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1, Introductory Remarks

In this review, we attempt to synthesize recent experimental
research on bow-shock structure and theoretical studies of quasi-
parallel shock structure and shock acceleratien of energetic particles,
to point out the relationship between shock structure and particle accel-
eration, In Section 2, we discuss the phenomenological digtinction
between quasi-parallel (Q,) and quasi-perpendicular (Q,) shocks that
has emerged from bow-shock research, and review present efforts to ex-
tend this work to interplanetary shocks. In Section 3, we summarize
existing theories of Q, shock structure. In Section 4, we turn to
theories of particle acceleration by shocks., In Section 5, we discuss
attempts to relate particle acceleration to shock structure using multi-
ple fluid models. We synthesize the broad conclusions drawn from the
discussions in Sections 2 - 5 in Section 6, Section 7 concludes our

review with a few general remarks.

2, Observational Distinction Between Q,, and Q, Shocks

Earth bow-shock studies have revealed a profound difference
between Q, and Q, shocks (Formisano, 1977; Greenstadt and Fredericks,
1979). The shock normal angle eBn separates the two types; Q, shocks
have 65 2 45°-55°, and vice versa for Q, shocks. Quasi-perpendicular
shocks are about an ion Larmor radius thick (Leroy et al,, 1981;
Livesey et al., 1982), as measured by jumps in both the magnetic field
and plasma density. On the other hand, in Q,, shocks, the mdgnetic
field undergoes a much broader and more disordérly transition whose

spatial scale is difficult to determine from bow-shock measurements
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(Greenstadt et al., 1982b). It is not known whether there is a thin
density jump embedded within the broad region of large-scale magnetic
turbulence that characterizes Q,, zhocks.

The facts that Q,, shocks allow significant access upstream of
particles that have interacted with the shock, while Q, shocks do not,
appear to be the primary observational distinction between the two,

As early as 1968, we knew that the solar wind can have foreknowledge
of an impending bow~shock crossing when it is connected magnetically

to the shock (Asbridge et al., 1968; Fairfield, 1969). The connected
region of upstream disturbance has come to be known as the foreshock.
The interplanetary field line that is instantaneously tangent to the
curved bow-shock surface defines the leading edge of the foreshock; at
the point of tangency, the shock normal angle eBn is 90°. Near the
Point of tangency, the locally Q, shock evidently accelerates electrons
(K. Anderson, 1968, 1968; Feldman et al., 1973, 1983; K. Anderson

et al., 1979; R. Anderson et al., 1981) and ions (Gosling et al., 1978,
1879, 1980; Greenstadt et al., 1981) into thin, focused beams which
escape upstream along field lines. When they are observed upstream,
the beams may be traced kinematically back to the Q, shock (Greenstadt,
1976), and the faster electron beam is encountered upstream of the ion
beam. The upstream electron and ion distributions become progressively
more diffuse downstream of their beam leading edges, on field lines
that connect to a bow shock that is more and more Q,, (K. Anderson et
al., 1979; Gosling et al., 1978; Greenstadt et al., i980; Bonifazi et
al., 1980; Bonifazi and Moreno, 1981; Eastman et al., 1981; Paschmann
et al., 1981; Feldman et al., 1982).

The superthermal particles in the foreshock generate a rich spec-
trum of magnetohydrodynamic and plasma waves (Scarf et al., 1970, 1971).
Escaping electrons generate electron plasma waves (Scarf et al., 1971;
R. Anderson et al., 1981), low-frequency (vl Hz) whistler waves (Feld-
man et al., 1983; Sentman et al., 1983), and higher-frequency whistlers
(Fairfield, 1974). Ion acoustic waves are associated with superthermal
ions and electrons in the foreshock (Scarf et al., 1971; Rodriguez and
Gurnett, 1975; R. Anderson et al., 1981; Parks et al., 1981).. Low fre-
quency magnetohydrodynamic waves are associated with the upstream ion
beam (Hoppe et al., 1982). Hydromagnetic waves achieve large amplitudes
in the diffuse proton zone (Paschmann et al., 1979; Greenstadt et al.,



