NASA-CR-168288
19840008077

RESULTS OF AN EXPERIMENTAL PROGRAM INVESTIGATING THE EFFECTS OF SIMULATED ICE ON THE PERFORMANCE OF THE NACA 63A415 AIRFOIL WITH FLAP

R. J. Zaguli, M. B. Bragg, and G. M. Gregorek

The Ohio State University Columbus, Ohio

January 1984

LEARY REP Y
. 484
MARLEY RESEARCH ENTER
LIBRARY. NASA
Han:-TCA, vIRGINIA

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Grant NAG3-28

$$
9
$$

-
-

TABLE OF CONTENTS

PAGE
NOMENCLATURE iii
INTRODUCTION 1
EXPERIMENTAL METHOD 2
Equipment 2
Data Reduction 3
RESULTS AND DISCUSSION 5
Aerodynamic Measurements 5
Flow Visualization 6
Presentation of Data 8
SUMMARY AND CONCLUSIONS 9
REFERENCES 10
FIGURES 11
APPENDIX 23
Run Summary 23
Cumulative Plots 26
C_{ℓ} vs α 26
C_{ℓ} vs C_{d} 42
C_{m} vs C_{ℓ} 45
C_{p} Distributions 61

NOMENCLATURE

C	Airfoil chord length, m
C_{d}	Drag coefficient, $\mathrm{D} / \mathrm{q}_{\infty} \mathrm{C}$
C_{ℓ}	Lift coefficient, $L / \mathrm{q}_{\infty} \mathrm{c}$
C_{m}	Moment coefficient about the quarter chord, $M / q_{\infty} c^{2}$
C_{p}	Pressure coefficient, ($\mathrm{P}-\mathrm{P}_{\infty}$)/ $/ \mathrm{q}_{\infty}$
K/c	Roughness height
P	Local static pressure, $\mathrm{N} / \mathrm{m}^{2}$
P_{∞}	Free stream static pressure, $\mathrm{N} / \mathrm{m}^{2}$
q_{∞}	Free stream dynamic pressure, $\mathrm{N} / \mathrm{m}^{2}$
T	Temperature, ${ }^{\circ} \mathrm{F}$
V	Velocity in knots
x / c	Horizontal coordinate
z/c	Vertical coordinate
α, AOA	Angle of attack, degrees
δ_{f}	Flap deflection, degrees

INTRODUCTION

The test program described in this report is an extension of a study begun in 1981 to provide needed information on the performance degradation of airfoil sections resulting from rime and glaze ice accretions. Its primary objectives were:

1) To expand the current database of performance data on the 63 A 415 with simulated ice to include flap deflection.
2) To further study the flowfield in the area of the ice accretion through pressure distributions and flow visualization techniques, which can then be used to evaluate the accuracy of the theoretical analysis methods currently being developed.
3) To obtain data on a simulated glaze ice shape that scales down to a 6 inch chord model and will be tested in the OSU Transonic Airfoil Wind Tunnel Facility. These data will be used to compare the aerodynamic qualities of the NASA Icing Research Tunnel and the OSU tunnel, and to evaluate a lift measuring system based on wall pressures.

Mr. Richard Freuler, Senior Computer Specialist at the Aeronautical and Astronautical Research Laboratory, developed the software needed for the data acquisition system. Mr. Steven Thompson, an under-graduate research assistant, modified the software and performed the data reduction for this test.

Equipment

Testing was performed in the NASA Lewis 6' $\mathrm{x} 9^{\prime}$ Icing Research Tunnel (IRT). The airfoil model used was the NACA 63_{2}-A415 with a 1.36 m chord and a moveable flap with deflections of $10^{\circ}, 20^{\circ}$, and 30°. The airfoil and flap were pressure tapped using $1 / 8^{\prime \prime} O D$ strip-a-tube attached to the airfoil surface. In addition, the model was fitted with five simulated ice shapes (Figures 1A-1E):

1) Generic Glaze
2) Glaze 3°
3) Rime 3°
4) Glaze 7°
5) Rime 7°

Aerodynamic data were taken on the first three shapes and flow visualization was performed on all five. The Generic Glaze shape was derived from the work of Ingelman-Sundberg ${ }^{1}$. This shape was chosen because it scales to a convenient size on the $6^{\prime \prime}$ chord model which will be tested in the OSU Transonic Airfoil Wind Tunnel Facility.

The Glaze 3, Rime 3, Glaze 7, and Rime 7 shapes were chosen from a series of ice growths generated during an actual ice accretion study in the NASA Lewis Icing Research Tunne1 ${ }^{2}$. They represent typical climb, high angle of attack and low velocity, and cruise, low angle of attack and high velocity conditions.

In order to add the surface roughness characteristic of natural ice shapes, aluminum oxide grit with a $\mathrm{K} / \mathrm{C}=.00058$ was attached to the glaze shapes with a spray acrylic adhesive. A grit with a $K / C=.0012$ was added to the rime shapes.

On-line data acquisition and reduction were accomplished using the OSU Digital Data Acquisition and Reduction System ${ }^{3}$ (DDARS -
figure 2). The central processing unit is the DEC LSI-11 microcomputer. Input and output is through a teletype terminal and mass data storage through a twin floppy disc drive system. Analog data signals from the transducers and wake probe slidewire systems are fed into an analog front end which conditions the signal and converts it into a digital format.

Airfoil pressures were obtained through a Scanivalve transducer arrangement, while drag data were measured using a wake probe with total and static ports. The voltages from these systems as well as those from tunnel total and tunnel static transducers were input to the analog box and then to the computer for on-line reduction (figure 3).

