https://ntrs.nasa.gov/search.jsp?R=19840008077 2020-03-21T01:26:27+00:00Z

NASA Contractor Report 168288

NASA CR-168,288

NASA-CR-168288 19840008077

RESULTS OF AN EXPERIMENTAL PROGRAM INVESTIGATING THE EFFECTS OF SIMULATED ICE ON THE PERFORMANCE OF THE NACA 63A415 AIRFOIL WITH FLAP

R. J. Zaguli, M. B. Bragg, and G. M. Gregorek

The Ohio State University Columbus, Ohio

January 1984

LIBRARY COPY

LANGLEY RESEARCH DENTER LIERARY, NASA HAMPTON, VIRGINIA

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Grant NAG3-28

.

TABLE OF CONTENTS

.

	PAGE
NOMENCLATURE	iii
INTRODUCTION	1
EXPERIMENTAL METHOD Equipment Data Reduction	2 2 3
RESULTS AND DISCUSSION Aerodynamic Measurements Flow Visualization Presentation of Data	5 5 6 8
SUMMARY AND CONCLUSIONS	9
REFERENCES	10
FIGURES	11
APPENDIX Run Summary Cumulative Plots C _ℓ vs α	23 23 26 26
C _l vs C _d	42
C _m vs C _l	45
C _p Distributions	61

N84-16145

NOMENCLATURE

С	Airfoil chord length, m
c _d	Drag coefficient, $D/q_{\infty}c$
Cl	Lift coefficient, $L/q_{\infty}c$
с _т	Moment coefficient about the quarter chord, $M/q_{\rm \infty}c^2$
с _р	Pressure coefficient, (P - P_{∞})/ q_{∞}
K/c	Roughness height
Р	Local static pressure, N/m ²
P_{∞}	Free stream static pressure, N/m ²
q_{∞}	Free stream dynamic pressure, N/m²
Т	Temperature, ^o F
V	Velocity in knots
x/c	Horizontal coordinate
z/c	Vertical coordinate
α, ΑΟΑ	Angle of attack, degrees
⁶ f	Flap deflection, degrees

INTRODUCTION

The test program described in this report is an extension of a study begun in 1981 to provide needed information on the performance degradation of airfoil sections resulting from rime and glaze ice accretions. Its primary objectives were:

1) To expand the current database of performance data on the 63A415 with simulated ice to include flap deflection.

2) To further study the flowfield in the area of the ice accretion through pressure distributions and flow visualization techniques, which can then be used to evaluate the accuracy of the theoretical analysis methods currently being developed.

3) To obtain data on a simulated glaze ice shape that scales down to a 6 inch chord model and will be tested in the OSU Transonic Airfoil Wind Tunnel Facility. These data will be used to compare the aerodynamic qualities of the NASA Icing Research Tunnel and the OSU tunnel, and to evaluate a lift measuring system based on wall pressures.

Mr. Richard Freuler, Senior Computer Specialist at the Aeronautical and Astronautical Research Laboratory, developed the software needed for the data acquisition system. Mr. Steven Thompson, an under-graduate research assistant, modified the software and performed the data reduction for this test.

Equipment

Testing was performed in the NASA Lewis 6' x 9' Icing Research Tunnel (IRT). The airfoil model used was the NACA 63_2 -A415 with a 1.36 m chord and a moveable flap with deflections of 10° , 20° , and 30° . The airfoil and flap were pressure tapped using 1/8" OD strip-a-tube attached to the airfoil surface. In addition, the model was fitted with five simulated ice shapes (Figures 1A-1E):

- Generic Glaze
 Glaze 3°
 Rime 3°
 Glaze 7°
 Rime 7°
- Aerodynamic data were taken on the first three shapes and flow visualization was performed on all five. The Generic Glaze shape was derived from the work of Ingelman-Sundberg¹. This shape was chosen because it scales to a convenient size on the 6" chord model which will be tested in the OSU Transonic Airfoil Wind Tunnel Facility.

The Glaze 3, Rime 3, Glaze 7, and Rime 7 shapes were chosen from a series of ice growths generated during an actual ice accretion study in the NASA Lewis Icing Research Tunnel². They represent typical climb, high angle of attack and low velocity, and cruise, low angle of attack and high velocity conditions.

In order to add the surface roughness characteristic of natural ice shapes, aluminum oxide grit with a K/C = .00058 was attached to the glaze shapes with a spray acrylic adhesive. A grit with a K/C = .0012 was added to the rime shapes.

On-line data acquisition and reduction were accomplished using the OSU Digital Data Acquisition and Reduction System 3 (DDARS -

11

figure 2). The central processing unit is the DEC LSI-11 microcomputer. Input and output is through a teletype terminal and mass data storage through a twin floppy disc drive system. Analog data signals from the transducers and wake probe slidewire systems are fed into an analog front end which conditions the signal and converts it into a digital format.

Airfoil pressures were obtained through a Scanivalve transducer arrangement, while drag data were measured using a wake probe with total and static ports. The voltages from these systems as well as those from tunnel total and tunnel static transducers were input to the analog box and then to the computer for on-line reduction (figure 3).

In order to visualize the flow in the leading edge region, a splitter plate⁴ was constructed which could be positioned between the upper and lower segments of the attached ice shape. (See figure 4). Small drops of oil-based paint were then applied to the plate in the regions of interest and the tunnel then brought up to speed. Videotape was made of the movement of the drops and still photographs were taken after no further movement was observed.

Data Reduction

The DDARS system provides the test engineer quick-look pressure distributions as well as integrated values of C_{ℓ} , C_m , and C_d . This permits maximum use of tunnel time.

An interactive computer program was written for the final data reduction on the OSU Harris/6 computer system. The raw data files from the IRT test were transferred to the Harris from the LSI-11 microcomputer. The program converts Scanivalve voltage from each

model tap into a pressure coefficient The user is given a plot of the final C_p distribution for each element (main and flap) on a Tektronix CRT and can control any re-reduction required using the terminal cursors. The program then integrates the distribution to get lift and moment coefficients.

The drag coefficient is calculated using the Jones Equation⁵. The wake is displayed on the graphics terminal and the user enters the integration limits using cursors. If the operator sees that the probe traverse was not large enough to capture the full wake, that run reduction can be bypassed.

Aerodynamic Measurements

Data were taken on the following simulated ice accretions as well as the clean airfoil;

- Rime 3 Rough
 Glaze 3 Rough
 Generic Glaze Smooth
 Generic Glaze Rough

In addition, for each configuration flap deflection was varied from 0-30 degrees.

The glaze ice C_p distributions show the characteristic adverse pressure gradient where the flow is forced to negotiate the large change in surface slope at the tip of the horns. These pressure spikes promote separation and tend to decrease $C_{\ell_{\max}}$ and increase the drag coefficient. The separated zone is clearly seen as a region of constant pressure in the $\ensuremath{C_p}$ distribution in the area behind the glaze ice horn.