198C; Hoppe et al., 1981),

The impressive clarification of foreshock phenomenology achieved
in the last decade has not improved our fundamental understanding of
the difference between Q, and Q, shocks because of an ambiguity inher-
ent in the interpretation of terrestrial foreshock measurements, It
has been argued that many, perhaps most, of the diffuse ions come from
the ion foreshock beam (Bame et al., 198la; Bonifazi and Moreno, 1981),
As such beam ions propagate upstream, they destabilize low-frequency
electromagnetic waves which subsequently scatter and decelerate them,
The decelerated ions and the waves are blown downstream by the solar
wind to fill the entire foreshock with waves and diffuse ions. The
waves are ultimately blown back into the quasi-parallel zone of the
shock surface, possibly accounting for the disovdered magnetic struc-
ture of Q,, shocks. In this interpretation, the Q,, bow-shock structure
we observe is an artifact of the small radius of curvature of the bow
shock. On the other hand, one can argue that some shock-heated ions
ought to escape ..aturally from plane Q,, shocks (Edmiston et al., 1982;
Tanaka et al., 1983). 1In this case, some of the foreshock phenomena
we observe might bz inherent to Q,, shocks. Whatever the situation, the
curvature of the bow shock does alias the results, so that it is impossi-
ble to assign uniquely the phenomena observed upstream to a given shock
normal angle.

The upstream superthermal ion energy density is comparable with
that of the interplanetary field, and, more significantly, the st -
wind is decelerated and deflected when it enters the foreshock (Boni-
fazi et al., 1980) by an amount compatible with the momentum flux
carried by shock-escaping ions (ﬁame et al., 1980; Sentman et al.,
1981a). Thus, part of the shock transition is accomplished in the
foreshock, and the overall thickness of the Q,, part of the bow shock
therefore exceeds its radius of curvature,

It is much more difficult to determine the true extent of Q,
shocks from the bow-shock than from interplanetary shocks, whose radii
of curvature are 25-2500 times that of the bow shock. At present, the
search for interplanetary foreshock phenomena is incomplete. To ascer-
tain whether Q, interplanetary shocks have foreshocks, one should begin
by comparing measurements made at equal distances upstream of inter-

planetary shocks and the bow shock. This implies searching for fore-
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shock signatures a few tens of seconds before an intexplanetary shock
encounter, when the high-speed shock i§ a few earth radii from the ‘space-
craft. Kennel et al. (1982) found that the amplitude and spectrum of
ion acoustic waves a few earth radii ahead of interplanetary shocks are
remarkably similar to those observed at the same distance from the bow
shock. These ion acoustic waves extended several hundred earth radii
ahead of Qu inteyplanetary shocks, the first indication that foreshocks
might be much larger than is possible to infer frém bow-shack studies
(Kennel et al., 1982). It is of obvious interest to inquire whether
other phenomena characteristic of the earth's foreshock also occur far
upstream of interplanetary Q, shocks. Russell and Hoppe (1982), Russell
et al. (1983), and Tsurutani et al, (1982, 1983) have recently found
hydromagnetic waves, whose amplitudes and frequencies are similar to
those in the earth's foreshock, ahead of Q,, interplanetary shocks. Gos-
ling et al. (1983) have also found evidence of diffuse superthermal ions
upstream of some interplanetary Q, shocks. Thus, at least three fea-
tures characteristic of the earth's foreshock also occur upstream of Q,,
interplanetary shocks.

3. Theories of Q,, Shock Structure

Let us now'survey the development of our theoretical ideas concern-
ing the structure of quasi-parallel shocks. It has been popular to sepa-
rate the structure into a local shock layer and a larger 'upstream' re-
gion in which part of the shock dissipation required by the Rankine-
Hugoniot conditions is accomplished, It is in the upstream foreshock
that the processes thought responsible for energetic particle accelera-
tion occur. In general, laboratory and space plasma theoreticians have
concentrated on the subshock and the near foreshock, and cosmic ray and
astrophysical plasma theorists have focused on the foreshock and neglec-
ted subshock structure,

Parker (1961) first recognized implicitly the role of escaping ions
in Q,, shocks, when he argued that parallel ion beams would be firehose
unstable and thereby produce large-amplitude Alfvén turbulence that
accomplishes the shock transition on a scale of many ion Larmor radii.
Moiseev and Sagdeev (1963) developed a parallel shock medel in which
upstream ions could be reflected from an ion acoustic potential struc-
ture would no longer exist. They then argued that turbulent heating
would produce a firehose unstable anisotropy if the upstream plasma B
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were sufficiently high, This suggestion motivated Kennel and SagdeEv
(1967) and Kennel and Petschek (1968)‘to develop a theory of low Mach
number, parallel firehose shocks in high B plasmas, Auer and Volk's
(1973) numerical calculation subsequently confirmed the general outlines
of firehose shock theory. These models failed to recognize the impor-
tance of Parker's (1961) suggestion by not including the effects of es-
caping upstream ions. Kennel (1981) suggested that a fusion of the ion
heat-flux and anisotropy firehose models might be promising,