In order to visualize the flow in the leading edge region, a splitter plate ${ }^{4}$ was constructed which could be positioned between the upper and lower segments of the attached ice shape. (See figure 4). Small drops of oil-based paint were then applied to the plate in the regions of interest and the tunnel then brought up to speed. Videotape was made of the movement of the drops and still photographs were taken after no further movement was observed.

Data Reduction

The DDARS system provides the test engineer quick-look pressure distributions as well as integrated values of C_{ℓ}, C_{m}, and C_{d}. This permits maximum use of tunnel time.

An interactive computer program was written for the final data reduction on the OSU Harris/6 computer system. The raw data files from the IRT test were transferred to the Harris from the LSI-11 microcomputer. The program converts Scanivalve voltage from each
model tap into a pressure coefficient The user is given a plot of the final C_{p} distribution for each element (main and flap) on a Tektronix CRT and can control any re-reduction required using the terminal cursors. The program then integrates the distribution to get lift and moment coefficients.

The drag coefficient is calculated using the Jones Equation ${ }^{5}$. The wake is displayed on the graphics terminal and the user enters the integration limits using cursors. If the operator sees that the probe traverse was not large enough to capture the full wake, that run reduction can be bypassed.

Aerodynamic Measurements
Data were taken on the following simulated ice accretions as well as the clean airfoil;

1) Rime 3 Rough
2) Glaze 3 Rough
3) Generic Glaze Smooth
4) Generic Glaze Rough

In addition, for each configuration flap deflection was varied from 0-30 degrees.

The glaze ice C_{p} distributions show the characteristic adverse pressure gradient where the flow is forced to negotiate the large change in surface slope at the tip of the horns. These pressure spikes promote separation and tend to decrease $C_{\ell_{\max }}$ and increase the drag coefficient. The separated zone is clearly seen as a region of constant pressure in the C_{p} distribution in the area behind the glaze ice horn.

From the pressure distributions, it is observed that the flap was stalled for most of the runs. This separation is again characterized by a region of constant C_{p}. A previous investigation by W. R. Krolak ${ }^{6}$ on the Beechcraft Sundowner, equipped with a NACA 63 A 415 airfoil, shows this same trend in flight test data.

From Table I and figure 5, it is clear that the penalties associated with ice show up in reductions in $C_{\ell \max }$ and $\alpha_{\text {stall }}$. The G3 shape showed a reduction in $C_{\ell_{\max }}$ over the clean case of 0.2 - 0.4 , and a reduction in $\alpha_{\text {stall }}$ of as much as 4° for the $\delta_{f}=30^{\circ}$ case. Similar reductions were seen for the generic and rime shapes.

Due to the position of the wake probe, drag data could only be taken on $\delta_{f}=0^{\circ}$ cases. Cumulative plots of C_{ℓ} vs. C_{d} show

TABLE I

PERFORMANCE DEGRADATION WITH SIMULATED ICE

	clean			G3			GEN			R3		
${ }^{5}$	10	20	30	10	20	30	10	20	30	10	20	30
$\mathrm{C}_{V_{\text {max }}}$	1.8	2.0	2.2	1.4	1.7	2.0	1.2	1.5	1.7	1.5	1.75	1.95
${ }^{\text {astall }}$	14.0	12.5	11.5	10.5	9.5	7.5	7.5	-	5.5	10.5	8.5	6.5
"Lo	-6.5	-10.0	-13.0	-6.0	-	-12.5	-6.0	-	-10.0	-6.0	-	-11.0

the increase in drag caused by the ice shapes. For example, at $C_{\ell}=.4$, a 20% increase in drag over the clean airfoil was observed when the R3 rough shape was attached, and a 30% increase for the G3 rough shape. Interestingly, the presence of roughness on the Generic Glaze shape was not found to be very crucial. This is due to the large laminar separation bubble in the region of the ice shape, which tends to be the prominent source of pressure drag.

From the cumulative plots of C_{m} vs C_{l}, it is observed that at the lower lift coefficients the effect of the ice shape is almost negligible. However, at the higher C_{ℓ} 's, for example at low speed with the flap deflected, more positive C_{m} 's were observed with the simulated ice than for the clean airfoil.

Flow Visualization

Using the splitter plate arrangement, discussed previously, the flow about the simulated shapes was recorded. Of particular interest were the separated zones observed with the glaze shapes. These laminar separation zones were photographed and later the coordinates of the separated streamline were digitized from these records. Figures 6 and 7 are representative of the observed flow
patterns. Figure 6 clearly shows the Generic Glaze shape at $\alpha=1.7^{\circ}$ with its separated zone behind the horn. Figure 6 is of the same configuration but at $\alpha=5.6^{\circ}$, and clearly shows the characteristic recirculation region. Figure 8 shows the G3 shape at $\alpha=5.6^{\circ}$.

The authors discovered during the analysis of the photos that the splitter plate extended too far into the flow ahead of the stagnation region between the glaze ice horns. The splitter plate boundary layer then separated due to the adverse gradient from the airfoil flowfield. This 3-D flowfield created vortices which were shed downstream and affected the flow patterns recorded. This is particularly evident in figure 7 where the streamlines converge due to the influence of these shed vortices. However, qualitatively the data provides some interesting clues to the shape and extent of the laminar separation bubble.

Further investigation was performed at Ohio State using two different splitter plate configurations. A scaled-down version of the splitter plate utilized in the Lewis IRT and a smaller one with the leading edge reduced were tested on a GAW-1 airfoil with a simulated ice shape. Flow visualization techniques confirmed the authors' hypotheses that vortices were shed downstream due to the severe pressure gradient induced by the ice shape on the splitter plate. It was observed that the reattachment point was shortened by as much as 3% under these test conditions as a result of the larger splitter plate. This value cannot however, be directly applied to the 63A415 airfoil, in the Lewis test. Rather, the reader should realize that qualitatively this shows that the observed reattachment point was moved forward due to
the presence of the splitter plate. In addition, it must be pointed out that this method of visualization does not actually display the position of the separated streamline. Rather a position above the zero velocity line in the separated zone between the recirculating flow is measured.

