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Summary must not only have sufficient coverage to reduce
electrostatic effects, but also should be several skin

Spacecraft in geosynchronous orbit can be charged depths thick.
electrically to high voltages by interaction with the space
plasma. Differential charging of spacecraft surfaces leads

to arc and blowoff discharging. The discharges are Source Characterization
thought to upset interior, computer-level circuitry. In

addition to capacitive or electrostatic effects, significant Interference pulses due to naturally occurring electrical
inductive and less significant radiative effects of these discharges have been detected on the P78-2 (SCATHA)
discharges exist and can be modeled in a dipole approx- satellite (refs. 6 to 8). Typical pulse frequencies in loop
imation. Flight measurements suggest source frequencies and dipole antennas and harness wire detectors were in

of 5 to 50 MHz. Laboratory tests indicate source current the range 5 to 30 MHz. Amplitudes of 1 to 30 V and pulse
strengths of several amperes. Electrical and magnetic train lengths of 200 ns have been recorded. In laboratory
fields at distances of many centimeters from such sources charging studies with simultaneous low- and high-energy
can be as large as tens of volts per meter and meter electron beams, discharges of dielectric materials have
squared, respectively. Estimates of field attenuation by been observed at surface potentials almost as low as those

spacecraft walls and structures suggest that interior fields observed in space (ref. 2). In such studies, frequencies of
may be appreciable if electromagnetic shielding is much substrate return currents are comparable to interference
thinner than about 0.025 mm (1 mil). Pickup of such pulse frequencies seen on SCATHA. Pulse trains are as
fields by wires and cables interconnecting circuit much as five times longer. The amplitudes of these return
components could be a source of interference signals of currents are 5 to 10 A. In these and other studies, blowoff

several volts amplitude, currents of several amperes lasting for several nano-
seconds and having electron velocities as high as 5 x 106
m/s have been observed (ref. 5).

Introduction of the above, only the frequency band and pulse train
length data are directly indicative of in-flight source

The decade-long interest of space scientists in charging parameters. Detected pulse heights, which measure
as a cause of electrical interference in spacecraft has been amplitudes at the pickup points rather than at the
advanced in recent years by flight programs such as sources, indicate only that significant interference is

SCATHA (ref. I). At the same time, laboratory investi- present. The spatial geometry and current strengths of
gations have been made of discharging phenomena on such sources are completely unknown from in-flight data
artificially charged samples of spacecraft material that and have been only imperfectly reproduced in the

approach conditions found in space (refs. 2 and 3). laboratory. Thus, even in the simplest possible radiating
Theoretical work on discharge models and coupling source model, a dipole, the necessary arc current length
schemes has led to elaborate calculations and computer and magnitude must be inferred from laboratory
codes (refs. 4 and 5). In part because the detailed measurements rather than from flight data. With this

character of naturally occurring discharges on spacecraft lack of knowledge, estimates that are based on the
has not been fully determined, it has not been possible simplest source models and coupling schemes that seek to
thus far to show conclusively how discharges upset identify significant interference mechanisms should
computer-level logic circuitry in spacecraft, remain useful as guides to spacecraft design.

This report presents some order-of-magnitude
estimates of interference signals derived from simple arc

and blowoff discharge models. With frequency spectra The Dipole Model
taken from flight data, laboratory discharge current

strengths are used in a free-space dipole radiation model Some discharges on dielectric surfaces in the

to estimate interference signal amplitudes. The laboratory appear to be confined to regions quite small as
attenuation of induction and radiation terms in the dipole compared with spacecraft dimensions and also with the
fields due to spacecraft walls and shields is discussed, and wavelengths of radiation in the frequency band assoc-
the interference signals in exposed wires and cables are iated with interference pulses detected in space (ref. 9).
estimated. At distances of interest, it is shown that, along For such sources, the current distribution of time-varying
with electrostatic or capacitive interference field coupling dipole is an appropriate model. The various fields that

to circuits, inductive and radiative field coupling should arise depend on the dipole moment of the charge
be considered significant. The spacecraft design consid- distribution driving the currents and upon its time
eration suggested by these results is that electromagnetic derivatives. Thus, at a field point ._'=t_l_ in a frame of
shields surrounding interference pickup points and wires reference having a dipole/Tat the origin, the fields are



- 1

Estatic = 47re0r3 [3fi(t]./7)--/5"]-/_ case, a current I0 of 5 A is chosen. An arc length e of1 mm is typical of visible arcs in solar cell gaps seen in the
laboratory (ref. 9). For the blowoff case, I= 1 A, At = 10

- 1 [3fi(t_./_...)_/__]_/_nd ns, and v=5×106 m/s (see the section Source
Einducti°n- 47rc0cr2 Characterization). The electric field E near the blowoff

