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SUMMARY

The effect of laminate thickness on the interlaminar stresses in

rectangular quasi-isotropic laminates under uniform axial strain was

studied. Laminates from 8-ply to infinitely thick were analyzed. Thick

laminates were synthesized by stacking (45/0/-45/90) ply groups, rather

than grouping like plies. Laminates with and without delaminations were

studied.

In laminates without delaminations, the free-edge interlaminar normal

stress distribution in the outer ply groups was insensitive to total

laminate thickness. The interlaminar normal stress distribution for the

interior ply groups was nearly the same as for an infinitely thick

laminate. In contrast, the free-edge interlaminar shear stress distri-

bution was nearly the same for inner and outer ply groups and was

insensitive to laminate thickness. In laminates with delaminations, those

delaminations near the top and bottom surfaces of a thick laminate have

much larger total strain-energy-release rates (GT) and mode I-to-total

(GI/GT) ratios than delaminations deep in the interior. Therefore,

delaminations can be expected to grow more easily near the surfaces of a

laminate than in the interior. This is consistent with experimental

results reported in the literature. Also, near surface delaminations in

thin laminates tend to have larger strain-energy release rates than

corresponding near surface delaminations in thick laminates.

INTRODUCTION

" Interlaminar stresses develop at free edges and delamination fronts

in composite laminates loaded in-plane because the individual anisotropic

plies have different mechanical and thermal properties. In particular,

differences in Poisson's ratios, shear-extension coupling coefficients,



and thermal expansion coefficients cause each ply to try to deform differ-

ently. Compatibility of ply deformations is enforced by interlaminar

stresses near free edges and delamination fronts.

Interlaminar stresses have been studied extensively for thin lami-

nates, e.g. 4- and 8-ply laminates. But most practical laminates,

especially those for compression structures, consist of considerably more

than eight plies. A few studies of thicker laminates (refs. 1-2) have

found that thicker laminates are more prone to delaminate than thinner

laminates of the same stacking sequence; that is, a [02/452/-452/902]s

laminate will delaminate at a lower strain level than a [0/45/-45/90]s

laminate. But like plies need not be grouped together in thick laminates.

If like plies are not grouped together, are thicker laminates more or less

prone to delaminate than thinner laminates? References 3 and 4 report

results for related laminates in which the thinner laminate delaminates,

but not the thicker one. The objective of this paper is to analytically

determine the effect of laminate thickness on interlaminar stresses in

rectangular quasi-isotropic laminates of different thicknesses under

mechanical loading. Laminate thicknesses from 8-ply to infinitely thick

were considered. Laminate thickness was varied by changing the number of

plies instead of changing the ply thickness. For laminates without

delamination, the free-edge interlaminar stresses were examined through

the laminate thickness and across the laminate width. Quasi-three-

dimensional (Q3D) finite element analysis was used to calculate stresses.

Interlaminar stresses near delamination fronts in delaminated specimens

were characterized in terms of strain-energy-release rates. Strain-

energy-release rates were calculated two ways: with a Q3D finite element

analysis and with a classical laminate theory (CLT) analysis. The results
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of the free-edge stress analysis and the strain-energy-release rate

analyses were used to discuss a few relevant experimental results from the

literature.

NOMENCLATURE

a delamination length, m

b semi-width of the rectangular laminate, m

Eii Young's modulus for orthotropic material in the i-direction, MPa

Gij shear modulus for orthotropic material, MPa

GT total strain energy release rate, J/m2

GI,GII,GIII mode I, If, III strain energy release rates, respectively, J/m2

h ply thickness, m

Nx,Ny,Nxy stress resultants, MPa-m

Mx,My,Mxy moment resultants, Nm/m

t total thickness of the laminate, m

U,V,W displacement functions, m

u,v,w displacements in the x-, y-, and z-directions, respectively, m

x,y,z Cartesian coordinates, m

_o uniform axial strain in the x-direction (EO = 0.001)

-I
Kx,Ky,<xy mid-plane curvatures, m

9.. Poisson's ratioz3

[O} Cartesian stresses, Ox, Oy, Oz, _xy' °yz' °zx' MPa

Subscripts

i,j 1,2,3

1,2,3 longitudinal, transverse, and thickness directions, respectively,
of a unidirectional ply

I,II,III Mode I, Mode If, and Mode III



Others

[(45/0/-45/90)s]n (45/0/-45/90/90/-45/0/45) is a repeating unit
repeated n times

[(45/0/-45/90)n]s [(45/0/-45/90)/(45/0/-45/90)/o.. n timeS]s

DESCRIPTION OF INTERLAMINAR STRESS PROBLEMS

The two basic problems studied were the free-edge stress problem

(Fig. 1(a)) and the edge delamination problem (Fig° 1(b)). For both cases

the laminate is assumed to be long and rectangularo Away from the ends

where the loads are applied, the displacements at any x = constant plane

are assumed to be given by (refs. 5, 6)

u(x,y,z)= co x + U(y,z)

v(x,y,z)= V(y,z) (I)

w(x,y,z)= w(y,z)

The £ is the uniform axial strain and U, V, and W are functionso

of y and z only. Equations (I) describe a "quasi-three-dlmensional"
i

(Q3D) problem. The modifier "quasi" is used because there are displace-

ments in three directions, but the gradients of U, V, and W with

respect to the x-coordinate are zero.