Presentation of Data

A tabulated run summary is included in the appendix of this report. It is organized by configuration: 1) clean, 2) rime 3 rough, 3) glaze 3 rough, 4) generic glaze rough and 5) generic glaze smooth. Following these tables are the cumulative plots of C_{ℓ} vs α, C_{m} vs C_{ℓ}, and C_{ℓ} vs C_{d}. Lastly, the pressure distributions are included and ordered in the same sequence as the run summary tables.

Data reported with zero flap deflection was taken at approximately $\operatorname{Re}=4.2 \times 10^{6}$ and $M=0.13$. Due to the large loads on the model, data at all flap deflection angles greater than zero, were taken at approximately $R=3.3 \times 10^{6}$ and $M=0.10$. No tunnel wall corrections have been made in the data.

A typical general aviation airfoil, the NACA 632 -A415, was outfitted with simulated ice accretions and tested in the NASA Icing Research Tunnel. Pressure distributions were obtained for a variety of flap deflections and angles of attack. As a result of this study, the following observations can be made;

1) The airfoils with simulated ice shapes showed large increases in drag and heavy penalties in $C_{\ell m a x}$ and $\alpha_{\text {stall }}$ A shift in $\alpha \dot{L} 0$ was also observed. These reductions in performance would be of particular importance to the pilot in a landing configuration with the flap deployed and power reduced.
2) Measured pressure distributions and flow visualization show the separated zone behind the horn of the glaze shapes and the severe adverse pressure gradients which lead to the separation.
3) Surface roughness for the Generic Glaze shape was not a crucial factor in the drag observed. Rather, the prominent effect was the large separated zone.
Further investigation is necessary to document the flow characteristics reported. More detailed pressure distributions should be obtained, particularly in the region behind and between the glaze ice horns. Also, while flow visualization provides valuable insight into the flow in the separated zones, quantitative data must be gathered here before an analytical model can be developed.

REFERENCES

1. Ingelman-Sundberg, M., Trunov, O. K. and Ivaniko, A., 'Methods for Prediction of the Influence of Ice on Aircraft Flying Characteristics," Swedish-Soviet Working Group on Flight Safety, 6th Meeting, 1977.
2. Bragg, M. B., Zaguli, R. J. and Gregorek, G. M., 'Wind Tunnel Evaluation of Airfoil Performance Using Simulated Ice Shapes," NASA Contractor Report 167960, November 1982.
3. Freuler, R. J. and Hoffmann, M. J., "Experiences with an Airborne Digital Computer System for General Aviation Flight Testing," AIAA Paper No. 79-1834, presented at the AIAA Aircraft Systems and Technology Meeting, New York, New York, August 20-22, 1979.
4. Pfeiffer, N. J. and Zumwalt, G. W., "A Computational Model for Low Speed Flows Past Airfoils with Spoilers," AIAA Paper No. 81-0253, Presented at the 19th Aerospace Sciences Meeting, St. Louis, Missouri, January 12-15, 1981.
5. Schlichting, H., Boundary-Layer Theory, Sixth Edition, McGrawHill, New York, 1968.
6. Krolak, W. R., "In-Flight Investigation of the Aerodynamic Characteristics of a Wing Equipped with an Upper Surface Leading Edge Modification," Master's Thesis, Ohio State University, 1981.
7. Kunchal, David, "Splitter Plate Analysis," Final Report for AAE 693, Ohio State University Aeronautical and Astronautical Engineering Department, October 1982.

FIGURE 1A. R3 ICE SHAPE

FIGURE 1B. R7 ICE SHAPE

FIGURE 1C. GLAZE 3 SIMULATED ICE ACCREIION
AND PRESSURE TAP LOCATIONS

X / C	Z / C
.00093	.01759
-.00278	.01620
-.00648	.00972
-.01667	.00778
-.01796	.00519
-.01157	-.00093
-.00509	-.00602
.00556	-.01759
.01435	-.02732
.02500	-.02593

FIGURE 1D. GLAZE 7 SITULATED ICE ACCRETION AND PRESSURE TAP LOCATIONS

FIGURE IE. GMERIC GL4ZE SIMULATED ICE ACCRETION AND PRESSURE TAP LOCATIONS

FIGURE 2. OSU DIGITAL DATA ACQUISITION
AND REDUCTION SYSTEM

FIGURE 3. OSU DATA ACQUISITION SYSTEM AS USED IN THE NASA LEWIS IRT

FIGURE 4. 63A415 WING WITH SPLITTER PLITE IN LEWIS ICING RESEARCH TUNNEL

FIGURE 5. CHANGE IN C_{ℓ} max WITH SIMULATED ICE SHAPES

$$
\left(\delta_{f}=0^{0} \text { Cases from } 1982 \text { IRT Test }{ }^{2}\right)
$$