From the pressure distributions, it is observed that the flap was stalled for most of the runs. This separation is again characterized by a region of constant C_p . A previous investigation by W. R. Krolak⁶ on the Beechcraft Sundowner, equipped with a NACA 63A415 airfoil, shows this same trend in flight test data.

From Table I and figure 5, it is clear that the penalties associated with ice show up in reductions in C_{lmax} and α_{stall} . The G3 shape showed a reduction in $C_{\mbox{\sc kmax}}$ over the clean case of 0.2 - 0.4, and a reduction in α_{stall} of as much as 4^o for the δ_{f} = 30° case. Similar reductions were seen for the generic and rime shapes.

Due to the position of the wake probe, drag data could only be taken on $\delta_f = 0^{\circ}$ cases. Cumulative plots of C_{ℓ} vs. C_d show

TABLE I

	CLEAN			CLEAN				C 3			GEN			R3	
⁵ f	10	20	30	10	20	30	10	20	30	10	20	30			
Cemax	1.8	2.0	2.2	1.4	1.7	2.0	1.2	1.5	1.7	1.5	1.75	1.95			
astall	14.0	12.5	11.5	10.5	9.5	7.5	7.5	-	5.5	10.5	8.5	6.5			
"LO	-6.5	-10.0	-13.0	-6.0	-	-12.5	-6.0	-	-10.0	-6.0	-	-11.0			

PERFORMANCE DEGRADATION WITH SIMULATED ICE

the increase in drag caused by the ice shapes. For example, at $C_{\varrho} = .4$, a 20% increase in drag over the clean airfoil was observed when the R3 rough shape was attached, and a 30% increase for the G3 rough shape. Interestingly, the presence of roughness on the Generic Glaze shape was not found to be very crucial. This is due to the large laminar separation bubble in the region of the ice shape, which tends to be the prominent source of pressure drag.

From the cumulative plots of C_m vs C_{ℓ} , it is observed that at the lower lift coefficients the effect of the ice shape is almost negligible. However, at the higher C_{ℓ} 's, for example at low speed with the flap deflected, more positive C_m 's were observed with the simulated ice than for the clean airfoil.

Flow Visualization

Using the splitter plate arrangement, discussed previously, the flow about the simulated shapes was recorded. Of particular interest were the separated zones observed with the glaze shapes. These laminar separation zones were photographed and later the coordinates of the separated streamline were digitized from these records. Figures 6 and 7 are representative of the observed flow

patterns. Figure 6 clearly shows the Generic Glaze shape at $\alpha = 1.7^{\circ}$ with its separated zone behind the horn. Figure 6 is of the same configuration but at $\alpha = 5.6^{\circ}$, and clearly shows the characteristic recirculation region. Figure 8 shows the G3 shape at $\alpha = 5.6^{\circ}$.

The authors discovered during the analysis of the photos that the splitter plate extended too far into the flow ahead of the stagnation region between the glaze ice horns. The splitter plate boundary layer then separated due to the adverse gradient from the airfoil flowfield. This 3-D flowfield created vortices which were shed downstream and affected the flow patterns recorded. This is particularly evident in figure 7 where the streamlines converge due to the influence of these shed vortices. However, qualitatively the data provides some interesting clues to the shape and extent of the laminar separation bubble.

Further investigation was performed at Ohio State using two different splitter plate configurations. A scaled-down version of the splitter plate utilized in the Lewis IRT and a smaller one with the leading edge reduced were tested on a GAW-1 airfoil with a simulated ice shape. Flow visualization techniques confirmed the authors' hypotheses that vortices were shed downstream due to the severe pressure gradient induced by the ice shape on the splitter plate. It was observed that the reattachment point was shortened by as much as 3% under these test conditions as a result of the larger splitter plate. This value cannot however, be directly applied to the 63A415 airfoil in the Lewis test. Rather, the reader should realize that qualitatively this shows that the observed reattachment point was moved forward due to

the presence of the splitter plate. In addition, it must be pointed out that this method of visualization does not actually display the position of the separated streamline. Rather a position above the zero velocity line in the separated zone between the recirculating flow is measured.

Presentation of Data

A tabulated run summary is included in the appendix of this report. It is organized by configuration: 1) clean, 2) rime 3 rough, 3) glaze 3 rough, 4) generic glaze rough and 5) generic glaze smooth. Following these tables are the cumulative plots of C_{l} vs α , C_{m} vs C_{l} , and C_{l} vs C_{d} . Lastly, the pressure distributions are included and ordered in the same sequence as the run summary tables.

Data reported with zero flap deflection was taken at approximately Re = 4.2×10^6 and M = 0.13. Due to the large loads on the model, data at all flap deflection angles greater than zero, were taken at approximately Re = 3.3×10^6 and M = 0.10. No tunnel wall corrections have been made in the data.

SUMMARY AND CONCLUSIONS

A typical general aviation airfoil, the NACA 632-A415, was outfitted with simulated ice accretions and tested in the NASA Icing Research Tunnel. Pressure distributions were obtained for a variety of flap deflections and angles of attack. As a result of this study, the following observations can be made;

1) The airfoils with simulated ice shapes showed large increases in drag and heavy penalties in C_{lmax} and α_{stall} . A shift in α_{LO} was also observed. These reductions in performance would be of particular importance to the pilot in a landing configuration with the flap deployed and power reduced.

2) Measured pressure distributions and flow visualization show the separated zone behind the horn of the glaze shapes and the severe adverse pressure gradients which lead to the separation.

3) Surface roughness for the Generic Glaze shape was not a crucial factor in the drag observed. Rather, the prominent effect was the large separated zone.

Further investigation is necessary to document the flow characteristics reported. More detailed pressure distributions should be obtained, particularly in the region behind and between the glaze ice horns. Also, while flow visualization provides valuable insight into the flow in the separated zones, quantitative data must be gathered here before an analytical model can be developed.

REFERENCES

- 1. Ingelman-Sundberg, M., Trunov, O. K. and Ivaniko, A., "Methods for Prediction of the Influence of Ice on Aircraft Flying Characteristics," Swedish-Soviet Working Group on Flight Safety, 6th Meeting, 1977.
- 2. Bragg, M. B., Zaguli, R. J. and Gregorek, G. M., "Wind Tunnel Evaluation of Airfoil Performance Using Simulated Ice Shapes," NASA Contractor Report 167960, November 1982.
- Freuler, R. J. and Hoffmann, M. J., "Experiences with an Airborne Digital Computer System for General Aviation Flight Testing," AIAA Paper No. 79-1834, presented at the AIAA Aircraft Systems and Technology Meeting, New York, New York, August 20-22, 1979.
- Pfeiffer, N. J. and Zumwalt, G. W., "A Computational Model for Low Speed Flows Past Airfoils with Spoilers," AIAA Paper No. 81-0253, Presented at the 19th Aerospace Sciences Meeting, St. Louis, Missouri, January 12-15, 1981.
- 5. Schlichting, H., <u>Boundary-Layer Theory</u>, Sixth Edition, McGraw-Hill, New York, 1968.
- 6. Krolak, W. R., "In-Flight Investigation of the Aerodynamic Characteristics of a Wing Equipped with an Upper Surface Leading Edge Modification," Master's Thesis, Ohio State University, 1981.
- 7. Kunchal, David, "Splitter Plate Analysis," Final Report for AAE 693, Ohio State University Aeronautical and Astronautical Engineering Department, October 1982.

