General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

DRL No: T-1691
Line Item No: 1

Investigation of Digital Encoding Techniques

 for Television TransmissionFinal Report
NASA Johnson Space Center
Houston, Texas 77058

December 15, 1983

Donald L. Schilling
Professor of Electrical Eng.
Principal Investigator

COMMUNICATIONS SYSTEMS LABORATORY
DEPARTMENT OF ELECTRICAL ENGINEERING
The City College of The City University of New York
(NASA-CR-171734) INVESTIGATION OF DIGITAL N84-16421.
ENCODING TECHNIQUES FOR TELEVISION
TRANSMISSION Final Report (City Coll. of the Ci, ty Univ. of New York.). $39 \mathrm{p} \quad$ Uncles LC AOB/MF AOL

CSC 17B G3/32 11640

THE CITY COLLEGE of THE CITY UNIVERSITY of NEW YORK

COMMUNICATIONS SYSTEMS LABORATORY
DEPARTMENT OF ELECTRICAL ENGINEERING
The City College of
The City University of New York

ABSTRACT

NTSC composite color television signals are sampled at four times the color subcarrier and transformed using intraframe two dimensional Walsh functions. We show that by properly sampling a composite color signal and employing a Walsh transform the YIQ time signals which sum to produce the composite color signal can be represented, in the transfors domain, by three component signals in space. By suitably zonal quantizing the transform coefficients the yio signals can be processed independently to achieve data compression and obtain the same results as comi cent coding. Computer simulations of three bandwidth compressors operating at $1.09,1.53$ and 1.8 bits/sample are presented. The above results can also be applied to the PAL color system.

Page

I. Introduction 1
II. Video Bandwidth Compression Algorithms 1
III.Real Time Bandwidth Compressor 2
IV. Appendix A 4
Composite NTSV Color Video Bandwidth Compressor
V. Appendix B 28Walsh Transform Coding of NTSC CompositeColor Signals

I. Introduction

The image processing facility at the Communications Laboratory of the city colloge of New york was used to investigate low bit rate, intraframe, video bandwidth compression techniques. Both Hadamard transform and predictive coding techniques were computer simulated and subjectively compared. A predictive coder with a delta modulator quantizer was implemented in hardware.
II. Video Bandwidth Compression Algorithms

Three alg gorithms were computer simulated and compared. The characteristics of the algorithms are sumarized below. A detailed description of the algosichms are given in appendix A and B.
A. Hadanard Transform Coding

1. The Eransform operated on the composite NTSC signal sampled at 4 times the color subcarrier frequency (14.3 MHz).
2. The transform was two dimentional, intra fieid, and non-adaptive.
3. The bandwidth compressed bit rate was chosen to be $21.5 \mathrm{MB} / \mathrm{sec}$.
B. Delta Modulator
4. The input signal was a composite NTSC color signal.
5. The sampling rate and the transmitted bit rate
was set at $21.5 \mathrm{MB} / \mathrm{sec}(5$ times the color subgarrier frëquency).
6. The predictor used eight past samples from the current scanning line and was adaptive.
C. Adaptive DPCM
7. The imput signal was a composite NTSC color signal sampled at 10.7 MHz (3 times the color subcarrier Erequency).
8. The predictor used 4 past samples from the current scanning line and was adaptive.
9. The quantizer was adaptive and generated 2 bits (4 quantization levels) per sample.
10. The transmission bit rate was $21.5 \mathrm{MB} / \mathrm{sec}$.
III. Real Time Video Bandwidth Compressor

- A real time adaptive delta modulator (ADM) was built and subjectively evaluated. The specifications of the ADM were given in section II B. A detailed description of the algorithm, block diagrams and circuit schematic of the coder are given in appendix A.
IV. Results

A comparison of the three soding algorithms have revealed the following
1.' At low bit rates, less than $21 \mathrm{MB} / \mathrm{s}$, transform coding produced the best subjective pictures.
2. At $21 \mathrm{MB} / \mathrm{s}$ the delta modulator (ADM) produced
the same quality pictures as an adaptive DPCM coder. (See appendix A).
3. At $21 \mathrm{MB} / \mathrm{s}$ tho $A D M$ picture quality was sufficient for many teleconferencing applications.
IV.

Appandix A

ORIGINAL PAGE IS OF POOR QUALITY.

ABSTRACT

predictors operating on video signals sampled at 6 times the color subcarrier ($6 \mathrm{E}_{\mathrm{c}}$) have been investigated and compared with predictors operating at 3 times the color subcarrier ($3 f_{c}$). When the best $6 f_{c}$ predictor is used with an adaptive delta modulator (ADM) step size generator, the resulting pictures are similar in quality to $3 f_{c}$ predictor's. operating with a four level adaptive DPCM quantizer.

