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SYMBOLS 

c configuratt on chord length 

pressure coefficient 

Interference pressure coef f fc i  ent 

j e t  dtameter 

aerodynamic 1 i ft 

4 nterference aerodynamic li ft 

aerodynamic p i  tcnl  ng moment 

4 nterference p i  tchi  ng moment about the j e t  center 

I nterfetence p i  tchi  ng moment about the con ff guration 
quarter chord 

jet-to-crossflow velocity ra t1  o 

r a t i o  o f  the j e t  diameter t o  the control point 
spaci ng 

axes o f  the je t  coordinate system, see Figure 1 

axes o f  the panel code caordi nate system, see Figure 2 

location o f  the jet center Sn the panel cade 
coordi nate center 

j e t  e x i t  ve loc i ty  

freestream velocity 

model angle o f  attack 

model yaw angle 

angle between the j e t  z-axi s and the panel code 
Z-axis, je t  roll angle 

iii 



je t  Injectton angle 

i sentropic J e t  thrust 



A method i s  proposed t o  combine a numerical description o f  a j e t  i n  

a crossflaw with a li f t lng surface panel code t o  calculate the 

get/aerodynamic-sur face i nterfetence effects on a V/STOL a i  rcraft, An 

i t e ra t i ve  technique Js suggested that  s ta r ts  with a model fo r  the 

properties o f  a j e t / f l a t  plate configuratton and modifies these! 

properties based on the flow f i e l d  calculated fo r  the  cdnfiguration o f  

Interest. The method would estimate the pressures, forces, and momel\ts 

on an aircraf t  out of ground effect, 

A f irst-order approximation t o  the method suggested i s  develaped 

and applied t o  two simple configurations. The f i rst-order approximation 

i s  a non-tterative procedure which does not allow for 1 nteractions 

between mu1 ti ple j e t s  i n  a crossflow and a1 so does not account for the 

influence o f  l i  ft i  ng surfaces on the j e t  properties, The j e t / f l  a t  plate 

model u t i l j  zed i n  the examples presented i s  rest r ic ted t o  a uni form 

round je t  injected perpendicularly i n t o  a uni form crossflow for  a range 

o f  j e t w t o a c r o s s f l ~  velocity ra t ios  from three t o  ten. Numerical 
1 

resul ts for a streamlined body o f  revolution and a symmetrical ai  r f o i  1 

are presented. The nunerical resul ts show that there i s  good agreement 

between experimental and model calculated surface pressure data for  the 

body of revolution and the non-14 f t i n g  wing, but indicate the need for 

i te ra t i ve  techniques for handli ng the i nteractt ons between l i  fti ng 

surfaces and a j e t  f n a crossfl ow. 



Thi s report i s  dl vided i n t o  two volumes, The fS rst volume i s a 

theoretical description o f  the computer code developed, The second 

volume 1 s a detai led Users Guide for the computeF code. 



SECTION I 
INTROOUCTI~N 

Uerf ical or short take-off and 1 and1 ng (V/STOL) a i  re raft 

t rad i t iona l ly  suppletnent aerodynamic 1 i ft wtth hf gh energy -1 i ft je ts ,  

While the use o f  l t f t  j e t s  I s  efffcient when viewed from a s t a t i c  

standpat nt  , they create adverse aerodynamic interference effects when 

used t o  supplement w i  ng-generated 1i ft durt ng fornard R ight. Yhen I f  ft 

jets are used during forward R l g h t  they a r e  ca l led jets i n  a crossfl ow, 

and the made ~f f l  ight  i s  termed translt ional  f l igh t ,  The adverse 

interference effects result from the vlscous mfxlng o f  the t i  f t  j e t  

f l u i d  wtth the crossflow f luid. The major adverse affects are a l t f t  

loss and a nose-up pitching moment, These effects Increase f n severity 

with increasing crossflow velocity, 

As defined heret n a j e t  f n crossf l  ow refers  t o  the qua1 i t a t t v e  

features o f  a j e t  injected I n t o  a cross flow, The terminology 

jetlaerodynamic-sutface ~efers t o  a jet  i n  crossflow issuing frorn an 

arbitrary aerodynamic surface, A je t / f la t  p la te  refers t o  a j e t  i n  

crossflow i ssui ng from a fl a t  pl a te  configurati  on, 

Modern high speed cowuters, through the use o f  panel cades, can be 

used t o  solve for the f l o w  f i e ld  on or about a conventf ofla1 aircraft for 

the condttions of attached f law,  A panel code i s a program which sol ves 

a 1 inear p a r t i  a1 df f ferent ial  equation numerically , by approxfmati ng the 

configuratton surface with a set of p a w l  5 ,  on vrhich unknown sf ngular i ty  

strengths are deft ned. the appl i c a t i o n  o f  boundary condt t ions a t  a 



discrete set of points, such as the panel centroids, generates a system 

o f  1 lnear algebnlc aiuatf ons re1 a t 1  ng the unknown sl bgul a r i  t y  strengths 

t o  the flow a t  the panel centroids. The equatfons are  then solved fo r  

the $1 ngularity strengths, which once known, provf de the proper t ies  o f  

the fl ow Pleld about the c ~ n f i ~ u r a t i o n . ~ ' ~  

r'.i ~f .? .qh  @xi st4 ng panel codes can be used to solve the fl ow field 

about a convtsnt-ronal a i rc ra f t ,  thcy f a l l  t o  predict the adverse 

Iqtarferlence effects on a V/STOL a i r c r a f t  I n  transitional Right. One 

method for  predicting the jet-tn-crossflaw in ter ference e f fec ts  on a 

V/STOL a i r c r a f t  1 s that o f  ~ u h n . ~  The method developed by Kuhn appl les  

empirical correct ions t o  the aerodynarntc coefficients f o r  a i r c r a f t  

without j e t s  I n  cross  f low. Kuhn's method estimates the integrated 

i n te~ fe rence  ef fects;  l i f t  loss, and pltching moment, There are methods 

currently under devel opnant which w i  11 combi ne programs for p red ic t i  ng 

j e t l f l a t  p la te  i nterferenca effects w l  t h  panel codesm5 

Most j e t - i  n-crossf low model s i n  use today predict  the f l ow  f i e l d  

due to  the propertfes o f  a' ;jet/flat p la te  model. This i s  because the 

devel opment o f  a general jet/aerodynami c-surface model i s t o o  compl ex, 

Two programs i n  use today, whlch estimate je t / f l  at  p la te  interference 

e f fec ts ,  use potent ia l  f low s ingu la r i t f  es t o  model the j e t  properttes, 

The f irst. developed by WDoler c t  a1 . ,' combl nes a d l  s t r i  but1 on of sinks 

and doublets along a cal-culated j e t  path t o  abtaf n the velocity ff eld 

due t a  the j e t  interference. The second program was or ig inated by 

0f atr7 i n  hfs masters thcsl s and l a t e r  developed t o  f t s  present form by 

~ c a r n . ~  The Oletz/Faarn model assumes two contrarotating vortrces t o  be 

the domjnant flow feature, thus the vortex proper t ies  are the  major 

i nfluence tn the j e t  interference effects, A non-potent1 a1 flow program 



has been developed by M l e r  and 6aronSg whtch uses an in tegra l  control  

vo lm method t o  represent the ax la l  f low in te rna l  t o  the j e t  p l  urne. 

A jet/aerodynamic-surface modeling method i s proposed t n tht  s 

report  whtch combines a jet/fl a t  p la te  model with a low-order panel code 

t o  mudel the flow fteld about a V/STOL a i r c r a f t  when aperating out o f  

ground effect, The mettiad proposed should be capable o f  accounti ng f o r  

a1 1 1 nteractions between j e t s  i n c ~ o s s f l  ow and a 11 fti ng surface 

caroff gutation. A jet/aerodynamlc-surface model i s presented, based on 

the proposed wthods which accaunts fo r  the inf luence o f  j e t s  i f i  

crossf l  ow on the I t  ftt ng surface, but does not account for the Inf luence 

o f  the li ftl ng surface on the j e t  properties, The model presented 

combi nas the Jet l f la t  plate model of  earn* with a low-order panel code 

developed by Analyt lcal Met hods ~ n c o r ~ o r a t e d . ~ ~  

.Section $1 o f  t h i s  report discusses model S ng methods, i n c l  udl ng 

panel codes and jet-in-crossflow codes. Sections 111 and I V  deal w i th  

the mechantcs o f  combintng the two computer codes used and the tes t tng 

of the resul tant  computer code, Section V presents the resu l t s  f o r  the 

configuration studies and concludes Volume 1 o f  t h i s  report. Volume 2 

o f  t h l s  teport presents a deta i led Users Guide for the WBWJAS computer 

code developed i n  Vol urn 1. 

Ff nancf a1 support f o r  tM s study was provided by NASA Grant NCC2-133 

under the technical d i rec t ion  o f  Mr, OeGo Koenig, NASA Ames Research 

Center. This feport  i s the result o f  Mr. K.L. Furlong's masters thests, 

supervised by Dr. R.L. Fearn. 



SEctIon 11 
MODELING METHODS 

Lowdrder Panel Codes 

A panel code 1 s a program which sol vrs numtrtcat l y  the 1 i near 

p a r t i a l  dl  f fe ren t ia l  equatton descrlbI ng potenttat flow about a 

surface, It does thS s by approxtrnating the surface with a set o f  panels 

an vrhfch stngul a r i  t i e s  o f  unknown strength are deflned, The c m o n  

slngular i t les are  sources t o  describe a non-ti fttng surface, and Jn 

addition, doublets ar v~r t ices ,  t o  describe a 11 ftl  ng surface, A low- 

order panel code i s a program i n  which the singular i ty strength 

d l  slrtbution i s p ieced  ss constant over the configuration, Higher-order 

panel codes requi re the s i  ngul a r t  t y  strength dl  s t r i  but! on t o  f i t  1 i near, 

quadratic ar higher-order equations, 

A gsnerlc w i  ng-body configuratton I s shown i n  Figure 1, which t s a 

reproduction from reference 11. The ftgure shows source panels deft ning 

the conftgurat i  on shape; the panel control points a te  shown as dots a t  

the panel eentrolds. The vortex system i s  shown i n  the wings, w i th  

t r a i l i n g  vortices t o  represent the wake region downstream o f  the 

wings. Each. singular i ty shown has associated with 1 t a perturbatf on 

velocity f l a w  A e l d .  The vector sun o t  a l l  perturbation velocf t f e s  and 

the freestream velocity dexrfbe the flow ffeld of a particular 

conffguration, Analytical expfessi ons for the pe~turba t ion  vel ocS t y  

flaw f ield f nduced by a constant source d is t r lbu t f  on OII an a rb i t ra ry  

panel are glven by Herr and Smi th.' Similar ly,  the veiod ty f i a l d  



Figure I, - Source and Vortex Panel Arrangements on a 
Wing-Body Configuration (reference 11). 