x/c	z/c
0.004455	0.01982
-0.00278	0.01815
-0.01204	0.01426
-0.01889	0.00963
-0.02454	0.00278
-0.02593	-0.00389
-0.02296	-0.01019
-0.01593	-0.01315
-0.00796	-0.01407
0.00093	-0.01463

FIGURE 1A. R3 ICE SHAPE

x/c	z/c
0.00000	0.01157
-0.00417	00630
-0.00815	0.00000
-0.01157	-0.00602
-0.01315	-0.01167
-0.01130	-0.01519
-0.00778	-0.01685
-0.00139	-0.01759
0.00370	-0.01815
0.01000	-0.01852

FIGURE 1B. R7 ICE SHAPE

X/C	Z/C
00232 01019 01667 01944 01907 00648 00556 00889 00389 .00667	.01435 .01389 .01407 .01315 .01019 .00241 00593 01204 01389 01482

FIGURE 1C. GLAZE 3 SIMULATED ICE ACCRETION AND PRESSURE TAP LOCATIONS

X/C	Z/C
.00093 00278 00648 01667 01796 01157 00509 .00556 .01435 .02500	.01759 .01620 .00972 .00778 .00519 00093 00602 01759 02732 02593

FIGURE 1D. GLAZE 7 SIMULATED ICE ACCRETION AND PRESSURE TAP LOCATIONS

	and the second
X/C	Z/C
0.01985 0.00427 - 0.01133 - 0.02452 - 0.02136 - 0.01857 - 0.02099 - 0.02452 - 0.00613 0.01467	$\begin{array}{c} 0.03807\\ 0.03807\\ 0.03807\\ 0.03584\\ 0.02264\\ 0.00706\\ -\ 0.00854\\ -\ 0.02229\\ -\ 0.02214\\ -\ 0.02414\\ -\ 0.02414 \end{array}$

FIGURE 1E. GENERIC GLAZE SIMULATED ICE ACCRETION AND PRESSURE TAP LOCATIONS

FIGURE 2. OSU DIGITAL DATA ACQUISITION AND REDUCTION SYSTEM

FIGURE 3. OSU DATA ACQUISITION SYSTEM AS USED IN THE NASA LEWIS IRT

FIGURE 4. 63A415 WING WITH SPLITTER PLATE IN LEWIS ICING RESEARCH TUNNEL

.

$$\alpha = 1.6^{\circ}$$

M = 0.152
Re = 4.7 x 10

· · · ·

FIGURE 6. SPLITTER PLATE PHOTOGRAPH OF UPPER SURFACE OF THE GENERIC GLAZE ROUGH ICE SHAPE

α=5.6° M=0.153 Re=4.6 x 10⁶

> FIGURE 8. SPLITTER PLATE PHOTOGRAPH OF UPPER SURFACE OF THE G3 ROUGH ICE SHAPE

APPENDIX

.