FIGURE 6. SPLITTER PLATE PHOTOGRAPH OF UPPER SURFACE OF THE GENERIC GLAZE ROUGH ICE SHAPE

FIGURE 7. SPLITTER PLATE PHOTOGRAPH OF UPPER SURFACE OF THE GENERIC CLAZE ROUGH ICE SHAPE

FIGURE 8. SPLITTER PLATE PHOTOGRAPH OF UPPER SURFACE OF THE G3 ROUGH ICE SHAPE

APPENDIX

Run Summary

RUN	AOA	FLAP DEF	$U(K T)$	$T^{\circ}(\mathrm{F})$	FRESS. ALT. (FT)	CL	CD	CM
CLEAN								
48	10.6	0.0	103.43	77.0	838.0	1.3393	0.0256	
49	11.6	0.0	101.92	75.0	832.3	1.4410	0.0256	-0.095
60	-5.4	0.0	102.23	50.0	852.9	-0.2326	0.0110	-0.108
61	-2.4	0.0	101.39	52.0	844.3	0.0710	0.0105	-0.046
62	-0.4	0.0	100.18	69.0	839.2	0.3126	0.0108	-0.049
63	1.6	0.0	102.84	75.0	869.4	0.5431	0.0112	-0.059
64	3.6 5.6	0.0 0.0	101.05 102.25	67.0	857.2	0.7220	0.0128	-0.057
66	5.6 7.6	0.0 0.0	102.25 101.64	70.0	870.5	0.9020	0.0144	-0.059
67	8.6	0.0	101.64 101.03	72.0 74.0	869.9 871.1	1.1002	0.0169	-0.075
68	9.6	0.0	103.57	75.0 75.0	871.1 892.1	1.1691	0.0196	-0.077
69	10.6	0.0	101.74	71.0	878.5	1.2279 1.3198	0.0220 0.0275	-0.075
70	11.6	0.0	101.25	73.0	880.2	1.3198 1.4225	0.0275 0.0300	-0.092
81	-2.4	0.0	102.59	62.0	1083.5	0.0881	0.0300 0.0118	-0.090
82	-0.4	0.0	101.79	57.0	1079.6	0.3017	0.0118	-0.049
83	1.6	0.0	102.24	68.0	1087.2	0.5059	0.0125	-0.056
84	-6.4	10.0	78.01	73.0	907.7	-0.0097	0.0125	-0.056
85	-2.4	10.0	78.31	70.0	902.1	0.4352	-------	-0.129
86	-0.4	10.0	78.74	70.0	903.7	0.6694		-0.132
87	1.6	10.0	80.30	69.0	915.4	0.9075	------	-0.142
88	3.6	10.0	78.15	69.0	906.1	1.1058	------	-0.142
89	5.6	10.0	78.51	67.0	906.8	1.2202		-0.133
90	7.6	10.0	79.29	68.0	914.0	1.3540	-------	-0.136
91	9.6	10.0	77.68	67.0	902.1	1.5255		-0.153
92 93	11.6	10.0	80.53	67.0	924.2	1.7296		-0.178
93	12.6	10.0	79.26	65.0	917.8	1.7155		-0.178
94	13.6	10.0	78.44	66.0	910.8	1.8233		-0.196
95	-6.4	20.0	81.20	64.0	930.0	0.4258		-0.219
96	-2.4	20.0	79.75	65.0	922.5	0.8938	-------	-0.231
98	9.6	20.0	78.67	68.0	914.1	1.8714		-0.255
99 100	3.6 -10.4	20.0	77.82	66.0	909.8	1.4635		-0.231
100 101	-10.4 -6.4	30.0 30.0	78.35 78.57	64.0	917.7	0.3084		-0.288
101	-6.4 -2.4	30.0 30.0	78.57 78.80	66.0	913.7	0.7973		-0.304
103	-2.4 1.6	30.0 30.0	79.80 78.09	66.0 65.0	921.2	1.2287	------	-0.303
104	5.6	30.0	78.86	65.0 64.0	907.6 910.5	1.7413 1.9171		-0.317
105	9.6	30.0	78.96	66.0	913.2	2.1071		-0.311
106	10.6	30.0	77.39	65.0	905.2	2.2760		-0.328 -0.349
107	11.6	30.0	79.75	65.0	921.8	2.1741		-0.346
135	13.6	10.0	78.26	79.0	708.8	1.7906		-0.346 -0.125
136	14.6	10.0	79.20	79.0	717.7	1.8024		-0.125
137	11.6	20.0	79.00	67.0	716.8	1.9553		-0.209
138	12.6	20.0	80.18	67.0	726.3	1.9723		-0.208
139	13.6	20.0	79.77	73.0	728.2	1.9275		-0.213

RUN	AOA	FLAP DEF	$U(K T)$	$T^{0}(F)$	PRESS. ALT. (FT)	CL		CD

GLAZE 3 ROUGH								
71	-2.4	0.0	102.00	66.0	905.0	0.0816	0.0161	-0.050
72	-0.4	0.0	101.95	73.0	911.9	0.3061	0.0153	-0.049
73	1.6	0.0	101.88	73.0	914.9	0.5276	0.0163	-0.039
74	3.6	0.0	101.46	72.0	915.7	0.7521	0.0226	-0.044
75	5.6	0.0	100.09	71.0	907.1	0.8933	0.0323	-0.025
140	-6.4	10.0	78.01	64.0	727.3	-0.0546		-0.118
141	-2.4	10.0	79.61	75.0	740.3	0.3881		-0.122
142	1.6	10.0	78.88	79.0	734.8	0.8908		-0.108
143	5.6	10.0	78.86	81.0	738.6	1.2350		-0.093
144	7.6	10.0	78.33	81.0	733.0	1.3459		-0.088
145	9.6	10.0	79.18	80.0	739.2	1.3892		-0.088
146	10.6	10.0	78.24	79.0	733.0	1.4311		-0.117 -0.148
147	11.6	10.0	80.30	76.0	746.4	1.4188		-0.148 -0.166
148	7.6	20.0	79.96	76.0	746.4	1.7196		-0.166
149	9.6	20.0	79.58	74.0	743.2	1.6808		-0.202
150	8.6	20.0	77.88	75.0	735.5	1.6640	------	-0.173
151	10.6	20.0	79.20	75.0	747.3	1.6806	------	-0.243
152	6.6	20.0	79.54	74.0	747.5	1.6647	------	-0.163
153	-6.4	30.0	78.10	72.0	740.0	0.6960	------	-0.288
154	-2.4	30.0	79.59	72.0	750.5	1.2116	-	-0.288
155	1.6	30.0	77.67	73.0	743.3	1.6481	------	-0.276
156	5.6	30.0	78.66	73.0	747.6	1.9344	------	-0.250
157	7.6	30.0	77.33	74.0	740.0	1.9626	------	-0.260
158	8.6	30.0	78.96	72.0	750.8	1.9028		-0.277