An ADM coder was implemented in real time. The coder used between 24 and 34 IC's, depending upon the algorithm, and fits on a single 9 " $x \sigma^{\prime \prime}$ PC board. The transmission rate is $21.4 \mathrm{Mb} / \mathrm{s}$. Subjective evaluation of the coder revealed that the picture quality was sufficient for many teleconferencing ápplications.

The research presented in. then paper was motivated
. by the need to design a simple, low cost, digital, video bandwidth compressor that would produce teleconferencing quality pictures. The bit rate was set at $21.4 \mathrm{MB} / \mathrm{s}$ to allow two TV signals to be sent over a single T3 telephone line or 36 MHz satellite llink.

Most of the recent literature on video bandwidth compression has been concerned with the design of very complex encoders whose implementation requires a rack of equipment. In this paper we present a video bandwidth compressor that was constructed. from the standard iø0k series ECL IC's and fits on a $9 \times 6 \mathrm{PC}$ board.

The need to keep the coder simple and low cost precluded the use of any compression technique other than intraframe predictive coding. A choice between composite or component coding, and a choice between one or two dimentional prediction remains. Since most video sources are in composite form, the extra circuitry needed to generate the components from a composite source mediated in favor of a composite coder. A two dimentional predictor requires at least one scanning line of memory and it also requires that the sampling clock of the coder be synchonized to the horizontal sync: . ior: to the burst. Neiliher is - needed for one dimensional prediction. Complexity was the deciding factor, and one dimentional prediction was chosen.

Two schemes were considered for implementation in hardware, One was a DPCM cof er that used an adaptive quantlzer (ADPCM). The ADPCM coder would sample the video signal at $10.7 \mathrm{MHz}\left(3 E_{c}\right)$ and transmit 2 bits per sample. The other scheme was an adaptive delta modulator (AOM). The ADM would sample the signal at $21.4 \mathrm{MHz}\left(6 \mathrm{f}_{\mathrm{e}}\right)$ and transmit 1 bit per sample. Both schemes would transmit at the same rate, $21.4 \mathrm{MB} / \mathrm{s}$.

The $A D M$ uses a predictor for which the composite video signal is sampled at $5 f_{c}$. To the best of the authors' knowledge no prior wark sas been done on predictors at a sampling rate of 6 Ec.

Fig. la is a block diagram of the adaptive delta modulator (ADM) and Fig. lb is a block diagram of the adaptive DPCM coder (ADPCM). The symbols used in Fig. 1 are used throughout the rest of the paper.
II. ADM Predictor ($5 \times$ colotr subcarriex)

This section presents the derivation of the predictors which use a $\begin{gathered}\text { a mposite } \\ \text { video signal sampled at } 5\end{gathered}$ times the color subcarrier ($5 \mathrm{E}_{\mathrm{c}}$). Fig. 2 shows the location of the samples in che picture with respect to the color subcarrier. Fig. 2 was drawn for constant luminance and chrominance. X is the pel to be predicted. P is the predictor's estimate of X. p is formed from a welghted sum of past pels as shown in Eq. 1 and Fig. 1

$$
\begin{equation*}
p=a A+b B+c C+e E+f F+g G+h H+\ldots \tag{1}
\end{equation*}
$$

where;
$A, B, C .$. are the inputs to the, predictor
a,b,c...are the prediction coefficients for pels $A, B, C .$.

A predictor that sets P equal to sample X, (see $F i g$. 2) is a reasonable predictor. The values of the prediction coefficents that set $P=X$ in Eq. 1 for the conditions of Fig. 2 can be found as follows: Let the luminance of all the pels equal α, let the phase angle of the subcarrier be θ with respect to the sampling clock, and let the amplitude of the subcarrier be β, then the pels X and A through H are given by:
$X=\alpha+\beta \cos \theta$
$A=\alpha+\beta \cos (\theta+3 \theta \theta)=\alpha+.5 \beta \cos \theta+.5 \sqrt{3} \beta \sin \theta$
$B^{\prime}=\alpha-.5 \beta \cos \theta+.5 \sqrt{3} \beta \sin \theta$
$C=\alpha-\beta \cos \theta$
$D=\alpha-.5 \beta \cos \theta-.5 \sqrt{3} \beta \sin \theta$
$E=\alpha+.5 \beta \cos \theta-.5 \sqrt{3} \beta \sin \theta$
$F=\alpha+\beta \cos \theta$
$G=A$
$H=B$