The above models considered only the long-wavelength limit of the
firehose instability, where it is non-resonant. On the other hand, the
same mode is resonant for wavelengths near the ion Larmor radius, or
when the plasma 8 is less than unity (Kennel and Scarf, 1968)., Recent
work on the resonant anisotropy instability has focused on the foreshock
and not on the subshock. Gary (1981), Gary et a}. (1981), and Sentman
et al. (1981b) showed that the ions measured upstream of the terrestrial
subshock are unstable to the resonant instability and, when conditions
are appropriate, to the non-resonant instability as well. It is gener-
ally believed that the upstream ions do generate the large-amplitude,
low-frequency waves in the earth's foreshock, as Barnes (1970) first
suggested.

Lee's (1982) self-consistent theory for the decay of an ion beam
escaping from the bow shock invokes resonant quasi-linear scattering by
low-frequency electromagnetic waves and the subsequent energization of
ions by scattering and shock compression. In this theory, the decelera-
tion of the escaping superthermal ions and their subsequent energization
are both consequences of turbulence generated by pitch-angle anisotropies.
Lee (1983) extended his bow-shock theory to the interplanetary case and
applied it‘to the interplanetary shock that occurred on November 11-12,
1978. Starting with Scholer et al.'s (1983) measured 30 keV/Q ion inten-
sity, he was able to account for ‘their particle measurements at higher
energy and to predict a wave amplitude and spectrum, which are in good
agreement with observation (Kennel et al., 1983a, 1983b).

Numerical simulations have contributed substantially to quasi-
parallel shock theory., Because of the limitations of spatial scale,
numerical simulations treat only the subshock., Biskamp and Welter (1972)
proposed an electrostatic, rather than electromagnetic, ion.beam insta-

bility as the dissipation mechanism for the strong quasi-parallel shock



they simulated., Recent 2-D siﬁulations (Quest et al., 1983) found éhat
large-amplitude whistler turbulence on the ion inertial scale length is
generated in (),, shocks, and that intense fluxes of ions are reflected
upstream, " Kan and Swift (1983) simulated Q,, shocks in one dimension
but over a long spatial scale, They found that a whistler wave train
standing upstream of the shock resonantly scatters incoming ions, and
that long wavelength non-resonant firehose modes are created downstream,
In summary, nearly all theories of Q,, shock structure agree that

large-amplitude magnetic turbulence, with frequesncies that span the

range from well below tc somewhat above the fon cyclotron frequency, is
central to the dissipation in the plasma subshock and to the dynamics
of the foreshock ahead of it.

4., Shock Acceleration of Energetic Particles

Until recently, most theories of cosmic ray acceleration concen-
trated on elucidating how single particles can attain high energy by
single or multiple encounters with collisionless shocks which are con-
sidered to be infinitely thin and whose plasma structure is therefore
assumed to be relatively unimportant. Looked at in this fashion, shocks
can accelerate particles in several ways. Ions whose Larmor radius ex-
ceeds the shock thickness conserve their gyrophase averaged magnetic
moment (E. N. Parker, unpublished manuscript, 1958; Chen and Armstrong,
1972; Shabanskii, 1962; Pesses, 1979; Terasawa, 1979a,b). Such ions
approaching the shock from upstream would therefore be either reflected
frém or transmitted through the jump in magnetic field and potential at
the shock, depending upon their pitch angle. Reflected ions grad-B
and curvature drift parallel to the flow electric field and thereby
acquire energy, the more efficiently the more quasi-perpendicular the
shock (Sonnerup, 1969). However, since multiple reflections are needed
to account for the observed acceleration by interplanetary shocks
(Pesses, 1979), reflected ions must be scattered from upstream MHD
turbulence back towards the shock. They then can be either re-reflected
or retransmitted at their next encounter with the shock. Re-reflected
particles can repeat the above cycle, and some can reach high energy.

Energetic particles that are transmitted through the shock can be
scattered by downstream magnetic turbulence back toward the shock. Such
particles are subject to first-order Fermi-acceleration by multiple re-

flections between upstream and downstream waves that convect approxi-
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mately with the local flow speed. The shock then serves primarily to de-
celerate the flow so that the scattering centers appear to converge
toward one another in the shock frame, In the test particle limit, this
mechanism does not take into account the momentum transfer between cosmic
rays and the plasma. The integral spectrum for particles Fermi-
accelerated by infinite plane shocks depyends only upon the ratio of up-
stream and downstream flow speeds (Krimsky, 1977; Axford et al,, 1977;
Bell, 1978a,b; Blandford and Ostriker, 1978; Lee, 1982, 1983). Because
the calculated spectral index is close to the observed galactic cosmic
ray index, supernova shocks are promising candidates to accelerate galac-
tic cosmic rays (Axford, 1981),