For symmetric laminates without delaminations, eqso (1) rigorously

define the displacements. But for unsymmetric laminates or symmetric

laminates with delaminations, there is usually a tendency to twist about

the x axis. This twist is

2a w
-----w

_xy axay 12)
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Since w is not a function of x in eqs. (I), the Q3D formulation imposes

the condition _xy = 0. But in a real laminate, the condition Kxy = 0

cannot be imposed except at the ends of the laminate, where eqs. (I) are

not exact. Hence, eqs. (I) make the approximation that Kxy = 0 through-

out the laminate.

Equations (I) also impose the condition of zero curvature about the
2_w

y axis, i.e., < - 0. This condition is closely approximatedx 2_x

when a specimen is clamped in a test machine. Hence, imposing <x = 0 in

an analysis is reasonable.

Each ply was idealized as a homogeneous, elastic orthotropic material

with the following properties:

E11 = 134 GPa (19.5 x 106 psi)

E22 = E33 = 10.2 GPa (1.48 x 106 psi)

G12 = G13 = G23 = 5.52 GPa (0.8 x 106 psi)

v12 = 913 = 923 = 0.3

These properties are representative of those often assumed for graphite/

epoxy. The subscripts I, 2, and 3 correspond to the longitudinal,

transverse, and thickness directions, respectively, of a zero-degree ply.

Also, the uniform axial strain, Eo, was arbitrarily set equal to 0.001

throughout the study.

ANALYSIS

Two types of analyses were used: Q3D finite element analysis and a

laminate theory technique for calculating total strain-energy-release

rate, GT. The Q3D analysis was used to obtain free-edge stress distribu-

tions and components of the strain-energy-release rates, GI, GII , and

GIII. The laminate theory technique was used because it is inexpensive

and yields an interpretation of the effect of laminate thickness on GT.
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The theoretical basis of Q3D finite element analysis may be found in

reference 6, so only the application of the Q3D analysis to infinitely

thick laminates and the finite element idealization will be discussed.

Infinitely Thick Laminates

The key aspects of analysis of infinitely thick laminates are:

(a) selection of the repeating unit and (b) application of boundary

conditions. Consider the infinite laminate [(45/0/-45/90)s]_ shown

schematically in Fig. 2. A representative repeating unit, (45/0/-45/90)s,

is drawn with solid lines. Only a single repeating unit need be analyzed

if appropriate boundary conditions can be identified for the upper and

lower surfaces of the unit. Note that in the infinite laminate the inter-

face between adjacent units is a plane of symmetry. Consequently, if we

impose the condition 8y 0 along the upper and lower surfaces of a

single repeating unit, that single unit behaves as though it is within an

infinitely thick laminate. In the finite element analysis the condition

_w
8y 0 along a line is implemented by constraining all nodes along that

line to have the same w displacement (but with the net z force = 0).

In all cases the repeating unit is a symmetric laminate; hence, in

practice only half of the repeating unit was actually modeled if there

were no delaminations or the delaminations were symmetrically located

about the midplane. Otherwise, the entire repeating unit was analyzed.

The same procedure is used whether or not the laminate has a delami-

nation. However, note that placing a delamination in the repeating unit

causes every similar interface in the infinite laminate to have the same

delamination.



Finite Element Idealizations

Because of symmetries in the problems shown in Figure I, only one-

quarter of a representative x = constant plane was modeled. Figure 3(a)

shows a typical model for the edge stress analysis of a symmetric 8-ply

laminate. The model has 792 nodes and 736 four-node isoparametric quadri-

lateral elements. Models for other laminate thicknesses had the same

degree of mesh refinement. All the models had a laminate width to

thickness ratio, 2b/t, of at least 15.

For both finite and infinitely thick laminates the displacement func-

tions U and V were prescribed to be zero along the line y = 0 and

W was prescribed to be zero along the line z = 0. For the infinitely

thick laminates all nodes lying on the line z = 4h were constrained to

have the same displacement W, with the net force in the z-direction on

these nodes set equal to zero.

Figure 3(b) shows a typical model for a 16-ply laminate with a

delamination. The laminate width to thickness ratio, 2b/t, was at least 5

for all models. The delamination length to ply thickness ratio, a/h, was

at least 20. Around the delamination tip, square elements with sides of

length h/4 were used. Strain-energy-release rates GI, GII , and GIII

were calculated using the virtual crack closure method (ref. 7).

