveproblemsolvingsystemswherehumans make themajordecisionsandthecomputer
prowarnofferschoicesand worksoutthedetails.

._ • Evenia chin. tlwrt isI_mnin I to _ :m onoham on know_ll_ m _ by t_ CHUNKER Protnm_fCaml_ll
ant1_rtlntr, I_) wlttrt tM incorporationof knowtt¢l_ aboutpatternsof c_ Oositionsdrmlgal_ _ starch
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TABLE 1I-1. Examples of Current and Recet:, Research in Search-Oriented
Problem Solving :_,:._,"/.jues

T_balqtte Prolrlm •;_itute l_mmrch_ Fundlq

Heunul_ .,<,,t¢ta Heuristic Search Theory t ":: ,-_ J. Pearl NSF

Efficiency in B_zktracking _,, ma Univ. C.A. Brown NSF
P.W.Purdom

Blockhead ,f CA D. ICibler NOSC
,:'*me P. Morris

B AJ|orithxnfor Heunstie _ ,-oh .[unlg_ian L. Mero
Academy of
Science

| DE[ TA MIN for Backtr:,..._.'., CMU T. Catbonell ONP.

Constraint Satisfaction {n_asaonProcedu,_. UBC R. Seidel
and Rd,_tation

. A.18orithms

Multiple Ailent DistributedAI SRI K. Konolile ONR
Planninll Systems N.J. Nihson

Multi-AlentPqamn;a| SynchronizationofMulti- StamfordU. J.S.gosenchein OHR
AlentPlans

! PavafieiS=uch AJlorithm for Pa.,-AllelProcaine MIT W.A. gornfeld
,* in Hcumuc Sau,ch

" Paralhd Scm'chE.eficicacy Several
Canadian
Res_u'chers

MinimaxCotingTree AllorithmforCaammuwith Duke B.W.Badl_d A_OSR
Search Chance Evenu

Came PlaYmll SSS* Minimax AJIonthm U. ofMD L. Kamd " NSF
AJlodthnu V. Kum_

Brut_ Force Intellilence CMU H.J. BerUner ARPA
SNAC Optimum Se_ch

' Branch a_l Pound _ Formulation U. ofMD D. Nau et al, NSF

Analytical Evmluamon Unified Approach In'GiantU. P.W. Purdom & NSF
ofS_rchMetho_ C.A. Brown

_ _on of A Distributed Hierlrchical UCLA J, Pearl NSF
: P.ayesRule Approach

Coorainama Multig_ Unifyinl Dam.Direcx_ and U. of MA D.D. CorkiU NSF
BlackboardGiol_ Go_-DimctKI Control in a V. L_r
Data Balm Multi.Level Co'aperatinll

Knowl_lle Sourc_ Problem
Solver

r_tril_t_ Pro_mn Meut-Lgv¢lControl U. of MA V. Lgc_'ret al. NSF
:/olvin$ ARPA

Other If,AMP Pllumin| SystemUsinI SRI D.F. Ap_elt ARPA
Procedural_k_twork

I
Ip

." M. Forecast

" It iSexpectedthatwithinthe rlcgtfiveyears, the increasedspeedandcapabilityof computersand the
ability to do parallel searches coted have as much effect on search performance as new search
methods. However.as searchusuallygrowsexpone,tially _th depth, heuristicsto cestrictthe paths to
be searched will also be of continuing importance. It is also expected that techniquesto combine
shallowand deepr_sonJng(e,$., non-monhonicrmuoning,causality, f_t prindples,theorem
proving),:vii]be majorcontributorsto limitinga:,d guidingsearch.
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Schank (1983) states that"., search is one of the key AI problems. However .... the approaches to

search have been inadequate. S_arching massive amounts of information req_,ires not efficient algo-
rithms but representations that ob_4ate the need for these all_orithms," (Knowledge representation is
the subject of the next chapter.)
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m. KNOWLEDGE REPRESENTATION

A. Introduction

Artificial Intelligence views knowledge as the key to high-performance intelligent systems. Thus the

representation and management of knowledge is a central topic in AI today.
Newell (1981) defines knowledge as the information used by intelligent agents (human or machine)

to make rational decisions.* Further, Newell states that "knowledge is not just a collection of symbolic

expressions plus some static organization; it requires both processes and data structures." Thus knowl-
edge representation consists of a system for providing access to a body of knowledge--a data structure

for representation in memory and a means (the computational process) for accessing that knowledge.
Structure and access are thus intertwined, with ideally a representation being chosen that simplifies

access to the knowledge for the particular task at hand. Thus, a variety of knowledge representations
exist, arising from the search for the most useful representation for the class of problems for which

' they have been devised.

MyopoILs (1981, p. 5) states that, "the basic problem of knowledge representation is the develop-
i ment of a sufficiently precise notation for representing knowledge." To this must be added the require-

ment for efficiency and rapid access.
#,.

:. For the purpose of knowledge representation (KR), Myopolis treats a knowledge base as a model of
a world/enterprise/slice of reality. The Heuristic Programming Project (1980, pp. 5-6) indicates that

_ the knowledge base (KB) of At programs contains both factual knowledge of the task at hand and
heuristic knowledge representing the tacit judgmental knowledge comprising domain expertise, and

" often meta-knowledge of how to solve problems efficiently and effectively.

B. Purpose

The purpose of knowledge representation is to organize the information required h,.to a form such

that the At orograrn can readily access it for making decisions, planning, recognizing objects and situ-
: ations, analyzing scenes, drawing conclusions, and other cognitive functions. Thus knowledge repre-

sentation is e_i_cially central to "expert systems," "computational vision," and "natural language
; unde_r.z.z,dmg."

C. Techniques

Representation schemes** are clamicaUy classified into declarative and procedural ones. Declarative
, refers to representation of facts and assexzions, while procedural refers to actions, or what to do. It is

-' virtually impossible to come up with a pure system of either type as ultimately both assertions and
what to do with or about them are involved in the data structures and the access mechanism in any
knowledge representation.

