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1. Introductorz Remarks

In this review, we attempt to synthesize recent experimental

research on bow-shock structure and theoretical studies of quasi-

parallel shock structure and shock acceleration of energetic particles,

to point out the relationship between shock structure and particle accel-

eration. In Section 2, we discuss the phenomenological diE^tinction

between quasi-parallel (Q„) and quasi=perpendicular (Q 1) shocks that

has emerged from bow-shock xesearch, and review present efforts to ex-

tend this work to interplanetary'shocks. In Section 3, we summarize

existing theories of Q„ shock structure. In Section 4, we turn to

theories of particle acceleration by shocks. In Section 5, we discuss

attempts to relate particle acceleration to shock structure using multi-

ple fluid models. We synthesize the broad conclusions drawn from the

discussions in Sections 2 - 5 in Section 6. Section 7 concludes our

review with a few general remarks.

2. Observational Distinction Between Q„ and Q 1 Shocks

Earth bow-shock studies have revealed a profound difference

between Q,, .and Q1 shocks (Formisano, 1977; Greenstadt and F;'rederi.cks,

1979). The shock normal angle 8 B separates the two types; Q 1 shocks

have 8 B Z 45 0 -55'0 , and vice versa for Q„ shocks. Quasi-perpendicular
shocks are about an ion Larmor radius thick (Leroy et al., 1981;

Livesey et al., 1982), as measuroAd by jumps in both the magnetic field

and plasma density. On the other hand, in Q„ shocks, the magnetic

field undergoes a much broader and more disorderly transition whose

spatial scale is difficult to determine from bow-shock measurements
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(Greenstadt et al.., 1982b). It is not known whether there is a thin

density jump embedded within the broad region of large-scale magnetic

turbulence that characterizes Q„ shocks.

The facts that Q„ shocks allow significant access upstream of

particles that have interacted with tt.e shock, while Q 1 shocks do not,

appear to be the primary observational distinction between the two.

As early as 1968, we knew that the solar wind can have foreknowledge

of an impending bow-shock crossing when it is connected magnetically

to the shock (Asbridge et al., 1968; Fairfield, 1969). The connected

region of upstream disturbance has come to be known as the foreshock.

The interplanetary field line that is instantaneously tangent to the

curved bow-shock surface defines the leading edge of the foreshock; at

the point of tangency, the shock normal angle 0 B is 90 * . Near the

poi;it of tangency, the locally Q, shock evidently accelerates electrons

(K . Anderson, 1968, 1968; Feldman et a1., 1973, 1983; K. Anderson

et al., 1979; R. Anderson et a1., 1981) and ions (Gosling et al., 1978,

1979, 1980; Greenstadt et al., 1981) into thin, focused beams which

escape upstream along field lines. When they are observed upstream,

the beams may be traced kinematically back to the Q a shock (Greenstadt,

1976), and the faster electron beam is encountered upstream of the ion

beam. The upstream electron and ion distributions become progressively

more diffuse downstream of their beam leading edges, on field lines

that connect to a bow shock that is more and more Q„ (K. Anderson et

al., 1979; Gosling et al., 1978; Greenstadt et al., 1980; Bonifazi et

al., 1980; Bonifazi and Moreno, 1981; Eastman et al., 1981; Paschmann

et al., 1981; Feldman et al., 1982).

The superthermal particles in the foreshock generate a rich spec-

trum of magnetohydrodynamic and plasma waves (Scarf et al., 1970, 1971).

Escaping electrons generate electron plasma waves (Scarf et al., 1971;

R. Anderson et al., 1981), low-frequency (til Hz) whistler waves (Feld-

man et al., 1983; Sentman et al., 1983), and higher-frequency whistlers

(Fairfield, 1974). Inn acoustic waves are associated with superthermal

ions and electrons in the foreshock (Scarf et al., 1971; Rodriguez and

Gurnett, 1975; R. Anderson et al., 198.1; Parks et al., 1,981). Low fre-

quency magnetohydrodynamic waves are associated with the upstream ion

beam (Hoppe et al., 1982). Hydromagnetic waves achieve large amplitudes

in the diffuse proton zone (Paschmann et al., 1979; Greenstadt et al.,

, D^l



1980; Hoppe et al., 	 1981).