RUN	AOA	FLAP DEF	U (KT)	$T^{\circ}(F)$	$\begin{gathered} \text { PRESS. } \\ \text { ALT. (FT) } \end{gathered}$	CL	CII	CM
GENERIC GLAZE ROUGH								
50	-2.4	0.0	103.14	72.0	846.8	0.0546		
51	-0.4	0.0	102.21	69.0	846.8	0.0546	0.0338	-0.060
52	1.6	0.0	102.60	72.0	848.6	0.2948 0.5537	0.0366 0.0443	-0.041
53	3.6	0.0	101.58	74.0	843.6	0.5537 0.7346	$\begin{aligned} & 0.0443 \\ & 0.0677 \end{aligned}$	$\begin{aligned} & -0.035 \\ & -0.021 \end{aligned}$
GENERIC GLAZE SMOOTH								
55	-2.4	0.0	102.28	70.0	849.2	0.1027		
56	-0.4	0.0	101.98	72.0	846.8	0.1027	0.0353 0.0359	-0.059 -0.042
57	1.6	0.0	101.96	71.0	845.4	0.3227 0.5319	0.0359 0.0433	-0.042 -0.030
58	3.6	0.0	103.09	69.0	855.1	0.7267	0.0433 0.0616	-0.030 -0.019
59 108	5.6 -2.4	0.0 30.0	102.09	69.0	847.2	0.8491	0.0616	-0.019 -0.024
108 109	-2.4 -8.4	30.0 30.0	79.16 79.27	65.0	920.5	1.2403	------	-0.271
110	-8.4	30.0 30.0	79.27 79.31	66.0 67.0	923.3	0.2044		-0.209
111	1.6	30.0	79.31 79.24	67.0 67.0	927.6	0.8411	------	-0.283
112	5.6	30.0	79.34	67.0 66.0	918.3 912.5	1.6462	-ー-ー-	-0.252
113	7.6	30.0	79.77	66.0	912.1	1.7384		-0.299
114	-6.4	10.0	79.96	67.0	912.1 907.6	1.7132 -0.1021		-0.343
115	-2.4	10.0	78.91	63.0	904.4	-0.1021 0.4485		-0.113
124	5.6	10.0	81.39	50.0	712.8	0.4485 1.1937		-0.111
125	7.6	10.0	78.92	57.0	699.4	1.2161		-0.097
126	5.6	10.0	79.54	63.0	702.9	1.1910		-0.136
127	9.6	10.0	79.66	64.0	702.6	1.1447		
128	5.6	20.0	81.74	63.0	715.3	1.4448		-0.181 -0.202
129	7.6	20.0	79.65	66.0	703.9	1.5527		-0.202
130	9.6	20.0	79.63	66.0	704.7	1.3729		-0.290
131 132	-2.4 7.6	20.0 0.0	79.26	66.0	706.0	0.8024		-0.174
133	9.6	0.0 0.0	78.22 79.77	73.0	1000.0	0.9037	----	-0.036
134	11.6	0.0	880.21	66.0 71.0	1000.0 1000.0	0.9364 0.7749	------	-0.092
	11.6	0.0	80.21	71.0	1000.0	0.7749		-0.116