Run Summary

CLEAN 48 10.6 0.0 103.43 77.0 838.0 1.3393 0.0256 -0.03 60 -5.4 0.0 102.23 50.0 852.9 -0.2326 0.0110 -0.110 61 -2.4 0.0 101.39 52.0 844.3 0.0710 0.0105 -0.01 62 -0.4 0.0 100.18 69.0 839.2 0.3126 0.0112 -0.02 643 1.6 0.0 102.84 75.0 869.4 0.5431 0.0112 -0.02 645 5.6 0.0 101.05 67.0 87.2 0.7220 0.0144 -0.02 646 7.6 0.0 101.63 74.0 87.5 1.9020 0.0144 -0.02 647 8.6 0.0 101.72 73.0 880.2 1.4225 0.0300 -0.09 70 11.4 0.0 102.57 73.0 880.2 1.4225 0.0300 -0.02	RUN	₿ A0A	FLAP Def	V (KT)	T ^o (F)	PRESS. Alt.(Ft)	CL	CD	СН
	CLEA	N							
4911.61.0101.9275.0333.01.4310 $$ 0.01260-5.40.0102.2350.0852.9-0.23260.0110-0.061-2.40.0100.1869.0839.20.31260.0108-0.062-0.40.0100.1869.0839.20.31260.0108-0.0631.60.0102.2570.0857.20.72200.0128-0.00643.60.0101.6567.0857.20.72200.0144-0.00655.60.0101.6577.0867.41.10020.0169-0.07678.60.0101.6472.0869.71.10020.0164-0.07689.60.0101.7471.0878.51.31780.0275-0.076910.60.0101.2573.0880.21.42250.0300-0.077011.60.0102.2573.0880.51.431780.0124-0.0581-2.40.0102.7575.01077.60.30170.0124-0.0584-6.410.078.3170.0903.70.64694	48	10.6	0.0	103.43	77.0	070 A	1 7707		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	11.6	0.0	101.92	75 0	838.0	1.3393	0.0256	-0,095
-2.4 0.0 101.39 52.0 844.3 0.0710 0.0108 -0.0 62 -0.4 0.0 100.188 69.0 839.2 0.0124 0.0108 -0.0 64 3.6 0.0 100.284 75.0 857.2 0.7230 0.012 -0.02 655 5.6 0.0 101.65 47.0 857.2 0.7220 0.0124 -0.02 64 3.6 0.0 101.65 47.0 857.2 0.7220 0.0144 -0.02 65 5.6 0.0 101.65 77.0 877.2 0.7220 0.0144 -0.02 649 10.6 0.0 101.77 75.0 892.1 1.2279 0.0220 -0.07 641 0.0 101.257 73.0 892.1 1.4285 0.0370 -0.012 62.0 1063.5 0.00370 0.0127 0.00370 0.0122	60	-5.4	0.0	102 27	7J+0 EA A	832+3	1.4410		-0.108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	-2.4	0.0	101.39	52 0	832.9	-0.2326	0.0110	-0.044
43 1.6 0.0 $0.07.2$ 0.0126 0.0108 -0.02 64 3.6 0.0 101.05 67.0 857.2 0.7220 0.0128 -0.02 65 5.6 0.0 101.05 67.0 870.5 0.9020 0.0144 -0.02 66 7.4 0.0 101.64 72.0 869.9 1.1002 0.0149 -0.07 67 8.6 0.0 101.77 75.0 878.5 1.3198 0.0275 -0.07 67 10.6 0.0 101.77 75.0 1079.6 0.3017 0.0212 -0.048 82 -0.4 0.0 101.79 57.0 1079.6 0.3017 0.0124 -0.048 83 1.6 0.0 102.24 468.0 1087.7 $0.097.7$ -0.0137 84 -6.4 10.0 78.01 73.0 907.7 -0.0097 $$	62	-0.4	0.0	100.18	40 0	044+3	0.0/10	0.0105	-0.046
64 3.6 0.0 101.05 67.0 857.4 0.03431 0.0112 -0.02 655 5.6 0.0 102.25 70.0 877.5 0.7220 0.0128 -0.02 666 7.6 0.0 101.03 74.0 859.9 1.1002 0.0149 -0.07 68 9.6 0.0 103.57 75.0 892.1 1.2279 0.0220 -0.07 68 9.6 0.0 101.74 71.0 895.1 1.3198 0.0275 -0.07 70 11.6 0.0 101.77 71.0 892.1 1.2279 0.0220 -0.07 70 11.6 0.0 101.75 73.0 890.2 1.4225 0.0300 -0.07 70 11.6 0.0 102.59 62.0 1083.5 0.0881 0.0118 -0.04 82 -0.4 0.0 102.59 62.0 1083.5 0.0881 0.0124 -0.05 83 1.6 0.0 102.24 68.0 1087.2 0.5059 0.0125 -0.053 84 -6.4 10.0 78.31 70.0 903.7 0.6694 0.114 85 -2.4 10.0 78.51 67.0 906.1 1.1058 0.12 84 -6.4 10.0 78.51 67.0 906.1 1.5202 0.13 85 -6.4 10.0 78.51 67.0 906.1 1.5202 0.13 <t< td=""><td>63</td><td>1.6</td><td>0.0</td><td>102.84</td><td>75 0</td><td>037.2</td><td>0.3126</td><td>0.0108</td><td>-0.049</td></t<>	63	1.6	0.0	102.84	75 0	037.2	0.3126	0.0108	-0.049
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64	3.6	0.0	101.05	47.0	007.4	0.5431	0.0112	-0.059
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	5.6	0.0	102.25	70.0	870.5	0.7220	0.0128	-0.059
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	7.6	0.0	101.64	72.0	849.9	1 1002	0.0144	-0.059
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67	8.6	0.0	101.03	74.0	971 1	1.1002	0.0189	-0.075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	9.6	0.0	103.57	75.0	897.1	1 1071	0.0196	-0.077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	10.6	0.0	101.74	71.0	878 5	1 7100	0.0220	-0.075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	11.6	0.0	101.25	73.0	880.7	1 4005	0.02/5	-0.092
82-0.40.0101.7957.010079.60.30170.0118-0.03 83 1.60.0102.2448.01087.20.50590.0125-0.05 84 -6.410.078.0173.0907.7-0.00970.11 85 -2.410.078.7470.0903.70.443520.12 86 -0.410.078.7470.0903.70.66940.13 87 1.610.078.5167.0906.11.10580.14 89 5.610.078.5167.0906.81.22020.13 90 7.610.079.2968.0914.01.35400.13 91 9.610.077.6867.0902.11.55550.17 92 11.610.080.5367.0924.21.72960.17 93 12.610.078.2665.0917.81.71550.17 94 13.610.078.7565.0922.50.89380.23 96 -2.420.078.7565.0922.50.89380.23 98 9.620.078.8564.0913.70.79730.23 100 -10.430.078.3564.0913.70.79730.23 101 -6.430.078.85<	81	-2.4	0.0	102.59	62.0	1087.5		0.0300	-0.090
831.60.0102.2468.01087.20.50570.0124-0.05 84 -6.410.078.0173.0907.7-0.00970.11 85 -2.410.078.3170.0902.10.43520.12 86 -0.410.078.7470.0903.70.66940.13 87 1.610.080.3069.0915.40.90750.14 88 3.610.078.5167.0906.81.22020.13 90 7.610.079.2968.0914.01.35400.13 90 7.610.079.2968.0912.11.52550.13 91 9.610.079.2665.0917.81.71550.17 94 13.610.078.4466.0930.00.42580.21 96 -2.420.081.2064.0930.00.42580.23 96 76.420.078.5765.0909.81.46350.23 96 7.630.078.8564.0913.70.30840.28 101 -6.430.078.8564.0913.70.30840.31 104 5.630.078.8564.0913.70.79730.30 102 -2.430.078.86	82	-0.4	0.0	101.79	57.0	1079.4	0+0881	0.0118	-0.049
84 -6.4 10.0 78.01 73.0 907.7 -0.0097 $$ -0.11 85 -2.4 10.0 78.31 70.0 902.1 0.4352 $$ -0.12 86 -0.4 10.0 78.74 70.0 903.7 0.6694 $$ -0.13 87 1.6 10.0 78.74 70.0 906.1 1.1058 $$ -0.14 88 3.6 10.0 78.51 67.0 906.8 1.2202 $$ -0.13 90 7.6 10.0 77.68 67.0 906.8 1.2202 $$ -0.13 91 9.6 10.0 77.68 67.0 924.2 1.7296 $$ -0.17 93 12.6 10.0 79.26 65.0 917.8 1.7155 $$ -0.17 94 13.6 10.0 78.44 66.0 910.8 1.8233 $$ -0.23 97 3.6	83	1.6	0.0	102.24	68.0	1097.2	0.301/	0.0124	-0.051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	-6.4	10.0	78.01	73.0	007 7	-0.0007	0.0125	-0.056
84 -0.4 10.0 78.74 70.0 903.7 0.4332 $$ -0.13 87 1.6 10.0 80.30 69.0 915.4 0.9075 $$ -0.14 88 3.4 10.0 78.15 69.0 906.1 1.1058 $$ -0.14 89 5.6 10.0 78.15 69.0 906.1 1.1058 $$ -0.13 90 7.6 10.0 78.51 67.0 906.8 1.2202 $$ -0.13 90 7.6 10.0 79.29 88.0 914.0 1.3540 $$ -0.13 91 9.6 10.0 77.68 67.0 902.1 1.5255 $$ -0.17 93 12.6 10.0 79.26 65.0 917.8 1.7155 $$ -0.17 94 13.6 10.0 78.44 66.0 910.8 1.8233 $$ -0.21 96 -2.4 20.0 81.20 64.0 930.0 0.4258 $$ -0.23 98 9.6 20.0 78.67 68.0 914.1 1.8714 $$ -0.23 100 -10.4 30.0 78.85 64.0 914.1 1.8714 $$ -0.23 100 -10.4 30.0 78.87 66.0 914.1 1.8714 $101-6.430.078.8766.0913.70.7973<$	85	-2.4	10.0	78.31	70.0	P07.1	-0.0077		-0.117
871.610.080.3069.0915.40.88940.13 88 3.610.078.1569.0906.11.10580.14 89 5.610.078.5167.0906.81.22020.13 91 9.610.077.6867.0902.11.52550.15 92 11.610.077.6867.0902.11.52550.17 93 12.610.077.2665.0917.81.71550.17 94 13.610.078.4466.0910.81.82330.17 95 -6.420.081.2064.0930.00.42580.21 96 -2.420.079.7565.0922.50.89380.23 98 9.620.078.6768.0914.11.87140.25 100 -10.430.078.5764.0913.70.79730.30 102 -2.430.078.8564.0913.70.79730.31 104 -5.430.078.8664.0910.51.91710.30 104 5.630.078.8664.0913.70.79730.31 105 9.630.078.8664.0910.51.91710.32 104 5.630.077.89<	86	-0.4	10.0	78.74	70.0	907.7	0 4404		-0.129
88 3.6 10.078.15 69.0 906.1 1.1058 $$ -0.14 89 5.6 10.0 78.51 67.0 906.1 1.1058 $$ -0.13 90 7.6 10.0 79.29 68.0 914.0 1.3540 $$ -0.13 91 9.6 10.0 77.68 67.0 902.1 1.5255 $$ -0.15 92 11.6 10.0 80.53 67.0 924.2 1.7296 $$ -0.17 93 12.6 10.0 79.26 65.0 917.8 1.7155 $$ -0.17 94 13.6 10.0 78.44 66.0 910.8 1.8233 $$ -0.21 95 -6.4 20.0 81.20 64.0 930.0 0.4258 $$ -0.21 96 -2.4 20.0 79.75 65.0 922.5 0.8938 $$ -0.23 98 9.6 20.0 78.67 68.0 914.1 1.8714 $$ -0.23 100 -10.4 30.0 78.35 64.0 917.7 0.3084 $$ -0.23 101 -6.4 30.0 78.57 66.0 921.2 1.2287 $$ -0.30 102 -2.4 30.0 78.80 66.0 913.7 0.7973 $$ -0.30 103 1.6 30.0 78.96 65.0 907.6 1.7413 $$ -0.31 <td>87</td> <td>1.6</td> <td>10.0</td> <td>80.30</td> <td>67.0</td> <td>915.4</td> <td>0.0074</td> <td>******</td> <td>-0.132</td>	87	1.6	10.0	80.30	67.0	915.4	0.0074	******	-0.132