(1) surface is, at 3000 V, comparable to surface fields seen in
- 1

Eradiation = 47rc0cZr fi × (t] ×_)--J_ad laboratory charging experiments and in-flight episodes.Both blowoff and arc currents have magnitudes like those

found in ordinary sparks (ref. 10). The 5- to 50-MHz
ff='-fix(Eind+Erad)--Bind+Brad frequency range expresses, at 5 MHz, the lowest¢

frequencies seen in flight pulse data and, at 50 MHz, the
upper response limit of transistor-transistor logic (TTL)

If the dipole is oriented so as to maximize the various circuitry.
field terms, the resulting magnitudes are Assuming that electric fields of the order of I0 V/m are

sufficient to cause interference in circuits, one sees from

t the tables that electric induction fields are significant out

_cp Eind = _ Erad - 7,fi tO many centimeters at all frequencies in the 5- to
E

s- r3 __ -cr 50-MHz band and that electric radiation fields are

(2) significant only at the highest frequencies and the

r//_ B _7/_ smallest distances. If it is assumed that loops of l-m2 area
Bind= c-_ rad=c-_ can be linked magnetically, /_A electromotive forces

induced by the magnetic induction term are significant at
distances of many centimeters and at middle to high

where _7= 1/47rc0c=30 in SI units and c is the speed of frequencies. Magnetic radiation terms are significant
light in vacuum, only at the highest frequencies and the shortest distances.

The "static" term in an electric field remains in the These results suggest that free-space dipole fields of
limit ¢o--0 (i.e., the electrostatic limit). If a source is sufficient amplitude to warrant consideration as
placed not in free space but in the presence of conducting interference hazards are produced by discharges similar
bodies, this limit describes the capacitive coupling of the to those thought to occur on the surface of spacecraft.
source to its surroundings. In depending on the dipole The most important terms in the fields considered appear
moment of the charge distribution driving an arc, which to be the induction terms. Attenuation of signals through

may be spread over rather large surfaces such as solar cell spacecraft walls and structures must, however, be
covers and booms, the dipole "static" term in equation (1) estimated.
is not expected to model capacitive coupling well. The
dipole model assumes concentration of both current and
charge sources. However, discharge currents concen-
trated in arcs and blowoffs should give rise to fields well Field Attenuation
modeled by dipole induction and radiation field terms. It
will be shown that these terms may be responsible for The fields of a time-varying dipole placed near

interference coupling to circuits in addition to the conducting bodies satisfy an exceedingly complex
capacitive coupling from "static" fields that is generally boundary value problem. Even the geometrically simple
regarded as predominant, arrangement of a dipole adjacent to a conducting half-

A dipole current composed of an oscillating arc super- space is tractable only with great effort (ref. 11).
imposed on a constant current of the same magnitude fits Spacecraft structures that intervene between radiative
the substrate current signatures referred to in the section interference sources and sensitive receptor circuits are so
Source Characterization. For this case,/_=H0(1 +e -iwt) complex that little analytical progress seems possible in

and ]_=-iweloe-iut, where e is the length of the describing the coupling exactly. Computers must be
combined current segment, I0 is the current magnitude, relied upon for details (ref. 12). However, roughly, one
and cois the angular frequency. A blowoff current source can say that dielectric objects provide no significant
I lasting a time At and having charge velocity v yields barrier to the fields and conductive bodies do, if they are
lb= Iv At and ]_= I At Ee/m, where E is the electric field sufficiently thick.
magnitude near the blowoff surface and e/m is the In plane geometry, a very thin conducting sheet can be
charge-to-mass ratio of the released charges, here shown to have a very high electromagnetic reflectivity.
assumed to be electrons. Tables I and II give This is, however, a special geometry, not particularly

representative field magnitudes at various distances and applicable to a small spacecraft. According to Stratton
frequencies for these two cases. For the oscillating arc (ref. 13), "... the reflection losses from surfaces whose



TABLE I.- FIELD STRENGTH ESTIMATES FOR AN OSCILLATING ARC

[foe=5× 10 -3 A-m.

Radius, Frequency, Electric Electric Magnetic Magnetic
r, f= w/27r, induction radiation induction radiation

m MHz field, field, . field, . field,

F_,d = 2,Ioe/t e, Erad = _lwlof/Cr, l_nd = _loJoUcta, /_ad = rtw210f/c2"r,
V/m V/m V/m 2 V/m 2

10 -2 5 3000 1.5 150 0.15

10 -t 5 30 .15 1.5 .015
1 5 .3 .015 .015 .0015

10 -2 25 3000 7.5 750 3.75

10 -t 25 30 .75 7.5 .375
1 25 .3 .075 .075 .0375

10 -2 50 3000 37.5 3750 94

10 -l 50 30 3.75 37.5 9.4

1 50 .3 .375 .375 .94

aB isgivenrather thanB so that EMF'scan beeasilycalculated.

