
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19840007640 2020-03-21T01:32:59+00:00Z



r̂

P U R D U E U N I V E R S I T Y

Department of GQosciences
West Lafayette, IN 47907

Goddard s pace Flight; Center
National Aeronautics and Space Administration

Greenbelt, MD 20171

FROM: L.W. Braile, W.J. Hinze and R.R.B. von Frese*
Department of Geosciences, Purdue University
West Lafayette, IN 47907

G.R. Keller
Department of Geological Sciences, University of Texas, El Paso

E1 Paso, TX 79968

SUBJECT: Final Technical Report,
NASA Grant No. NCC5-21

DATE: August 15, 1983

This report describes research performed under NASA Contract No

NCC5-21. The objectives of this research were to compile and analyze

A ^
o 

Ĉr
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seismic refraction and surface wave dispersion data on crustal and upper-

most mantle structure for the North American continent and to compare

these observations with long-wavelength gravity and magnetic anomaly

data. Most of the research performed urder this contract is described

in the attached manuscript by L.W. Braile, W.J. Hinze, R.P.B. von Frese,

and G. Randy Keller entitled "Seismic Properties of thn Crust and Upper-

most Mantle of North America". An additional publication which was partially

supported by the subject contract is by P.R. Black and L.W. Braile entitl6i
r

"P n Velocity and Cooling of the Continental Lithosphere". A copy of

this paper, which was published in the Journal of Geophysical Resear0,

(volume 87, pages 10557-10568) 1982, is inc hided in this report. Additionally,

three Masters theses were partially supported by Contract NCC5-21. The
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three theses are:

Bodnar, C.A., Crustal Structure of the Great Plains of North America
from Rayleigh Wave Analysis, MS Thesis, University of Texas at
E1 Paso, El Paso, TX, 62 pp., 1982.

Losee, B.A., Rayleigh-Wave Dispersion Applied to the Lithospheric
Structure in Canada, MS Thesis, Purdue University, West Lafayette,
IN, 85 pp., 1980.

A ussell, David, Constrained Inversion Techniques Applied to Surface
Wave Analysis, Unpublished MS Thesis, University of Texas at
E1 Paso, E1 Paso, TX, 1930.

Additional information related to the research reported here and supported

under a previous NASA research contract (NAS5-25030) is contained in the

following publications:

Austin, C.B. and Keller, G.R., A crustal structure stui;y of the
Northern Mississippi Embayment, U.S. Geol. Surv. Prof. Paper
1236, p. 83-93, 1982.

r.

Keller, G.R.,, Braile, L.W. and Morgan, P.,, Crustal structure, geo-
physical models in contemporary tectonicm of the Colorado
Plateau, Tectonophysics, 61, 131-147, 1979.IR	 —

Keller, G.R., Braile, L.W. and Schlue, J.W., Regional crustal
structure of the Rio Grande Rift from surface wave disper-
sion measurements, in Rio Grande Rift: Tectonics & Magmatism,
American Geophysical Union Monograph, 115-126, 1979.

The remainder of this report consists of the manuscript "Seismic

Properties of the Crust and Uppermost Mantle of North America" by L.W.

Braile, W.J. Hinze, R.R.B. von Frese and G. Randy Keller and a reprint

of the paper "P n Velocity and Cooling of the Continental Lithosphere"

by P.R. Black-and L.W. Braile.
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ABSTRACT

Seismic refraction profiles for the North American continent have

been compiled from published and unpublished sources. The crustal models

derived from these profiles were used to compile data on.t'he upper mantle

seismic velocity (Pn ), the crustal thickness (H c ) and the average seismic

velocity of the crystalline crust (V p ). These data indicate continent-

wide averages of P  - 8.03 km/s, H e - 36.2 W and Vp 0 6,41 km/s. Compari-

son of compressional wave parameters with shear wave data derived from

surface wave dispersion models at 51 North American locations indicate

an average value for Poisson's ratio of 0.252 for the crust and of 0.273

for the uppermost mantle. Contour maps illustrating lateral variations

In crustal thickness, upper mantle velocity and average seismic velocity

of the crystalline crust; show a number of features which are correlative	 µ

with geological and tectonic provinces. Comparison of the distribution

of seismic parameters with a smoothed free-air anomaly map of North America

indicates that a complicated mechanism of isostatic compensation exists

for the North American continent. Several features on the seismic contour

maps also are correlative with regional magnetic anomalies,

4
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INTRODUCTION

Seismic data have a major role in investigating the nature, composi-

tion, and configuration of the continental crust. Knowledge of the seismic

properties of the crust has proven useful in studies of such diverse

topics as basin development (e.g. Green, 1977), identification of tectonic

provinces (e.g. Pakiser and Zietz, 1965), and characterizatiro of geo-

thermal anomalies (Bartelsen et al., 1982). A variety of seismic techniques

have been employed in these studies, but refraction profiling and measure-

ments of surface wave dispersion are among those methods most commonly

employed for regional analyses. In this study, we have compiled refraction

and surface wave results for continental North America (latitude 25°N

to 60 9N) for the purpose of analyzing regional variations in seismic

properties of the crust and uppermost mantle and their relation to tectonic

features and other geophysical data. Although several aspects of our

approach are different, this study can in part be considered an extension

and update (our compilation includes previously unpublished results and

models published through 1982) of the overviews of Steinhart and Meyer

(196.1), Herrin and Taggart (1962), Pakiser and Steinhart (1964), Kanasewich

(1966), Herrin (1969), 'Healy and Warren (1969), Warren and Healy (1973),

Berry (1973), and Allenby and Schnetzler (1983). The accumulated seismic

data provides useful statistics on the seismic properties of the continental

crust and contour maps of these properties for the central portion of

North America. These mapped variations of seismic properties are correlated

with long-wavelength gravity and magnetic anomalies as an aid in their

interpretation.
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DATA COMPILATION AND PRESENTATION