A further subdivision for declarative (obje':t oriented) schemes includes relational (semantic net-
work) schemes and logical schemes.

The principal KR schemes are briefly discussed in the following paragraphs and summarized in
Tables III-l.

*More prec_ly, Newell (1981, p. 20) defines knowledge as "Whatever can be ascribed to an agent, such that its" be.

havior can be compute! according to the principle of rationality."

**Thediscussionof KR techniquesgiven in this section is basedprimarilyon Myopolis (1981),Barrand Feigenbcum
(1981,pp. 141-222)and Graham(1979,pp. 188-208).

h
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j 1. Logical Representation Schemes
The principal method for representing a knowledge base logicallyis to employ first order predicate

logic. In this approach, a knowledge base (KB) can be viewedas a collection of logical formulas which
provides a partial description of the world. Modifications to the KB results from additions or deletions
of logical formulas.

Examples of logical representations are:

IN(SHU'I'I_E, ORBIT) = The shuttle is in orbit.
v(x). EXTRA-TERRESTRIAL BODY(×)-_POSSESSES (x, NO KNOWN LIFE)

= For all x, where x is an extra-terrestrial body, x possesses no known life. Or more simply, all extra-
terrestrial bodies have no known life.

Logical representations are easy to understand and have available sets of inference rules needed to
operate upon them. Table III-la summarizes the various aspects of logical KR's.

2. Semantic Networks

A semantic network is an approach to describing the properties and relations of objects, events,
concepts, situations or actions by a directed graph consisting of nodes and labelled edges (arcs con-
necting nodes). Because of their naturalness, semantic networks are very popular in AI.

In a semantic net, the program can start at a node of interest and followarcs to related nodes, and in
turn follow arcs to still more distant nodes. This approach is very natural--being reminiscent of
human thinking. However, the multiplicity of pathways, as we go further from the starting node,
makes it easy to get lost in the maze, unless a strong organizing or guiding principle is used (such as the
"beam-search" approach employed by the HARPY speech-understanding system).

The various aspects of semantic networks are summarized in Table Ill-lb.

3. Procedural Representations and Production Systems
In procedural representations, knowledge about the world is contained in procedures--small pro-

grams that know how to do specificthings (how to proceed in wellspecified situations). Classification
of procedural representation approaches are based on the choice of activation mechanisms for the
procedures, and the forms used for the control structures.

The two common approaches consist of procedures representing major chunks of knowledge--
subroutines (seeTable III-lc)--and more modular procedures, such as used in PLANNER (Hewlitt,
1972)and the currently popular production rules. The common activation mechanism for procedures
ismatching of the preconditions needed for the procedure to be invoked. In PLANNER, this is referred
to as "pattern directed procedure invocation." The main difference between PLANNER and the
more recent "production rules" is that PLANNER's elemental procedures (called theorems) can
communicate direc'dywi_ each other, while the communication between production rules is only by
modification of the pattern in the Global Data Base (GDB) for the individual production rules to
observe.

Production L'ulesif)R) are characterized by a format of the type:

Pattern, Action
If, Then
Antecedent, Consequent
Situation, Procedure

A PR system consists of a knowledge base (KB) of rules, a global data base (GDB) which represents
the system status, and a rule interpreter (control structure) for choosing the rules to execute. In a
simple production rule system, the rules are tried in order and executed if they match the pattern in
the GDB.
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i However, in more complex systems, such as used in expert systems, a very complex control structure
(see, e.g., Gevarter, 1982) may be used to decide which group of PR's to examine, and v_hich to exe-
cute from the PR's (in the group) that match patterns in the GDB. In general, these control structures

work in a repetitive cycle of the form:

I. Find the conflict set (the set of rules which match some data i_ the GDB).

2. Choose a rule from among the conflict set.

3. Execute the rule, modifying the GDB.

Because of their modular representation of knowledge and their easy expansion and modifiability,

PR's are now probably the most popular AI knowledge representation, being chosen for most expert

Table III-ld summarizes the central aspects associated with production rule systems.

4. Analogical or Direct Representations
In many instances it is appropriate to use natural representations such as an array of brightness

values for an image, or a further reduced sketch map of the scene delineations in a computer vision
system. This "homomorphism" (structural similarity) is evident in the use of maps, geometric models,
etc. These direct representations are analogous to some properties of the situation being represented.

" These natural representations are useful in computational vision, spatial planning, geometric rea-=

>. soning and navigation. One even notices analogical aspects in musical notation where the rise and fall
: of the musical frequency is apparent in the representation of the notes in the score.

This form of representation has the advantages of being easy to understand, simple to update, and

_ often allows important properties to be directly observed, so that they don't have to be inferred. A
"" direct or analogous representation can usually be more exhaustive and specific, making for more effi-

cient problem solving. It also can facilitate search and working with constraints. However, this form of
; representation is clumsy fcr some tasks, particularly when generalization is ,_eeded.

Table III-le summarizes the attributes of direct representation.

S. Property Lists
One approach to describing the state of the world is to associate with each object a property list; that

is a list of ali those properties of the object pertinent to the state description. The state and therefore
" the object properties can be updated when a situation is changed.
: Table lll-lf briefly indicates the attributes of such a representation.

6. Frames and Scripts
Humans are able to handle with relative ease a large variety of circumstances in everyday life

because to a great extent our days are filled with a series of stereotyped situations such as going to
work, eating, shopping, etc.

Minsky (1975) conceived of "frames," which are complex data structures for representing stereo-
typed situations. A frame has slots for objects and relations that would be appropriate to the situation.