- w 

i n d ~ b b i ;  tbe,al mnts of a vortex d l  s t r i  bution are given by !&odxardZ s* 2 ;  ! - *  

and by Rubberc et a1 +3 

Ths perturbation vel oci t i e s  are rrsed t o  calcut ate the  caeff iclents 

o f  a system o f  l lnear  atgebralc equations, relatlng the magnitude o f  the 

vel oct t l ss  a t  the panel control poi fits, t o  the unknown si  ngul ari t y  

strengths, the st ngul ari t y  strengths, which produce the perturbation 

velocl t i e s  necessary t o  sat1 sfy the boundary cbnditions on each panel , 
i r e  determined by solving O h  'system of 1 inear algebraic squat1 ons. 

Wf t h  the singular i ty s f  rengths known, the veloci ty f i e l d  i s deterrni ned 

and the pressure coeff4cltnts calcul ate4 using Rernoul l I ' s equation, 

TP? pressure di  stri butlon 1 s t ntegrated nurnerf cal l y  over the 

configuration t o  y l e l d  the forces and moments on the conff guratios. 

The panel method chosen for th i  s p ro jec t  i s  a low-order panel code 

composed by Dvorak. Maskm, and ~oodward.lO The method 1 s known by the 

acronym WSABL, nhtch stands for  Wing Body Aerodynamic program with 

Boundary Layer sol utf ons, The major  reasons for choosl ng the WBASL 

panel code are 1 t s access4 bf 1 i t y  and the avail abf 1 i ty o f  know1 edgeabl e 

program users a t  the NASA Ames Research Center, where th i s  p ro jec t  

o r i  g i  nated + 

Jet- i  n-Crossfl ow Codes 

A jet/aeradynamlc-surface model should be capable of predicting the 

f nterference e f fec ts  an an aerodynamic configuratton due t o  the f low 

field assacf ated with a j e t  i n  a crossflow. As a prelude t o  d t  scussing 

jet/aerodynamic-surface models, a qual i ta t ive dex:r ipt ion o f  the f low 

fteld i s  i n  order, 



Description of the Ftw Field 

Based an exttnslve expertmental t nvestjgati ons of a silbsoni c jet 

injected i n t o  a subsonic crossflour, a qualitative description o f  the 

flow field can Be mde* Thts description of  the flaw ffeld follaws that  

presented by  earn.^ The characte~1st4~s of a j e t  i n  a CFOSSRQH 

described here apply ml nly t o  a round jet,  Jnjectad perpendiculdrly 

into the crossflow, from a f l a t  plate* Although the characteristics 

given below are for a particul ar jet/aerodynamt c-surface c o n f i g u r a t l ~ n ~  

they are character1 s t lc  of the gene~al j e t 4  n-cross flow flow field. 

Jot :&J&w Grrr a relatively short distance from the je t  e x i t  plane, 
YllCl 

the core Plow o f  the jet  i s characteri zed by slow changes i n flow 

properties such as veloctty proftle and turbulent tntenstty, For a 

submerged get, with no crossflow, the jet care 4 s contcal i n  shape and 

extends approximately st& j e t  dl ameters from the j e t  exlt pl anc12 before 

it Js eroded in to  a highly turbulent flow. When the Set i s  injected 

in to  a crossflow, the length of  the je t  core i s  found t o  decrease with 

decreasing jet-to-crossflow velocf t y  rat io.  

Shear layer. The bwndafy betwien the Jet and tk crossflow can be 

considered a shear la ye^ between the hf gh and 1 ow energy flows, Thf s 

sheaf layer i s  thin near the je t  exit, but rapidly tfiickens as the je t  

core diffuses. It t s thought that  thl s shear 1 ayer can be represented 

by a ~ g f o t ~  of concentrated vorticity,l3 the dtffusion of whfch can be 

used to describe the flow f ield o f  the jet  core with no crossflow. I n  

the presence o f  a crossflow the shear layer (vortex structure) i s  

distorted as w e l l  as dlffused by the crossflow. The disCort3on o f  the 

shear layer i s  thought to' be the origtn o f  the pa4 r of contrarotatfng 

vortices which are characterf stlc o f  the jet-In-c~ossflow flow field, 



Contrarotating vortex pair ,  The dominant feature i n  the jet- in- 

ccossflow flaw fjeld i s  a pat r o f  dl  f fuse contrarotat1 ng vortices. the 

v o f t e ~  patv has been observed t o  start near the j o t  ex l t  and extend  fa^ 

dawnrtrcarn.14 The d l  ffuSf+ vortex ~ a t r '  i s deflected downstream a1 ong 

curved paths. These paths l i e  on t i t he r  side of the plane o f  f low 

symmetry and are tocatad on the concave slldt o f  the j e t  

centerli ne. 14si5 As the contnrotatl  ng v ~ r t i c e s  are swept downstream 

they di  ffuse rap1 dl y unti 1 the1 r core radius I s approximate1 y equivalent 

t o  the half  spacing between the vortex centers. The diffusion o f  

vor t tc l ty  between the two YOF~ICCS results I n  a decrease i n  the strength 

o f  each vortex, As an Sndicatton of the dominance of the contrarotating 

vortfces as a flow feature, the vortex p a i t  has been observed as far as 

1000 j e t  diameters dwnstnatn from .the j e t  oritfce.16 

Jet plume. The j e t  plume i s  readt l y  observed by flow visual i  zatlon 

techniques such as smoke 1njection.l7 The deflection and decay o f  the 

i n i r i a l  je t  can be detected by velocity measurements i n  the j e t  plume. 

The curve that traces the locations o f  the maxtmum Jet speed, from the 

term1 nus o f  j e t  core through cross sections of the j e t  plume, i s called 

the j e t  center1 t ne. The locat ion o f  tbe j e t  center14 ne can be 

determined t o  a point  where the local maximum o f  the j e t  velocity i s  

i ndl s t i  ngui shable ftom the freestream velocity. lhe  extent of the j e t  

centerl ine has been found t o  be ft fteen t o  twenty jet  diameters 

downstream of  the j e t  exl t  for the inst~urnentation used i n  the tes ts  of 

Feam and ~ c s t o n ~  (l .e., yawlpl tch probes). 

Wake, Compltcatlng the f l o w  f i e l d  near the j e t  e x i t  1 s  a wake - 
region, This wake I s  clearly vis ib le I n  o i l  smear studies on a i l a t  

plate.18 The wake region beg1 ns Just downstream o f  the j e t  core and i s 



a result of a separatfon of  the crossflow as it flows around the j e t  

Core* 

Most of the features described above are shown i n Figure 2, The 

figure i s representathe o f  a j e t  i n  a crossflow i ssutng f ~ o m  a f l a t  

p la te  a t  a ntnety degree i n j e c t i o n  angle and a jet-to-crossflow veloci ty 

r a t i o  (R) of eight. The st ippled area represents the observed smoke 

plume, wi thtn which the re la t i ve  locations o f  the j e t  centerllna and 

vortex curye are shown. The vovtex curve i s  a projection o f  one of the 

vortex paths onto the symmetry plane. The diffuse contrarotat ing vortex 

pal r i s  I 1  lus t ra ted i n  a cross sectlon t o  the j e t  plume, and re la t i ve  

positions of the j e t  core and f i a t  p la te  wake region are shown, A1 so 

shown Jn Figure 2 are the coordlnate axes used t o  descrtbe t h e  j e t  

Jet/Fl a t  P late Madel s 

A jet(aerodynam1 c-surface model should provide the perturbation 

veloct t ies a t  a point o f  i n te res t  due t o  the combined influences o f  the 

jetfaerodynamic-surface structure. €xi  st4 ng modeling technl ques for  

trans4 t i  anal fl ight  cons1 s t  largely  of empi rf cal l y  derived model s, us1 ng 

potential  flow slngul ar t  t i e s  t o  account far the complex flow 
. . 

structure. ~ h r e e  jet/aerodynamlc-surface model s ace d l  scussed here, a l l  

use a f i a t  p la te  as the aerodynamic-surface conftguratiort. 

The fl r s t  model df scussed , devel oped by Wool er  et a1 ,6 cmbi nes 

d i  str tbut ions o f  sinks and doublets along the calculated j e t  path t o  

obtain the ve loc i ty  f i e l d  due t o  the j e t  interference, As shown t n  

Figure 3, the sf nks are uni formly d i  s t r f  buted along an axt s normal t o  

the freestream, and account for the entrai ment o f  the jet, fhef r 

strength, which varies w i  t h  the dl  stance from the jet,  i s  dependent upon 



Cross Section to Jet Phrme 
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thre'e emptrically determined coefficients. the valbes chosen result i n  
? 

' a good correlatf an between experimentally and theoretical ly  derived j e t  

center1 t ne locations. The doublets are d i  str ibuted along the j e t  

centerline and account for  the j e t  blockage effect by creat j  ng a flow 

past an equt valent c l rcutar  c y l i  nder, Tht s model I s  ef fect ive I n  

predlctt ng the i nduced perturbation ve loc i t ies  for a i  rcraft 

conflgurations whtch do not Include surface area behind a j e t  t n  

crossflour. For configurations whlch do include surface area behind a 

j e t  i n  crossflow, Wooler's model, along uCl t h  others, underestimates the 

magnitude o f  the negative pressures found i n  the wake region. 

The Wooler model has been extended t o  4 nclude a wake correction by 

Wal ters and yen,19 This extension t o  the Uooler model eonsi sted o f  a 

pat r of shor t4  i ved, law-strength vortjces Incorporated i n t o  the wake 

area. The addit ion o f  these vortices resulted i n  an improvement I n  the 

predfction of the surface pressures on the f l a t  plate. While t h i s  wake 

model f mproved the abi l i ty  o f  the Wooler model t o  predfct the pressure, 

force, and moments on the Plat plate model, it still was not able t o  

match the negative pressures found immedfately a f t  o f  the j e t  core. 