In our compilation of refraction results, values for the thickness

of the crust (Hd , the compressional wave velocity of the uppermost mantle

(P 
n
), and the average compressional wave velocity of the crystalline

crust (Vp ) were tabulated. Results for continental shelves were included

but no oceanic data were considered. H e is defined as the thickness

of the crust from the surface to the Mohorovicic discontinuity (Moho).

The P  velocity is the velocity of the compressional head wave traveling

in the uppermost mantle just beneath the Moho. Although P n velocities

are commonly reported and have been demonstrated to have tectonic significance

(e.g. Pakiser and Zietz, 1965), this quantity, Den measured by seismic

refraction studies, represents limited penetration into the upper mantle.

Thus, the P  velocity values tabulated here may differ from values inferred

from earthquake observations and seismic delay time studies (Herrin,

1969; Romanowicz, 1979; Dziewonski and Anderson, 1983) where the propagating

paths sample a much larger region of the mantle.

The average velocity of the crust (Vp ) was calculated using the

formula:

	

n	 n

	

Vp = C i E I	 h; / l E l
	

(h
i /Vi)]

where h i and Vi are the thickness and velocity, respectively, of the

ith layer for an n-layered crust (exclusive of the sedimentary layer).

Smithson et al. (1981) have shown that V  is an indicator of mean crustal

composition.

Crustal models for 139 refraction profiles (Table 1) were compiled.

The locations of these profiles are shown in Figures la and lb and the

sources are provided in Table 1. Histograms of the results are shown

in Figure 2 and statistical summaries of the seismic data are given in

I
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Table 3. The 187 values of He have a mean value of 36.21 km; the 154

values of V  have a mean value of 6.411 km/s; the 191 values of P n have

a mean value of b.030 km/s.

Contour maps of these values were constructed, but a discussion

of the limitations of this process seems appropriate first. The discus-

sion which follows is somewhat lengthy and could be interpreted as casting

doubt upon the contouring process. This is not our intention, but we

do wish to emphasize that care should be taken in interpreting and comparing

such maps. Our comments are not intended as criticisms of particular

studies (many are our own), but as reminders that logistics, restricted

funding, limited numbers of instruments, etc. prevent the collection

of an ideal data set.

The most obvious point is that the distribution of p rofiles is uneven

(Figures la and lb). Coverage in the western U.S. i^-- .. fficient to give

an adequate regional picture in most areas, but cuierage is very sparse

in the craton. Another consideration is that there are large variations

in the quantity and quality of data along individual profiles. In some

cases, the station spacing is approximately 3 km while in others the

station spacing is over 100 km. Signal-to-noise ratios for individual

records is also highly variable. Finally, the data represented on Figure

1 were gathered over a period of three decades when rapid changes in

instrumentation and recording technology, as well as interpretational

methods, were occurring.

There are several other limitations that generally apply to results

of seismic profiling experiments. Anisotrophy may be a factor in regard

to P n velocity determinations (Bamford et al., 1979); however, the averaging

inherent in the contouring process and the approximately random orientation

of the profiles suggest that any effect of anisotropy on regional determinations

t
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would be small. Another minor factor with regard to P n velocities is that

most studies assume for seismic modeling procedures that the earth is flat.

Most studies do not state whether spherical or flat earth calculations were

made. Consideration of a spherical earth would generally reduce the re-

ported Pn velocity values by 0.03 to 0.06 km/s (Black and Braile, 1982).

Interpretation techniques assume a one or two-dimensional .earth and depar-

tures from this idealization can produce observed apparent velocities which

vary considerably from the true velocities within the earth. This is par-

ticularly true of unreversed refraction profiles. In refraction profiling

experiments, velocity determinations involve averaging over considerable

horizontal distances; thus the results cannot truly be plotted at a point

for contouring. Also, vertical sampling in the earth is seldom uniform.

For example, profile 20 (Figure 1) mostly provides information about Pn

velocity while profile 241 (Figure 1) mostly•.rovides loformation about

crustal velocity structure. These differences in coverage are primarily due

to differences in station spacing, shot-receiver distances along the profiles

and numbers and locations of sources. Finally, the problems of velocity

inversions (low velocity layer) are well knorn and may have an effect on Hr

and V  dete;:Tninations.