NACA 63A415 CL VS ALPHA VARYING FLAP DEF

O CLEAN

NACA 63A415 CL VS ALPHA VARYING FLAP DEF
(TRIME 3

NACA 63A415 CL VS ALPHA
FLAP DEF $=20.00$

NACA 63A415 CL VS ALPHA
FLAP DEF $=30.00$

FLAP DEF $=0.00$

NACA 63A415 CL VS ALPHA
FLAP DEF $=10.00$

NACA 63A415 CL VS ALPHA FLAP DEF $=30.00$

NACA 63A415 CL VS ALPHA VARYING FLAP DEF

 \triangle GENERIC SMOOTH

NACA 63A415 CL VS ALPHA
FLAP DEF $=0.00$

NACA 63A415 CL VS ALPHA
FLAP DEF $=10.00$

NACA 63A415 CL VS ALPHA
FLAP DEF $=20.00$

NACA 63 A415 CL VS ALPHA
FLAP DEF $=30.00$

C vs C

NACA 63A415 CL VS CD
FLAP DEF $=0.00$

FLAP DEF $=0.00$

FLAP DEF $=0.00$

NACA 63A415 CM VS CL
VARyING fLAP def

© CLEAN

NACA 63A415 CM VS CL VARYING FLAP DEF

ロ RIME 3

NACA 63R415 CM VS CL
FLAP DEF $=0.00$
(1) CLEAN

D RIME 3

NACA 63A415 CM VS CL
 FLAP DEF $=10.00$

O CLEAN
© RIME 3

$$
\text { FLAP DEF }=20.00
$$

```
O CLEAN
T RIME 3
```


NACA 63A415 CM VS CL
FLAP DEF $=30.00$

O CLEAN
O RIME 3

NACA 63A415 CM VS CL
 VARYING FLAP DEF

\diamond GLAZE 3

位

NACA 63A415 CM VS CL
 FLAP DEF $=0.00$

© CLEAN
\diamond GLAZE 3

NACA 63A415 CM VS CL
FLAP DEF $=10.00$

© CLEAN
 \diamond GLAZE 3

NACA 63R415 CM VS CL
FLAP DEF $=20.00$
(1) CLEAN
\diamond GLAZE 3

NACA 63R415 CM VS CL
FLAP DEF $=30.00$
© CLEAN
\diamond GLAZE 3

NACA 63A415 CM VS CL
 VARYING FLAP DEF

\triangle GENERIC SMOOTH

NACA 63A415 CM VS CL
 FLAP DEF $=0.00$

© CLEAN
\triangle GENERIC SMOOTH ∇ GENERIC ROUGH

NACA 63A415 CM VS CL
FLAP DEF $=10.00$

```
© CLEAN
\(\triangle\) GENERIC SMOOTH
```


NACA 63A415 CM VS CL
FLAP DEF $=20.00$
© CLEAN
\triangle GENERIC SMOOTH

NACA 63A415 CM VS CL

FLAP DEF $=30.00$

```
O CLEAN
\(\triangle\) GENERIC SMOOTH
```


$$
\begin{aligned}
& \text { CLEAN RUN: } 48 \\
& \text { AOA }=10.60 \\
& \text { FLAP DEF }=0.00 \\
& C L=1.339 \\
& C M=-0.096 \\
& C D=0.026
\end{aligned}
$$

CLEAN RUN \# 49

$$
\begin{aligned}
& \text { AOA }=-5.40 \\
& F L A P D E F=0.00 \\
& C L=-0.233 \\
& C M=-0.045 \\
& C D=0.011
\end{aligned}
$$


```
AOA =-2.40
FLAP DEF = 0.00
CL = 0.071
CM = -0.047
CD = 0.010
```



```
OEAN RUN: 52
ACA \(=-0.40\)
\(F L A P D E F=0.00\)
\(C L=0.313\)
\(C M=-0.049\)
\(C D=0.011\)
```


$$
\begin{aligned}
& \text { AOF }=\square .60 \\
& F L A P=D E F=0.543 .00 \\
& C L=0.543 \\
& C M=-0.059 \\
& C D=0.011
\end{aligned}
$$

$$
\begin{aligned}
& \text { CLEAN RUN } \\
& \text { AOA }=34 \\
& F L A P=D E F=0.60 \\
& C L=0.722 \\
& C M=-0.059 \\
& C D=0.013
\end{aligned}
$$


```
CLEAN RUN = 65
AOA \(=\)\begin{tabular}{r}
5.60 \\
\(F L A P\) \\
\(C L\) \\
\(C M\)
\end{tabular}\(=0.902\)
\(C M=-0.060\)
\(C D=0.014\)
```


$$
\begin{aligned}
& \text { CLEAN RUN }=66 \\
& \text { AOA }=7.60 \\
& \text { FLAP DEF }=0.00 \\
& C L=1.100 \\
& C M=-0.076 \\
& C D=0.017
\end{aligned}
$$

CLEAN RUN: 67

AOA $=8.60$
$F L A P=D E F=0.00$
$C L=1.169$
$C M=-0.077$
$C D=0.020$


```
CLEAN RUN # 68
AOR = 9.60 
CL = 1.228
CM = -0.076
CD = 0.022
```


ROA $=10.60$
$F L A P D E F=0.00$
$C L=1.320$
$C M=-0.092$
$C D=0.028$

CLEAN RUN \# 70

$$
\begin{aligned}
& \text { AOA }=11.60 \\
& F L A P D E F=0.00 \\
& C L=1.423 \\
& C M=-0.091 \\
& C D=0.030
\end{aligned}
$$


```
CLEAN RUN # 81
\[
\begin{aligned}
& \text { AOA }=-2.40 \\
& \text { FLAP } D E F=0.00 \\
& C L=-088 \\
& C M=-0.049 \\
& C D=0.012
\end{aligned}
\]
```


CLEAN RUN: 82

$$
\begin{aligned}
& A O A=-0.40 \\
& F L A P=D E F=0.0 .00 \\
& C L=0.302 \\
& C M=-0.051 \\
& C D=0.012
\end{aligned}
$$

$$
\begin{aligned}
& \text { AOA }=1.60 \\
& F L A P=D E F=0.00 \\
& C L=0.506 \\
& C M=-0.057 \\
& C D=0.013
\end{aligned}
$$

CLEAN RUN \# 84

$$
\begin{aligned}
& A O A=-6.40 \\
& F L A P D E F=10.00 \\
& C L=-0.010 \\
& C M=-0.118
\end{aligned}
$$

MAIN ELEMENT
$C L=-0.092$
$C M=-0.066$

CLEAN RUN \# 85

MRIN ELEMENT
$C L=0.346$
$C M=-0.072$

FLAP
$C L=0.090$
$C M=-0.057$

CLEAN RUN \# 86

MAIN ELEMENT

$$
\begin{aligned}
C L & =0.572 \\
C M & =-0.070
\end{aligned}
$$

FLAP
$C L=0.098$
$C M=-0.063$

CLEAN RUN \# 87

$$
\begin{aligned}
& \text { AOA }=1 \frac{1}{60} \\
& F L A P=D E F=10.00 \\
& C L=0.908 \\
& C M=-0.143 \\
& C D=-
\end{aligned}
$$

$$
\begin{aligned}
& \text { AOA }=3.60 \\
& F L A P D E F=10.00 \\
& C L=1.106 \\
& C M=-0.142
\end{aligned}
$$

AOA $=55.60$
$F L A P=D E F=10.00$
$C L=1.220$
$C M=-0.133$
$C D=--$

$C L=0.113$
$C M=-0.077$

CLEAN RUN \# 92

$$
\begin{aligned}
& \text { AOA }=11.60 \\
& F L A P=D E F=10.00 \\
& C L=1.730 \\
& C M=-0.178
\end{aligned}
$$