Thl s wake model, though applied t o  the Wooler model, could be adapted to 

other j et/aerodynamlc-sur face model so 

An extension of the Moolet model has been made t o  model mult iple 

j e t s  i n  crossflnr. This work, presented by Ziegler and ~oo ler .~O gives 

methods for model i ng both tandem and transverse jet/fl a t  p la te 

configurations, The model does not account for any v i  scous wake 

effects, I n  th is  nethod the case o f  transverse je ts  i s  modeled by 

assumt ng I ndependent j e t s  un t i l  the trajectories meet, then combi nl ng 

the j e t  plumes. for  the tandem j e t  case, the crossflow speed on the a f t  



j e t  i s  decreased as a resul t  of forwafd j e t  blockage, and the two jet 

plumes are combined as they met, 

The second mdel was presented by ~let2'  I n  h is  masters thad r and 

later developed t o  i t s  present fom by  earn.* This lnodcl assumes the 

two contrarotati  ng vortjces t o  be the domi nant character4 st ies o f  the 

jet/flat plate conftguratf on. A less dmlnant, yet still Important 

characteri stic, i s  the e n t r a i m n t  o f  freestream f l u i d  tnto the jet 

plume. The model i s  trnplemented by placl ng a series of l i nea r  vortex 

filaments along the vortex paths, and a series of l inear  source segments 

along the j e t  centerl ine curve. The strength dt st r ibut lon for the 

vortex filaments i s  determi ned by i nferrtng the vortex properties frw 

the experimental data o f  reference 14. 

S i m l  l a r  t o  the Wooler madel, the model o f  Fearn I s unable t o  

predict the pressure d is t r ibu t ion  f n  the wake region, Fearn4s model 

does, however, contain an empirical wake correction, which when used 

results I n  good correlat$on o f  model and experimental data fo r  the 

pressure, force, and moment data for f l a t  plate nrodels. Fearn's model 

has been appl ted t o  the cases o f  a round jet/flat plate configuration 

w l  t h  perpendi cul ar j e t  i nject i  on and jet-t~~crossfl ow velocity rat? as 

from three t o  ten, 

The t h i r d  and f i n a l  model discussed i n  t h i s  report  was developed by 

Adler and I3arona9 Their model 4s based on a control volume method. 

This model i s  a quasi-th~ee~dimensional in tegra l  method used t o  solve 

the problem o f  an i sothermal, incarnpressi ble, turbulent, round j e t  f n a 

crossflow, The model i s  based on two integral  momentum equations, one 

written for a d j rect ion para l le l  t o  the j e t  centerl ine and the other for 

a d i  rect i  on parpendicul a r  t o  the center1 i ne. - The mathematical model i s 



nmerically wlvtd, producing a flw field wirhin the j e t  plume. 

Results o f  t M s  method, as reported I n  refereye 9, show that  It 4 s 

capable of predtcting the axial flow i n  close proximity t o  the jet 

plume, but does not adequately predfct the v e t d t y  and pressure 
perturbations on f-at,'tgurations far ~ P M  the get plume, The Adler and 

Baron method I s  not restr icted t o  a je t f f l a t  plate configurattonr 

The choke o f  j e t / f l a t  p la te  model far th is  project f s the method 

of Fearn. Thts det/Aerodynamte-Surface In ter fe~ewe (JAsI) program 1 s 

known as JASIB Jn i t s  present form and 1 s documented i n  reference 8. 

Cmbf ned Mcthods 

There I s a need for a computer modeling method which cbnrbi nes a 

panel code wtth a jet/aerodynamlc-surface model. A t  t h i s  t ime one 

method i s  i n  use which combines j e t / f l a t  plate made1 s with panel 

codes. It i s  the one developed by Beatty and Kress, A t  the time of 

th is  writ1 ng there are a nrmber of studies angoing whjch are addressing 

th is  Unfortunately. reports on these studies are not 

available for descriptfon here, 

The computer code developed by Beatty and ~ r e s s ~ '  i s  Intended to  

model u i  ftually a l l  aspects of V/STOL fl ight. Their computer program 

uses the Hess potential flow code t o  model freestream e f h c t s  on the 

aircraft, Supplementing the Hess code i s  a serf es o f  programs t o  model 

the propul s i  ve effects on the aircraft .  The propul sive effects section 

S nclude: an i n l e t  analysis sectjon, three jet/flat plate sections, and 

a ground effects seotion, The three jet/flat plate sections are a 

modi fied ~ o o l e f i  method. mod4 fled WestonZZ method, and the Thanes and 

~ e s t o n ~ ~  method for rectaigular j e ts  i n  crossfl ow. The nodl fled Woaler 

method i s  essentially the same as that described e a r l j e r  except for the 



addition of a ground effects a lgor t t ln  and a ifmitation that there be no 

more than two j e t s  per je t  system. The MestoneD method 4 s a version o f  

the early wo~k o f  Dietz and Fearn, The modified Weston model o f  b a t t y  

and Kress i s  reported tn  reference 21 t o  be applicable t o  various 

f njsctlon angles, vari aus Jet-to-crossfl~w veloct t y  ratios, and t o  

muttfple jets# The entenston t o  handle multiple jets i s  similar t o  that 

presented by Ztegler and Wooler, as mentioned earlier. The a b I l l t y  t o  

made1 varlous in3ection angles and velacity ra t ios  I s  accomplished by 

extend1 ng the work preranted by 0tetz7 i n  h15 masters thesl s. The work 

o f  Thames and bIestone3 on a rectangular Jet i s  limited t o  a je t  wlth an 

aspect ra t io  of four, The jer f s oriented wlth the major ax4 s either 

parallel or perpendicular t o  the cross flow, The method used by Tharnes 

parallels that  used by Dietr for the raund je t  caser 

Results for the programs of Beatty and Kress, as given f n 

teference 21, shw tha t  the modified Westan model gives surface pressure 

results which agree closely with the Waoler method* Both the modified 

Westan and tlooler methods give good agreemeqt with experimental surface 

pressure data for regions exter ior  t o  the Jet wake area; the need for a 

wake model for the je t  wake region i s  stressed. Another area o f  concern 

presented f n reference 21 f s that o f  vt  scous and non=vl scous 1 n t e ~ a e t l o n  

between the vat'lous elements o f  the entlre program package, l .e., the  

interactions between the freestream fl OM section and the proput sive 

effects section. 

The objective of thts proposed mthod i s  t o  determine the inviscid,  

potenttal flow fteld on and about a V/STOL alrcraft  i n  transftianaf 



flight out of ground effect. The proposed mthod I s  based on the 

following assumptions: 

1. A potential flow model, for the f low f ie ld  induced by the 

j e t  p l  m o f  a known Jet/aerodynamic-surface 

conf4guration exJsts. This mdel 5s ~eferred t o  as the 

jet/base configuratton model. the j e t  plume propertf es 

are assuneb t o  be de'pendent on the fol low1 ng: the 

aerodynarnlc-surface confi gupati on, jet  or4 flee shape and 

velocity profile; je t  injection angle, and the Set-to- 

crossf1ow velocity ratio. 

2. The V/STOL ajmraft configuration of hterest  i s  modeled 

with a potential flow panel code, 

3, A local velocity r a t i o  f ~ r  the je t  plume properties can 

be defined, For a jet / f lat  plate confqguratian, i t  I s  

conventjonal t o  defj ne the velocity ra t lo  a s  elther 

UJUj or tJj/Um, Where U j  i s  the j e t  ex l t  velocity 

maqnitude, and Urn i s  the crossflow velocity magnitude. 

For a local velocity ratio, the crossflow velocity i s  

replaced wtth the local onset velocity, which can be a 

vector or a scalar quantfty depending on the j e t  plume 

model. The local anset velocity i i considered t i  be the 

velocity (or speed) a t  a point o f  interest i n  the Jet 

plume (i .e,, a sf ngularlty control point) due t o  a1 1 

i nfluences other than those of the j e t  plume unde~ 

considerati on. 



The proposed mthod i s imp1 mnged by f o l l  owl ng these steps: 

I. Calculate the panel code sl ngularity . strength 

d i  stribution, The onset flow t o  the panel control points 

i s  the sum o f  the freestream flow and a l l  jet/base- 

configuration 3 nduced flows. 

2, Use the results o f  step 1 to calculate the local veloci ty 

rat40 for  each potnt o f  in terest  i n  the j e t  plume(s), 

3, Use the local  velocity ra t io  for each potnt o f  tnterest 

1 n a j e t  plume t o  mod1 fy  the j e t  plume praperti os, 

4, Check for model convergence by comparing the j e t  p lme 

property changes with a preset tolerance, 

5, I f  the model has not canverged then return t o  step 1 uslth 

the new j e t  plume properties, If the  model has converged 

then the potential f low solution 5 s complete, 

The above method should, a f te r  convergence, produce a model which 

represents the Jet/aerodynamic-surface configuration o f  i nterest better 

than Sf the m t h o d  were stopped a f te r  step 1, The only c r l  t e r i  on 

mentioned above far adjusting the j e t  plume properties i s  the local 

veloctty ratio, There may be other c r i t e r i a  which are important t o  the 

j e t  p l  ume properties. 

V t  scaus flow model 1 ng t s not included t n the prrjposed method, I f  a 

v i  scous flow model, i .em, a wake model, i s  requf red it could be added 

after the potential f l o ~  calculation section, 

One should note that  the above method describes the modeli ng o f  

mult iple j e t s  i n  crossf16wm The flow field o f  mult iple j e t s  i n  

crassflow, all  i n  close proximity t o  each other, has been observed, by 

~ r a d e n , ~ ~  t o  be more complex than d g h t  be expected. Two better 



procedures far hrndltng multiple j e t s  i n  crossf~ow i g h t  be: 1) t o  use 

a jet/base conftguration which models mult ip le j e t s  f n crossflaw; 

2) construct a composite model s imi lar t o  that of the Ziegler and Wooler 

met hod.20 

Presented Model 

Although the method proposed above t o  solve for  flow about V/STOL 

af rcfaft i s  feasible a t  t h i  s tlme, It i s not attempted for  t h i  s 

report. As a t e s t  and demonstration o f  the method proposed, a 

f i rs t lo rder  model, fabricated a f t e r  the method described above, i s  

developed, tested, and applied t o  two speclf ic configuratjons. The 

f i rst*arder model 9s essenttally the f l f s t  step o f  the method proposed 

above* The model u t l l i  zes an empirical j e t  plume model from a j e t / f l  a t  

plate configuratf on, for the Jet influences an the l i f t i n g  surface 

configuration, The model has no Interact4 on between mult iple j e t s  i n  

crossflow, although it w i l l  accmadate mult ip le j e t s  I n  crossflaw on 

the  1 t fti ng surface configuration. A1 so, due t o  the non-iterative 

design o f  the modal, the l i f t i n g  surface has no influence on the j e t  

properties, The f i rst-order model i s  l imtted by the j e t / f l a t  plate 

madel t o  the case o f  s~~bsonic uniform round j e t s  Injected 

perpendicularly i n t o  a subsonic uniform ctossflow. with jet-to-crossflow 

velocity ra t ios  from three t o  ten, 

The computer model presented here 1 s assembled by comb1 ning a 

modified version of the Jet/kradynarntc Surface Interference program 

(JASIB) of   earn,^ as a set o f  rubrbt ines, with a low-order panel code 

for three~dimensi onal 1 i fti ng surfaces i n sub~oni  c i nvt sct d f low 

(WBABL) .lo The model presented i s veri f led  by model 4 ng a f l a t  pl ate2= 

with a round j e t  i n  a crossflow. Two ather conf4guratIons modeled are a 



symmetrical at rloi 126 and a stream1 i ntd body of revolutl on.z7 The 

results o f  each conft guratf on tested arc compared with experimental data 

i n  the form o f  surface pressure coefffcfents and integrated body forces 

and moments, where they are available. 