Classical Laminate Theory Analysis

The laminate theory technique for calculating total strain-energy-

release rate, GT, is based on dividing a laminate into two types of

regions: in one type the strain energy varies linearly with delamination

: length, and in the other type the strain energy is independent of delami-

nation length (ref. 8). A long delamination is assumed (i.e., a delami-

nation length of more than twice the laminate thickness).



Consider the laminate in Fig. 4, which is divided into four regions.

Regions I and III are away from geometric discontinuities, i.e., either

the crack tip or the free edge. Hence, the stress distributions in these

regions are defined by laminate theory and are independent of delamination

length. The strain energy in regions I and III vary linearly with delami-

nation length (since the volume in each region changes linearly). Regions

II and IV have complex stress distributions because of the crack tip and

free edge, respectively. But the stress distributions are independent of

delamination length. Also the volume in each region stays constant.

Hence, the strain energy in regions II and IV is independent of delami-

nation length.

In this study E was held constant. Hence, GT is given by thex

change in strain energy in regions I-IV. But as previously discussed,

only the strain energy in regions I and III vary with delamination length.

Reference 2 showed that this change in strain energy could be expressed as

E 2t
x

GT - 2n (EI -EII I) (5)

where EI and EIII are the axial Young's moduli of regions I and III

respectively and n is the number of delaminations.

In reference 2 the axial Young's moduli are calculated using CLT

implicitly assuming Ny = Nxy = < = K = K = 0. For example the axialx y xy

modulus EI would be

I

EI = x11t (6)

where x11 is the (1,1) elementof the inverseextensionalstiffness
-I

matrix for region I, Aij, and t is the thicknessof the laminate.
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For some laminates equation (6) is sufficiently accurate, as demonstrated

in reference 2. However, if the laminate or sublaminate exhibits strong

extension-bending coupling, the above technique requires modification.

This modified technique still uses CLT to calculate the axial modulus, but

the calculation is performed assuming Ny = Nxy = <x = _ = <xy = 0 and

= £ . These assumptions are consistent with those made in the Q3Dx o

finite element analysis. The effective axial modulus E is then

N

t£
o

The laminate theory analysis was also used to analyze infinitely

thick laminates synthesized by stacking "repeating units." The procedure

is conceptually the same as used in the Q3D analysis; the difference is in

the implementation. In the laminate theory analysis, lines of symmetry

between repeating units are accounted for by imposing zero curvatures

Kx, Ky, and Kxy. For infinitely thick laminates, the thickness t is

that for the repeating unit.

RESULTS AND DISCUSSIONS

First, the interlaminar stresses near the free edge of undelaminated

laminates will be discussed. Presumably delamination initiation is

governed by these stresses. The magnitudes of these stresses near the

free edge are well known to depend on the finite element mesh refinement.

In fact, the stresses are singular (mathematically) at the intersections

of the free edge and the ply interfaces. But thi finite values calculated

by the finite element analysis do estimate the intensity of the stress

field. Hence, the calculated stresses do qualitatively show the effect of

laminate thickness on interlaminar stresses. Secondly, laminates with
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delaminations are considered. Strain-energy-release rates will be used to

characterize the effect of laminate thickness on interlaminar stresses

near the tip of a delamination. Finally, a few experimental results from

the literature will be interpreted based on the analytical study.

Free-Edge Interlaminar Stresses

Free-edge interlaminar stresses depend on differences in the

mechanical properties of the various plies in a laminate and the stacking

sequence. For thin laminates simple equilibrium arguments can be used to

show the effect of stacking sequence on o . For example, using equilib-z

rium arguments the midplane o for a (45/0/-45/90)s laminate is pre-z

dicted to have a large tensile value for tensile applied load. Similar

arguments predict a large compressive o at the midplane for thez

reversed stacking sequence, (90/-45/0/45)s. But the infinitely thick

counterparts for both of these laminates is [(45/0/-45/90)s]_; that is,

[(45/0/-45/90)s]_ is the same as [(90/-45/0/45)s]_. Obviously, the effect

of "stacking sequence" becomes clouded for thick laminates.

To investigate the effect of laminate thickness on free-edge inter-

laminar stresses, several laminates synthesized by stacking ply groups of

(45/0/-45/90) were analyzed. The laminates considered were:

(45/0/-45/90)s, (90/-45/0/45)s, [(45/0/-45/90)s]_, (45/0/-45/90/90/-45/0/45)s,

(45/0/-45/90/45/0/-45/90)s, and [(45/0/-45/90/45/0/-45/90)s]_. First, the

effect of laminate thickness on free-edge stresses for interior ply groups

was examined. Eight-ply and infinitely thick laminates were used in this

first phase. Next, two 16-ply laminates were examined to determine how

laminate thickness affects the response of exterior ply groups and whether

the interior ply groups of a 16-ply laminate behave as though they were

I0



inside an infinitely thick laminate. Finally the effect of laminate

thickness on free-edge boundary layer width was examined.