"; Attached to each frame is information such as:

-- how to use the frame
-_- -- what to do if something unexpected happens

-- default values for slots.
.:"

Frames can also include procedural as well as declarative information. Frames facilitate expectation-
driven processing--reasoning based on seeking confkrmation of expectations by filling in the slots.
Fraraes organize knowledge in a way that directs attention and facilitates recall and inference.
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i An example of a frame is:

Airplane Frame:

Specializationof: Aerospacevehicle

Types:
range: (fighter, transport, trainer,bomber, light plane, observation)

Manufacturer:
range: (McDonnell-Douglas, Boeing.... )

Empty Weight:
range: (500 lbs to 250,000 lbs)

Gross Weight:
range: (500 lbs to 500,000 lbs)
if needed: (1.6 x empty weight)

' Name:

if needed: (Choose name satisfying type and manufacturer)

' Max Cruising Range:
if needed: (Look up in table cruising range appropriate to type and gross weight)

,,. Numberof Cockpit Crew:
:. range: (1 to 3)

default: 2

: Scripts are frame-likestructures designed for representing stereotyped sequences of events such as
-- eating at a restaurant or a newspaperreport of an apartment fire.
": Table III-lg summarizes the central aspects of frame representations.
;'

"" Z Semantic Primitives:
• For any knowledge representation scheme it is necessary to def'mean associated vocabulary.For

semantic nets, there i_asbeen a real attempt to reduce the relations to a minimum number of terms
(semanticprimitives) that are non-overlapping. A similareffort has emerged for natural language

.. understanding.
"2 A naturallanguageisanattempttodescribealloftheworld'saspectsimportanttohumans.Unfor-
: tunately,astheselanguagesevolvednaturally,ratherthanbeingscientificallyordained,agreatdealof

ambiguityhasentered'helanguages,suchthatthemeaningisoftendependentoncontextandback-
groundknowledge.Severalattemv.shavebeenmadetodescribealloftheworld'saspectsintermsof
primitivesthat ate unique, unambiguousrepresentations into which natur',dlanguage statements can

• beconvertedforlatertranslationintoanotherlanguageorforothercognitiveactions.
Wilks(1977)hasproposedasystemdesignedtobeusedforlanguagetranslation.Hissystemisten-

, teredaroundadictionaryfordistinguishingamongthevarioussensesofthewordsthatcan.appearin
theinputtext.Def'm/fionsinthedictionaryatedefinedintermsofsome80semanticprimitives
groupedintothefollowingfiveclasses:

* (,_m ExamplePrimlt/ves
4

Entities man, stuff,pan

Actions cause, be, flow
Ca_ to, in

Qualifiers good, much
1

Type Indicator now, kind
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The completed representation of a text is in terms of semantic formulas constructed from the prirr, i-
tives. For example:

"Some spacecraft sprout large antennas".

agent = - action-*=-----_object

Entities or actions: [spacecraft]-4-==_[sprout]-*---_[antennas]
) )

Qualifiers: [somel [large]

where the terms in square brackets would be replaced by semantic formulas representing their appro-
priate sense.

' Wilks has also incorporated inference rules and other structures to assist in clarification and organ-
ization of the resulting text representation.

: Schank (see, e.g., Schank and Riesbeck, 1981)has developed a "conceptual dependency" theory as
: an attempt to provide a representation of all actions in terms of a small number of primitives.
i Schank's goal is broader than language translation, the representation being task-independent so as to
; be applicable to inferring, paraphrasing and answering questions as well.

Schank's primitives are intended to be unambiguous and unique. The system relies on II primitive

; physical, instnmlental and mental ACTs (propel, grasp, P tram, A tram, speak, attend, etc.), plus
several other categories, or concept types.

?? Detailed rules are provided in conceptual dependency for combining the elements into represex:ta-
dons or meaning. There are two basic kinds of combinations or conceptualizations. One involves an

actor doing a primitive ACT; the other involves an object and a description of its state. Attached to
each primitive act is a set of inferences that could be associated with it.

More recently, Schank has added clarifying elements in terms of goals, scripts, plans, themes and
social acts, designed to provide additional meaning, purpose and context to the representations.

An example of a representation in conceptual dependency is:

Armstrong flew to the moon.

Actor: Armstrong
' Action: flew

Direction to: the moon

From: Unknown

The use of sernandc primitives allows propositions to be stored in canonical (standardized) form,
with resultant computational advantages for many uses.

)

D. Reprmeumttou Languages

A number of programming languages have been designed to facilitate knowledge representation.
Table III-2 lists some of the more popular ones.

i It will be observed that usually one form of knowledge representation (such as production rules or
frames) is chosen as central to the language, though some (such as UNITS) provide for multiplegw

representations.
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TABLE III-2. Programming Tools Facilitating Knowledge Representation

Tools Orpn;_Uon Naturt

OPS 5 CMU ._.programming languase, built on top of LISP, designed to
facilitate the use of produ_ion rules.

ROSIE Rand A general rule.b_ed prosrammin$ lansuase that can be used
to develop larle knowledse bases. Translates n_tr-English
into INTERLISP.

UNITS Stanford U. A knowledse representation lanjuase and interactive knowl-
: edlle acquisition system. The iansuaje provtdes both for

"frame" structures and production rules.

KIIL Xerox PARC KnowledlerepresentationlanluaSedevelopedtO explore
t'rame-bs._tdprocessinil

i SAM Yale A systemof computerpro_'amsto analyzescripts.

FRL MIT A framerepr_ntationlanlUalethatprovidesa hierarchic=l
knowledl_ebaseformatco_istin|offrameswhoseslotscarry
comments,defaultvalues,constraints,andproceduresthat
areact/ratedwhenthevalueoftheslotisneeded.

)r

KL-ONE BBN A uniformIgn|naSeforrepresentationofnaturall_alluqe
-,,. conceptu_information,basedon theida=ofstru_uredin-

heritancenetworks. Networksu._ epistemolo_ca/primitives
as links.

L'_TL CMU A comprehensive,domainindependent,knowledse-b_u_esys-
tem. Itusa a paraUdintersectiontechniqueforsazchmll
rapidly t._roulh larsebodiesof knowi_|e.