895.610.078.51 67.0 706.81.1058 $$ -0.13 90 7.610.079.29 68.0 914.0 1.3540 $$ -0.13 91 9.610.077.68 67.0 902.1 1.5255 $$ -0.15 92 11.610.0 80.53 67.0 924.2 1.7296 $$ -0.17 93 12.610.079.26 65.0 917.8 1.7155 $$ -0.17 94 13.610.078.44 66.0 910.8 1.8233 $$ -0.19 95 -6.4 20.0 81.20 64.0 930.0 0.4258 $$ -0.23 96 -2.4 20.079.75 65.0 922.5 0.8938 $$ -0.23 96 $76.20.0$ 78.67 68.0 914.1 1.8714 $$ -0.23 97 3.6 20.078.67 68.0 913.7 0.7973 $$ -0.23 100 -10.4 30.0 78.85 64.0 917.7 0.3084 $$ -0.23 101 -6.4 30.0 78.85 64.0 913.7 0.7973 $$ -0.30 102 -2.4 30.0 78.86 64.0 913.7 0.7973 $$ -0.30 104 5.6 30.0 78.86 64.0 910.5 1.7413 $$ -0.31 104 5.6	88	3.6	10.0	78.15	69.0	906.1	1.1050		-0.142
907.610.0 79.29 68.0 914.0 1.3202 1.3202 1.3202 91 9.6 10.0 77.68 67.0 902.1 1.5255 $$ -0.13 92 11.6 10.0 80.53 67.0 924.2 1.7296 $$ -0.17 93 12.6 10.0 79.26 65.0 917.8 1.7155 $$ -0.17 94 13.6 10.0 78.44 66.0 910.8 1.8233 $$ -0.19 95 -6.4 20.0 81.20 64.0 930.0 0.4258 $$ -0.21 94 -2.4 20.0 79.75 45.0 922.5 0.8938 $$ -0.23 98 9.6 20.0 78.67 68.0 914.1 1.8714 $$ -0.23 99 3.6 20.0 78.857 66.0 913.7 0.7973 $$ -0.23 100 -10.4 30.0 78.57 66.0 913.7 0.7973 $$ -0.30 102 -2.4 30.0 78.96 64.0 910.5 1.9171 $$ -0.30 102 -2.4 30.0 78.97 65.0 907.6 1.7413 $$ -0.30 103 1.6 30.0 78.96 64.0 910.5 1.9171 $$ -0.31 104 5.6 30.0 78.96 65.0 905.2 2.2760	89	5.6	10.0	78.51	67.0	906.8	1.2202		-0,142
91 9.6 10.0 77.68 67.0 912.1 1.5255 $$ -0.15 92 11.6 10.0 80.53 67.0 924.2 1.7296 $$ -0.17 93 12.6 10.0 79.26 65.0 917.8 1.7155 $$ -0.17 94 13.6 10.0 78.44 66.0 910.8 1.8233 $$ -0.19 95 -6.4 20.0 81.20 64.0 930.0 0.4258 $$ -0.21 96 -2.4 20.0 79.75 65.0 922.5 0.8938 $$ -0.23 96 70.0 77.82 66.0 914.1 1.8714 $$ -0.23 97 3.6 20.0 78.35 64.0 917.7 0.3084 $$ -0.23 100 -10.4 30.0 78.35 64.0 913.7 0.7973 $$ -0.23 101 -6.4 30.0 78.85 64.0 913.7 0.7973 $$ -0.30 102 -2.4 30.0 78.86 64.0 910.5 1.9171 $$ -0.30 102 -2.4 30.0 78.86 64.0 910.5 1.9171 $$ -0.31 104 5.6 30.0 78.86 64.0 910.5 1.9171 $$ -0.31 105 9.6 30.0 78.96 65.0 907.6 1.7413 $$	90	7.6	10.0	79.29	68.0	914.0	1.7540		-0.133
9211.610.0 80.53 67.0 924.2 1.7296 $$ -0.17 93 12.610.0 79.26 65.0 917.8 1.7155 $$ -0.17 94 13.610.0 78.44 66.0 910.8 1.8233 $$ -0.19 95 -6.4 20.0 81.20 64.0 930.0 0.4258 $$ -0.21 96 -2.4 20.0 79.75 65.0 922.5 0.8938 $$ -0.23 98 9.6 20.0 78.67 68.0 914.1 1.8674 $$ -0.23 99 3.6 20.0 77.82 66.0 909.8 1.4635 $$ -0.23 100 -10.4 30.0 78.35 64.0 917.7 0.3084 $$ -0.23 101 -6.4 30.0 78.85 64.0 913.7 0.7973 $$ -0.30 102 -2.4 30.0 78.86 64.0 910.5 1.9171 $$ -0.30 102 -2.4 30.0 78.86 64.0 910.5 1.9171 $$ -0.31 104 5.6 30.0 78.86 64.0 913.2 2.1071 $$ -0.31 104 5.6 30.0 78.86 64.0 913.2 2.1741 $$ -0.31 104 10.6 30.0 77.39 65.0 921.8 2.1741 $$ <t< td=""><td>91</td><td>9.6</td><td>10.0</td><td>77.68</td><td>67.0</td><td>902.1</td><td>1.5255</td><td></td><td>-0.136</td></t<>	91	9.6	10.0	77.68	67.0	902.1	1.5255		-0.136
93 12.6 10.0 79.26 65.0 917.8 1.7155 $$ -0.17 94 13.6 10.0 78.44 66.0 910.8 1.8233 $$ -0.19 95 -6.4 20.0 81.20 64.0 930.0 0.4258 $$ -0.21 96 -2.4 20.0 79.75 65.0 922.5 0.8938 $$ -0.23 98 9.6 20.0 78.67 68.0 914.1 1.8714 $$ -0.23 99 3.6 20.0 77.82 66.0 909.8 1.4635 $$ -0.23 100 -10.4 30.0 78.35 64.0 917.7 0.3084 $$ -0.28 101 -6.4 30.0 78.57 66.0 913.7 0.7973 $$ -0.30 102 -2.4 30.0 78.87 66.0 913.7 0.7973 $$ -0.30 103 1.6 30.0 78.86 64.0 910.5 1.9171 $$ -0.31 104 5.6 30.0 78.96 65.0 905.2 2.2760 $$ -0.32 106 10.6 30.0 79.75 65.0 921.8 2.1741 $$ -0.324 105 9.6 30.0 79.75 65.0 921.8 2.1741 $$ -0.324 105 9.6 30.0 79.75 65.0 921.8 2.1741 </td <td>92</td> <td>11.6</td> <td>10.0</td> <td>80.53</td> <td>67.0</td> <td>924.2</td> <td>1.7204</td> <td></td> <td>-0.153</td>	92	11.6	10.0	80.53	67.0	924.2	1.7204		-0.153
9413.610.078.4466.0910.81.9131.9131.91395-6.420.081.2064.0930.00.42580.1996-2.420.079.7565.0922.50.89380.23989.620.078.6768.0914.11.87140.23993.620.077.8266.0909.81.46350.23100-10.430.078.3564.0913.70.79730.30101-6.430.078.5766.0913.70.79730.30102-2.430.078.8664.0910.51.91710.311031.630.078.8664.0910.51.91710.311045.630.078.8664.0910.51.91710.321059.630.077.3965.0905.22.27600.3410510.630.079.7565.0921.82.17410.3413513.610.078.2679.0708.81.79060.3413614.610.079.2079.0717.71.80240.1313711.620.079.0067.0716.81.97230.2013913.620.079.7773.0728.2 <td>93</td> <td>12.6</td> <td>10.0</td> <td>79.26</td> <td>65.0</td> <td>917.8</td> <td>1.7155</td> <td></td> <td>-0.178</td>	93	12.6	10.0	79.26	65.0	917.8	1.7155		-0.178
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	13.6	10.0	78.44	66.0	910.8	1.9777		-0.178
96 -2.4 20.0 79.75 65.0 922.5 0.8938 $$ -0.23 98 9.6 20.0 78.67 68.0 914.1 1.8714 $$ -0.23 99 3.6 20.0 77.82 66.0 909.8 1.4635 $$ -0.23 100 -10.4 30.0 78.35 64.0 917.7 0.3084 $$ -0.23 101 -6.4 30.0 78.57 66.0 913.7 0.7973 $$ -0.30 102 -2.4 30.0 78.97 66.0 921.2 1.2287 $$ -0.30 103 1.6 30.0 78.99 65.0 907.6 1.7413 $$ -0.31 104 5.6 30.0 78.96 64.0 913.2 2.1071 $$ -0.31 104 5.6 30.0 78.96 66.0 913.2 2.1071 $$ -0.32 104 5.6 30.0 78.96 65.0 905.2 2.2760 $$ -0.32 105 9.6 30.0 79.75 65.0 921.8 2.1741 $$ -0.32 107 11.6 30.0 79.75 65.0 921.8 2.1741 $$ -0.34 135 13.6 10.0 79.20 79.0 717.7 1.8024 $$ -0.12 137 11.6 20.0 79.00 67.0 716.8 1.9723 <td>95</td> <td>-6.4</td> <td>20.0</td> <td>81.20</td> <td>64.0</td> <td>930.0</td> <td>0.4250</td> <td></td> <td>-0.198</td>	95	-6.4	20.0	81.20	64.0	930.0	0.4250		-0.198
98 9.6 20.0 78.67 68.0 914.1 1.8714 $$ -0.23 99 3.6 20.0 77.82 66.0 909.8 1.4635 $$ -0.23 100 -10.4 30.0 78.35 64.0 917.7 0.3084 $$ -0.23 101 -6.4 30.0 78.57 66.0 913.7 0.7973 $$ -0.30 102 -2.4 30.0 78.97 66.0 921.2 1.2287 $$ -0.30 103 1.6 30.0 78.99 65.0 907.6 1.7413 $$ -0.31 104 5.6 30.0 78.96 66.0 913.2 2.1071 $$ -0.31 105 9.6 30.0 78.96 65.0 905.2 2.2760 $$ -0.32 106 10.6 30.0 79.75 65.0 921.8 2.1741 $$ -0.34 135 13.6 10.0 78.26 79.0 708.8 1.7906 $$ -0.12 136 14.6 10.0 79.20 79.0 717.7 1.8024 $$ -0.134 135 13.6 20.0 80.18 67.0 726.3 1.9723 $$ -0.200 139 13.6 20.0 79.777 73.0 728.2 1.9723 $$ -0.200	96	-2.4	20.0	79,75	65.0	922.5	0.8978		-0.219
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	9.6	20.0	78.67	68.0	914.1	1.8714		~0.231
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99	3.6	20.0	77.82	66.0	909.8	1.4475		-0.255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	-10.4	30.0	78.35	64.0	917.7	0.3084		-0.231
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	-6.4	30.0	78.57	66.0	913.7	0.7973		-0.288
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	-2.4	30.0	79.80	66.0	921.2	1.2287		-0.304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103	1.6	30.0	78.09	65.0	907.6	1.7413		-0.303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	5.6	30.0	78.86	64.0	910.5	1.9171		-0.31/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	9.6	30.0	78,96	66.0	913.2	2,1071		-0.311
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	10.6	30.0	77.39	65.0	905.2	2.2760		-0.328
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	11.6	30.0	79.75	65.0	921.8	2.1741		-0.347
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	135	13.6	10.0	78.26	79.0	708.8	1.7906		-0.125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	136	14.6	10.0	79.20	79.0	717.7	1.8024		-0.134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	137	11.6	20.0	79.00	67.0	716.8	1,9553		-0.200
139 13.6 20.0 79.77 73.0 728.2 1.0275	138	12.6	20.0	80.18	67.0	726.3	1.9723		-0.209
-0,21	138	13.6	20.0	79.77	73.0	728.2	1.9275		-0.213