• The impressive clarification of foreshock phenomenology achieved

in the last decade has not improved our fundamental understanding of

• the difference between Q l and Q„ shocks because of an ambiguity inher-

ent in the interpretation of terrestrial foreshock measurements. 	 It

has been argued that many, perhaps most, of the diffuse ions come from

the ion foreshock beam (Barre et al., 1981a; Bonifazi and Moreno, 	 1981).

As such beam ions propagate upstream, they destabilize low-frequency

electromagnetic waves which subsequently scatter and decelerate them.

The decelerated ions and the waves are blown downstream by the solar

wind to fill the entire- foreshock with waves and diffuse ions.	 The

waves are ultimately blown back into the quasi-parallel zone of the

shock surface, possibly accounting for the disordered magnetic struc-
r

ture of Q„ shocks..	 In this interpretation, the Q„ bow-shock structure

we cbserve is an artifact of the small radius of curvature of the bow

shock.	 On the other hand, one can argue that some shock-heated ions

ought to escape ::aturally from plane Q„ shocks (Edmiston et;,al., 1982;

^. Tanaka et al_._,	 1983).	 In this case, some of the foreshock phenomena

we observe might b p inherent to Q„ shocks.	 Whatever the situation, the

-- curvature of the bow shock does alias the results, so that it is impossi-

ble to assign uniquely the phenomena observed upstream to a given shock

normal angle.

The upstream superthermal ion energy density is comparable with

z that of the interplanetary field, and, more significantly, the st

wind is decelerated and deflected when it enters the foreshock (Boni-

fazi et al., 1980) by an amount compatible with the momentum flux

carried by shock-escaping ions ( game et al., 1980;	 Sentman et al.,

in1981a).	 Thus, part of the shock transition is accomplished 	 the

foreshock, and the overall thickness of the Q„ part of the bow shock

x therefore exceeds its radius of curvature.

i It is much more difficult to determine the true extent of Q„

shocks from the bow-shock than from interplanetary shocks, whose radii

of curvature are 25-2500 times that of the bow shock.	 At present, the

search for interplanetary foreshock phenomena is .incomplete. 	 To ascer-

tain whether Q„ interplanetary shocks have foreshocks, one should begin

by comparing measurements made at equal distances upstream of inter-

.

3.	 t

planetary shocks and the bow shock.	 This implies searching for fore-

.{	 z

^	 d

u



1

•	
1

[I

R	 ^

shock signatures a few tens of seconds before an interplanetary shock

encounter, when the high-speed shock is a few earth radii from the'space-

craft. Kennel et al. (1982) found that the amplitude and spectrum of

ion acoustic waves a few earth radii ahead of interplanetary shocks are

remarkably similar to those observed at the same distance from the bow

shock. These ion acoustic waves extended several hundred earth radii

ahead of Q„ interplanetary shocks, the first indication that foreshocks

might be much larger than is possible to infer from bow-shack studies

(Kennel et, a1., 1982). It is of obvious interest to inquire whether

other phenomena characteristic of the earth's foreshock also occur far

upstream of interplanetary Q„ shocks. Russell and Hoppe (1982), Russell

et al. (1983), and Tsurutani et al. (1982, 1983) have recently found

hydromagnetic waves, whose amplitudes and frequencies are similar to

those in the earth's foreshock, ahead of Q„ interplanetary shocks. Gos-

ling et al. (1983) have also found evidence of diffuse superthermal ions

upstream of some interplanetary Q„ shocks. Thus, at least three fea-

tures characteristic of the earth's foreshock also occur upstream of Q„

interplanetary shocks.