SECTION 111 
COMBINING TWO COMPUTER COOES 

The two computer model 1 ng codes t o  be comb1 lled are WBABL, a 1 ow- 

order panel code, and 3AS 1076, a j e t /  fl a t  pl ate model S ng code, The 

JASf076 code t s a direct errtensten of the JASf0 code, devel aped by 

FCIPA? The JASIB code models the flow over a f l a t  plate wlth a round 

j e t  injected perpendicularly in to  the freestream flow, The JASIB76 code 

I s  prtmarily designed to  functlon as a group of subroutines on a 

CDC-7600 computer, and t o  be independent o f  any surface conflguratirrn. 

The tlBABL panel code i s a 1 ow-order panel code for sol vf ng the f l ow  

about a w i  nqlbody combt nat i  on. The WRABL code a1 so has a boundary 1 ayer 

l te ra t jon  section which I s  not utilized f n  the  combined cowuter code, 

Both computer codes are written t n  FORTRAN f V ,  

WBABt Computer Code 

The general structure of WBABL 1 s shown f n Figure 4, the  WBAr3L fl ow 

chart. The actual program i s  made up o f  a series o f  overlays, t o  meet 

the memory requirements o f  the CDC-7600 computer system, The overl ay 

structure 1 s shown i n  Fd gure 5. The executive program, WBABL, shown as 

Overlay (0,0), controls the overall panel code by call I ng I n turn the  

potenti a1 flow ovet'l ay , YBOLAY, and the boundary 1 ayer overl ay , 
INTEGRAL. The calculation sequence for the WBARL panel code I s  a s  

fol 1 ows: 

toft oeometry, A1 O input parameters for the 'I i ftj ng and non- 

I t  f t i n g  surfaces are read i n  the overlay WBPAq. The planar panels are  
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lofted and the t i f t t n g  surface vorte% network i s  l a i d  out. The X, Y, Z 

coordinates o f  the four panel corner points, for a l l  surface and vortex 

panels bet ng considered, are calculated, and written t o  an auxt 11 ary fi le 

and the output ft 1 e, 

Calculate potential flow, W l  t h i n  the WSAERO overlay all  potentjal 

f low calculations are made. Due t o  the numetous cornputattons made i n  

tht s overlay, 4t i s  the largest O V @ T ~ ~ Y  o f  the enttre panel code 

structure, WBAERO executes as follows: The corner points computed i n  

WBPAN are read from an auxt l iary f i le ,  Subroutine ELEMEN 4s  then cal led 

for each panel. Thi s subroutine calculates the control point locations 

and the transformation matrix, and then transforms the corner points 

from the reference coordinate system t o  the panel coordinate system, 

The panel control and corner points are then transformed t o  an analog 

body by s u b r o u t t ~  ANALOG. Thi s i s  requl red by &thefti s 

compressibi l i t y  ru le  arld 1 s done whenever the freestream Mach number i s  

greater than one-tenth, Subroutines INFLU and WINGIN calculate the 

velocity influence coef f i  cients induced by un i t  source s i  ngul ar i  t i e s  and 

un i t  vortex . s i  rigularl ties, respectively, These i nfl uence coeff ic ients 

are cmbi ned t o  form the aerodynamic 1 nfluence coeff icf  ent matrlx, The 

boundary conditians, i ,e., zePo normal flow a t  each panel control point, 

are calculated fo r  each angle of  attack and yaw. Mith the above 

Infomatt on the system o f  a1 gebraic equations re1 at1 ng the sf ngul a r i t y  

strengths and the boundary conditions i s  solved for the source and 

vortex stpengths i n subrouti ne SOLVE. H i  t h  the s j  ngul art  t y  strengths 

known, the veIac4t;Ses a t  the c o n t ~ o l  poi nts are determi ned, With the 

velocit ies known, the surface pressures are determined, The forces and 

moments on the body are found i n  subroutine FORMOM. A more detailed 



descrtptlon of the above procedure t s  given i n  the theory section of 

refe~ence 11. 

Streamline calculation, Overlay STREAM calculates the trajectory 

o f  up t o  twenty-five body streamlines. The starting l w a t l o n  of the 

streamlines can be any control point. The stteamllne i s  traced fore and 

a f t  t o  the body l imits. 

Boundary 1 dyer calculation, Over lay INTEGRAL contat ns the boundary 

layer calculation subroutines, which determine laminar and turbulent 

boundary layer devel apment along the stream1 I nes spec1 f t  ed abover A 

detat led description of the boundary 1 ayer subroutt nes I s  given i n 

reference 10. They are not u t j l i zed  for  t h i s  study and are not 

df scussed here, 

Modification af  the WBABL panel code for tnclusian o f  a jet-in- 

crossflow module i s necessary 4 f the effects of j e t s  Jn crossflow are t o  

be evaluated, The ideal solution t o  the problem o f  how t o  integpate the 

jet-in-crossflow module i n t o  WBABL would be t o  create a new overlay for 

the j e t  effects. This i s  not possible, however, because of the overlay 

hferafchy and the exist ing structure o f  WBABLm The input t o  the j e t  

code requires that i t  be addressed af ter  the control points are defl ned, 

e,g,, withln WBAERO, The output f rom the j e t  code and the j e t  

perturbation veloctties, must be available t o  WBAERO for i ncluslon I n  

the control point boundary condition calcul a t i  on, These requt rments 

d ic ta te  that a j e t  overlay be addressed from wtthtn the WBAERO overlay, 

but a second 1 eve1 overl ay, (i ,em, WBAERO) can not c a l l  other overl dyr. 

The fact that the jet- tn-crossf lw module can not be an overlay 

necessitates that  it become a group of subroutines wfthln the WBAERO 

overlay. th is  requirement brings about new complications, i n  the form 



o f  avaf lable memory. WBAERO i s  the largest over lay o f  the entjre WSASL 

p a ~ k a q e ,  thus OCCUPYI ng the maximum manory, the maxi& nunber o f  

panels [control pofnts) t h a t  a confjguratfon can have i s  limited by 

avatlable inemory, whleh 1 s control t  ed by the  sf t e  o f  the programs and 

subroutf nes wi th in  the memory, Thus, i n  order to  have a Jet-in- 

crossflow module within the panel code, the panel code must sacrl Pice 

i t s  mast viiuabla asset; i t s  a b i v t y  t o  lnffdel large campleg 

configur'attons and st i l l  mat nta ln  accuracy with a fine panel neturork, 

The JASIB76 program i s  a direct descendent o f  the JASIB program 

davel oped by  earn.^ The JAS t0 prograrn catc~l  ates the pressure 

d is t r ibut ion induced on an ln f ln i te  f l a t  plate a t  zero angle o f  attack,  

due t o  the Snfluence of a single round j e t  I n  a crossflow, The R a t  

plate i s  modeled by the e t h o d  of images, and the pressure coefficients 

at  the control points on the plate are found by the appl icatton o f  the 

t ncompressi bl e Bernoul 1 i ' s equation. The JAS IS76 program I s a group o f  

subroutl nes, control 1 ed by an executive sub~out i  ne, ~ h i c h  computes t9e 

perturbation vetocftfes, a t  a specified point, due t o  the j e t  plume 

properties o f  a j e t / f l a t  plate model, The propertfes o f  the j e t / f l a t  

plate  model used f n  JASIB76 are those o f  a ruund, uni farm, subsonic j e t  

injected perpendicularly I q t o  a unt fon subsonic crossflow from a f l a t  

plate, The jet-to-crossflw velacity ratto must f a l l  between three and 

ten. A flow chart outllnfng the structure o f  the JASIB76 module i s  

shown i n  F isure  6. - 
The JASIB76 executive program oversees the computation procedure by 

systematf cal ly call 1 ng each o f  the subrout1 ne: groups. Contained vii t h i  n 

the execut iv~  program, i n  the form o f  comment cards, i s a br tef  hJ Story 
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o f  the JASI  programs and a descr ipt ion of each subroutine with10 the 

module, The executive program I n  the module 3AS1876 receives the 

FORTRAN CALL statement from the outside program, i n  t h i  s case UBABL, 

The CALL statement t o  SASI076 contatns the arrays spec1 fyfng the  ff eld 

points o f  i nterest and the j e t  perturbat ion ve loc i ty  arrays associated 

w l  t h  the f ield points. Both the f i e l d  points and ve loc i t y  components 

are i n  the panel code reference coordl nate system, Varf ables passed t o  

JASIB76, from the panel code, through COMMON statements are the 

following: the tocatfon o f  the j e t  center; j e t  diameter, 0; j e t  t o  

crossflow velocity ratio, R; j e t  injection angle, 8 ;  angle o f  attack, a; 

yaw angle, $; and the j e t  roll angle, y. The dirnensi onat un i t s  gf ven i n  

the I 1  s t  above are a1 1 1 n the panel code reference coordinate system, 

The subrouti ne sect1 ons c a l l  ed by the executive program are d e c  r i  bed 

below i n  the order o f  t h e i r  call i fig. 

DATA. Thi s subrouti ne reads from the f nput f i l e  the opt lons and - 
parameters for the jet/fl a t  p1 ate model. The values i n  the parameter 

sets are dependent on the fa1 low+ ng j e t  propert ies: ve loc i ty  rat to,  R; 

in ject ion angle, 6; j e t  e x f t  shape and p ro f i l e .  