DAWN DEC A IIm_'ral prolrantminll and system d_ptlon lanlluqe with
automatedhelpptocedura.

OWL MIT A _manbc network knowled|e representauon lan|uqe for
usei_inaturallan.|uale questionanswerin| _ for build/n$
exlX_'%syst_1%L

FRA/L Brown U. A KR lanlNaSe that combines predicatecalculuswithframe
reprtsentation for u.win muural lanlrualle unck.rstandin|.

E. State of the Art

Though productionruleshave emergedasthedominantKR forexpertsystems,and semanticnet-
worksforimageunderstanding,ICRisstillinastateofflux_th many researchers,variousrepresenta-
flop.s,and no deargeneralunderstandingof whichrepresentationsaremost appropriateforwhich

problems.As a result,K.Rresearch,.'soneof themostactiveareasinAI today.

F.braes

:" SIGART's (1980) "Special Issue on Knowledge Representation," indicates that there are many
_" areasofconcern(pp.114-II_.VirtuallyeveryaspectofKR stiUisan issue.A fewoftheseissuesare:

I. F'u'st Order Predicate Logic (FOPL) as a Standard of Representation.

, Many rese_cherssuchasKowalsk/(p._) feelthatFOPL is the onlylanguagesuitable for143-
whetherdeclarative or procedural. Correspondingly KowalskJ maintains there is only one intel-
ligent wuy toprocessinformation--andthatisby applyin8deductiveinferencemethods.

OtherssuchasSloman(p.48) declarethatthereis"No suchthingasan idealrepresentational
formalism..,blo one formulaisequallyadequateforallthingsforallpm'pos_s... No doubtall
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i knowledge representation can be embedded in predicate calculus, but this may be of Littlepractical
importance."

Zadeh (p. 48) observes that most human knowledge is imprecise in nature• Therefore two valued

logic and associated representation techniques are not appropriate--fuzzy logic being necessary.

2. How to provide everyday context and common-sense know-how in representations? Drefus
(p. 42) observes that the background context continually varies, while rule behavior tends to
assume "everything else being equal."

3. Need to consider representations in a broader sense, _uch as holograms which can be used to

process information, but is not a data structure.

4. Hobbs (pp. 43-44) declares that, "Standard practice in the representation of knowledge is the
scandal of AI... Ninety percent of what is done in the representation of knowledge is rei.nvention,
most frequently in predicate calculus." There is a multitude of items for similar aspects. "The
consequence is a jungle of incomparable results."

In this regard Newel[ (1981) observes in regard to the SIGART KR survey that, "The main result

was overwhelming diversity -- a veritable jungle of opinions. There is no consensus on any ques-
non of substance."

'; 5. Doyle (p. 41) declares that there is a need to consider intention, action, purposive communication
and the procer_sesof problem solving in KR. Also needed are systems which are self-referent (both

i, to descriptions and pans and to belief systems). Better KR's for learning processes and belief revi-
sion also need to be developed.

6. Need to clarify which KR's are best for which purposes.

7. How do we rind the most appropriate representation for given problems?

8. Problem of selecting the appropriate level of abstraction for a problem--scope and grain size
(Davis, 1982).

9. KR's that facilhate knowledge acquisition.

• 10. Designing KB's to facilitate updating--modularity.

11. Need for multiple representations for different aspects (or at different stages of problem solving)
of Lhe qa.,ne problem.

12. Problem of incompleteness inherent in all KR's.

13.Understandability--transparency.

14.Lack ofa theoryof KR.

15.How torepresentknowledgesoa,stoenableAI programstobehaveasiftheyknew something
abouttheproblemstheysolve.

16. How best to choose a representation to provide the greatest efficiency in deductive reasoning
(Moore, 1982).

; G. Seam Remm:h Netttt:

I. Standardizationof nomenclature and techniques

2. Methods of matching representations to problems

3. Methods to hnadleimpreciseknowledge
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4, Methods to evaluate efficiency of representation

5. Need to be able tc conveniently represent intentions, beliefs, etc. in representations.

6. Methods to provide self.knowledge in representations.

7. Methods for quantification--the ability to specify properties of arbitrarily def'med sets.

8. Representation methods for people's beliefs.

9. Representations of pro,:___es that consist of sequenced actions over time.

I0. Representations for complex and amorphous shapes.

I I. Techniques for inde.v.hzginto a large data base of models.

H. Who Is Doing It

ReviewofSIGART's (1980)"SpecialIssueon KnowledgeRepresc,ltadon"indicatesthatthefol-
lowingaretheprincipalorganizationsinvolvedinKR research.

1. Universities

Stanford University
, Universityof Hamburg (WestGermany)
'- CMU

Simon Fraser University (Canada)
Universityof Par__'s
Universityof Pittsburgh
MIT
Yale

UniversityofToronto(Canada)
Universityof Maryland
SUNY, Buffalo
UniversityofOttawa(Canada)
Rutgers University
University of Amsterdam (Netherlands)

" Ur,iversity of Essex (England)
: University of Calif_;,'nia (Berkeley)

N. Dakota State University

2. Other

IBM
DEC
SRI
BBN

D

•' 1. Future DL._ct_ons

The knowledge represen',ationfield hasbegunto exhibit 5owe structure--rule-bated systemspre-
: dominating in Expert Systems, but network representa,.ions also being importan.t. Fvr image under-

standinl systems,direct representations(suchaz line sketches)arecommor_,with.network representa-
tiom beial widely employed.

In the future, we will probably see increased standardization of terminology,standardized primi.
dyes,and theuseof multiple typesof representationsin a singleproblem. Wecanal,o expectmcrea._m

' emergence of self-reflective systew: that can reason about their own structure and knowledge.
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Also emerging will be knowledge representation systems that are appropriate for learning, general-
ization and abstraction--currently difficult subjects.