The effect of laminate thickness on the free-edge stresses for

interior ply groups was determined by analyzing three related laminates:

(45/0/-45/90)s, (90/-45/0/45)s, and [(45/0/-45/90)s]_. Note that because

of symmetries, [(45/0/-45/90)s]_ is identical to [(90/-45/0/45)s]_.

Hence, the infinitely thick laminate is related to both 8-ply laminates.

Figure 5 shows the distribution of o and o through thez xz

thickness of the specimen at the free edge. These stresses reach their

maximum calculated values at different interfaces: _ is large at z = 0z

and h and _ is large at z = 2h and 3h. The infinitely thickxz

counterpart, [(45/0/-45/90)s]_ has very similar stress distributions (see

Fig. 6). The O distribution for the infinite laminate is shifted inz

the compression direction, but the shape of the curve is similar, except

in the 45 degree ply where the infinite laminate has significant

compressive _ . In contrast, the _ distributions for the twoz xz

laminates are nearly identical. Figure 7 shows the _ distributionsz

from Figures 5 and 6 along with the _ distribution for thez

(90/-45/0/45)s laminate. Note that the az distribution for the

infinitely thick laminate is approximately an average of the z

distributions for the two related 8-ply laminates. The infinitely thick

laminate has the detrimental characteristics of both thin laminates - it

has both large tension and compression _ . But the maximum tensile and
z

compressive values are less than those in the two 8-ply laminates.

The response of interior and exterior ply groups was studied using two

16-ply laminates: (45/0/-45/90/90/-45/0/45)s and (45/0/-45/90/45/0/-45/90)so

Figure 8 shows the through-thickness _ and o distributions for the
z xz
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(45/0/-45/90/90/-45/0/45)s laminate. Stress distributions for (45/0/-45/90)s

and [(45/0/-45/90)s]_ are superimposed on the 16-ply results. The oz

and o distributions for the interior plies, i.e., z = 0 to 4h, arexz

very similar to that for [(45/0/-45/90)s]= in which all the plies are

interior plies. But from z = 4h to 8h the o and o distributions
z xz

are very similar to that for (45/0/-45/90)s, in which there is no interior

group of (45/0/-45/90) plies. Apparently o and o are governed byz xz

the neighboring plies. Furthermore, the effect of the top surface (i.e.,

z = 8h) does not propagate far into the laminate. This interpretation was

verified by examining another 16-ply laminate, (45/0/-45/90/45/0/-45/90)s.

In the region 4h _ z < 8h, the o and o distributions are nearlyz xz

the same as that for a (45/0/-45/90)s laminate (see Fig. 9). Hence,

(45/0/-45/90)s, (45/0/-45/90/90/-45/0/45)s, and (45/0/-45/90/45/0/-45/90)s

laminates all have approximately the same o and o distributions in
z xz

the outer four plies, even though the remaining plies are much different

for each laminate. Near z = 4h in the (45/0/-45/90/45/0/-45/90)s

laminate (Fig. 9), the stress distributions are not matched by those for

[(45/0/-45/90)s]=. This is because the stacking sequence near z = 4h in

the 16-ply laminate is different from that found anywhere in the infinite

laminate. But near z = 0, the stacking sequence is the same as that in

the infinite laminate; concomitantly, the o distributions agree veryz

well.

The effect of laminate thickness on the free-edge boundary layer

width was also examined. This effect was qualitatively assessed by

comparing the variation of o in the width direction near the free edge.z

Figure 10 shows the through-width o distributions for several laminatesz

along 90-90 interfaces.
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The boundary layer width is less for an infinitely thick laminate

than for the corresponding finite thickness laminate. That is, the width

is less for [(45/0/-45/90)s]_ than for (45/0/-45/90)s (Fig. 10(a)).

Hence, the boundary layer width does not necessarily increase with

laminate thickness. Increasing the number of plies in the repeating unit

can increase the boundary layer width, as evidenced by the results for

[(45/0/-45/90)s]s, which has 8 plies in the repeating unit, and

(45/0/-45/90/45/0/-45/90)s, which has 16 plies in the repeating unit

(Fig. 10(b)). (Of course, for this 16-ply laminate there is only a single

"repeating" unit.) By increasing the number of plies in the repeating

unit, a laminate becomes less homogeneous, which causes a larger boundary

layer width.