With all these considerations in mind, the values of H c , Pn , and

V  are contoured in Figures 3, 4 and 5 respectively. Our procedure was

to determine the values of He P n and V  from velocity models presented

by various authors listed in Table 1. Inferred sedimentary layers were

deleted from the models in the calculation of V  so that the value deter-

mined would indicate the average velocity of the crystalline continental

crust. For crustal velocity models in which the Moho is inferred to

a transition zone with velocity increasing over a small depth range,

the depth to the Moho discontinuity was chosen as the center point of

this gradient zone and the P n velocity was selected as the velocity immediately
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beneath the Moho transition zone. For crustal models along observational

profile: for which lateral velocity variation was inferred by the authors,

multiple observations of He 
V  

and P  were tabulated. Because the seismic

parameters determined may not be representative of crustal structure

at the shotpoint locations, the values of H c , Vp , and P  were initially

plotted on a reap at locations along the profile inferred to be most representa-

tive of the crustal structure. For example, P  velocities along a reversed

seismic refraction profile of several hundred kilometers in length are

most representative of the upper mantle velocity near the center of the

profile and in general do not necessarily indicate the upper mantle velocity

beneath the shotpoin t locations. Several seismic refraction profiles

have been reinterpreted after the initial crustal model was published. In

these cases, we have tried to use the most recent interpretations. Finally,

interpretations along the same profile, or on intersecting profiles,

or closely spaced observations may be contradictory. In these cases,

we have favored the average value as the most representative interpretation.

The contours were initially drawn by hand in such a way as to give little

weight to major variations based on only one observation and . to average

discrepant values. Any contouring operation involves subjectivity, and

the production of the maps shown as Figures 3, 4, and 5 was certainly

no exception. How3ver, our goal was to depict regional variations only.

For certain regions where data coverage is sufficient (for example; the

Basin and Range Province), a more rigorous contouring procedure could

be employed. The hand-drawn contours were digitized at a 2 0 gr ,ld interval

in order to allow flexibility in terms of scale and projection and for

subsequent comparison with other data sets. The contours shown in Figures

3, 4, and 5 were machine contoured from the gridded data, but vary little

from the original contouring. However, because of the 2 0 grid and machine

4
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contouring individual small-scale features in the contour maps may be

smoothed and slightly displaced in location. Although no attempt is

R	
made to display the reliability of the data on the contour maps, a compari-

son of the contour data with the spatial dO,tribution of observations

(Figure lb) provides an approximate ilndication.

No discussion of the seismic properties of the crust is really complete

without considering shear waves. Several profiling experiments have

deployed harizontal seismometers in an effort to record shear wave arrivals,

To date, these efforts have met with limited success and are very limited

in coverage (e.g. Braile et a]., 1974; Keller et al., 1975) and are not

enough of a factor to consider in this study. A significant body of

information on shear wave velocity structure is availM a from studies

of surface wave dispersion. These studies primarily concern Rayleigh

waves which are most sensitive to shear wave velocity although they are

also slightly affected by variations in density and compressional wave

velocity (Der et al., 1970).

A variety of techniques have been employed to determine dispersion

across arrays of three or more stations, between two stations, or between

the source and a single station (see Kovach (1978) and Dziewonski and

Hales ('1972) for reviews of surface wave concepts and technilues). Earth

models determined from such studies represent averages across the array,

between two stations, or .along the propagation path from a single station

to the source. We have compiled the results from the dispersion studies

shown on Figure la and tabulated them in Table 2. i'he points at which

these results were plotted (Figure la) are the center of the array or

the midpoint of the propagation path. We were able to determine 51 values

of Hc ' (thickness of the crust from shear wave data), 49 values of S 

(upper mantle shear wave velocity), and 51 values of V s (average shear
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wave velocity of the crystalline crust). Note that the S n velocity used

here is derived from surface wave dispersion experiment, and represents

an average value of upper mantle shear wave velocity reflecting velocity

structure over a considerable depth extent of the upper mantle. Uppermost

mantle seismic shear wave velocity from refraction experiments would

determine the velocity of the cri ti cal 1;. , refracted head wave propagating

just below the Moho discontinuity and could be distinctly different from

the S. velocity determined from surface wave dispersion modeling. In

order to compare the compressional wave and shear wave results, the contours

in Figures 3, 4, and 5 were interpolated to provide values of H c , Pn'

and Up at the points on Figure 1 where values H C ', S  and V s were available.

There are several limitations to this procedure, but since the experiments

involved do not spatially coincide, some type of interpolation was required.

The values of H e and Hc ' are compared in Figure 6. If all the cor-

responding values of H e and Hc ' agreed, 'they would fall on the diagonal

line across Figure 6. There is considerable scatter which is to be expected

considering the interpolation required, but the means of the values of

He and H c ' are very close (36.21 Ian and 37.48 W respectively).

A major goal of the shear wave velocity compilation was to obtain

information on Poisson's ratio values in the crust and upper mantle.