3. Theories of Q„ Shock Structure

Let us now survey the development of our theoretical ideas concern-

ing the structure of quasi-parallel shocks. It has been popular to sepa-

rate the structure into a local shock layer and a larger "upstream" re-

gion in which part of the shock dissipation required by the Rankine-

Hugoniot conditions is accomplished. It is in the upstream foreshock

that the processes thought responsible for energetic particle accelera-

tion occur. In general, laboratory and space plasma theoreticians have

concentrated on the subshock and the near foreshock, and cosmic ray and

astrophysical plasma theorists have focused on the foreshock and neglec-

ted subshock structure.

Parker (1961) first recognized implicitly the role of escaping ions

^y

	
in Q„ shocks, when he argued that parallel ion beams would be firehose

^T
	 unstable and thereby produce large-amplitude Alfvbn turbulence that

accomplishes the shock transition on a scale of many ion Larmor radii.

Moiseev and Sagdeev (1963) developed a parallel shock model in which

upstream ions could be reflected from an ion acoustic potential struc-

4;.
	 ture would no longer exist. They then argued that turbulent heating

would produce a firehose unstable anisotropy if the upstream plasma s
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were sufficiently high.	 This suggestion motivated Kennel and Sagde^ev

• (1967) and Kennel and Petschek	 (1968) 'to develop a theory of low Mach

number, parallel firehose shocks in high 8 plasmas. 	 Auer and Volk's

(1973) numerical calculation subsequently confirmed the general outlines

of firehose shock theory.	 These models failed to recognize the impor-
t:

tance of Parker's (19 ,61) suggestion by not including the effects of es-

caping upstream ions.	 Kennel ( 1981) suggested that a fusion of the ion

heat-flux and anisotropy firehose models might be promising.

` The above models considered only the long-wavelength limit of the
1

firehose instability, where it is non-resonant. 	 On the other hand, the {

same mode is resonant for wavelengths near the ion Larmor radius, or

.' when the plasma R is less than unity (Kennel and Scarf, 1968). 	 Recent

work on the resonant anisotropy instability has focused on the foreshock I	 ,
I

and not on the subshock.	 Gary (1981), Gary et al. 	 (1981), and Sentman

et al.	 (1981b) showed that the ions measured upstream of the terrestrial

subshock are unstable to the resonant instability and, when conditions
^z

are appropriate, to the non-resonant instability as well.	 It is gener-

y

ally believed that the upstream ions do generate the large-amplitude, i

low-frequency waves in the earth's forbshock, as Barnes (1970) first x

'E suggested.•

Lee's (1982) self-consistent theory for the decay of an ion beam

escaping from the bow shock invokes resonant quasi-linear scattering by

low-frequency electromagnetic waves and the subsequent energization of

ions by scattering and shock compression. 	 In this theory, the decelera-

tion of the escaping superthermal ions and their subsequent energization

are both consequences of turbulence generated by pitch-angle anisotropies.

Lee (1983) extended his bow-shock theory to the interplanetary case and

applied it to the interplanetary shock that occurred on November 11-12, i

1978.	 Starting with Scholer et al. 's (1983) measured 30 keV/Q ion inten-

sity, he was able to account for their particle measurements at higher

f energy and to predict a wave amplitude and spectrum, which are in good

is agreement with observation (Kennel et al., 1983a,	 1983b).

4:.f Numerical simulations have contributed substantially to quasi-

parallel shock theory.	 Because of the limitations of spatial scale,

;x numerical simulations treat only the subshock. 	 Biskamp and Welter (1972)

proposed an electrostatic, rather than electromagnetic, ion beam insta-

^`` bility as the dissipation mechanism for the strong quasi-parallel shock



they simulated.	 Recent 2-D simulations (Quest et al., 1983)	 found that

large-amplitude whistler turbulence on the ion inertial scale length is

generated in Q„ shocks, and that intense fluxes of ,ions are reflected

upstream.' Kan and Swift (1983) simulated Q„ shocks, in one dimension

but over a lung spatial scale.	 They found that a whistler wave train

standing upstream of the shock resonantly scatters incoming ions, and

that long wavelength non-resonant firehose modes are created downstream.