SEGCt Tht s section approximates t h e  j e t  pl ume center l  i ne -' 
geometry. The j e t  center l ine i s  broken i n t o  l inear ,  constant strength 

source segments t o  model the j e t  enttai nment, The SEGCL subroutine 

c a l l s  s i x  other subroutirles f n order t o  dtvfde the j e t  center l  ine  and 

deterdne the source strength on each segment, 

SEGVC The SEGVC sectton approximates the geometry fo r  the vortex -' 
paths, As i n  the SEGCL section t h e  vortex paths are segmented and 

Constant strength yo r t i t es  are placed on each segnent. Dnly the 

starboard vortex path i s  approximated; the geometry o f  the vortex paths 



i s  ss;ymmctrical about the 8-2 plane i n  the j e t  coordinate system, The 

rorticity on the port vortex segments i s  equal tn strength and opposite 

i n  stgn t o  that  of the starboard segments, 

TOTVVC This sectfon cdlculdtes the velocity f nduced a t  the f ie ld  - 
points by the contrarotating vortex system, Contained i n  TQTVVC f s the 

calcuialion o f  the transformation matrix for re1 at1 ng the j e t  coordf nate 

system, as shown In FIgure 2, t o  the panel code reference coordinate 

system, as shown tn  Figure 1, the transfonatf  an matrix I s used to  

transform the f ief d pot n ts  t o  the j e t  coordinate system and the velocity 

components frm the j e t  coordtnate system i n t o  the panel code reference 

coordjnate system. The subroutine VVG, whlch f s ca l led  by TOTVVC, i s 

the rout! ne whlch actually calculates the perturbatf on velocf t t e s  for 

each f ield point. 

TOTVCL, The TOTVCL subroutf ne, which uses subrouti fie VCL, I s  - 
synonymous i o  functian t o  TOTVVC, I n  that  i t  calculates the perturbation 

velocit ies a t  the field points due t o  the j e t  plume entrainment. 

Subrouti ne VCL i s cal I ed by TOTVCL. V C t  catcul ate$ the perturbation 

vel octty fop each f ield point, 

WAKSUB. Subfoutt ne WAKSUB f s used t o  model the wake region - 
downstream o f  the j e t  f n  a crossflow. A t  the time of t h i s  wrl t lng the  

wake subroutine i s  inactf  ve i n  the JASIB76 program module, he reason 

for the lack o f  a wake subrouttlre i s  tha t  the only wake madel avaflable, 

a t  the time the program was coded, was an m p i r f c a t  catrection , 

subroutine which works directly with the surface pressures; onty the j e t  

perturbatios velcrcIties are available i n  the je t  +mdute, A t  present 

wake model i ng i s hand1 ed by a 'post-processor uni t ,  which modi f i  es the 



pressure distribution downstream o f  the j e t  a f te r  the main program has 

fi'ini shed executt on. 

Output from the $AS1076 prograin i s  ptovf ded through three 

channel s: the CALL statmnt address1 ng JAS 1876, COMMON b l  acks, and the 

panel code output file, The j e t  perturbation ve loc i ty  components for 

each fletd potnt are provided through the CALL statement; the 

perturbation vel oci t i e s  are addad t o  t: he values provided by the CALL 

statement a t  the i ni  t i a t i an  of 'JA~1876. the t sentropic je t  t h r u s t  

components, i n  the paflel code reference coordinate system, are output 

through the COMMON blacks whtch l l n k  t h e  panel code t o  the j e t  module, 

The output, written t o  the  output f i le ,  i s  dependent on the dfagnostic 

and output options spec1 f jed jn the j e t  input  parameters, Of agnostic 

output: from 3ASIB76 cons1 s t s  of tho follawlng: a1 1 f nput parameters and' 

control point  locat ions;  geornetry for t h e  Je t  centerltne and t h e  

starboard vortex; vortex induced v e l o c j t i e s  a t  a f leld p 6 i n t  fop a l l  

vortex segments; t o t a l  vortex induced v e l o c j t y  for a l l  f i e l d  po in ts ;  

entrainment induced velocl t jes a t  a ffeld poin t  for a l l  centerline 

segments; t o t a l  entrai  m n t  f nduced ve loc i ty  for all f l e l d  pol nts;  and 

the j e t  thrust  components, 

Recall from the prevtous description o f  WBABL t h a t  the overlay 

WBAERO occupies t h e  l a r g e s t  quantlty o f  core mmory, and t h a t  the 

JASSB76 code must be placed i n  t h i s  averlay. For t h i s  reason t h e  core 

mmory requirements o f  JASI876 are reduced. The primary method o f  

reducing the core memory requi rments o f  a program executt ng on the 

CDC-7600 computer i s  t o  place as many variables as possible i n  the Large 

Central kmory (LCM) region o f  the computer, A1 1 variables i n  labeled 

COMMON arrays wl th in  JASlS76 are placed f n LCM, As a result o f  placing 



all possible arrays I n  LCM, the JASSB76 program requires only three 

variable arrays t o  be i n  the cofe memory. These are the perturbation 

veloctty components. Each of the  velocity arrays I s dimensioned t o  the 

nwrber of contra1 points* The only other arrays i n  core memory o f  any 

signif icant size, are the f ield point 'laeatf ens, and they a r e  required 

t o  be i n  core memory by the panel code, W8ABL. 

The Combined Computer Code, blBt1JAS 

The combined computer code, known by the aeronym WBWJAS, i s f o m d  

by adding the JASIB76 module t o  the WBABL panel code as a set  a f  

subrolrttnes i n  the W0AERO overlay, A f low chart of the \JBWJAS execution 

I s  shown i n  Figure 7, The flaw chart shows that  the structure and now 

of the WBWJAS program I s f dentf cal t o  WBABL, except for the add2 t t ~ n  o f  

Jet e f f e c t s  before the potent la l  now calculatfon. I f  the WBWJAS 

program I s executed w i  thaut j e t s  I n crossfl  ow, the executi an and output 

would 'be identical t o  that  of the WBABL program. 

The execution o f  WBWJAS with a j e t  I n  crossfl  ow w i  11 d i  f fer from 

WBABL as fot 1 ows. After l u f t i  ng the geometry for the body and wf ng 

panel networks, the program reads t o  determine 4 f there w i  11 be any je ts  

i n  crossflow and f f so how many. The panel code next determines the  

velocity fleld perturbations due t o  uni t si ngul a r i  t y  strengths on the 

source and vbvtex panels. ThJ s f s  the same as WBABL, When a1 1 geo~netry 

i s  known, WBAfiL calls the JASI076 modute, passtng f t the field potnts  

and je t  perturbat ion vel ocl t f  es for each f ield poi nt ,  When e)tecuti on 

returns from JASI876, the value o f  the jet perturbatton ve loc i t i es  i s  

the tnput value plus the value determined for the j e t  t h a t  was just 

addressed, After a l l  je ts  i n  crossflow have been addtessed, the panel 

code treats the j e t  perturbation velocities as i f they are a part o f  the 
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freestrearn Row. The r lght  side of the matrix equation, the boundary 

condl tibns, I s computed us1 ng the jet- f  nlcrassfl ow perturbation 
* 

ve la t i t les  as canponents of the freestream flour. The matrix equatlsn i s  

solved, as It would be I n  the nonmjet i n  C ~ O S S ~ ~ O W  case, for the  

st ngul art t y  slrengt hs. W i  t h the $1 ngul ari ty  strengths known, the 

velocity a t  each control point i s  the sum of the ffetstream valoclty and 

a1 1 perturbation vel oci ttesr The pressure coeffictents aE each control 

point are then found u s h g  Btrnoull 1 's  equatiotl, This completes the 

potential fl ow i a l c u l  a t ion for WBWJAS. 

The streamline tracing and boundary layer calcul atfon sections 

follow the potenttal now calcul attons, These sections do not have t o  

be exerci sed when executt ng the panel code and far th i  s Ehesi s they are 

not exercl sed, The fi nal computation f n the panel code i s  the numerical 

f ntegtation of the pressure d l  s t r i  but1 on I n  order t o  deterni ne the 

forces and moments, The deci sidn block i n  the flow chart (Figure 7 )  

foll owi ng the force and moment calcul a t i  on, ITR=ITRWAX, refers t o  the 

nmber of  angle o f  attack cases betng investigated, If only one case i s  

used the program would stop executfon af ter  the flrst complete run, 

The WBGIJAS pFogram i s not without l i~nf  t a t t o n s ,  The prograrlr 

contains most o f  the l im i ta t ions  o f  the WBABL and JASIS76 programs plus 

others, The reader i s  reminded o f  three matn l imi ta t ions t o  JASIB76: 

it 'model s a round uni form, subsonjc j e t  i njeeted perpendieul ar ly t n to  a 

uni f i r m  subsonic crossfl ow; the jet-to-crossfl ow velaci t y  range I s val I d  

from three t o  ten; and the model properties a t  t h i s  time a re  based on a 

j e t / f l a t  plate configu~ation, The 1 tmi ts  of WBABt are as fol lows: i t  

does not model the interference e f f e c t s  o f  j e t s  i n  crossflow; I t  5 s 



Ifmtteil to  1500 total controt p a i n t s  on one slde o f  the X-2 symmetry 

plane; and it  i s 1 fmttcd t o  subsonic attached f l o w  only, 

The t i m t t a t i o n s  o f  the combined program, MBWJAS, ~ h i c h  are not  

mentioned above are included now. The code i s  restricted t o  

approxtrnhtely 660 total control points on one slde o f  the X-Z symmetry 

plane, due t o  mmory restrictions, The f nflutnte of  the 1 i fti  ng 

surfaces on the jet properties are not accounted far. There are no 

fnteractions between multiple j e t s  i n  crossflaw, and the  wake region 

dmseream o f  the j e t  care f s not modeled. 

The tnput/output strtlcture o f  WBWSAS I s  simply a cmbfnatlon o f  the 

WBABt and JASIB76 codes, wlth all  aptions of each code s t i  11 avaflable. 



SECT lOlY I V  
CONFIGURATION TEST1 NG 

Three basic conflgtrrationr are tested us$ ng the WBWdAS panel code , 

with jet4n*cros$ftow effects, The thpee c~nfiguratlons are a f f n i  t e  

f l a t  plate, a body o f  revalutton, and a symnctrt~al  a i r f o i l  section. 