For the solar system, the theory of first-order Fermi-acceleration
has been applied to the diffuse ions upstream of the bow shock (Terasawa,
1979, 1981; Eichler, 1981; Lee et al,, 1981; Forman, 1981; Ellison, 1981;
Lee, 1982), and the so-called interplanetary ESP events, in which ener-
getic ions are observed to increase well before the shock encounter
(Scholer end Morfill, 1975; Scholer et al., 1983; Lee, 1983). Lee's
(1982) theory predicts the energy spectra of different species reported
by Ipavich et al. (1981) and the spectrum and amplitvie of the low-
frequency waves observed upstream of the bow shock ™ Hoppe et al. (1981)
and others. The observed spectrum of bow-shock sif¥use particles cuts
off above about 100 keV, a fact which may be explained by the finite ex-
tent of the bow shock. Either a given magnetic field line remains con-
nected to the region where the bow shock is strong for a finite time, or
the particles diffuse across the magnetic field onto field lines which
no linger interact with the shock (Eichler, 1981; Skadron and lee, 1982).
Either effect limits the number of shock crossings a particle can have
and, therefore, the energy to which it can be accelerated.

The field line connection time is much larger for interplanetary
shocks than for the bow shock, so the first-order Fermi mechanism will
have longer to operate. The energetic ion fluxes theoretically should
increase exponentially approaching a steady, planar shock, maximize at
the shock, and hold approximately constant downstream--features charac-
teristic of ESP events. The accelerated iors should be essentially iso-
tropic in the shock frame upstreanm and isotropic in the solar wind frame
downstream. .

There have been relatively few measurements of moderate energy ions

in ESP events in the energy range (tens of keV) that bridges the low-
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energy'piasma and "seced" particles (see Section 6) and high-energy cosmic
rays (however, see Lin et al., 1974; Gosling et al,, 1980, 1981; and Gos-
ling, 1983). A recent study of 30-150 keV/Q protons and alphas in three
ESP events (Scholer et al,, 1983) finds that the particle energy and angu-
lar distributions and spatial profiles are consistent with first-order’
Fermi-acceleration theory.

S. Relation of Subshock‘Structure and Foreshock Particie Acceleration

E. N. Parker was one of the first to realize that if interstellar
shocks accelerate the observed galactic cosmic rays, cosmic rays must have
sufficient energy density to contribute to shock structure, The test par-
ticle limit may therefore be misleading, Wentzel (1971), Axford et al,
(1977, 1982), and Drury and Volk (1981) included the pressure, but not the
number and momentum densities, of the cosmic rays in the calculation of
gas-dynamic shock structure, Cosmic rays were assumed to diffuse spatial«
ly with a long characteristic scale length, and the thermal plasma was
assumed to be subject to unspecified dissipation due to microturbulence,
These calculations retrieve the gas-d,mamic jump conditions when no ener-
getic particles are present, On the other hand, if the upstream cosmic
ray pressure is non-zero and the sonic Mach number exceeds about 10, the
entire shock transition takes place in the cosmic rays without a discon-
tinuity in the thermal plasma, For lower Mach numbers, there must be
both a cosmic ray foreshock and a plasma subshock--the situation which
should pertain to the shocks typically encountered in the solar system.
Given the cpstream particle pressure, these two-fluid models produce an
estimate of the downstream energetic particle pressure, and thus the effi-
ciency, of particle acceleration., McKenzie and Volk (1982) included the
Alfvén waves that scatter the energetic particles as a third fluid in the
shock~structure calculation, Inclusion of the waves reduces the down-
stream energetic particle pressure; moreover, the spatial profile of the
foreshock depends on whether the waves remain quasi-linear or saturate
nonlinearly. Since the above theories treat energetic particles as a
fluid, they cannot calculate the spectral index of the energetic parti-
cle distribution. Existing kinetic calculations that do calculate a
spectral index neglect the deceleration of the upstream flow by the ener-
getic particles, and so a fully self-consistent kinetic treatment of a

foreshock-subshock system remains to be done,



6., Toward a Unified View of Shock Structure and First-Order

. ’

Fermi-Acéeleration

Four major conclusions emerge from the discussion in this review:

® Only Q, shocks have the extended regions of MHD turbulence up-
stream and downstream that are the essential ingredients of the
first-order Fermi-acceleration scenario, This fact may be rela-
ted to the ease with which not only energetic cosmic rays, but
also particles on the tail of the thermal aistribution, can free
stream across Q, shocks,

® Quasi-parallel shocks consist of a foreshock and a plasma sub-
shock, Part of the change in plasma conditions required by the
Rankine-Hugoniot relations is effected by energetic particle
scattering in the foreshock.