Strain Energy Release Rates:

As stated earlier two types of analyses were used to calculate strain

energy release rates: a laminate theory analysis and a Q3D finite element

analysis. First the laminate theory analysis will be used to show the

effect of laminate thickness on total strain energy release rates. Then

the Q3D analysis will be used to show the effect of laminate thickness on

the relative magnitudes of GI, GII, and GIII. The strain-energy

release rates are divided by h in the figures, since the strain-energy

release rates vary linearly with h.

Classical Laminate Theory Results

Delamination can occur at a,single interface or at several interfaces.

The possible combinations of delaminations are too numerous to examine them

all individually. Instead two patterns of delaminations were considered: a

single delamination at z = nh and delaminations at z = ±nh. The two
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delaminations at z = _nh were assumed to extend simultaneously. Recall

that for infinitely thick laminates, all repeating units have

delaminations at similar interfaces.

Delaminations at z = nh and z = _ nh in (45/0/-45/90)s and

[(45/0/-45/90)s]_ were studied first. For the infinitely thick laminate,

each repeating unit (which consists of 8 plies) has the delaminations

indicated. Figure 11 shows the results for these laminates.

Specimen thickness has virtually no effect on the total strain-

energy-release rate, GT, when the delaminations are at z = ± h, ±2h, or

_3h. But for single delaminations at z = 0, h, 2h, or 3h, there are

large differences; GT for the infinitely thick laminate is always much

smaller than for the 8-ply laminate. The most striking case is at z = 0

where GT is identically zero for the infinite laminate, but is very

large for the 8-ply case.

These trends can be easily explained by examining the basis of the

CLT analysis. Changes in axial modulus are what contribute to GT. A

delamination at z = 0 in the infinitely thick laminate simply divides

the original quasi-isotropic laminate into many individual quasi-isotropic

laminates. But the axial modulus of a quasi-isotropic laminate is inde-

pendent of thickness or stacking sequence. Hence, GT is zero. For

z = h, 2h, and 3h the differences are not as dramatic, but still a

delamination in each repeating group does not affect the axial modulus of

a thick laminate nearly as much as it does for a thin laminate. Hence,

GT is smaller for the thick laminate. ,

Recall that Figures 5 and 6 showed that for an undelaminated speci-

men, _ and _ distributions along the free edge were nearly the samez xz

for the 8-ply and the infinite-ply laminates. But Figure 11 shows that

14



GT is identically zero for a delamination at z = 0 in an infinitely

thick laminate, and GT is large for a delamination at z = 0 in an

8-ply laminate. Since GT is a measure of the intensity of the stress

• field around a delamination tip, there appears at first to be a contradic-

tion. This apparent contradiction is a result of the way GT varies with

delamination length, a, at the midplane as shown in Figure 12. (These

results were obtained with the Q3D finite element analysis.) Note that

GT increases with "a" initially, as would be expected for a delamination

initiating in a stressed material. But with further increase in delamina-

tion length, GT decreases to zero and remains zero for further growth.

The laminate theory technique always calculates the "steady-state" value,

which in this case is zero.

These observations indicate that there may be a correlation between

free-edge interlaminar stresses before delamination initiation and strain-

energy-release rate right after delamination initiation. But after the

delamination grows away from the free edge, there is not necessarily any

correlation between the original free-edge stresses and the strain-energy-

release rate.

Next, (45/0/-45/90/45/0/-45/90)s and [(45/0/-45/90/45/0/-45/90)s]_

laminates were examined. The repeating group in these laminates consists

of 16 plies. As in the cases studied earlier, GT for the infinite lami-

nate is less than or equal to GT for the thinner laminate (see Fig. 13).

The last phenomenon studied using the laminate theory analysis was

the effect of delamination location on GT. Only a single delamination is

assumed to exist. The laminates examined were [(45/0/-45/90)s]n, n = 2,

4, 8. Figure 14 shows the results for these 16-, 32-, and 64-ply laminates.

A delamination far from the top surface of the laminate affects the axial
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stiffness very little. Hence, the corresponding GT is small. For thin

laminates, e.g., the 16-ply laminate, all of the plies can be considered

to be near the top surface. Concomitantly, for the 16-ply laminate there

is no distinct "interior region" in which GT is small. But for the 32-

and 64-ply laminates there is a distinct region in which GT is small.

Note that for these three laminates, the interface which corresponds to

maximum GT is the fifth interface from the top surface (i.e., at

z = (4n-5)h). Furthermore, the maximum value appears to be asymptotically

decreasing to a constant value as the laminate thickness increases.

Apparently the behavior (in terms of GT) of the plies near the surface is

nearly independent of the laminate thickness. Recall that the free-edge

stresses for the plies near the surface discussed earlier were also nearly

independent of the laminate thickness.

These results predict that, based on total-strain-energy-release

rates, delaminations would be expected to grow most easily near the top

surface rather than the interior of a thick laminate. Also, outer plies

of a thick laminate should be less prone to delaminate than the outer

plies of a thin laminate. Furthermore, since the thick laminate has a

smaller percentage of outer plies than a thin laminate, the percentage of

delaminated interfaces should also decrease as the laminate thickness

increases.