Thus Figure 7 was prepared in which corresponding pairs of V  and Vs

values are plotted as dots and corresponding pairs of P  and S  values

are plotted as solid triangles. These data are plotted in two groups

and indicate a mean Poisson's ratio for the crust (a c ) of 0.252 and a

mean Poisson's ratio for the upper mantle (a ) of 0.273 for continental

North America. These observations support the commonly-assumed simplifica-

tion of c = 0.25 for seismic calculations and suggest that Poisson's

ratio is slightly greater in the upper, mantle than the continental crust.
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REGIONAL VARIATIONS IN SEISMIC PROPERTIES
OF THE CAUST AND UPPER MANTLE

A number of prominent regional variations in the crust and upper

mantle structure and seismic velocity are visible on the contour maps

shown in Figures 3, 4 and 5. The major features which are evident are

generally consistent with those identified by previous workers. For

example, Pakiser and Steinhart (1964) and, more recently, Allenby and

Schnetzler (1983). Correlation of these regional variations in seismic

properties with principal tectonic and geologic elements of the North

American continent is facilitated by comparison of the contour maps with

the tectonic and province map shown at the same scab in Figure 9. Examples

are:

1) Pri velocity and crustal thickness are distinctly different between

the western part of North America and the eastern part of North

America. Generally, than crust and low upper mantle velocity

are characteristic of the North American continent west of the

Rocky Mountains whereas relatively thick crust and higher upper

mantle velocities characterize the craton.

2) Crustal thickness, P  velocity and average velocity of the crystal-

line crust are all higher than average for the craton. A crustal

thickness of approximately 42 km, P  velocity of approximately

8.1 km/s and average crustal velocity of 6.5 km/s are characteristic

of eastern North America.

3) The Basin and Range Province in the western part of the United

States is one of the most anomalous re g ions in continental North

America in terms of crustal seismic properties. Both a very

thin crust and anomalously low upper mantle velocities are evident.

0
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4) There is a general correlation between the distribution of P 

velocities and crustal thickness. Higher P  velocities are

usually associated with thicker crust.

5) Crustal structure on the Pacific and Atlantic continental margins

are distinctly different. The crust thins gradually toward

the oceanic plate and is underlain by normal velocity upper

mantle for the Atlantic continental margin. In contrast, the

crustal thickness at the Pacific continental margin is complicated

by the presence of adjacent mountain ranges and is largely under-

lain by lower velocity upper mantle.

6) There appears to be no simple relationship between crustal thickness

and regional topography. Many areas show relatively large crustal

thickness without a corresponding regional elevation high: Similarly

a ►a s` such as the Basin and Range Province, which has a regionally

€1 4.gh elevation, are underlain by thin crust. An exception to

these observations is the Sierra Nevada Mountain Range in which

prominent mountain 'roots' are present.

Because of the addition of new data in the compilation of crust

and upper mantle seismic properties and differences in analysis procedures

from previous studies, several features are evident on the seismic properties

contour maps (Figures 3, 4 and 5) which have not previously been described.

Examples are:

1) The distribution of average crustal velocity as shown in Figure

5 has not been previously analyzed. Pakiser and Robinson (1966,

1967) and Smithson et al. (1981) have discussed the importance

of seismic velocity of the crystalline rocks as an indicator

of crustal composition. Smithson et al. note that the average

velocity of the crust is an important parameter for interpreting

QD I
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average crustal composition and understanding the genesis of

the continental crust. The average seismic velocity of the

crust throughout North America shows several prominent anom-

alies correlative with geologic features. the Basin and Range

Province and Rio Grande Rift, where low average crustal velr,,cities

are evident, are perhaps the most prominent features seen on

Figure 5. In addition, high average seismic velocities of the

crust are present beneath the Williston Basin in the northern

Great Plains and a region in the southeastern portion of the

United States which roughly corresponds to the upper Mississippi

Embayment and Southern Oklahoma Aulacogen. Distinct differences

in avero a seismic velocity of the crust are also evident between

Pacific and Atlantic continental margins. The Atlantic continental

margin is particularly interesting in that the average crustal

velocity decreases gradually towards the ocean suggesting the

presence of a transitional continental to oceanic crust. The

Snake Riven Plain in the western United States also shows up

as a distinct anomaly in average seismic velocity of the crust.

Several more subtle features are also evident which may correlate

with regional geologic trends. For example, the small lows

in average seismic velocity in the Pacific Northwest and upper

Great Lakes region and the relative high in average seismic

velocity over Grenville terrain ivy eastern Canada.

2) Our compilation includes a more recent and complete list of

crustal seismic refraction data than previous workers and thus

several areas of the maps are now more clearly defined. However.,

our analysis procedure in which 'single-point anomalies' and

'discrepant points' were given little weight in the contouring,

4
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result in some differences in our maps from those presented

by Allenby and Schnetzler. The most prominent differences are

located in eastern Washington and in Mississippi where strong

mantle upwarps are inferred by Allenby and Schnetzler based

on limited data.

3) An interesting correlation of seismic properties is noted in

the Williston Basin area of the upper Great Plains in which

thick crust, high P n velocity and large average seismic velocity

of the crust all correlate. Basins associated with the Southern

Oklahoma Aulacogen and Mississippi Embayment also display a

similar, but less pronounced correlation of seismic properties.

4) A weakly defined east-west trending low in P n velocity is associated

with midwestern United States.

COMPARISON OF SEISMIC PROPERTIES
WITH REGIONAL GRAVITY AND MAGNETIC ANOMALY MAPS

Regional gravity and magnetic anomaly maps are shown in Figures

9, 10 and 11 for comparison with the distribution of seismic properties

illustrated in the contour maps (Figures 3, 4 and 5). The smoothed free-

air gravity anomaly map (Figure 9) is approximately an isostatic anomaly

map. There is no obvious relationship between the variations in crustal

properties and the isostatic condition of the continental crust as reflected

in the smoothed free-air gravity map. For example, several areas of

relatively high average seismic velocity (and therefore presumably high

average density) of the crust are roughly in isostatic balance at least

partially due to crustal thickening beneath these higher density zones.