In summary, nearly all theories of Q„ shock structure agree that

large-amplitude magnetic turbulence, with frequencies that span the

range from well below to somewhat above the Son cyclotron frequency, is

central to the dissipation in the plasma subshock and to the dynamics

of the foreshock ahead of it.
,r

Q.	 Shock Acceleration of Energetic Particles

Until recently, most theories of cosmic ray acceleration concen-

trated on elucidating how single particles can attain high energy by

single or multiple encounters with collisionless shocks which are con-

4{ sidered to be infinitely thin and whose plasma structure is therefore

}= assumed to be relatively unimportant. 	 Looked at in this fashion, shocks

n can accelerate particles in several ways. 	 Ions whose Larmor radius ex-	 ''•

` ceeds the shock thickness conserve their gyrophase averaged magnetic	 z

r' moment (E. N. Parker, unpublished manuscript, 1958; Chen and Armstrong,
k

1972; Shabanskii, 1962; Pesses, 1979; Terasawa, 1979a,b). 	 Such ions

approaching the shock from upstream would therefore be either reflected

from or transmitted through the jump in magnetic field and potential at

the shock, depending upon their pitch angle.	 Reflected ions grad-B

r' and curvature drift parallel to the flow electric field and thereby

acquire energy, the more efficiently the more quasi-perpendicular the

shock (Sonnerup, 1969).	 However, since multiple reflections are needed
r{'

to account for the observed acceleration by interplanetary shocks

(Pesses, 1979), reflected ions must be scattered from upstream MD

turbulence back towards the shock. 	 They then can be either re-reflected

i or retransmitted at their next encounter with the shock. 	 Re-reflected

particles can repeat the above cycle, and some can reach high energy.

Energetic particles that are transmitted through the shock can be

scattered by downstream magnetic turbulence back toward the shock. Such

particles are subject to first-order Fermi-acceleration by multiple re-

flections between upstream and downstream waves that convect approxi-

•	 ^ F
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mately with the local flow speed. The shock then serves primarily to de-

••	 celerate the flow so that the scattering centers appear to converge

toward one another in the shock frame. In the test particle limit, this

mechanism does not take into account the momentum transfer between cosmic

rays and the plasma. The integral spectrum for particles Fermi-

accelerated by infinite plane shocks depends only upon the ratio of up-

stream and downstream flow speeds (Krimsky, 1977; Axford et a1., 1977;

Bell, 1978a,b; Blandford and Ostriker, 1978; Lee, 1982, 1983). Because

the calculated spectral index is close to the observed galactic cosmic

ray index; , supernova shocks are promising candidates to accelerate galac-

tic cosmic rays (Axford, 1981).

For the solar system, the theory of first-order Fermi-acceleration

has been applied to the diffuse ions upstream of the bow shock (Terasawa,

1979, 1981; Eichler, 1981; Lee et al., 1981; Forman, 1981; Ellison, 1981;

Lee, 1982), and the so-called interplanetary ESP events, in which ener-

getic ions are observed to increase well before the shock encounter

(Scholer and Morfill, 1975; Scholer et a1., 1983; Lee, 1983). Lee's

(1982) theory predicts the energy spectra of different species reported

by Ipavich et al: (1981) and the spectrum and amplitt.:e of the low-

,	 frequency waves observed upstream of the bow shock 	 Hoppe et al. (1981)

and others. The observed spectrum of bow-shocl^ ^ifiase particles cuts

off above about 100 keV, a fact which may be explained by the finite ex-

tent of the bow shock. Either a given magnetic field line remains con-

nected to the region where the bow shock is strong for a finite time, or

the particles diffuse across the magnetic field onto field lines which

no linger interact with the shock (Eichler, 1981; Skadron and Lee, 1982).

Either effect limits the number of shock crossings a particle can have

and, therefore, the energy to which it can be accelerated.