Finite Element Results

The CLT analysis calculates only the total strain-energy-release

rates. To determine the relative magnitudes of GI, GII and GIII, Q3D

finite element analysis was used.

Eight-, 16-, and 32-ply laminates and infinitely thick laminates with

8-, 16-, and 32-ply repeating groups were analyzed. The finite thickness
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laminates were analyzed for the cases of a single delamination and two

delaminations located symmetrically about the midplane. In all cases the

delaminations were assumed to be at -45/90 interfaces. Tables I-3 present

the total strain-energy-release rates, GT, and the GI/GT ratio for the

various cases. In all cases studied the mode III component was

negligible.

For single delaminations in a finite thickness laminate (Table I),

the GI/GT ratio is largest at the first -45/90 interface from the top

surface. As the laminate thickness is increased, the GI/GT ratio at

this interface decreases slightly. The mode I percentage decreases as the

distance from the top surface increases until the midplane is approached

(see results for 32-ply laminates). The increase in GI/GT near the

midplane is probably due to the symmetry of the laminate about the mid-

plane. This symmetry creates a pure mode I situation for a delamination

at the midplane. The maximum value of GT occurs when a delamination is

at the fifth interface from the top surface. (Note that for an 8-ply

laminate, this interface could be considered either the third or fifth

interface from the top surface.) This result is consistent with the CLT

results in Figure 11.

Table 2 shows the results for finite thickness laminates with two

symmetrically located delaminations. The effects of delamination location

through the thickness and laminate thickness on GI/GT are the same as

observed for single delaminations (Table I). Comparison of Tables I and 2

show that GT values are different for single and double delaminations, but

the GI/GT ratios are about the same for the same laminate with similarly

located delaminations. However, as the laminate thickness increases, the

differences between the GT for single and double delaminations decrease,

except when the delaminations are near the midplane.
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In contrast to the results above, the infinitely thick laminates

(Table 3) have essentially no mode I component. As mentioned earlier,

GIII was negligible. Hence, the strain-energy-release rate is

essentially all mode II.

Comparison of Analysis and Experiments

The analyses presented earlier were used to discuss a few relevant

experimental results in the literature.

The static unnotched failure strains of [45/0/-45/90]s and

[45/0/-45/9012s graphite/epoxy laminates (T300/5208) have been measured

as 0.854% (ref. 3) and 1.03% (ref. 4), respectively. The specimens tested

in reference 3 and 4 were manufactured about the same time by the same

vendor. The [45/0/-45/90]s laminate showed extensive delamination growth

before final failure. In contrast, the [45/0/-45/9012s laminate did not

show any delaminations prior to final failure, even though the final

failure strain was much larger. Free-edge stresses and strain-energy-

release rates were examined to determine whether one would expect the

[45/0/-45/90]s laminate to delaminate and the [45/0/-45/9012s laminate not

to delaminate. Figures 5 and 9 show both laminates have large

interlaminar normal and shear stresses at the free edge. In fact, the

peak values of these stresses are nearly the same for the two laminates.

Hence, the free-edge stress distributions do not explain why the 8-ply

laminate is more prone to delaminate than the 16-ply laminate.

Strain-energy-release rates are not strictly applicable to delamina-

tion initiation, since the G's are zero for zero delamination length.

But the G's increase quickly to constant values as a delamination grows °

(ref. 2). Hence, if small initial flaws are assumed to exist, the G's

calculated herein are appropriate for predicting delamination growth.
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The strain-energy-release rates for the two laminates are quite

different. Figures 11 and 13 show that for the same strain level, GT is

much larger for a delamination in a [45/0/-45/90]s laminate than for a

[45/0/-45/9012s laminate, for both single and two symmetric delaminations.

• Based on GT, one would predict a single delamination to grow in the 8-ply

laminate along z = h.

In the tests (ref. 3) a single delamination did form in the 8-ply

laminate, but it wandered back and forth from one -45/90 (i.e. z = h)

interface across the 90 deg plies to the other -45/90 interface (see

Fig. 15). This pattern of growth cannot be rigorously analyzed using

either the Q3D or the laminate theory analysis, since the problem is fully

three-dimensional. The actual GT was assumed to fall between GT

calculated for a delamination at z = 0 and GT for a delamination at

z = h, since the actual delamination path is bounded by z = ±h. Since

GT for a delamination at z = 0 is larger than the maximum GT for the

16-ply laminate, one would still predict the 8-ply laminate to delaminate

at a lower strain than the 16-ply laminate.