The panel code configurations are paneled t o  match as closely as 

possible the conffgurations which e r e  tested i n  l aw  speed wind 

tunnels. The first configuration tested, the f l a t  plate,  1 s used as a 

tool t o  ver i fy  the WBWJAS pragram execution, The body o f  revolution and 

the symnetrical a i r f o i l  are both examples o f  easi ly modeled generic 

conflgurati ons, for whic h wt nd tunnel pr@essure data l s avai 1 able. 

F l a t  Plates 

Three f l a t  p late  configuraticrns are u t i l t  zed i n  the development o f  

the WBWJAS program, The f i  rst i s used only for program devel apment mrk 

t o  veri fy any modi fications, I t  f s a Ehi n, ~ectangul  ar gr id ,  eighty- 

four control point f l a t  p la te  w l  t h  no thickness, The second fl a t  plate 

i s  a1 so used for developmental test4 ng and I s  not presented as a data 

source, This p la te  i s  rectangular w i th  a f i n i t e  thickness, The upper 

surface I s  a radial grtd with the! Jet located a t  the center, The lower 

surface i s  a rectangular grld; i t s  edges are level  w i th  the upper 

surface, T M  final f l a t  plate,  which f s used for actual testf ng 

purposes, i s  a thin,  rectangular gr id p la te ,  The semi-span dimension i s 

100 unf ts with the chord length variable. The final chord length f s 165 

un t ts  and the panels are f ive  units square, These dimensions y ie ld  a 



final configuration o f  660 panel 5. The jtt i n  crossfl ow t s 1 ocattd a t  
I 

(75,0,0) and has a var iable Q i  ameter, The f inal  j s t  d l  ameter i s  ten 

units. As tested the flat plate dimensf ons i n  Jet df ameters are length 

16,s 0, width 20 0: tbe j e t  i s  located on the center1 ine 7.5 O from the 

leading edge* The teference coordinate system I s  located a t  the lead1 ny 

edge along the plane of symmstry. The reference angles a, 0, afld y are 

a l l  zero, indicating the j e t  coordinate system i s  paral le l  t o  the 

reference coordt nate systm, 
The f l a t  platedcanfigu9atlwfl f s used t o  determine the maximum 

number of panels a conflguratfon can have, and t o  deternine the 

acceptable range of panel denst t ies,  which give sati sfactary resul ts ,  i n  

the near j e t  regton, the maximum nunbep of  panel s 1 s Yound by v a ~ y i  ng 

the plate chord* 7he acceptable range o f  panel densit ies can be found 

by varying the j e t  diameter. 

The wake region downstream o f  the j e t  core i s  nodeled by an 

empirical wake cor rec t ion scheme as descrf bed i n  reference 8, The wake 

correction t s i n  a post-processor un i t  t o  the panel code and modi f ie5 

only the surface pressure di  s t r f  bution, The wake cfs~=rectian uses the  

empirical pressure di strlbution, a1 ong the downstream ray Qrorn the je t  

or i f ice,  to  estimate a correction factor  which i s  appl ied t o  the 

pressure di s t f i  bution w i  th l  n the wake reg1 on, 

Body o f  Revolution 

Many* expyrfmental 1 nvestigations o f  j e t 4  n ~ r o s s f l  ow flow 

properties have pl  aced attent ion on fl a t  plate  cunfi gurati ons, or 

jet-f +If f t f  ng surface configurations, These configurations have I t  t t l e  

i f  any curvature o f  t h e  l i  f t tng surface near the j e t  i n  crossf l  ow. Few 

i nvestigatl  ons have been made of  a jet/aerodynamic-surface configuration 



with a high degree of surface curvature ntap a jet i n  a crossflow (e,g,, 

a jet/fuset age configuration), A single engine 'l/STOL a1 rcraft 4 1  1 

probably have l i f t  je ts  located i n  the fuselage, for the slmple reason 

that 1 ocati ng them el sewhers would requi re complex duct1 ng , add1 ng extra 

wttght and experrse. The siinple generic model for' a fuselage 1 s a body 

o f  revolution. A recent wind tunnel investigation,27 a t  NASA &nes 

Reseatch ante?, studied the surface pressure bf stributtan on a body o f  

revolution with varf ous j e t  canfigurations, the body-of-revolutf on 

configuration studteb a t  NASA i s modeled here H! t h  the WBWJAS computer 

code, for the case of a single jet i n  a crassflow wlth perpendicular j e t  

injection. 

The body-OF-revolution model tested by NASA f s shown f n P i  gure 8, 

~ M c h  4 s reprinLad from the test report The model i s four 'i nches i n 

diameter and eighty-one inches i n  length, The je t  diameter i s  

1.94 imhes, The model has a woden, stream1 ined nose, and i s strut 

supported a t  the rear, The j e t  center for the single je t  case i s  

located twenty-two t nches from the nose. Two j e t  nozzle e x i t s  were 

used. The first was flush with the  5urface of the body, which i s  

referred t o  as a contoured exit, The second, a fl a t  top  exl t , was 1 eve1 

with the top of the model. 

The computer configuration of the body o f  revolution t s paneled to  

appFoximate the control point locations t o  the pressure ports on the 

wlnd tunnel model. The computer configuration t s divlded in to  s i x  axial 

sectfons known as patches, The patches ave paneled ustng the 

body-of-revol ut ion geometry option i n  W0WJAS. The patch structure I s 

shown i n Figure 9, along with an end vf  ew showing the panel structure i n 

the j e t  region, The nose, forebody, aftbady, and t a i l  patches are 
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coarsely paneled, such that they naintaf n the body shape wf t h  a 

re la t ive ly  small number of panels, The j e t  patch f s simulated with a 

f l n t  panel grid, approxfmattrlg the pressure port  locations on the t e s t  

modtl. The j e t  patch contains 540 panel s and a l l  other patches eombf ned 

have 120 panels. The reference coordinate system origf n for the bady- 

of-revolution modtl I s located * a t  the nose of the model , as shown i n 

Figure 9, M I  tength u n i t s  are re la t ive  length u n i t s  based on a bady. 

diamter of four unlts. The jet  I n  crossflow I s  located a t  (22,0,2.0) 

for the f l a t  tap ex l t ,  and (22,Q11,732) OF (22,13,3.5) for the contoured 

exi t ,  The j e t  i s two u n i t s  1 n d i  amctsr, The orientat ion angles a, 

0, and y are al l  zero, . 
A wake correctton i s  not applied t o  WBWJAS for the body-of- 

revolution model s. As wtll be seen f n the next section, the  data shows 

that  a vrake correctios i s  not needed for tkts tonfiguratton, 

Symmetrical Wing Section 

Throughout the early sectfons o f  t h f  s thesis i t  i s  stressed t h a t  

WBWJAS does not model the influence of li fti  ng surfaces on the j e t 4  n- 

crossflw prapertf esr To I nvtstlgate the li f t i  ng-surface influences, a 

symmetrical wing sect! on i s modeled, The symmetrical w i  ng section 

modeled i s  similar t o  a jet/wl ng cortfi guratian that  was tested by 

Mi  kol awsky ,26 i n  t h e  Georgi a Institute o f  '~echnol agy ni lre- foot 1 ow-speed 

wind tunnel, The data from the WBWJAS model are  compared with data from 

the w i  nd tunnel model . 
The wind tunnel model spanned the enti  re t e s t  section w i  t h  a 

NACA 0021 a i r f o i l  section whose chord Mas 15.37 inches. Two j e t  

c~nfigurdt idns were tested and ate flaw described, the f i r s t  -jet 

~ 0 n f i g ~ F a t i o n  had a diamete~ o f  1.5 Inches, wf t h  the j e t  centerl ine exi t 



location a t  either 25, 45, or 65 percent chord, The second had a jet 

e x i t  dfameter o f  3.0 imhes ex1 t f  ng a2 45 percent chord, The jet-to- 

crossflow veloci ty  r a t i o  was varied i n  the range from two t o  Cwelve, 

the tests were performed d t  three wing aqgles o f  attack: O 0 ,  ijO, and 

go , 
The computer configuration paneled for WBWJAS i s that  o f  a f i n i t e  

semi-span wing. Lt has a NACA 0021 a i  rfoll ~ectlon w i  t h  a chord length 

o f  15 units, and an aspect r a t i o  o f  twenty, The j e t  diameters used are 

1.5 units and 3.0 units, and are placed f n  the wing a t  fdentical 

locations t o  Chose on the wind tunnel model, The conffguration i s  

tested a t  jet-to-crossflow velocity t a t l o s  o f  four and etght,  and angles 

o f  attack o f  0@ and 6'. 

The wing i s not paneled such that  the control points coincide w? t h  

the pressure por t  locations, The wing model i s  dtvSded i n t o  thtee 

patches. They are a near-field patch, a mid-field patch, and a far- 

field patch, The near-ffeld patch extends from the symmetry plane, on 

which the jet i s  located, t o  a p01tIE 4.5 unl t s  I n  the spanwi se 

dt rection, The near-f ie ld patch contains ten spanwl se sect1 ons, each 

containing forty-six panels ( thtyty on the lawer surface and sixteen on 

the upper surface), fhe mid-field patch, extendf ng f rom 4.5 units t o  

15.0 units i n  the spanwi se d l  rect t  on, cantai ns four spanuri se sections, 

Each spanwise section contaf f ls  slxteen pallel s on the lower and upper 

surfaces, for a t o t a l  of thf rty-two per section, The far-lrleld patch 

extends from 15.0 uni ts  t o  150.0 unf t s  i n  the spanwt se direct lan,  and 

contains a total o f  forty-efght panels In six spanvri se sectf ons. 

The j e t s  are always located along the plane o f  symmetry and exf t i r lg  

t h e  lower surface of the d ng perpendfcul ar t o  the freestrean flour, In 



the wfnd tunnet model the jets were perpendtcular to the chord l ine,  

g iv t  fig non-perpendlcul ar j e t  1 njectjon angles. For the computer model 

the Injection angle I s always perpendicular t o  the crossfl ow, regardless 

o f  the wing angle of  attack. The j e t  i s  located on the wing lower 

surface. The reference angles are the foll wing: a, equal t o  w.I t ~ g  

angle of attack ; 0, always zero ; y, a1 ways one hundred eighty degrees, 

so the jet e x i t s  from the w i  ng 1 ower surface.. 

A wake ccsrfectf on i s  made to  the computer generated data. This 

wake corfectfon i s  identical t o  the one used an the f l a t  plate 

conff guratfon, This wake correction i s  appl ied only to the surface 

pressure data ,  and not t o  the force and moment data, As a past 

processor section, the  wake correction scheme could not be supplf ed with 

the necessapy data t o  correct the force and moment data. 