The field line connection time is much larger for interplanetary

shocks than for the bow shock, so the first-order Fermi mechanism will

have longer to operate. The energetic ion fluxes theoretically should

increase exponentially approaching a steady, planar shock, maximize at

the shock, and hold approximately constant downstream--features charac-

teristic of ESP events. The accelerated iors should be essentially iso-

tropic in the shock frame upstream and isotropic in the solar wind frame

downstream.

There have been relatively few measurements of moderate energy ions

in ESP events in the energy range (tens of keV) that bridges the low-
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energy plasma and "seed" particles (see Section 6) and high-energy cosmic

rays (however, see Lin et al., 1974; Gosling et al., 1980, 1981; and Gos-

ling, 1983). A recent study of 30-150 keV/Q protons and alphas in three

ESP events (Scholer et al., 1983) finds that the particle energy and angu-

lar distributions and spatial profiles are consistent with first-order

Fermi-acceleration theory.

S. Relation of Subshock Structure and Foreshock Partic3e Acceleration

E. N. Parker was one of the first to realize that if interstellar

shocks accelerate the observed galactic cosmic rays, cosmic rays must have

sufficient energy density to contribute to shock structure. The test par-

ticle limit may therefore be misleading. Wentzel (1971), Axford et al.

(1977, 1982), and Drury and Volk (1981) included the pressure, but not the

number and momentum densities, of the cosmic rays in the calculation of

gas-dynamic shock structure. Cosmic rays were assumed to diffuse spatial-

ly with a long characteristic scale length, and the thermal plasma was

assumed to be subject to unspecified dissipation due to microturbulence.

These calculations retrieve the gas-d,•namic jump conditions when no ener-

getic particles are present. On the other hand, if the upstream cosmic

ray pressure is non-zero and the sonic Mach number exceeds about 10, the

entire shock transition takes place in the cosmic rays without a discon-

tinuity in the thermal plasma. For lower Mach numbers, there must be

both a cosmic ray foreshock and a plasma subshock--the situation which

should pertain to the shocks typically encountered in the solar system.

Given the upstream particle pressure, these two-fluid models produce an

estimate of the downstream energetic particle pressure, and, thus the effi-

ciency, of particle acceleration. McKenzie and Volk (1982) included the

Alfv6n waves that scatter the energetic particles as a third fluid in the

shock-structure calculation. Inclusion of the waves reduces the down-

stream energetic particle pressure; moreover, the spatial profile of the

foreshock depends on whether the waves remain quasi-linear or saturate

nonlinearly. Since the above theories treat energetic particles as a

fluid, they cannot calculate the spectral index of the energetic parti-

cle distribution. Existing kinetic calculations that do calculate a

spectral index neglect the deceleration of the upstream flow by the ener-

getic particles, and so a fully self-consistent kinetic treatment of a

foreshock-subshock system remains to be done„
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1(	 6, Toward a Unified View of Shock Structure and First-Order

Fermi-Acceleration

Four major conclusions emerge from the discussion in this review:

Only Q„ shocks have the extended regions of AM turbulence up-

stream and downstream that are the essential ingredients of the r

first-order Fermi-acceleration scenario. This fact may be rela-

ted to the ease with which not only energetic cosmic rays, but

also particles on the tail of the thermal distribution, can free

stream across Q„ shocks.

• Quad.-parallel shocks consist of a foreshock and a plasma sub-

shock, Part of the change in plasma conditions required by the

Rankine-Hugoniot relations is effected by energetic particle

scattering in the foreshock.

• It may be possible f-o accomplish the entire foreshock-subshock

transition with low-frequency electromagnetic waves as the domi-

nant scattering mechanism. The theories for resonant scattering

of foreshock superthermal and energetic particles (Lee, 1982,

1983) and for plasma thermalization (Parker, 1961; Kernel and

Sagdeev, 1967; Kennel and Petschek, 10:08; Auer and Volk, 1973)

all invoke long-wavelength electromagnetic waves destabilized by

pitch-angle anisotropy. Even the thermalization of incoming

plasma ions by standing whistlers (Quest et al., 1983; Kan and

Swift, 1983) is a variation on the same theme.