Thus, the mechanism of isostatic balance for the North American continent

appears to correspond to neither the Pratt nor the Airy hypothesis. Both

lateral variations in density (as inferred from average seismic velocity)
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and crustal thickness contribute to the attainment of isostatic balance.

Additionally, the position of the Moho discontinuity, while certainly

affecting isostatic balance, does not provide the only mechanism for

compensation. For example, in the Basin and Range Province (an area

of relatively high elevation) a thin crust and therefore a mantle upwarp

i

	
is compensated by the combined effects of relatively low density crust

and low velocity (and presumably low density) upper mantle. Thus although

the mechanism of isostatic compensation for the North American continent

must involve lateral variations in density in both the crust and upper

mantle and differences in crustal thickness, the compilations of crustal

seismic properties presented here will provide for a useful comparison

with regional gravity anomaly maps and density models to more quantitatively

define the isostatic balance of the continent.

Regional magnetic anomaly maps of portions of the North American

continent are shown in Figures 10 and 11. Figure 10 illustrates a reduced

to radial polarization satellite magnetic anomaly map corresponding to

an elevation of 450 km obtained from POGO data. Figure 11 shows a smoothed

tota7 field magnetic intensity anomaly map utilizing the U.S. N00 magnetic

survey. The wavelength character of the two maps is distinctly different

with the satellite map corresponding to more regional features and the

NOO map indicating more local sources. The subdued character of the

magnetic anomalies west of the Rocky Mountains (as noted by a number

of investigators) correlates with the anomalous seismic properties of

thin crust and low upper mantle seismic velocity and is probably a temperature

effect, The most prominent correlation of the long-wavelength magnetic

anomalies as i119tstrated by the satellite magnetic map is with the high

average seismic velocity of the crust in the south-central portion of

the United States which trends roughly east-west and correlates with the
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prominent east-west magnetic anomaly. The weakly defined low in upper

mantle velocity in the midwest United States also roughly correlates

with this strong east-west long-wavelength magnetic anomaly.

DISCUSSION AND CONCLUSIONS

The compilation of seismic properties of the crust and upper , mantle

for the North American continent provides important information on the

distribution of physical properties of the upper continental lithosphere

which can be used to correlate with other geophysical and geological

features. A number of prominent correlations have been noted. New informa-

tion which has been presented here includes an updated and more complete

set of seismic refraction profile data, an analysis of Poisson's ratio

in the crust and upper mantle based on a compilation of shear wave velocity

models from surface wave dispersion experiments and .subsequent comparison

with the compressional wave data and a comparison of the seismic properties

with gravity and magnetic anomaly data.

Although a number of observations and correlations concerning the

distribution of seismic properties of the continental crust and relation-

ships to potential field data have been made in this paper, many interesting

questions arise from this qualitative view of these regional data. For

example:

1) What is the cause of the regional variations in seismic properties?

Black and Braile (1982) present evidence to suggest that temperature

in the earth's mantle may be a primar,, control on the upper

mantle P  velocity and thus may account for the regional variations

observed in Figure 4. Smithson et al. (1981) suggest that average

seismic velocity of the crust is an indicator of average crustal

composition and may be used to infer growth of the Craton. However,
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the pattern of regional variations in average seismic velocity

of the crust, as shown in Figure 5, is complex and requires

further study.

2) The difference in crustal structure associated with the Pacific

and Atlantic continental margins suggests fundamental variations

due to the differences in plate interactions at those margins.

For example, the Atlantic continental margin represents a trailing

edge of the continental crust and the gradual thinning and decrease

in average seismic velocity of the crust toward the oceanic

plate is an indication of a transitional continent to ocean crust.

However, the mechanism and timing of the formation of this transi-

tional crust (which requires a pronounced silicification in

addition to thinning) is presently not know.

3) The combination of distribution of seismic properties in the

crust and upper mantle and long-wavelength free-air gravity'

anomaly data provides important data for an analysis of the

mechanisms of isostatic compensation for continental regions.
S

However, it is clear that this mechanism involves both lateral

density changes in the crust and upper mantle as well as varia-

tions in the depth to the Moho discontinuity.

4) Prominent lithospheric anomalies such as the Basin and Range

:C
	

Province in the western United States require explanation. It

is well known that the Basin and Range represents an area of

major Cenozoic crustal extension. However, any simple model

of extension involving brittle failure (faulting) in the upper

crust and ductile flow in the lower crust does not account for

the prominent low in average seismic velocity in the crust.

Some mechanism of thinning of the lower crust more than the
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upper crust during stretching, 'subcrustal erosion', or addi-

tion of low velocity material to the upper crust is necessary

in order to explain the anomalous seismic properties.

5) Although the Craton displays relatively stable crustal seismic

parameters with a crustal thickness of about 42 km and upper

mantle P wave velocity of about 8.1 km/s and an average seismic

velocity of the crust of about 6.5 km/s, some local variations

in these properties are observed and the most prominent of them

tend to be associated with areas of Phanerozoic• basin development.