CLEAN RUN \# 94

$$
\begin{aligned}
& A O A=13.60 \\
& F L A P=D E F=10.00 \\
& C L=1.823 \\
& C M=-0.196
\end{aligned}
$$

CLEAN RUN : 100

$$
\begin{aligned}
& \text { AOA }=-10 \cdot 40 \\
& F L A P D E F=30.00 \\
& C L=0.308 \\
& C M=-0.288 \\
& C D=--2
\end{aligned}
$$

MAIN ELEMENT
$C L=0.108$
$C M=-0.144$


```
AOA = -6.40
FLAP DEF = 30.00
CL = 0.797
CM = -0.305
```


main element
$C L=0.580$
$C M=-0.146$

CLEAN RUN \# 102

MAIN ELEMENT
$C L=1.025$
$C M=-0.150$

CLEAN RUN : 106

$$
\begin{aligned}
& \text { AOA }=10.60 \\
& F L A P D E F=30.00 \\
& C L=2.276 \\
& C M=-0.350
\end{aligned}
$$

CLEAN RUN : 107

$C L=0.168$
$C M=-0.132$

CLEAN RUN * 139

RIME 3 ROUGH RUN \# 76

$$
\begin{aligned}
& \text { AOA }=-2.40 \\
& F L A P=0 E=0.00 \\
& C L=0.054 \\
& C M=-0.054 \\
& C D=0.016
\end{aligned}
$$

$$
\begin{aligned}
& \text { RIME } 3 \text { ROUGH RUN } ¥ 77 \\
& \text { AOA }=-0.40 \\
& \text { FLAP } D E F=0.00 \\
& C L=0.346 \\
& C M=-0.059 \\
& \text { CD }=0.014
\end{aligned}
$$

$$
\begin{aligned}
& \text { RIME } 3 \text { ROUGH RUN \# } 78 \\
& \text { AOA }=1.60 \\
& \text { FLAP }=0 \text { F }=0.00 \\
& \text { CL }=0.521 \\
& \text { CM }=-0.049 \\
& \text { CD }=0.015
\end{aligned}
$$

$$
\begin{aligned}
& \text { RIME } 3 \text { ROUGH RUN }=79 \\
& \text { AOA }=3.60 \\
& \text { FLAP } 0 E F=0.00 \\
& C L=0.747 \\
& C M=-0.049 \\
& C D=0.017
\end{aligned}
$$

RIME 3 ROUGH RUN \# 80

$$
\begin{aligned}
& \text { ROA }=5.60 \\
& \text { FLAP } O E F=0.00 \\
& C L=0.933 \\
& C M=-0.046 \\
& C D=0.021
\end{aligned}
$$

RIME 3 ROUGH RUN $=159$

RIME 3 ROUGH RUN \# 160

$A O A=-6 \cdot 40$
$F L A P=D E F=30.00$
$C L=0.700$
$C M=-0.287$
$C D=-----$

RIME 3 ROUGH RUN a 161

RIME 3 ROUGH RUN \# 163

RIME 3 ROUGH RUN $\# 165$

RIME 3 ROUGH RUN: 166

RIME 3 ROUGH RUN \# 167

RIME 3 ROUGH RUN $\# 169$
AOA $=-6.40$
$F L A P=D E F=10.00$
$C L=-0.073$
$C M=-0.110$
$C D=----$

RIME 3 ROUGH RUN \# 171

RIME 3 ROUGH RUN \# 173

RIME 3 ROUGH RUN = 174

RIME 3 ROUGH RUN * 176


```
GLAZE 3 ROUGH RUN : 71
AOA \(=-2.40\)
\(F L A P=0 E F=0.00\)
\(C L=0.082\)
\(C M=-0.050\)
\(C D=0.016\)
```



```
GLAZE 3 ROUGH RUN # 72
AOA \(=-0.40\)
\(F L A P=0 E F=0.00\)
\(C L=0.306\)
\(C M=-0.050\)
\(C D=0.015\)
```


AOA $=1.60$
$F L A P=D E F=0.00$
$C L=0.528$
$C M=-0.040$
$C D=0.016$

GLAZE 3 ROUGH RUN \# 74

$$
\begin{aligned}
& \text { AOA }=3.60 \\
& F L A P=0 E=0.00 \\
& C L=0.752 \\
& C M=-0.044 \\
& C D=0.023
\end{aligned}
$$

GLAZE 3 ROUGH RUN : 75

$$
\begin{aligned}
& \text { AOA }=5.60 \\
& F L A P=D E F=0.00 \\
& C L=0.893 \\
& C M=-0.025 \\
& C D=0.032
\end{aligned}
$$

(

> MAIN ELEMENT
$C L=-0.126$
$C M=-0.073$

GLAZE 3 ROUGH RUN : 141

GLAZE 3 ROUGH RUN $=145$

```
\(\mathrm{AOA}=9.60\)
FLAP DEF \(=10.00\)
\(C L=1.389\)
\(C M=-0.089\)
```

138


```
GLAZE 3 ROUGH RUN \(=146\)
```


GLAZE 3 ROUGH RUN \# 147

GLAZE 3 ROUGH RUN: 152

GLAZE 3 ROUGH RUN: 153

$$
\begin{aligned}
& A O A=-6.40 \\
& F L A P=D E F=30.00 \\
& C L=0.696 \\
& C M=-0.288
\end{aligned}
$$

$$
\begin{aligned}
& \text { 上 } \\
& \stackrel{1}{2}
\end{aligned}
$$

GLAZE 3 ROUGH RUN : 154

GLAZE 3 ROUGH RUN: 156

$$
\begin{aligned}
& \text { AOA }=7.60 \\
& F L A P D E F=30.00 \\
& C L=1.963 \\
& C M=-0.261
\end{aligned}
$$