The possibility that delamination growth is governed by the magnitude

of the mode I component GI was also considered. Except for midplane

delamination, for which GI = GT, the Q3D analysis is required to

determine the mode I component. Q3D analysis was performed for delamina-
t

tions at z = h and z = ±2h for both laminates. The 16-ply laminate

was also analyzed for a delamination at z = 5h. These interfaces were

chosen because GT was large at these interfaces. Table 4 shows the

results. Based on GI one would predict the 8-ply laminate to delaminate

at a lower strain level than the 16-ply laminate. The delamination in the

8-ply laminate should grow along the midplane (i.e. z = 0). For a
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delamination in the 8-ply laminate along z = h (where GT is largest),

GI is still much larger than that for any of the 16-ply cases. Assuming

the actual GI is bounded by the results for delaminations at z = 0

and z = h, one would predict (correctly) that the 8-ply laminate should

delaminate at a lower strain level than the 16-ply laminate•

The critical value of GI for delamination growth (GIc) in T300/5208

is approximately 100 J/m2 (ref. 9). Assuming that delamination growth

occurs when GIC is reached, the previous analytical results can be used

to predict when delamination should occur for each laminate.

For the 8-ply laminate the average value of GI for delaminations

at z = 0 and z = h was used (i.e. Gi/h for £ = 0.001 iso

(20.62 + 13.48)/2 = 17•05 j/m3)• The ply thickness h was assumed to

be 1.397 x 10-4 m. The strain-energy-release rate varies as 2o

Hence,

\.--_-_/ 17.05 kJ/m 3 = __GIc= 100 J/m 2 (8)h 1.397 10-4x m

where €CR is the strain at which delamination should occur. Solvingo

equation (8), one obtains CR = 0.65%• In reference 3 €CR is noto o

reported. But the stress-strain curve is reported and becomes nonlinear

(probably due to delamination) between 0.6% to 0.7% strain. Hence, the

agreement between analysis and experiments is excellent.

For the 16-ply laminate the largest GI occurs for delamination at

z = 0 (see Table 4). The magnitude of Gi/h for € = 0.001 iso

9.79 kJ/m 3. Proceeding as for the 8-ply laminate, CR is predicted to
o

be 0.86%• In the actual test the specimen failed at a strain of I%

without delaminating. Of course, whether delamination growth was imminent

when failure occurred is not known.
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Compression-compression fatigue test results for [90/45/0/-45]ns G/E

laminates have been reported in reference 10. In these tests the first

delamination was observed to initiate near an outside ply. Subsequent

delaminations formed farther in the interior of the laminate (i.e., closer

to the midplane). This behavior is consistent with the analytical results

discussed earlier; i.e., the total strain-energy-release rate and the

percentage of GI tend to be larger for delamination growth near the

outside plies.

CONCLUSIONS

Analyses were conducted to determine the effect of laminate thickness

on the interlaminar stresses in rectangular laminates under uniform axial-

strain. Laminate thicknesses ranged from 8-ply to infinitely thick.

All the laminates were quasi-isotropic. They were synthesized from

(45/0/-45/90) ply groups. For laminates without delamination, free-edge

stresses were examined; for laminates with delamination, strain-energy-

release rates were used to characterize the interlaminar stresses at the

delamination tip. Quasi-three-dimensional finite element analysis and

classical laminate theory analysis were used in the study. Based on the

results from these analyzes, the following conclusions were made:

I. If thick laminates are synthesized by stacking repeating units, then

(a) the interlaminar normal stress distribution in the outer group of

plies is insensitive to the total laminate thickness,

(b) the interlaminar normal stress distribution for the interior

group of plies is nearly the same as that for an infinitely thick

laminate.

(c) The interlaminar shear stress distribution is very insensitive to

the total laminate thickness.
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2. The free-edge boundary layer width is related to the thickness of the

repeating unit, not the total laminate thickness.

3. Free-edge interlaminar stresses can be used only for locating

delamination initiation. After a delamination grows away from the

free edge, the original free-edge stresses provide no information on

the intensity of the stress field at the delamination tip.

4. Delaminations near the top and bottom surfaces of a thick laminate

have larger total strain-energy-release rates, GT, and mode I-to-

total (GI/GT) ratios than delaminations deep in the interior of the

laminate. Therefore, delaminations can be expected to grow most

easily near the surface of a laminate. This expectation is consistent

with experimental results in the literature. Also, near surface

delaminations in thin laminates tend to have larger strain-energy

release rates than corresponding near surface delaminations in thick

laminates. Therefore, near surface delaminations can be expected to

grow more easily in a thin laminate than in a thick laminate.
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LAMINATE* GI/GT GT/h , kJ/m3

8-PLY

+

[45/0/-45/90/90/-45/0/45 ]T .62 21.77

16-PLY

+

.58 11.24
[451oi-4519o19oi-451o1451(451oi-4519O)s]T

.