RUN 🕈	ADA	FLAP DEF	V (KT)	T ^o (F)	PRESS. Alt.(Ft)	CL	CD	CH
RIME :	3 ROUGH							
76	-2.4	0.0	101.48	73.0	929.7	0.0544	0.0163	-0.053
77	-0.4	0.0	102.49	74.0	937.0	0.3458	0.0140	-0.058
78	1.6	0.0	101.67	73.0	931.1	0.5213	0.0146	-0.048
79	3.6	0.0	101.06	73.0	926.3	0.7468	0.0170	-0.049
80	5.6	0.0	102.67	74.0	941.7	0.9326		-0.046
159	-10.4	30.0	78.76	73.0	753.7	-0.0371		-0.208
160	-6.4	30.0	79.60	73.0	757.8	0.7000		-0.286
161	-2.4	30.0	78.40	72.0	750.0	1.1937		-0.295
162	1.6	30.0	79.96	72.0	762.9	1.6685		-0.294
163	5.6	30.0	79.28	72.0	758.6	1.9713		-0.274
164	7.6	30.0	79.32	72.0	754.6	1.9211		-0.238
165	7.6	20.0	79.39	72.0	763.2	1.7497		-0.190
166	9.6	20.0	78.57	71.0	759.4	1.7519		-0.1/3
167	8.6	20.0	79.10	72.0	763.6	1.7041		-0.178
168	6.6	20.0	77.92	72.0	757.8	1.6702		-0.190
169	-6.4	10.0	78.30	66.0	766.3	-0.0732		-0.110
170	-2.4	10.0	79.19	66.0	772.2	0.4180		-0.119
171	1.6	10.0	78.61	66.0	769.3	0.8904		-0.116
172	5.6	10.0	79.15	64.0	774.1	1.2159		-0.109
173	7.6	10.0	79.29	64.0	773.9	1.3934		-0.110
174	9.6	10.0	79.00	64.0	772.2	1.4241		-0.088
175	10.6	10.0	78.22	62.0	769.3	1.5164		-0.098
176	11.6	10.0	78.91	63.0	771.5	1.4800	~~~~~	-0.093
GLAZE	3 RUUGH				005 0	0.0816	0.0161	-0.050
71	-2.4	0.0	102.00		70J+0	0.3041	0.0153	-0.049
72	-0.4	0.0	101.95	73.0	711.7	0.5274	0.0163	-0.039
73	1.6	0.0	101.88	73.0	714+7	0.7521	0.0226	-0.044
74	3.6	0.0	101.46	72.0	713+7	0.8933	0.0323	-0.025
75	5.6	0.0	100.09	/1.0	707 1	-0.0546		-0.118
140	-6.4	10.0	78.01	04+V 7E 0	727.3	0.7991		-0.122
141	-2.4	10.0	/9.61	73.0	740+3	0.8908		-0.108
142	1.6	10.0	78.88	77.0	770.6	1.2350		-0.093
143	5.6	10.0	78.80	01.0	733.0	1.3459		-0.088
144	7.6	10.0	78.33	80.0	739.2	1.3892		-0.088
145	9.0	10.0	79.10	70 0	733.0	1,4311		-0.117
146	10.8	10.0	70+44	77.0	746.4	1.4188		-0.148
14/	11+0	10.0	70 04	76.0	746.4	1.7196		-0.166
148	/ • 0	20.0	77.70	74.0	743.7	1.6808		-0.202
149	7.0	20.0	77.99	75.0	735.5	1.6640		-0.173
150	8+0	20.0	79.20	75.0	747.3	1.6806		-0.243
151	10.0	20.0	77+40	74.0	747.5	1.6647		-0.163
152	0+0	20.0	77+34	77.0	740.0	0.6960		-0.288
123	-0+4	30.0	79.50	72.0	750.5	1.2116		-0.288
104	-2+4	70.0	77.47	73.0	743.3	1.6481		-0.276
122	1.0	30.0	79.44	73.0	747.6	1.9344		-0.250
157	7.6	30.0	77.33	74.0	740.0	1.9626		-0.260
150	9.4	30.0	78.94	72.0	750.8	1.9028		-0.277