KR languages are on the increase, which should help in constructing knowledge-based systems and
encGurage standardization of representations.

Within the next five years, we can expect a clearer understanding of which representations are
appropriate for which problems.

We can also expect KB's to vastly increase in size with KR techniques being developed to ease the
addition of knowledge to them and the retrieval of knowledge from them.
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IV. COMPUTA'IIONAL LOGIC

A. lnlroduclion

It is frequently necessary, to develop computer programs to deduce facts that are not explicitly
represented but that axe implied by ocher represented facts. An intelligent robot may have to use
logical facts about its environment, e.g., to deduce when a goal state has been reached or how to reach

the goal state in the first place. A data base query system may have to deduce desired information from
other information in the data base.

Computational logic has been developed to address such problems. In addition, the associated
predicate calculus expressions have proven to be a powerful means for knowledge representation for
AI programs. Computational logic is thus an important AI area and is briefly reviewed in this chapter.

Raphael (1976, pp. I I0=I I I) states:

i A typicaltaskposedfora logicalsystemis the following.Givensomelogicalsentencesreprmentingpremises,and a
sentev,cecalleda theorem,whichrepresentssomeas.senionwhosetruthwewishtodetermine,demonstratewhether
thetheoremisguaranteedto betrueprovidedonlythat thepremisesaretrue.If suchademonstrationcanbe obtain-

• ed, it is calleda proofot the theoremfromthegivenpremises,andwe say that the premisesimplythe theorem.

Ther,..axetwo approachesto attemptingto constructproofs.One,calledthe semanticapproach,dependsheavily
: uvon the meaningsof the symbolsin the [logicalstatements].Ina sense,whenweuseasemanticproof,wereason

p.,'imarilybyconsideringallthepossibleinterpretationsof thelogicalstatementtobe proved.Intheotherapproach,
calledsyntactic,wetotallyignorethe me_alingsof thesymbols;instead,weuse formalsymbol-nmnipulationrulesof

_,. thelogicalsystemtoconstructnew[logicalstatements]out of oldones.Thesyntacticapproachisfrequendyeasierto
•_., use,especiallyfora computer)becauseonecanapplyrulesinamechanicalway"_thouthavingto thinkaboutwhat

• th¢ymean.

, A logicalsystemconsistsofbotha specificationforthestructureof the[logicalstatements]ofthesystem,andasetof
rules,calledtherulesof inferenceof thesystem,forconstructingproofs.Manydifferentlogicalsy_ems havebeen
invented;in fact, eachmathematicianis freeto inventhis ownas he seesfit.

Traditional computational logic--a computational approach to logical reasoning--is divided into?

". two principal parts, the simpler "'propositional logic" and the more complex "predicate logic."

B. Propositional Logic

In logic a "proposition" is simply a statement that can be true or false. Rules used to deduce the
truth (T) or falsehood (F) of new propositions from known propositions are referred to as "argument
forms." The interesting and useful things we can do with propositions result from joining propositions

! together with connectives such as OR, AND, NOT, and IMPLIES to make new propositions. The
symbols for these connectives are given in Figure IV-i.

'l The simplest argument form is the "conjunction," which utiHTesthe connective AND. It states that

if proposition p is true and proposition q is true, then the conjunction "p AND q" is true. In symbolic
form we have

p (prem/s¢)

, q (premise)

p^q (conclusion).

which simply states that for a conjunction, the conclusion is true if the premises are true.

t
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Connective Symbol Meaning

And A or _ both

Or v or L) either or both

Not -I or -.., the opposite

, Implies D or -=4- If the term on the left is
; true, then the term on the
< fight will also be true.

• Equivalent -_ has the sametruth value

Figure IV-1. Typical Mathematical Logic Symbols.
L

._,

Deduction meansobtaining solutions to problemsusing some systematic reasoning proceduresto
reachconclusionsfrom stated premises.(In mathematical logic, deductiveproceduresare sometimes
referred to as "formal inference.")

b

One simple form of deduction can be represented as a mathematical form of argument called
"Modus Ponens" (MP):

p (premise)

p IMPLIES q (premise)
_" ill i i

5 q (conclusion)

An example of MP is:

I'm feeling very sick (prerr.se)
When I'm feelingvery sick, I must call the doctor (premise)

• ,

' i must c_ll the doctor (conclusion)

The conclusion is usually stated as a theorem to be proved.
The method of truth tables is the best-known method for proving theorems in propositional cal-

culus. This is a semantic method,in which all the possible combinations of interpretations for the

propositionalvariables are examined.
.! Graham (1979, pp. 165-168)enlarges on this:

Suppose we are given some expression involving propositions and logical cormectives. Suppose further that we know
whether eachindividual proposition in the expressionistrue or false.We would like to beable to calculate whether or
not the proposition representedby the entire expr.-_sionis true or false.
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We can do this in two steps. First we assign each proposition in the expression a truth value of either T or F. True

propositionsget the valueT and falseones get the valueF.

Second,wetreat theconnectivesAND, OR,NOTand IMPLIESas operatorso_eradngon T andF,just likethe+,
-, x, and / inan algebraicexpressionoperateon numbers. Inother words,wedo "logicalarithmetic"to calculate
the truth value of the entireexpression.

The proposition
pORq

is true if p is true, if q is true, or if both axetrue. Thisgivesus the followingtruth table for OR:

p q pORq

T T T
T F T
F T T

, F F F

Another argument form, the "implication relation" is def'med such that if"p IMPLIES q then when
p is true, q will be true, and nothing more. The implication relation does not say that p and q have any
cause-and-effect relationship to one another. When p is false, nothing whatever is asserted about q.

i Therefore, the only way m which p implies q can be false is if p is true and q i¢ false. The resultant truth
; table ia:

p q p IMPLIES q

T T T
"_ T F F
" F T T

, .F F T

A large number of argument forms are available in traditional logic. All these forms can be easily
verified using simple truth tables.