[ 45101-451901901-45101451(45101-45190)s] .29 19.46T

32-PLY

+

[45101-451901901-4510145/(45101-45/90) s3] .57 9.143T

.

[ 45/0/-45/90/90/-45/0/45/( 45/0/-45/90 ) s3 ] .42 16.29T

[ (45/0/-45/90)s/45/0/-45/90/90/-45/0/45/(45/0/-45/90)S2]T .02 7.433

+

[(45/0/-45/90)s/45/0/-45/90/90/-45/0/45/(45/0/-45/90)S2]T .I0 6.612

* "." INDICATES DELAMINATION LOCATION

TABLE I.- Strain-energyreleaserates for various laminates
with a single delamination. .
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LAMINATE* GI/GT GT/h, kJ/m3

8-PLY

o .

[45/0/-45/90]s ,62 12.82
a

16-PLY

+

[45/o/-45/9o/9o/-45/o/45]s .55 9.474

+

[45/o/-45/9o/9o/-45/o/45]s .22 21.93

32-PLY

+

[45101-451901901-45101451(45101-45190)s] .57 8.488
s

4,

[45101-451901901-45101451(45101-45190)s] .452 15.71
S

+

[(45101-45190)s145101-45190190/-4510145]s .01 7.081

.

[ (45101-45/90 )s145101-451901901-4510145] s .03 1I. 34

* "+" INDICATES DELAMINATION LOCATION

TABLE 2.- Strain-energy release rates for various laminates
with two symmetrically located delaminations.
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LAMINATE* GI/GT GT/h, kJ/m3

8-PLY REPEATING UNIT

+

[ (45101-45190)s] .057 12.95 -

16-PLY REPEATING UNIT

[ (45/0/-45/90/90/-45/0/45) s]. .0001 9.522

.

[ (45/0/-45/90/90/-45/0/45) s]. .0001 9.522

32-PLY REPEATING UNIT

+

[ [ (45/0/-45/90/90/-45/0/45/( 45/0/-45/90 ) s) ] .0005 8.626s
€o

+

[ [ 45101-451901901-45101451(45101-45190)s) s] .03 3.337

[ ((45/0/.45/90) s/45/0/-45/90/90/-45/0/45) s]. .03 3.337

+

[ ( ( 45/0/-45/90 ) s/45/0/-45/90/90/-45/0/45 ) S]. O. 0 8.626

* "+" INDICATES DELAMINATION LOCATION

TABLE 3.- Strain-energy release rates for various
infinitely thick laminates.
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NORMALIZED STRAIN-ENERGY RELEASE RATES, kJ/m3

LAMINATE

Gi/h GII/h Siii/h ST/h

SINGLE DELAMINATION:

.

[45/0/_45/90/90/-45/0/45]T 13.48 8.432 -0.145 21.77

+

[45101_451901901_4510145]T 20.62 0 0 20.62

.
[45101_45190145101_451901901-45101451901-4510145]T 8.033 4.344 -0.117 12.27

[45/0/_45/90/45/0/-45/90/90/-45/0/45/90/-45/0/45]T 9.79 0 0 9.79

+

__r45/0/-45/90/45/°/-45/9°/9°/-45/°/45/9°/-45/°/451T 6.840 4.895 .158 11.89

TWO DELAMINATIONS:

3.537 .820 11.55 15.91
[45/0/-45/90] s

.

L , , , , " " "j[45/O/-45/90/4510/-45190]S 3.330 .138 11.09 14.27

TABLE 4.- Strain-energy release for laminates tested in references I and 2.
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Fig. 5--Distribution of _z and _xz at free edge of [45/0/-45/90] s laminate.

(_o = 0.001)
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Fig. 6--Distribution of _z and _xz at free edge of [(45/0/-45/90)s] _ laminate.

(_o = 0.001)
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Fig. 7--Distribution of _z at free edge for [90/-45/0/45] s, [(45/0/-45/90)s] m,

and [45/0/-45/90] s laminates. (_o = 0.001)
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Fig. 8--Comparlson of a and a distributions at free edge for [45/0/-45/90/z xz

90/-45/0/45] s laminate with those for [45/0/-45/90] s and [(45/0/-45/90)s]

laminates. (G° = 0.001)
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Fig. ll--Total straln-energy-release rate for various delamination locations in

[45/0/-45/90] s and [(45/0/-45/90)s] _ laminates. (£o = 0.001)
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Fig. 12--Variation of straln-energy-release rate with delamlnatlon length for a

mldplane delamination in a [(45/0/-45/90)s] _ laminate. (£o = 0.001)
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Fig. 13--Total strain-energy-release rate for various delamination locations in

[45/0/-45/90/45/0/-45/90]s and [(45/0/-45/90/45/0/-45/90)s] laminates.

(_o = 0.001)
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Fig. 15--Delamination growth in a [45/0/-45/90] s laminate.
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