• The energetic-particle spectrum generated by a steady plane

shock depends only on the jump in plasma velocity across the

shock. In general, the spectral index will also depend upon

the geometry and time evolution of the .shock. (Forman, 1981)

Before we can arrive at a comprehensive theory that, among other

things, computes the cosmic ray intensity and spectrum as a function of

shock parameters, we must understand how particles that are originally

part of the thermal plasma reach the energy threshold where Fermi-

acceleration begins to operate. Present energetic particle diffusion
a calculations start with a source of "seed" particles which can either

be in the upstream flow or be injected at a subshock. It matters not

for the final spectral index whether the seed particles are injected

far upstream (Axford et al., 1977; Blandford and Ostriker, 1978) or at

E
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the subthock (Lee, 1982, 1983). However, the energetic particle ino ten-

sity will clearly depend upon the strength, and thus the location, of

the source.

As it is unsatisfying to rely upon a pre-existing flux of cosmic

rays upstream, it Is encouraging that at least those shocks with sub-

shocks appear to inject seed particles Into the foreshock. Theoreti-

cally, it is clear that the seed particles at one time must have'been

thermal ions that interacted with the subshock once on their way to

participating in the Fermi process. In the case of the bow shock,

these are the few keV "upstream" or "superthermal" ions that were re-

flected from or transmitted through the shock. There has been only

one study of the interplanetary shock analogs of upstream particles

(Gosling et al., 1983). Eichler (1979) and Ellison (1981), arguing

that the terms "thermal", "seed", and "energetic' are artificial 'ver-

bal distinctions, developed a shock-structuro model in which all ions

interact with electromagnetic waves in essentially the same way to pro-

'	 duce a scattering mean free path at each energy that is proportional to
a	

Lam-or
i	

the 	 radius: Such a diffusion model efficiently produces a high-

e

energy tail that blends smoothly with the thermal distribution.

7. Concluding Remarks

Although theoretical models of quasi-parallel shocks are over 20

years old, and although the suggestion that energetic particles are

significant to shock structure is equally venerable, experimentalists

could do little with these ideas until the past five years. The earth's

foreshock has a complex phenomenology whose disorder had to be reduced

before it could be fitted into a theoretical framework that had once

seemed peculiarly ill-adapted to bow-shock observations. Now, it is

clear that quasi-paral7el shocks have such an enormous spatial scale

that interplanetary shocks are a better experimental arena to test

theories of their structure.

A coherent viewpoint is now. emerging from the experimental and

theoretical research of the past five years. Only quasi-parallel

shocks have the large regions of magnetohydrodynamic turbulence up-

stream and downstream that is the essential ingredient for first-

order Fermi-acceleration of energetic particles. It appears that

superthermal and energetic particles can stream freely through quasi-

parallel shocks, and that such particles generate the wave-fields
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that scatter them.

The outlines of a theory that will eventually prodict the inter-

sity and spectrum of shock-accelerated particles as a -function of shock

parameters and time evolution are in view.	 That said, it is prudent to

add two cautionary warnings.	 First, not much is known about the micro-

structure of quasi-parallel shocks, or even whether they have a micro-

structure.	 The current theoretical models are based on the interac-

tions Between particles and electromagnetic waves with wavelengths

equal to or longer than a thermal ion Larmor radius,	 While it is con-

ceivable that they could account both for the shock dissipation and

energetic particle scattering, it is not proven that they can do so

uniquely.	 Second, our experience with the earth's bow shock indicates

that shock structure is strongly parameter-dependent, so that the pic-

ture of the large-scale quasi-parallel shock structure that has emerged

from the few interplanetary shock studies completed to date might be

misleading.	 It remains for f'utade: research to confirm, or to temper,

our present enthusiasm.
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