A mechanism to explain this densification, thickening of the

crust and subsequent basin development is needed. .

In this paper, we have analyzed a large volume of crustal seismic

velocity data and qualitatively compared the distribution of seismic

parameters in the continental crust to geologic, tectonic and other geo-

physical features. These comparisons provide interesting correlations

and patterns which aid in our understanding of the nature and development

of the continent. However,, perhaps the most important contributions

of this paper is the presentation of data which warrant more quantitative

analysis and which raise interesting questions concerning the origin

and evolution of the continental crust.

_	 __
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FIGURE CAPTIONS

Figure 1A. Index map showing locations of seismic refraction profiles
(solid lines) and approximate centers of surface wave dis-
persion arrays or two station path profiles (dots) used in
the study of crustal and uppermost mantle structure of North
America. Province boundaries are from Fenneman (1946) for
the United States and from Douglas and Price (1972) for Canada.
The numbers adjacent to the seismic refraction profiles refer
to the profile names and references listed in Table 1. The
numbers adjacent to the dots refer to the surface wave dis-
persion models referenced in Table 2.

Figure 1B. Index map of seismic refraction profiles for North America
at a common scale with the contour diagrams presented in
Figures 3, 4 and 5.

Figure 2.	 Histograms of crustal thickness (Hc), average crustal velocity
(V ) and uppermost mantle seismic velocity (Pn) determined
Q the seismic refraction profiles illustrated in Figures
lA and lB and listed in Table 1. N refers to the number
of 'observations. Mean values are Hc, Vp and Pn determined
from the crustal thickness, average velocity and Pn velocity
histograms respectialely. s x is the standard deviation.

Figure 3.	 Contour map of crustal thickness for a portion of the North
American continent. Numbers show crustal thickness in km
measured from the surface to the inferred Moho discontinuity.

Figure 4.	 Contour map of upper mantle seismic velocity (P n ). Contours
give inferred P n velocity in km./s.

Figure 5.	 Contours of average seismic velocity of the crust (Vp) for
a portion of the North American continent. Contours give
values of Vp in kmJs.

Figure 6.	 Scatter diagram indicating the relationship of crustal thick-
ness as determined from refraction data (Hc) to crustal thick-
ness as determined from surface wave dispersion models (Hc')
at the same locations. He observations were interpolatedc
from the contour map at the location of the surface wave
dispersion crustal thickness determination (Hc').

Figure 7.	 Diagram illustrating the relationship between compressional
wave velocity and shear wave velocity for average velocity
of the crust (Vp) and uppermost mantle velocity (Pn). Com-
pressional wave velocities (Vp) are determined from the refrac-
tion data. Shear wave velocities are deterinine.d from the
surface wave dispersion models. a is Poisson's ratio.

Figure 8.	 Index map (at the same scale as Figures 2, 4, 5 and 6) of
a portion of the North American continent showing principal
tectonic units, geologic provinces and locations of major
basins and uplifts. The long dashed line shows the approximate
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limit of the North American continental craton which has
remained relatively undeformed since Precambrian time. Short
dashed line gives the approximate limit of the continental
craton whose edges have suffered deformation since the Pre-
cambrian.

Figure 9.	 Smoothed free-air gravity anomaly map of North America. Free-
air anomaly data have been filtered to remove anomalies with
wavelengths smaller than approximately 8 0 . Amplitude range
(AR) of the data is 62 to -60 mgals and the amplitude mean
AM is -7.55 mgals. Contour interval (CI) is 10 mgals.
The figure is from von Frese et al. (1982).

Figure 10. Radial polarization magnetic anomaly map of North America.
The POGO satellite magne'.ometer observations were reduced
to a uniform elevation of 450 km and spherically reduced
to radial polarization by spherical equivalent source field
calculations. Contour interval is 2 nT. The figure is from
von Frese et al. (1982).

Figure 11. Filtered total magnetic intensity anomaly map of the United
States. NOO magnetic anomaly data along north-south tracks
were smoothed by applying a high-cut filter which attenuated
wavelengths shorter than approximately 200 km. Contour interval
is 100 nT with maxima indicated by a ruled pattern and minima
by a dot pattern. Figure is from Sexton et al. (1982).



TABLE 1. SEISMIC REFRACTION PROFILES FOR NORTH AMERICA 	 32

No.	 Profile

1 Ripple Rock
2 Greenbush Lake - Tumwater
3 Greenbush Lake - Longmire
4 Tracadie - Cheticamp
5 Tracadie - East Point
6 Mainland - Ferolle Point
7 St. Anthony - Cape Freels
8 St, Joseph - Hannibal
9 Hercules - St. Genevieve
10 Hanksville - Chi.^ile
11 NTS - Kingman
11 Kingman - NTS
11 NTS -.Tucson
12 San Francisco - Paraiso
13 Oregon Coast Range
14 Lake Mead - Mono Lake
15 Manitou - Chelsea
16 Gnome - N
17 Gasbuggy - S
18 San Francisco - Camp Roberts
19 Camp Roberts - Santa Monica Bay
20 Lake Superior - Colorado
21 Tahawus - W
22 Milroy - E
23 Tahawus - S
28 San. Francisco - Fallon
29 Fallon - Eureka
31 NTS - Ludlow
32 Bahute Mesa - San Francisco Bay
33 NTS - Ordway
35 Lake Superior
36 Gambler High
37 Gambler Low
38 Cleveland - Victoria, Texas
39 Victoria, Texas
40 Cape Girardeau - Little Rock
41 .Maryland Coast
42 S. Mississippi
43 Blue Mountain - Bylas
44 Gila Bend - Sunrise
45 SE Texas
46 American Falls - Flaming Gorge
47 E. Colorado
48 S. Rocky Mountains
49 Greenbush Lake - E
50 Rocky Mountain Trench
51 Bird hake
52 Ripley Bay
53 Superior
54 Front
55 Grenville
56 Cliff Lake - Big Sandy River
57 Big Sandy River - Fort Peck
58 Fort Peck - Garrison