KUN	¥ AUA	FLAP DEF	V (KT)	T ^o (F)	PRESS. ALT.(FT)	CL	CD	CM
GENE	RIC GLAZE	ROUGH						
50	-2.4	0.0	103.14	72.0	846.8	0.0544	A A770	
51	-0.4	0.0	102.21	49.0	04040	0.0040	0.0338	-0.080
52	1.6	0.0	102.60	72.0	042.4	0.2948	0.0366	-0.041
53	3.6	0.0	101.58	74.0	04040	0.333/	0.0443	-0.035
				7410	04340	01/348	0.08/7	-0.021
GENEF	RIC GLAZE	SMOOTH						
55	-2.4	0.0	102.28	70.0	849.2	0.1027	0.0757	-0.050
56	-0.4	0.0	101.98	72.0	844.9	0.7727	0.0353	-0.039
57	1.6	0.0	101.96	71.0	845.4	0.5710	0.0339	-0.042
58	3.6	0.0	103.09	69.0	855.1	0.3317	0.0433	-0.030
59	5.6	0.0	102.09	69.0	847.2	0 0 0 0 1	0.0016	-0.019
108	-2.4	30.0	79.16	65.0	920.5	1 2407		-0.024
109	-8.4	30.0	79.27	66.0	923.3	1+2403		-0.271
110	-5.4	30.0	79.31	67.0	927.4	0.0411		-0.209
111	1.6	30.0	79.24	67.0	919.7	1 4447		-0.283
112	5.6	30.0	79.31	66.0	012.5	1 7704		-0.252
113	7.6	30.0	79.77	66.0	012 1	1.7384		-0.299
114	-6.4	10.0	79.96	67.0	712+1	1+/132		-0.343
115	-2.4	10.0	78.91	47.0	707+8	-0.1021		-0.113
124	5.6	10.0	81.39	50.0	704.4	0.4485		-0.111
125	7.6	10.0	70 07	57 0	/12.0	1.193/		-0.097
126	5.6	10.0	70.72	37.0	679.4	1.2161		-0.136
127	9.6	10.0	70 //	63+0	702.9	1.1910		-0.094
128	5.6	20.0	77.00	04.0	702.6	1.1447		-0.181
129	7.6	20.0	01+/4 70 /F	63.0	715.3	1.4608		-0.202
130	9.6	20.0	77.03	00.0	703.9	1.5527		-0.251
131	-2.4	2010	77+03	66+0	704.7	1.3729		-0.290
132	7.4	20.0	77+26	66.0	706.0	0.8024	*	-0.174
133	9.6	0.0	70+22	/3.0	1000.0	0.9037		-0.036
134	11.4	0.0	/7.//	00.0	1000.0	0.9364		-0.092
-0-	11+0	V+V	80+21	/1.0	1000.0	0.7749		-0.114

C vs α

NACA 63A415 CL VS ALPHA VARYING FLAP DEF

NACA 63A415 CL VS ALPHA VARYING FLAP DEF

. .

•

NACA 63A415 CL VS ALPHA FLAP DEF = 20.00O CLEAN RIME 3 **D** 2,40 2.00 0 ⁰ 0 ${f O}$ 1.60 \mathbf{O} 1.20 ${f O}$ 40 ტ .00 16.00 -8.00 -4.00 4.00 ALPHA 12.00 8.00 60 - +0

30

...