Raphael (1976, pp. 113-I 14) observes:

The task of constructing a truth table can certainly be programmed for a comout.'r, and the truth-table method

": willwork toproveor disproveany theoremofpropositionalcalcvlus.However,thisme_od isnotentirelysatis-
: factory, becaut_ it can be extremely inefficient. If n differem propositional variables occur in the premises and the

theorem, th_ a table with 2n ro#s must be f'tlled out; a problem with ten variables requlres more that) _ thousand
lilacs.

Wang (1960) at Harvard University developed a syntactic method that is about as efficient as any
; general method for propositional calculus can be. It produces exactly the same results as truth
_ tables, usually requires much less computational effort, and is easy to program.

C. Predicate Logic

,_ Propositional logic is limited in that it deals only with the T or F of complete statements. Predicate
= logic remedies this situation by allowing one to deal with assertions about items in statements, and

allows the use of variables and functions of variables.

-" Propositions make assertions about items (individuals). The "predicate" is the part of the proposi-
tion that makes an assertion about the individuals. A proposition is conveniently written as:

arguments of the predicate

Predicate (Individual, Individual,... ),)
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(e.g.)
"The box is on the table." (proposition) is denoted as:

ON(BOX, TABLE)

The predicate, together with its arguments, is a proposition. Its value is T or F, and any of the
operations of propositional logic may be appliedto it.

A variable stands for any individual. Variables allow us to make statements that would not be
possible in propositional logic. For a proposition containing variables to be true, it must be true for
any individual names that are substituted for the variables.

Using variables, if we want to write the English sentence:

• "If x is by y and z is on x, then z is also by y."

as a predicate logic expression, it would take the form:

: BY(x,y) AND ON(z,x) IMPLIES BY(z,y).

Substituting the name of a particular individual for a variable is known as "imtantiation." It is
• called instantiation because the individual is a particular "instance" of the variable. We can assert

that something exists by making up a name for it (e.g., a, b -- individual constants) and use that
i

name in our expression. For example, to state that "a" is a box, we write

BOX(a).

We can imtantiate our previous expression (for the case of a window, table and ball) as:

BY(TABLE, WINDOW) AND ON(BALL, TABLE)

IMPLIES BY(BALL, WINDOW)

' which translates as: if th8 table is by the window and the ball is on the table, then the ball is also by the
window.

Sometimes the individual whose existence we wish to assert will depend on some other individual;
then we can use functions (f, g, h) to do this. For example:

The mother of a = f(a).

More generally, if we want to assert that eyeD' person has a mother, we can write:

PERSON(x) IMPLIES MOTHER(f(x),x)

which can be read as:

If x is a person, then there exists an f(x) that is x's mother.
2

D. Resolution
b

= Resolution has been the primary techniclueusedin modem computational logic programs.Resolu-
tion is a syntactic method of deduction which replaces all the many argument forms of traditional

, logic. Resolution is a simple concept but to discuss it, a few additional clef'tuitionswill be helpful.

Atom: a proposition that _ot be broken down into other propositions (i.e., a proposition that is
not formedfromotherpropositionsbyusingconnectives).

Literal: an atom (e.g., q) or an atom preceded by NOT (e.g., NOT cO

Clause: a series of Iiter'alsjoined by OR, e.g.: (NOT p) OR q OR (NOT r) :

,_ [Duplicate hterals in clausescan be eliminated. This process is called factoring.] :

i
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Resolution Principle (R): an argument form that applies to clauses:

p OR 1OR m OR... (premise)
(NOT p) OR n OR o OR... (premise)

1OR m OR n OR o OR... (conclusion)

(If the premises are T, then by resolution (the cancellation of contradicting literals between clauses)
the conclusion is T.)

Empty Clause: (_,) indicates a contradiction:

P

NOT p

; [] (by R)

', Equivaience: Two propositions are equivalent if they have the same truth value.

Identily: States that two propositions are equivalent (proved by using a truth table):
i

; e.g., NOT (NOT p) = p (identity)

_" After f'_t putting the original premises and the conclusion into clause form using standard
". identities, weare ready to prove the truth of a conclusion from a set of premises using resolution. Start

by negating the desired conclusion (the theorem to be proved). Then derive new clauses using unifica-
'-',- don* followed by factoring and resolution, working toward deriving the empty clause. If the empty
- clause is derived, then (as a result of this proof by contradiction) the desired conclusion follows fiom
, the original premises. If we stop before the empty clauseis derived, then either Lheconclusiondoes not

follow from the premises or we gave up too soon.
Graham (1979, pp. 186-187)observed:

Resolution is complete in the sense that if the conclusion does follow from the premises, then repeated unification,
resolution,and factoringwilleventuallyderivetheempty clause.

.- Resolutioncanbemoreeasilyprogrammedonacomputer,andtheresultingprogramismoreefficientman wasthe
casewithany previouscomputatiorml-logicprograms.

7

[At present,resolutionprograms]cannothaadlesuchcomplex'.asksas provingdetp mathematicaltheorems,
verifying computer programs, or aiding a robot to cope with the complg_atiesof the real world (as opposed to a
limited laboratory world). For these tasks the resolution program uses up the available time or memory before
deriving the empty clause.

The trouble, as is usual in AI, is a combinatorial explosion. Unification, resolution, and factoring derive many
•: clauses that are not relevant to deriving the empty clause. The program wastes its time following lines of reasoning
. thatcometoadeadend.

"- B(_au._ofthesedifficultiessomepeoplehavegivenupthepossibilitythatcomputationallogiccanhandlecomplex

theot'_n-provingtasks,Othersseekr_trictionson theway resolutionand factoringaredonethatwillreducethe
•:.r numb(n"ofclaus_generatedwithoutdestroyingcompleteness.Stillothers(includingtheauthor)feelthattheanswers
>- lieinusinllpowerfulheuristicandplanningtechniquestoguidetheresolutionprogramtoitsgoalofderivingthe

•: empty clause.

t

•Unification is the name for the procedure for carryingout instant/atio_. In unification we attempt to fred substitutions
_ for variables that will make two atoms identical.