GLAZE 3 ROUGH RUN : 158

GENERIC ROUGH RUN = 50

$$
\begin{aligned}
& A O A=-2.40 \\
& F L A P=D E F=0.00 \\
& C L=0.055 \\
& C M=-0.060 \\
& C D=0.034
\end{aligned}
$$

GENERIC ROUGH RUN $=51$

$$
\begin{aligned}
& A O A=-0.40 \\
& F L A P=D E F=0.00 \\
& C L=0.295 \\
& C M=-0.042 \\
& C D=0.037
\end{aligned}
$$

GENERIC ROUGH RUN $=52$

$$
\begin{aligned}
& \text { AOA }=1.60 \\
& F L A P=D E F=0.00 \\
& C L=0.554 \\
& C M=-0.035 \\
& C D=0.044
\end{aligned}
$$

GENERIC ROUGH RUN \# 53

$$
\begin{aligned}
& \text { AOA }=3.60 \\
& \text { FLAP } D E F=0.00 \\
& C L=0.735 \\
& C M=-0.021 \\
& C D=0.068
\end{aligned}
$$

GENERIC SMOOTH RUN: 55

$$
\begin{aligned}
& \text { AOA }=-2.40 \\
& F L A P D E F=0.00 \\
& C L=0.103 \\
& C M=-0.059 \\
& C D=0.035
\end{aligned}
$$

GENERIC SMOOTH RUN : 56

$$
\begin{aligned}
& A O A=-0.40 \\
& F L A P=D E F=0.00 \\
& C L=0.323 \\
& C M=-0.042 \\
& C D=0.036
\end{aligned}
$$

GENERIC SMOOTH RUN: 58

$$
\begin{aligned}
& \text { AOA }=3.60 \\
& F L A P D E F=0.00 \\
& C L=0.727 \\
& C M=-0.019 \\
& C D=0.062
\end{aligned}
$$

GENERIC SMOOTH RUN: 59

GENERIC SMOOTH RUN = 108

$$
\begin{aligned}
& \text { ROA }=-2.40 \\
& F L A P=D E F=30.00 \\
& C L=1.240 \\
& C M=-0.272 \\
& C M=-
\end{aligned}
$$

MAIN ELEMENT
$C L=1.039$
$C M=-0.118$

$C L=0.201$
$C M=-0.154$

GENERIC SMOOTH RUN \# 109

$$
\begin{aligned}
& \text { AOA }=-8.40 \\
& F L A P D E F=30.00 \\
& C L=0.204 \\
& C M=-0.209 \\
& C M=-2
\end{aligned}
$$

MAIN ELEMENT
$C L=0.080$
$C M=-0.119$

FLAP
$C L=0.124$
$C M=-0.091$

GENERIC SMOOTH RUN = 110

$$
\begin{aligned}
& \text { AOA }=-5.40 \\
& F L A P=D E F=30.00 \\
& C L=0.841 \\
& C M=-0.283 \\
& C D=-
\end{aligned}
$$

(
MAIN ELEMENT
$C L=0.639$
$C M=-0.133$

FLAP
$C L=0.203$
$C M=-0.150$

```
AOA = NEF 1.60}=30.0
CL = 1.646
CM = -0.252
```


GENERIC SMOOTH RUN $: 112$


```
AOA = 7.60
FLAP DEF = 30.00
CL = 1.713
CM = -0.344
```


GENERIC SMOOTH RUN = 114

GENERIC SMOOTH RUN \# 124

$$
\begin{aligned}
& \text { AOA }=5.60 \\
& F L A P=D E F=10.00 \\
& C L=1.194 \\
& C M=-0.097 \\
& C D=-
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROA }=7.60 \\
& F L A P D E F=10.00 \\
& C L=1.216 \\
& C M=-0.136 \\
& C D=--
\end{aligned}
$$

MAIN ELEMENT
$C L=1.085$
$C M=-0.048$

GENERIC SMOOTH RUN \# 126

$$
\begin{aligned}
& \text { AOA }=5.60 \\
& F L A P D E F=10.00 \\
& C L=1.191 \\
& C M=-0.094 \\
& C D=-
\end{aligned}
$$

AOA $=9.60$
$F L A P=D E F=10.00$
$C L=1.145$
$C M=-0.181$
$C D=----$

GENERIC SMOOTH RUN: 128

GENERIC SMOOTH RUN = 129

GENERIC SMOOTH RUN = 130

$$
\begin{aligned}
& \text { AOA }=9.60 \\
& \text { FLAP } D E F=1.3730 .00 \\
& C L=1.373 \\
& C M=-0.290 \\
& C D=-
\end{aligned}
$$

$$
175
$$

MAIN ELEMENT
$C L=1.168$
$C M=-0.128$

GENERIC SMOOTH RUN: 131

$$
\begin{aligned}
& \text { AOA }=7.60 \\
& F L A P D E=0.00 \\
& C L=0.904 \\
& C M=-0.036 \\
& C D=--1
\end{aligned}
$$

GENERIC SMOOTH RUN: 133

$$
\begin{aligned}
& A O A=9.60 \\
& F L A P=D E F=0.00 \\
& C L=0.936 \\
& C M=-0.092 \\
& C D=-
\end{aligned}
$$

GENERIC SMOOTH RUN : 134

$$
\begin{aligned}
& \text { RUA }=11.60 \\
& F L A P D E=0.00 \\
& C L=0.775 \\
& C M=-0.00 \\
& C D=--116
\end{aligned}
$$

[^0]National Aeronautics and Space Administration

SPECIAL FOURTH CLASS MAIL BOOK

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