SECTION V 
RESULTS AND CONCLUSIONS 

Flat  Plates 

F la t  plate models are used pr imart ly  t o  debug the program and 

val idate the numerical methods. The th i rd  f la t  p la te ,  mentioned e a r t i e r  

as having a v a r i a b l e  plate chord and var lab le  j e t  djameter, i s  used t o  

fS nd the  maximum nmber o f  control  points permi ss ib ler  The maxilnum 

nunber o f  control po in ts  t h a t  can be used i n  the WBWJAS program i s  

dependent on the  amount of! core memory ava i lab le ,  and i s  Independent a f  

the canftguratfon being tested. The maxilnum number o f  control  p o i n t s  I s 

found by varying the f l a t  p l a t e  chord length vrhlle mai n t a i  n l  ng a 

csnstant panel sf ze. For the  COG-7600 computer system a t  Ames Research 

Center the maximum nunber o f  control points i s  s i x  hundred s ix ty ,  

The j e t  dj  ameter I s varied on the  f l a t  pl ate,  whi 1 e maintaining a 

constant panel sf ze, t o  determine an acceptable range and value, for the 

r a t t o  of the jet  dframeter t o  tk control paint spacing, ROISpm The 

ratlo RolSp i s  synonymous t o  the panel density, and i s  important only 

within the near-jet region, tee,,  within approximately four j e t  

df ameters oP the je t  orI flce. The crfterion f o r  ftnding t h e  acceptable 

range of the r a t i o  Rolsp i s  t h e  agreement o f  surface pressure contour 

c o ~ p l o t s ,  This c r i t e r i o n  can be t nterpreted as ftnding the minimum 

number o f  data potnts  per unit area necessary for the par t i cu la r  contour 

plot progtarn bei  ng used, t h i  s i s not the  1 ntent o f  the cri te r f  on. The 

intent o f  the c r i t e r i o n  i s t o  f l n d  the acceptable range for R O l s p  



required t o  y ie ld an acceptable pressure d i  stf ibution on the  surface of 

Interest,  A maximum t a t i o  can be found by test ing far  the ef fects  of 

roundaff er ro r  i n  e i ther  the output data or  result1 ng contour plots, 

Good agreement betwen the computer pressure contours and the 

experimental pressure cantours for a j e t / f l a t  plate model are found 

for 1.0 s RDlSp 6 5.0 . A t  values o f  RO/Sp greater than 5.5 the effects 

o f  toundoff error become evident, and below 1.0 the data i s  too  sparse 

for the contour plotting program to produce smooth contour 1 I nes, 

Agreement o f  pressure contours 1 s found t o  beg1 n at  values of  RD/Sp 

2.0 and continue t o  4.0 . Thus the value o f  R D / S ~  used for the Rat 

plate models 1 s RDISp = 2.0 . 
Surface Pressure Data 

A compari son o f  pressure coeff icient contour l ines  Is made, for  

thre% ds "ferent sets of data, i n  Figure 10, The three data sources are 

a1 1 for ii uni form round je t  i ssul ng perpendjcul a r ly  i n t o  a uni fotm 

crcssfluw from a f l a t  plate, The three data sources are experimental 

data f~om reference 25, WBWJAS, and JASIB' which models the f l a t  plate 

as an i n f i n i t e  plate by the method o f  images,. The figure shows 

satisfactory agreement between the  three data sources for a l l  contour 

1 I nes shown, 

Force and Moment Data 

The interference l i f t  and pitching moment effects of the jet f n a 

c r ~ s s f l o w  on the f l a t  plate are a1 so documented. The interference 1 i ft 

i s non-dimensi onalized by the i sentropic j e t  th rus t  and tr defined 



6 r  : Experimental 

%/D 
Figure 10. - FlaE Plate, Surface Pressure Contours. 



1 

The interference pitchSng moment about the j e t  center i s  non- 

dtmenslonali zed by the product o f  the i sentropic j e t  thrust and the j e t  

diameter, and i s defined 

dM 1, Mj je t  on j e t  o f f  
a 

Tjd T ~ d  

The I t  ft and Jet thrust for the f la t  plate are defined t o  be post t ive 4 n 

the negative ''2" d i rec t ion  o f  the panel code coordinate system. The . 
pitching moment i s  defined posit ive i n  the negative "Y"  direction for a 

r igh t  hand coordinate system, 

The interference li ft and pitching moment on the f l a t  pla te  are 

given i n  'fabte 1. The data from the WBWJAS program i s  presented with 

and without a wake correct1 on, The data f rom reference 8 fa r  the JAStB 

program, urith and without a wake correction, i s  provided For comparison 

with WBWJAS data, I t  should be noted that the forces and moments 

provided by JASIB and the experimental data are produced by numerically 

integrating the surface pressure d is t r ibut ton over a reference c i r c le *  

This reference c i r c le  i s  centered a t  the j e t  center and has a diameter 

of eleven j e t  diameters. Force and moment data from WBWJAS are 

determined by using an area whSch approximates the reference c i r c l e  for 

nunericat integrat ion o f  the surface pressures, The dl  fferences i n  the 

force'and moment data re f l ec t  the differences i n  the surface pressure 

contour plot, Figure 10, fo r  t h i s  f l a t  p late configuration. 



TABLE 1, - INTERFEREWE FORCES AND MOPIENTS 

NODEL EIPERIHEICfAL 

f LAT P U T E ~  

BUJAS Data, no wake -0.20 -0,091 -.0m25 0,013 
Data, no wake -&,20 -0,075 -0.25 0,013 

BUJAS Data, wake carrectlon -0,23 0,012 -0.25 0.013 
Data, wake correction -0.25 0,018 -025 0,013 

a~xperi~nental data frm Reference 25, 

btb experimntal force and inanent data available. 

c lat  Top E x i t ,  R=8, ZJCT=2,00 
Contoured Exit,  R=8, ZJCT=1,732 
Contoured Exi t ,  R=8, ZJCT=L,50 
Contoured Exit , R=4,7, ZJCT=1,732 

-0.04 0.12 
-0.10 0.09 
-0.16 0.06 - 0.26 0.17 

C 



Body o f  Revolutidn 

The body -of-reuolutf on model I s i ntended to Investigate the 

usefulness o f  the WBUJAS program for modeltng bodles with high degrees 

of curvature near the jet: 1 n a crossfl ow .. The mdel utf I! zed, as 

described e a r l l e ~ ,  has a body-to-jet diameter ratjo of two, 'the body- 

of-revolution data f s presented without a wake correction. Data I s 

presented fur four body-of-revol ution configurations. The fi r s t  three 

conftgurations have a common value o f  the jet-to-crossfl ow ve'l oci t y  

r a t i o  o f  eight; the j e t  center locat ion '!Z" value i s varted I rr the three 

configurations. The fourth conflguration I s w I  th  the velaci t y  rati o 

equal t o  4.7 ,, 

Surface Pressure Data 

The surface pressure data, provided by WBWJAS, are compared ~f t h  

the results o f  the NhSA experlmcnt.27 The data i s  presented a s  

i nterference pressure coefftcf ent s, These are deff ned as the pressure 

coeff ic ient  wfth the  je t  on, less the pressure coefffcfent ~ 4 t h  the j e t  

of f ,  Both values are measured a t  equf valent test  conditions. The data 

4 s presented as p lo ts  o f  ax ia l  varlatlons i n  f nterference pressure 

coefficients, A C ~ ,  The axtal p l o t s  are presented fo? constant Y/D cuts 

o f  0.0, 0.24, 0,47, and 0.84. 

Figure I1 presents four sufface pressuce plots  for a j e t  center "2'' 

value (ZJCT) of 2,O . I h i  s configuration i s  representative o f  a f l a t  

top j e t  ex4 t, Experimental data f o r  a dm1 1 ar confi guratf on i s a1 so 

shown i n  these plots,  the data from WBNJAS, platted as a sol I d  lfrte, 

agrees wet 1 ~ 4 t h  the experimental data. 

Ff gures 12 and 13 present data for ZJCT vat ues of 1.732 and 1.50, 

respectively. These values o f  ZJCT are Intended t o  model the contoured 



Reference 27. Flat  Top E x l t  

I - WBUJAS, ZJCT = 2-00 

Figure 11. - Interference Surface Pressure IAC~). EI0t-i~ of Rev01~tion, R = 8- 
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Figure 12. - Interference Surface Pressure (bep). Body of RevolutSon. R = 8. 



Reference 27, Flat Top Exit  

Reference 27, Contoured €x i  t 

(a) Y/D = 0.0 

(c) Y/D = 0.47 
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(d) Y/D = 0-84 

Figure 13. - Interference Surface Pressure (A$), Body of Revolution, R = 8. 



Jet  exit. The value o f  ZJCT = 1.732 i s  chosen because the experimental 

model has j e t  side walls t o  a helght o f  1,732 inches above the body 

centerline, The ZJCT 1.50 value lsschosen t o  invesfJgate any trends 

that  may develop by submerging the j e t  wlfhl n the body, The pressure 

plots i n  Figures 12 and 13 show that  the WBWJAS data matches closely the 

experimental data fop a contoured je t  ex i t  on all but the syrmetry plane 

ax ia l  cut. The WBWJAS program does not predlct the negative pressure 

fteld to  the a f t  of the j e t  along the Y/D . 0.0 anial cut. The program 

shows a deceleration o f  the f l o w  forward o f  the j e t  o r i f i c e  and an 

acceleration region array from the jet orifice, downstream of the jet, 

The experimental data, on the other hand, shows no deceleration of the 

flow forward o f  the jet ,  and a de f i n i t e  low pressure region a f t  o f  the 

j e t ,  t .e., a ma1 1 wake region. The data OF Figure 13, fop ZJCT 1 1.50, 

indicates tha t  as the j e t  1 s submerged i n t o  the body, the computer code 

does not predict  the low pressure region a f t  o f  the jet ,  along the Y/D = 

0.0 cut, The submerging o f  the jet- in-crossflow ex i t  does s l i g h t l y  

improve the data f o r  o f f  center14 ne cuts (Y/D # 0,0), when modeling the 

contoured exit  je t .  

Figure 14, which presents data for the contoured j e t  ex1 t wt t h  the 

veloci ty ratfo equal t o  4.7, shows sfmi lar  trends t o  the R = 8 contoured 

j e t  e x i t  conflguratlon. This indicates t ha t  discrepancies between the 

experimental and computer generated data are independent o f  j e t - t o -  

crossflaw v e i o ~ i  t y  rat io. 