4
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E. ComputationalLogic Today

Computational logic has evolved into several distinguishable subareas: theorem proving, logic pro-
grarraning, non-monotonic logics, and multi-valued and fuzzy logics.

I. Theorem Proving
This branch of computational logic is an outgrowth of resolution theorem proving with additional

techniques and modifications added to attempt to restrain combinatorial explosions. With restrictions
on resolution clause generation, theorem proving approaches can be made sufficiently efficient to be
used in practical problems. An outstanding example of this is the AURA (AUtomated Reasoning
Assistant) theorem proving system (Wos, 1983)that has successfullybeen applied to real applications
in mathematics, formal logic, program verification, logic circuit design, chemical synthesis, database
inquiry and robotics.

Three techniques (used in the AURA system) that have had a major impact on making theorem
provers practical are:

(1) Demodulation: Employing revn'ite rules to simplify or canonicalize the expressions to achieve a
normalized form.

(2) Subsumption: A technique that recognizes and discards many equivalent or weaker rules or
facts than those that have already been generated.

(3) Strategy Rules: Ordering strategies that direct the system as to what to do next.

These three powerful techniques in AURA are domain independent (though the strategy rules have
provision for weighting so that the user can assign priorities to concepts).

Other strategies have been important for further reducing the expressions that are generated or re-
tained during the proof process. One class is restriction strategies which provide guidance as to which
operations can be skipped. For example, there is the "set of support" strategy that discourages look-
ing at facts that don't have support (e.g., general information used alone, unsupported by other facts).

There are indications that there remain many important domain-independent inference rules yet to
be discovered. Examples of resgar,ch in theorem proving are given by Fable IV-I.

2. Logic Programming
It was realized in the early 1970sthat logic representations could also function in a procedural mode

by using the technique of unification to search for instantiations that would satisfy stated goals. This
has led to the PROLOG programming language (see, e.g., Chapter III, Vol IA).

As the manner in which the representations are written and the order (e.g., top to bottom, and left
to right) chosen for the execution of the logicstatements can have an important influence on the effi-

' ciencyand effectivenessof executing the program, such representational and ordering choices can be
thought of as a form of programming, hence the name logicprogramming. PROLOG, and logicpro°
gramming in general, has become very popular in the last few years.

" An indication of current researchin Logic Programming is given by Table IV-2.

, 3. Non-Monotonic Logic
One of the popular issues in AI problem solving has been concerned with how to handle lines of

reasoningand conclusions that may have to be retracted when new information is received.For exam-
ple, it is usually reasonable to conclude that if a creature is a bird, then it can fly. However, if it is later
learned that _¢ bird is a penguin or is dead, the conclusion must be reconsidered. Recent research ef-
forts on how to handle such situations are indicated in Table IV-3. Etherington and Reiter's (1983)
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TABLE IF'-1. Examples of Research in Theorem Proving

Technique Program Institute Researcher

Resolution-basedautomatedreasoningAURA (AUtomatedReasoning ArgonneNat.Laboratory L.Wos
program Assistant) Argonne,IL R.Overbeek

Set of procedures for tailoring LMA (Logic Machine Architecture, NW Univ. E. Lusk
an automated reasoning machine from which a portable reasoning Evanston, IL W. McCune
to given specifications program, ITP, was built) R. Overbeek

A strategy for semantic paramodulauon NUTS (NW U. Theorem-proving NW Univ. W. McCune
of Horn Sets System) Evanston, IL L. Henschen

Special purpose program for program Univ. of TX R. Boyer
verificauon Austin, TX J. Moore

Useofexamplesinautomatedtheorem Univ.ofTX W. Bledsoe
proving to help guide proof discovery Austin, TX
and to determine iastantiation of set
variables

..
: Many-Sorted Calculus based on Univ. of Karlsruhe C. Wahher

resolution and paramodulatton W. Germany

A very fast algorithm for unit TERMINATOR Umv. of Karlsruh¢ G. Antoniou
refutauonfortheMKR-Procedure W. Germany H.Ohlbach

'.- Su_rposition-oriented theorem L.I.T.P. L. Fnbourg
prover Paris,France

Associative-commutative operators U. of IL N. Dershowitz
for a refutattonally..complete theorem Urbane, IL N. Josephson

:'_ prover D. Plaisted

SUNY J. Hsiang
• Stonybrook, N. Y.

Procedures for building non-equational SRI Inter. M. Stickel
theories into a resolutton theorem-
proving l_-osram

"" ImprovingtheexpressivenessofMany U.ofWarwick A. Cohen
SorteoLogic Coventry,England

-?

Sources: IJCAI-83, AAAI-3
z

workon providing a formal semantics for networksof inheritance hierarchies with exceptions appears
particularly promising.

4. Multi-Valued and Fuzzy Logics
" Conventionallogicsdealwiththetruthorfalsityofstatements.However,thisbinaryapproach ,

is often inadequate for situations in which degrees of certainty are involved as, for example, in
i-;. medicaldiagnosis.Thus,workinmulti-valuedandfuzzylogicshasbeenundertakentoattemptto
-.. addressthisproblem.TableIV..4provides an indicationof researchin theseareas. Several

approachesforhandlingdegreesofcertaintyhavealreadybeensuccessfullyincorporatedinto
-; expert systems such as MYCIN and PROSPECTOR.