TABLE If.- BLOWOFF SOURCE FIELD

ESTIMATES Apertures

Radius, Electric Electric Magnetic Apertures in conductive shielding can admit
r, induction radiation induction interference fields to spacecraft interiors. However, if them field, field, field,

ffind=r//_/r 2, _ad=_/J/cr t_nd=_l/J/cr 2 wavelengths of the fields are long as compared with the
V/m linear dimensions of an aperture, penetration is slight.

Indeed, for a circular hole in a conducting wall of radius
10-z 15000 50 5000 a, the on-axis electric field a distance r beyond the plane
10 i 150 5 50 of the hole has an attenuation factor of 47rf2a3/3c2r,1 1.5 .5 .5

neglecting polarization (ref. 14). For r= 10 cm and a=
a/j is given ratherthanBso thatEMF'scan be easily calculated. 10 cm this factor is 10 -5 at 5 MHz and 10-3 at 50 M Hz.

TheBrad term for a blowoffsourceis missingsinceit deper_ds
on/Lv,hichisunknown. Thus, unless a sensitive point lies virtually within an

aperture, it is unlikely to pick up interference from
nearby sources.

radius of curvature is small compared to the wavelength
(are) by no means always large and the only significant,
general criterion is the value of the attenuation factor/32

or its reciprocal, the skin depth...". Since the shortest Reception of Interference Signals
wavelengths considered herein are about 1 m and few

large, plane surfaces exist on a typical small spacecraft, The wavelength range of 5- to 50-MHz signals is 6 to
the situation presented herein would seem to fit 60 m. Exposed wires and cables in small spacecraft,
Stratton's criterion. For metals such as aluminum and which are likely to be shorter than these wavelengths,
gold the electrical conductivity o is about 5 × 107 mho/m, constitute "short" antennas for the reception of electric
which yields skin depths of 1 × 10-5 to 3 × 10-5 m in the field interference. The voltage induced in a "short"
5- to 50-MHz band. With _ =tz 0, these skin depths are antenna of length _'placed in an electric field if is Ee,
calculated from 6=(2/awl.t)l/2. Attenuation with provided that polarization is maximum (ref. 15). The
thickness x of the form e-x/_ gives a factor of 1 for these voltage induced in a loop of area A by the magnetic field
values of 6 and x= 1 nm (10 ]_). For x= 1 #m the factors is/_A. Thus, for the representative values from tables I
range from e -0.03 to e-0.1. A thickness of 0.025 mm and II of 10 V/m for E and 10 V/m E for/_, which are
(l mil) gives factors of 1/3 to 1/10. Thus, unless 0.025 easily achieved at distances rof 10cm or more, cables 1 m
/zm (1 mil) or so of conductive material intervenes long and loops I mE in area would each pick up signals of
between sources and circuits, one might expect rather 10 V. This order of signals was seen in SCATHA and is

little attenuation of the free-space fields of the model sufficient to change a TTL or complementary metal-
dipole currents. Shielding this thick rarely covers all oxide semiconductor (CMOS) logic state, for example.
sensitive points within a spacecraft. Although these estimates are very rough, it must be
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remembered that source parameters are not well known Program. Spacecraft Charging by Magnetospheric Plasmas, A.
and actual inductive and radiative fields could be even Rosen, ed., AIAA, 1976,pp. 15-30.

larger. In the oscillating arc, for example, an arc length 2. Coakley, P.; Treadaway, M.; and Kitterer, B.: Charging and Dis-
charging Characteristics of Spacecraft Dielectric Materials

of several or many millimeters, rather than 1 ram, might Exposed to Low- and Mid-Energy Electrons. IEEE Trans. Nucl.

occur. A proportional increase in the field amplitudes Sci., vol. NS-29, Dec. 1982,pp. 1639-1643.
would result. Similarly, in the blowoff source model, 3. Yadlowsky, E. J.; Hazelton, R. C.; and Churchill, R. J.: Char-

current leaving a surface might be much higher than 1 A. acterizationof ElectricalDischargeson TeflonDielectricsUsedas
Spacecraft Thermal Control Surfaces. Spacecraft Charging

Technology, NASA CP-2071, AFGL-TR-79-0082, 1979, pp.
632-645.

-----ISoncluding Remarks 4. Inouye, G. T.: Brushfire Arc Discharge Model. Spacecraft Charg-
ing Technology 1980, NASA CP-2182, AFGL-TR-81-0270,
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