NACA 63A415 CL VS ALPHA VARYING FLAP DEF

۰,

1999 - H. H. S. M. S 1997 - M. M. S. M 1997 - M. M. S. M 1997 - M. S. M.

)

NACA 63A415 CL VS ALPHA FLAP DEF = 0.00 CLEAN \bigcirc GENERIC SMOOTH ⚠ 2,40 GENERIC ROUGH $\mathbf{\nabla}$ 2,00 : 1.60 ⓓ 0 0 0 .20 . BO CL Δ \mathbf{X} ◬ ⚠ • ₿ .40 ŧ 00 € -8.00 16.00 4.00 ALPHA -4.00 8,00 12.00 . aa ወ - . 40

C vs C L d

NACA 63A415 CL VS CD FLAP DEF = 0.00

• ..

NACA 63A415 CM VS CL VARYING FLAP DEF

D RIME 3

46

.

NACA 63A415 CM VS CL FLAP DEF = 0.00

O CLEAN I RIME 3

Ŧ

O CLEAN I RIME 3

المجرف

NACA 63A415 CM VS CL FLAP DEF = 0.00

52

م محبو شر

•...•

NACA 63A415 CM VS CL FLAP DEF = 20.00

NACA 63A415 CM VS CL FLAP DEF = 30.00

O CLEAN ♦ GLAZE 3

: 7

NACA 63A415 CM VS CL VARYING FLAP DEF

▲ GENERIC SMOOTH

56

1.1

S. J.

NACA 63A415 CM VS CL FLAP DEF = 10.00

O CLEAN ▲ GENERIC SMOOTH

58

ê sê

NACA 63A415 CM VS CL FLAP DEF = 20.00

© CLEAN ▲ GENERIC SMOOTH

Cp Distributions

61

si ► •

• 1

.

64

Ń

Ł

.

t

68.

r)

-} **

۰.

.

į.

٠,

t

76

ţ

,7

i;

1.

98

<u>^_</u>

1.1

ļ

 \sim . تر

é

ŧ

*

•

1

RIME 3 ROUGH RUN # 76

11:

.

Ň

ı.

1.20

_

.

•

 $\pm \mathbf{V}_{2}$

. .

1. J.S. 5

L

1...

3

T

.

131

J

132

1, 11 1, 11 1, 11

r

ı

,

138

ω.

. .

GLAZE 3 ROUGH RUN # 147

1 - 2

PA

,

1 -

.

1

- ----

. .

152

٠. .

GENERIC ROUGH RUN = 51

ć+

. 1

t a

e)

 ϵ

155

ι.

ι.

156

۰,

. U

GENERIC SMOOTH RUN = 57

158

1 m

` 1

÷.

170

τ

*

.

1. Report No.	2. Government Accession	No.	3. Recipient's Catalog No	.
NASA CR-168288			•	
4. Title and Subtitle	·······		5. Report Date	
Results of an Experimental Program Investigating the Effects of Simulated Ice on the Performance of the NACA 63A415 Airfoil with Flap		asting the	January 1984	
		e of the	6. Performing Organizatio	on Code
7. Author(s)			8. Performing Organizatio	on Report No.
R. J. Zaguli, M. B. Bragg, and G. M. Gregorek		rek	AADI TO 0202	
			10. Work Unit No.	· · · · · · · · · · · · · · · · · · ·
9. Performing Organization Name and Address			11 Contract or Grant No.	
Dept. of Aeronautical and Astronautical Engineering Columbus, Ohio 43212		aincorina	The Contract of Grant No.	
		grneering	NAG3-28	
			13. Type of Report and Pe	riod Covered
12. Sponsoring Agency Name and Address			Contractor Report	
National Aeronautics and Space Administration Washington, D.C. 20546		ion	14. Sponsoring Agency Code	
			505-45-02	
Lewis Research Center, Cle	eveland, Ohio 441	35.		
A test program conducted Aerodynamic data are report and with simulated ice sha performance are presented Tunnel tests. Lift, drag clean and with ice, for an lift and for flap deflect distribution plots for the preliminary oil flow visua	in the NASA Icing rted for a NACA 6 apes. The effect , two of the simu , and moment coef ngles of attack f ions of 0, 10, 20 e airfoil and fla	Research Tunn 3A415 airfoil of three ice lated ice shap ficients are i rom approximat , and 30 degree p are presente	nel is described , with fowler f shapes on airfo pes are from ear reported for the cely zero lift ees. Surface p	d. lap, clean oil rlier Icing e airfoil, to maximum
were measured in all insta and depend upon the ice sl	alization data ar ances. Maximum 1 hape and flap def	e also discuss ift penalties lection.	were in genera	ressure . Some g penalties l serious,
were measured in all insta and depend upon the ice sl	alization data ar ances. Maximum 1 hape and flap def	e also discuss ift penalties lection.	were in genera	ressure . Some g penalties l serious,
were measured in all inst and depend upon the ice s 17. Key Words (Suggested by Author(s)) Airfoil ice accretion	alization data ar ances. Maximum 1 hape and flap def	e also discuss ift penalties lection. 18. Distribution Stateme Unclassified	nt nt unlimited	ressure . Some g penalties l serious,
were measured in all inst and depend upon the ice s 7. Key Words (Suggested by Author(s)) Airfoil ice accretion Simulated ice accretion	alization data ar ances. Maximum 1 hape and flap def	e also discuss ift penalties lection. 18 Distribution Stateme Unclassifie STAR Categor	nt nt - unlimited vy 02	ressure . Some g penalties l serious,
were measured in all insta and depend upon the ice sl 7. Key Words (Suggested by Author(s)) Airfoil ice accretion Simulated ice accretion Static pressure distribut: Airfoil nonfeature	alization data ar ances. Maximum 1 hape and flap def ions	e also discuss ift penalties lection. 18. Distribution Stateme Unclassified STAR Categor	nt nt unlimited y 02	ressure . Some g penalties l serious,
were measured in all inst and depend upon the ice s	alization data ar ances. Maximum 1 hape and flap def ions	e also discuss ift penalties lection. 18. Distribution Stateme Unclassified STAR Categor	nt nt - unlimited ry 02	ressure . Some g penalties l serious,
were measured in all insta and depend upon the ice s 7. Key Words (Suggested by Author(s)) Airfoil ice accretion Simulated ice accretion Static pressure distribut Airfoil performance	alization data an ances. Maximum 1 hape and flap def ions 20. Security Classif. (of this p	e also discuss ift penalties lection. 18. Distribution Stateme Unclassified STAR Categon age)	nt d. Large drag were in genera nt - unlimited y 02 21. No. of pages	ressure . Some g penalties l serious,

....

•

••

ι

·) · · · · ·

*For sale by the National Technical Information Service, Springfield, Virginia 22161

' .

<u>~</u> ^

National Aeronautics and Space Administration

-

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

1

1 -

NVZV

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return