F. Future Dlrecflons
Moore (1982) argues that a number of important features of commonsense reasoning involving

, incompleteknowledgeof a problemsituationcan be implementedonlywithina logical
framework."IV,uslogic-basedsystemswillcontinuetobean importantelementofAI.
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TABLE IV-2. Examples of Research in Logic Programming

Technique Proi_tm i_titute Resesrcher

PROLOG Development PROLOG ......... Faculte des A. Colrnerauer
Sciences de Luminy
Marseille, France

Development of a QUTE U. of Tokyo M. Sato
PROLOG/LISP type of Japan T. Sakurat
prosrammins languaste

Inclusion of assertions M.I.T. W. Kornfeld
about equality in Cambridge, MA
PROLOG

Use of PROLOG for IBM W. Wilson
semantic code analysts Poughkeepsie, N.Y. C. John
of assemblerlistings

Extension of PROLOG to PROLOG/EXI IBM A. Walker
increase ranseof SanJose,CA
explanation capability

Ausmentation of PROLOG Weizmann Inst. E. Shapiro
to include unccna/nties Rehovot, Israelt

i
'- Addition of alllorTthrnic LOGAL U. of Nottingham D. Dodson

control structures to Meal, School A. Rector
i" PROLOG U,K.

A m_hod forbuildins BellLabs. A. Feucr
librariesofroutines MurrayHill.N.J.
anddatainPROLOG

IS

• Integratins PROLOG into the POPLOG Univ. of Sussex C. Mellish
POPLOG environment Brighton, U.K. S. Hardy

t,

An interpreterfor los/c U. of CA J. Conery
projrams which executes Irvine, CA D. Kibler
lotls in parallel

'" An experimental tool for PRISM U. of MD S. Kasif
parallel execution of CollegePark, MD M. Kohli

r- distributed AI problem J. Minker
," solversbasedonlolic

prol_a.,lmlinl
T

A simple unification alllorithm Inst. for New K. Mukai
for infinite trea for Generation Computer
structuresharingimplementations Technololy (ICOT)
oflolic prollranma/nll lanluales Tokyo, Japan

A prollram to debuj Uppsala Univ. A. Edman
*' losic prosrtms Sweden S. Tarnlund

,_mr_: [JCAI4$

%

:i
"1 The advent of powerful resolution-based theorem proving systems (such as AURA) -- utilizing

both domain-independent and domain-dependent inference rules t'o constrain combinatorial
' explosions -- has resulted in opening up practical applications for such systems. However, much

research remains to be done to discover more effective strategies, to devise methods for linking
rules together to take larger reasoning steps, to explore parallel processing approaches, to build
user-friendly interfaces, and to develop more rapid and improved knowledge representation

.2 techniques.
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' TABLE IV-3. Examples of Research in Non-Monotonic Reasoning

Activity Institute Re_.qrcher

Data Dependencies on Equalities Yale U. D. McDermott

Inhentance Hierarchies with Univ. of BC D, Etherington
Exceptiom using Default Logic Canada R. Relier

Default Reasoning as Univ. of TX E. RicL
Likelihood Reasoning Austm

Default Reasoning using Tulane U. J. Nutter
Monotonic Logic

Reason Maintenance Carnegie Mellon U. I. Doyle
(CMU)
Pittsburgh, PA

Semanuc Considerations in non-monotonic SRI International R. Moore

Logic

Source: AAAI4J. IJCAI-S3

; TABLE IV-4. Examples of Research in Multi- Valued and Fuzzy Logics,o

• and Plausible Reasoning Techniques

Activity l,..tlmte Re_nu'cher

Approximate Reasoning Techniques Universite Paul $abatier H. Prade
Toulouse, France

Comi ',ten,:), and Plas_ible Reasoning Rand J. Quinlan
; Santa Monica, CA

Propagation of Uncert_nty Advanced Information R. Tong
& Decision Systems D. Shapiro
Mt. View, CA J. Dean

B. McCune

Hcur'istic RmmOnmli about Stanford U. P. Cohen
". Uncertainty Stanford,CA M. Grinberg

: "Evidence SpaCe" forDealin| Tech. Univ. of Berlin C. Rollin|er
withUnct_aun Reasonins Fed. gep. of Germany

Use of Baysian Statistic_in Brown U. E. Charniak
Common Sen_ R_uoning Providence, R.I.

Fuzz/Lolic U. of CA L. Zadeh
Berkeley, CA

A M_hod for Computin| Generalized SRI International P. Chau_nan
_yeWm Probability Valu,-forExpert

Systm

5ourcll: IJCAI413
4

The advent of portable theorem proving systems opens up the opportunity for much increased

¢ experimentation, which should be instrumental in rapidly advancing the field. Wos (1983)
predictsthatasa result,automatedreasoningsystemswiththecapabilityforbeingused ina wide
variety of realapplications will be commonplace within five years.

As expert systems technology pushesforward toward employing causality and structure, in
addition to empirical association rules, deeper levels of reasoning will be required. It is

_. anticipated that advanced theorem provingsystems will play an important role in thisarena.
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PROLOG, the rapidly proliferating language for logic programming, has been earmarked for
the Japanese Fifth Generation Computer project. The powerful inference rules (such as zhe set of
support strategy) used in advanced theorem provers are now being considered for use with
PROLOG. These, coupled with domair_-specific control strategies and making provisions for
taking advan:age of many of the features of LISP (as in LOGLISP) may well make a hybridized
PROLOG the dominant AI language within the next decade.

Examination of Tables IV, and the associated textual comments, indicate that the basic
reasoning problems of non-monotonic rea._oning and reasoning in the presence of uncertainty,
are beginning to succumb to some of the recent research. We can ;.hus conclude that

computational logic, which earlier appeared doomed by the combinatorics generated by the pure
resolution approach, has become revitalized with new representational approaches, inference
rules, domain heuristics, and advanced computers and will play an increasingly important role in
future AI applications.

Additional material on computational logic fi sm an AI point of view can be found in Boyer
and Moore (1979), Kowalski (1979), Nilsson (1980), Clocksin and Mcliish (1981), Robinson and
Sibert (1981), Cohen and Feigenbaum (1982), Clark and Tarnlund (1982), Rich (1983), and Wos
et al. (1984).
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