® It may be possible to accomplish the entire foreshock-subshock
transition with low-frequency electromagnetic waves as the domi-
nant scattering mechanism., The theories for resonant scattering
of foreshock superthermal and energetic particles (Lee, 1982,
1983) and for plasma thermalization (Parker, 1961; Kennel and
Sagdeev, 1967; Kennel and Petschek, 1938; Auer and Volk, 1973)
all invoﬁe long-wavelength electromagnetic waves destabilized by
pitch-angle anisotropy. Even the thermalization of incoming
plasma ions by standing whistlers (Quest et al., 1983; Kan and

Swift, 1983) is a variation on the same theme,

eThe energetic-particle spectrum generated by a steady plane
shock depends only on the jump in plasma velocity across the
shock. In general, the spectral index will also depend upon
the geometry and time evolution of the shock., (Forman, 1981)
Before we can arrive at a comprehensive theory that, among other
things, computes the cosmic ray intensity and spectrum as a function of
shock parameters, we must understand how particles that are originally
part of the thermal plasma reach the energy threshold where Fermi-
acceleration begins to operate. Present energetic particle diffusion
calculations start with a source of "seed" particles which can either
be in the upstream flow or be injected at a subshock. It matters not
for the final spectral index whether the seed particles are'injected
far upstream (Axford et al., 1977; Blandford and Ostriker, 1978) or at



the subshock (Lee, 1982, 1983). However, the energetic particle inten-
sity will clearly depend upon the strength, and thus the location, of
the source,

As it is unsatisfying to rely upon a pre-existing flux of cosmic
rays upstream, it is encouraging that at least those shocks with sub-
shocks appear to inject seed particles into the foreshock., Theoreti-
cally, it is clear that the seed particles at one time must have been
thermal ions that interacted with the subshock once on their way to
participating in the Fermi process. In the case of the bow shock,
these are the few keV "upstream' or "superthermal" ions that were re-
flected from or transmitted through the shock. There has been only
one study of the interplanetary shock analogs of upstream particles
(Gosling et al., 1983). Eichler (1979) and Ellison (1981), arguing
that the terms "thermal', '"seed', and "energetic' are artificial ver-
bal distinctions, developed a shock-structurc model in which all ioms
interact with electromagnetic waves in essentially the same way to pro-
duce a scattering mean free path at each energy that is proportional to
the Larmor radius. Such a diffusion model efficiently produces a high-
energy tail that blends smoothly with the thermal distribution,

7. Concluding Remarks

Although theoretical models of quasi-parallel shocks are over 20
vears old, and although the suggestion that energetic particles are
significant to shock structure is equally venerable, experimentalists
could do little with these ideas until the past five years. The earth's
foreshock has a complex phenomenology whose disorder had to be reduced
before it could be fitted into a theoretical framework that had once
seemed peculiarly ill-adapted to bow-shock observations, Now, it is
clear that quasi-paraliel shocks have such an enormous spatial scale
that interplanetary shocks are a better experimental arena to test
theories of their structure.

A coherent viewpoint is now emeréing from the experimental and
theoretical research of the past five years, Only quasi-parallel
shocks have the large regions of magnetohydrodynamic turbulence up-
stream and downstream that is the essential ingredient for first-
order Fermi-acceleration of energetic particles. It appears that
superthermal and energetic particles can stream freely through quasi-

parallel shocks, and that such particles generate the wave-fields



that scatter them.

The outlines of a theory that will eventually predict the inten-
sity and spectrum of shock-accelerated particles as a furction of shock
parameters and time evolution are in view, That said, it is prudent to
add two cautionary warnings, First, not much is known about the micro-
structure of quasi-parallel shocks, or even whether they have a micro-
structure, The current theoretical models are based on the interac-
tions between particles and eclectromagnetic waves with wavelengths
equal to or longer than a thermal ion Larmor radius, While it is con-
ceivable that they could account both for the shock dissipation and
energetic particle scattering, it is not proven that they can do so
uniquely. Second, our experience with the earth's bow shock indicates
that shock structure is strongly parameter-dependent, so that the pic-
ture of the large-scale quasi-parallel shock structure that has emerged
from the few interplanetary shock studies completed to date might be
misleading, It remains for futyfe research to confirm, or to temper,
our present enthusiasm.
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