Reference

Richards and Walker, 1959
Johnson and Couch, 1970
Johnson and Couch, 1970
Ewing et al, 1966
Ewing et al, 1966
Ewing et al, 1966
Ewing et a1, 1966
Stewart, 1968a
Stewart, 1968a
.Roller, 1965
Diment et al, 1961
Rolipr, 1964; Prodehl, 1979
Langston and Helmberger, 1974
Hamilton et al, 1964
Berg et al, 1966
Johnson, 1965
Mitchell and Landisman, 1971

• 1itchell and Landisman, 1971
Toppozada and Sanford, 1976
Healy, 1963
Healy, 1963
Roller and Jackson, 1966
Katz, 1954
Katz, 1954
Katz, 1954
Eaton, 1963
Eaton, 1963
Gibbs and Roller, 1963
Carder et al, 1970
Ryall and Stuart, 1963
Berry and West, 1966
Cohen and Meyer, 1966
Cohen and Meyer, 1966
Cram, 1961
Dorman et al, 1972
McCamy and Meyer, 1966
Merkel and Alexander, 1969
Warren et al, 1966
Warren, 1969
Warren, 1969
Hales et al, 1970
Willden, 1965
Jackson et al, 1963
Jackson and Pakiser, 1965
Chandra and Cumming, 1972
Bennett et al, 1975
Johnson et al, 1972
Johnson et al, 1972
Berry and Fuchs, 1973
Berry and Fuchs, 1973
Berry and Fuchs, 1973
McCamy and Meyer, 1964
McCamy and Meyer, 1964
McCamy and Meyer, 1964

6.
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No.	 Profile

59 Cliff Lake - Sailor Lake
60 Garrison - S
61 Fort Peck - Acme Pond
62 Acme Pond - E
63 Sailor Lake - D
64 Lake Mead - Santa Monica Bay
66 Galveston
68 Blake Plateau
69 Jacksonville - E
72 Edzoe - Fort McMurray
75 NTS - Winnemucca
76 Cooper Canyon Mine
86 Port Hebert - Cole Harbour
87 Hubley Lake - SE
154 Dixon Entrance
157 Central Wisconsin
158 Central Wisconsin
163 B. Tennessee
167 California - Nevada
173 Central Wisconsin
174 Central Wisconsin
175 E. Basin and Range
178 Great Plains
179 Columbia Plateau
184 Front Range
185 Bingham - NE
193 Bingham - S
194 Rocky Mountains
195 Dice Throw
198 Great Slave Lake
199 Superior - Churchill
200 Kirkland Lake
201 W. Manitoba
202 Manitoba - Ontario
204 Superior - Churchill - NS
205 Superior - Churchill - EW
206 La Malbaie
207 Vancouver Island
208 Greycliff - Charleson
212 Eureka - Boise
216 Trans - California
217 Bird bake - Prince George
218 Hudson Bay NW-SE
219 Hudson Bay E-W
220 Globe - Tyrone
221 Yellowstone
222 Conda - SP7, Y-SRP
223 S. Indiana - S. Illinois
225 'Northwest Ontario
226 Parker - Globe, Arizona
227 Oregon Coast
228 Oregon Coast
229 Delta - W
230 Yellowknife NW-SE

Reference

McCamy and Meyer, 1964
McCamy and Meyer, 1964
McCamy and Meyer, 1964
McCamy and Meyer, 1964'
McCamy and Meyer, 1964
Roller and Healy, 1963
Ewing et al, 1955
Hersey et al, 1959
Hersey et al, 1959
Mereu et al, 1976
Stauber and Boore, 1978
Stauber and Boore, 1978
Barrett et al, 1964
Barrett et al, 1964
Shor, 1962
Steinhart and Meyer, 1961
Slichter, 1951; Steinhart and Meyer,
Steinhart and Meyer, 1961
Press, 1960
Slichter, 1951; Steinhart and Meyer,
Slichter, 1951; Steinhart and Meyer,
Berg et al, 1960
Hales and Nation, 1973
Hill, 1972
Jackson and Pakiser, 1965
Braile et al, 1974
Keller et al, 1975
Hales and Nation,,1973
Olsen et al, 1979
Barr, 1971
Mereu and Hunter, 1969
Hodgson, 1953
Hall and Hajnal, 1973
Hall and Hajnal, 1973
Green et al, 1980
Green et al, 1980
Lyons et al, 1980
White and Savage, 1965
Warren et al, 1972
Hill and Pakiser, 1966
Carder, 1973
Forsyth et al, 1974
Hobson et al, 1967
Hobson et a1, 1967
Gish et al, 1981
Smith et al, 1981
Sparlin et al, 1981
Baldwin, 1980
Hall and Hajnal, 1969
Sinno et al, 1981
Shor et a1, 1968
Shor et al, 1968
Keller et al, 1975; Mueller and Landisman, lr -