A wake correct ion 1 s not used on the body-of-revolution models, 

Close agnenunt betmen the expertment a n d  computer generated data f o r  

all axfal cuts except the contoured e x i t  symmetry plane ax ia l  cut 

indicates a wake correctton i s  not necessary, This author believes the 
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Figure 14. - Interference Surface Pressure (d~,,) ,  Body o f  Revolution. R = 4.7. 



absence of  an extensive wake region a f t  of the j e t  Sn a crossflow t s a 

result o f  surface f low araund the bady in to  the reglon a f t  o f  the je t  

orlflce, Thls surface flow t s  possible due ta  the high degree o f  body 

curvature which results I n  1 i t t l e  actual body surface area withtn the 

region a f t  of  the j e t  orif ice. 

Force and Moment Oata 

The interference l ift and pitching moment data for  the body-of- 

revolution models i s  presented i n  Table 1. The interference l i f t  and 

pitching moment are defined the same as for the f l a t  plate 

confi gurati ans, W i  nd tunnel experimental data i s not avat 1 able f o r  the 

body-of-rev01 u t i  on cohfi gurations. 

The interfefence l i f t  data shows a l j f t  loss due t o  interference 

effects, which i s  t o  be expected, The steady Increase o f  the l ift loss 

J s also expected from the submergi ng o f  the j e t  i nto the bady, OP the 

reduction o f  the jet-to-crossfl ow velocity ratto. The nose-up pitch1 ng 

moment i s  expected, although the trend o f  decreasfng nose~up pitching 

moment with Jet submerstan i n t o  tihe body ts not expected, Based on 

p i  tch i  ng moment changes for  f l a t  pl ate configurations, one waul d expect 

that as the tnterference t i  ft loss increases, so would the interference 

pitching moment, although f o r  t h i s  case, the majority of the l ift loss 

i s  not a f t  of the jet. The increase 1 rr interference pitching moment I s  

expected for the fautth case (BR 41, re la t t ve  t o  the second (BR 2). 

Symmetrical Wf nq Secti,on 

A symmetrical wing section model i s  used t o  Investigate the 

accuracy o f  the je t /  f l  a t  p\ ate model where sirnu1 a t i  ng a jet twi  ng 

configuration, The syrmretrical uring section model used, as described 

ear l ier ,  i s  a NACA 0021 wing sectton with a f i f teen unit chord and an 



aspect ratlo of  twenty. The surface pressure data i s presented wt tll a 

wake cor~ect ion whletr t s s l m f l a ~  t o  the f l a t  plate wake correction, Sfx 

conftgu~ations are te4ted; a bare configuratlan and f ive  others wMch 

are each a stngle parameter perturbation o f  the base conffguration, 

The wi ng sect i on modeled by the computer program I s a three- 

dimensf onal semi-span wing, whereas the experimental model i s  a two- 

dtmnslonal fullwspan wing, In  order t o  compare the two sets of data, 

it f s  necessary t o  adjust the computer model's span such that three- 

dimenslona! ( t ip )  effects within the region of  intcfest are 

negtigibler The t i p  effects are- found t o  be fnsignificant, d t h t  n the 

region of interest, by adjusttng the full-span aspect ra t io  t o  twenty. 

Thf s places the wing t i p  one hundred jet df ameters from the jet orifice; 

the region o f  interest for f nterference pressure pl ets extends to eleven 

j e t  dfameters from the jet  ori f ice.  

S lx  different wing configuratJons are modeled Mth NBWdAS. The 

wing configuratton parameters which are varied are the fo l l  owi ng: the 

Jet exqt locatlofi i n  percent chord;. %jfi; jet diameter i n  chord. 

ojh; Jet t o  crossflow Velocrty ratlo, R; and the wing angle o f  attack, 

a. Me base conftguration has the following parameter values: 3 / c  
45%; Dj/c = 10%; R = 8; a s  O.OO. Changes are made t o  the base 

configuratton as follows: Xj/c t o  2% and 65%; Dj/c t o  20%; R t o  4; and 

t o  6% The data obtained from each computer configuration I s compared 

with experimental data and pre$eoted as surface pressure plots and force 

and moment data, 



Surface Pressure Oata 

Oata from each conf4guratton i s  presentad I n  the fom of  an 

tnterrerence surface pressure (%) contour plot. Each graph i s a 

co-plat o f  data from the WBMJAS computer program and experimental 

contour from wind tunnel tests.26 The p lo t s  show the interference 

surface pressure coef f ic tent  contours on the l w e ~  surface of the 

wing. The pressure plots are given 10 f igures 15 through 20 with the 

base conf igurat lan shown i n  Figure 15. Each change t o  the base 

configurat ion involves only one parameter each and are shown as 

follows: Figure 16 i s  for  BO; FSgure 17 for  the forward j e t  

locatlon, Xj/c = 25%; Figure 18 the a f t  Jet location, Xj/c = 65%; 

Figure 19 i s  the lower value o f  jet-to-crossflow veloctty rat io, R 4; 

and Figure 20 i s  the large diameter je t ,  Djlc 20%. Each AC contour 
P 

line i s  labeled i f  space permits; f f  a l i n e  i s  not labeled i t s  value i s  

that o f  the c losest  neighboring contour l h e ,  

The fol lowing observations can be made about al l  of the contour 

plots: i n  the near j e t  region, less than two and a ha l f  j e t  diameters 

from the j e t  orf f ice, the f nterference surface pressures are predicted 

sa t ts fac to r i l y  by the WBWJAS program; for the remainder o f  the region o f  

1 nterest the WBWJAS program i s predlct f  ng stranger j e t  i nterfererree 

e f fec ts  than those observed i n  the experimental data. The differences 

between the two sets o f  data might be attributed t o  the lack o f  l i f t t n g  

surface Onftuence on the jet plume properties. 

The effects o f  changing angle o f  attack t o  u = 6' do not appear t o  

be strong. One should remember that the j e t  i s  on the wing lower 

surface, The effects may be more pronounced 1 f the angle o f  attack had 
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F fgure 16,  - f nterference Surface Pressure Contours, 
Symmetrical Wing, f ncrease in a.  

* 



ORI@INA& PAGE #?3 
OF POOR QUALlW 

k Experimental . Xj/c = 0.25 R 3 8.0 
ACP 

r --r r r -  WBWJAS Dj/c *OP10 6 ' 9 0 '  
a = 0,0° 

U. 

Figure 17. - Interference Surface Pressure Contours, 
S~mmetrical Hing, Decrease i n  Xj/c. 



Ff gure 18, - Interference Surface Pressure Contours, 
Symnetrical Wing, Increase i n  Xj lc .  
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Figure 19, - Interference Surface Pressure Contours, 
Symnetri cal H i  ng , Decrease f n R, 
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FIgure 20. - Interference Surface Pressure Contours, 
Swetrical Wing, Increase i n  O j l c .  



been changed t o  a -fiea Expertmental data I s  only, avat lable for 

posStive angles of  attack. 

The effects of jet movemcnt fore and a f t  on the w3 ng can be seen f n 

FIgures 17 and 18. Moving the jet forward on the wing tends t o  tnagni fy 

the dtsagreement i n  the two sets of data. Movtng the j e t  a f t  on the 

wing tends t o  decrease any di  $agreement i n  the two sets of data, These 

two observations my be due t o  the greater l i f t i n g  surface effects near 

the leading edge of the wlng, 

The ef fects  of decreastng jet-to-crossflow velocity r a t i o  (R) are 

seen i n  Figure 19. Thts decrease I n  velocity r a t i o  i s  similar t o  

stronger t i  fti ng surface influences. Agat n the lack o f  I f  fti ng surface 

i nfluence on the j e t  I n C P O S S ~ ~ O W  MY cause the computer model t o  

ptedict  stronger j e t - i  n-cross fl ow i nterference effects* 

The e f fec t  o f  lncreasl ng j e t  diameter, as shown i n  Figure 20, 

appears only t o  magnify the results for the base configuration. The 

jagged appearance o f  the expe~imental data contour l f  qes nay be due t o  

sparse data, I t  has been t h i s  author's experience tha t  sparse data 

of ten lead t o  i naccurate Contour 11 nes, 

Force and Moment Data 

Interference 11 ft and pitching moment data are not presented here 

for the symmetrical wing, The reader i s  reminded that the force and 

moment data from WBWJAS i s  only avallable without a wake correction, 

therefore, i t  i s  not representattve of the real Flaw field. The author 

of reference 26 indlc-ated that  he encountered balance problems durtng 

the wind tunnel- tests, thus the axfkrimental data i s  not reproduced 

here* 



General Conclusions 

Results from the configurat ions tested show the jetlaeradynamic- 

surface model, as presented here, I s capable o f  approxlmattng the 

adverse aerodynamic 1 nte r fe f  ence effects associated with same generic 

aerodynamic conlPlgurat~ons I n  trans1 t lonal  f l  lght, The vesul t s  o f  the 

f l a t  p la te  models i ndieate tha t  the jet/as~odynamic~surface model 

presented here i s  co r rec t l y  approximating the supface pressure 

df s t r i b u t i  on on a f l a t  p la te  model when a wake correct ion I s  used i n  the 

v i  scaus wake regt on. The body-of-rev01 u t i  on model demonstrates tha t  a 

wake correct ion i s not always necessary, and that the j e t  interference 

effects on t h i s  body are stmi lar  t o  those on the f l a t  p la te  model. The 

surface pressure data from the symmetrical airfoil models indicate the 

l i f t i n g  surface ef fec ts  on Che j e t  S n crossflow are not detrimental t o  

th4.s jet/aeradynami c-surface nodei. These favorabte resu l t s  should 

provide the necessary j u s t i  Picatt on t o  contt nue development on the 

i t e r a t i v e  methud proposed. 

Conti nued Research 

As a close t o  t h i s  report the author would I l k e  t o  suggest the 

followt ng areas f o r  research and development on the WBWJAS program: 

development o f  a wake model which manfpulates the j e t  perturbation 

veloct t i e s  1 n the wake region; extension o f  the j e t 4  n-cross fl ow model 

t o  handle varying j e t  i n j ec t i on  angles; ex ten~ ions  t o  handle various j e t  

ex i t  velocity p ro f i l es  and shapes; increases f n  the range o f  va l i d  Jet- 

to-crossfl ow veloctty rat ios;  and most important, t o  make' the program 

i t e r a t i v e  fo r  the ef fects o f  l i f t i n g  surfaces. 
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