-Clee et al, 1974

1961

1961
1961
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Profile

Bingham - N
Grenville
Nitinat - Greenbush Lake
Greenbush Lake - McLeod Lake
Ripley Bay - Greenbush Lake
Quesnel
Shasta Reservoir - Mono Lake
Mono Lake - China Lake
Diablo Range
Gabilan Range
Eastern Snake River Plain
NTS - San Luis Obispo
China Lake - Santa Monica Bay
Mono Lake - Santa Monica Bay
Fallon - Mono Lake
Eureka - Lake Mead
Fallon - China Lake
Mojave - Ludlow
Gasbuggy - SW
Gasbuggy - E
Gasbuggy - N
Gnome - E
Gnome - W
N. Middle Atlantic States - ECOOE
S. Middle Atlantic States - ECOOE

Saskatchewan - EDZOE
Chesapeake Bay
Keweenaw
N. Minnesota
Puget Sound
E. Tennessee
Maine
S. Profile ECOOE

Reference

Martin, 1978
Mereu and Jobidon, 1971
Berry and Forsyth, 1975
Berry and Forsyth, 1975
Berry and Forsyth, 1975
Berry and Forsyth, 1975
Eaton, 1966
Eaton, 1066
Stewart, 1968b
Stewart, 1968b
Braile et al, 1981
Prodehl, 1979
Prodehl, 1979
Prodehl, 1979
Prodehl, 1979
Prodehl, 1979.
Prodehl, 1979
Prodehl, 1979
Warren and Jackson, 1968
Warren and Jackson, 1968
Warren and Jackson, 1968
Romney et al, 1962
Romney et al, 1962
James et al, 1968
James et a1, 1968
Bates and Hall, 1975
Tuve, 1951; Steinhart and Meyer, 1961
Steinhart and Meyer, 1961
Tuve, 1953; Steinhart and Meyer, 1961
Tuve, 1954; Steinhart and Meyer, 1961
Warren, 1968
Steinhart et al, 1962
Hales et al, 1968

No.

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
257.
253
254
255
256
257
258
259
260
261
262
263

Uri-
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TABLE 2. Surface Wave Dispersion Models for North America

Locat ion Reference

S-1 Godlewski and'West, 1977
S-2 Panza and Calcagnile, 1974
S-3 Dorman and Ewing, 1962
S-4 Greensfelder and Kovach, 1981
S-5 Braile, unpublished data
S-6 Keller et al, 1979
S-7, 8 Keller et al, 1979
S-9, 10, 11 Losee, 1981
S-12 McEvilly, 1964
S-13 Priestley and Brune, 1978
S-14 Austin and Keller, 1981
S-15 Brune and Dorman, 1963/?
S-16, 17, 18, 19, 20	 Braile, unpublished data
S-21 Mikumo, 1965
S-22, 23, 24 Keller and Shurbet, 1975
S-25 Long and Mathur, 1971
S-26 Thatcher and Brune, 1973
S-28 Adams, 1975
S-29 Prewitt, 1968
S-30 Stanton, 1972
S-31, 32, 33, 34,	 35,	 36,

37, 38, 39, 40, 41	 Wickens, 1977
S-42, 43, 44 Thompson and Talwani, 1964
S-45, 46, 47, 48	 Wickens, 1971
S-49 Oliver et al, 1961
S-50, 51 Bache et al, 1978
S-52, 53 Bucher and Smith, 1971

6
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k

F

TABLE 3. Crust and Upper Mantle Model Statistics-
Continental North America

Sample Standard
Variable Size Mean Deviation Units

N X S
X

He 187 36.21 9.22 km

154 6.411 0.207 km/sVp

P 
191 8.030 0.204 km/s

HC 51 37.48 6.42 km

Vs 49 3.650 0.141 km/s

S 
51 4.471 0.162 km/s

a 49 0.252 0.040 -
c

a 51 0.273 0.021 -
m

Refraction Profile Results:
He - Crustal thickness (Depth to iibho)

V - Average compressional wave velocity ofp 
the crystalline crust

P  - Upper mantle compressional wave velocity
(Moho velocity)

Surface Wave Dispersion Results:
HI - Crustal thickness (Depth to Moho)

Vs - Average shear wave velocity of the
crystalline crust

S  - Upper mantle shear wave velocity (from
dispersion models)

Poisson Ratio Results:
ac - Poisson ratio for the crystalline crust

am - Poisson ratio for the upper mantle

0
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ORIGINAL PACK 10
OF POOR QUALITY
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ORIGINAL. PAGE 10
OF POOR QUALITY
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ORIGINAL PAGE 13
OF POOR QUALITY

RELATION BETWEEN COMPRESSIONAL (Vp) AND SHEAR (Vs)
VELOCITY — POISSON' S RATIO (a') CONTINENTAL NORTH AMERICA
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