Substituting the values of the pels A through Hinto Eq. $1 /$, and setting $P=X$ yields:

$$
\begin{align*}
\mathbf{P}=X=\alpha & +\beta \cos \theta=a(\alpha+.5 \beta \cos \theta+.5 \sqrt{3} \beta \sin \theta)+ \\
& b(\alpha-.5 \beta \cos \theta+.5 \sqrt{3} \beta \sin \theta)+c(\alpha-\beta \cos \theta)+ \\
& d(\alpha-.5 \beta \cos \theta-.5 \sqrt{3} \beta \sin \theta)+ \\
& e(\alpha+.5 \beta \cos \theta-.5 \sqrt{3} \beta \sin \theta)+ \\
& £(\alpha+\beta \cos \theta)+9(\alpha+.5 \beta \cos \theta+.5 \sqrt{3} \beta \sin \theta)+ \\
& h(\alpha-.5 \beta \cos \theta+.5 \sqrt{3} \beta \sin \theta) \tag{2}
\end{align*}
$$

If the left side of $E q_{c}$, is to equal the right side for all values of α, β and θ three conditions must be met: 1) The sum. of alj terms containing α on the right side of Eq. 2 must sum to $\alpha ; 2$) The sum of all terms containing $\sin \theta$ must sum to zero; and 3) The sum of all cerms containing β cos θ must sum to $\beta \cos \theta$. These three conditions give rise to equations 3, 4 and 5:

$$
\begin{align*}
& a+b+c+d+e+f+g+h=l \tag{3}\\
& a+b+\emptyset-d-e+\emptyset+g+h=\emptyset \tag{4}\\
& a-b-2 c-d+e+2 f+g-h=2 \tag{5}
\end{align*}
$$

Since there are only three equations and many unknowns there are an infinite number of solutions to Eqs. 3 - 5. Several solutions are jisted below with the values for $a, b, c . .$. substituted back into Eq. 1.
I. $\quad P=2 A-2 B+C$
II. $\quad \mathbf{P}=1.5 A-B+.5 D$
III. $\quad P=A+D-C$
IV. $\quad P=A-.25 B+.5 E-.25 H$,
V. $\quad P=A-.25 B-.5 C+.5 D+.25 E$
VI. $\quad \mathrm{P}=.65 \mathrm{~A}+.05 \mathrm{~B}-.4 \mathrm{C}+.05 \mathrm{D}+.65 \mathrm{E}$
VII. $\quad \mathbf{P}=\mathbf{F}$

$$
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text { CF POOR QUALITY }
\end{aligned}
$$

The predictors listed abuye are referred to as subcarrier predictors because they were derived so as to predict the values of the samples along a constant subcarrier.

The following comments can be mede regarding the predictors. Predictor I uses the most recent pejs, and therefore, it should be able to respond well to sudden changes in the picture. For predictor VI the sum of the squared values of the prediction coefficients are equal to 1. which is less than all other predictors except predictor. VII. Small prediction coefficients are important since the quantization noise in the encoded pels $A, B, C \ldots$ is multiplied by their respective coefficients. If the quantization noise of each encoded pel is independent and of equal vaitance, then the quantization noise in pill be proportional to the sum of the squared values of the prediction coefficients. .

Subcarrier predictors produce prediction errors during and shortiy after st ep changes in luminance. To minimize this problem we introduced the edge predictor, predictor VIII, shown below:

$$
\text { VIIT } \quad P=A
$$

The hypothesis behind predictor VIII is that the previously estimated sample is a better predictor than a subcarrier predictor when there is a sudden change in luminance.

The edge predictor can be combined with any subcarrier predictor by introducing the parameter N. Eq. 6 thru 8 show the resulting predigtor. When $N=1$ Eq. 8 reduces et to the subcarrier predictor and when $N=\varnothing$ Eq. 8 reduces to the edge predictor.

$$
\begin{align*}
& \mathbf{P}=(1-N)(\text { EDGE PREDICTOR })+N(\text { SUBCARRIER PREDICTOR }) ; ~ \tag{6}\\
& \mathbf{p}=(1-N) A+N(a A+b B+c C+\ldots) ; \emptyset<N<1 \tag{7}\\
& p=(1+N(a-1)) A+N(b B+c C+\ldots) ; \emptyset<N<1 \tag{8}
\end{align*}
$$

Eq. 6-8 are equivalent. The value assigned to N is discussed in sections IV and VII.
III. ADPCM Predictor ($3 \times$ color subcarrier)

A similar analysis to the one presented for the $6 f_{c}$ (ADM) predictor can be carried out for the ADPCM predictor. Since the ADPCM coder samples at $3 f_{c}$, only samples B, D, F and H are available. (See Fig. 2). Eqs. 3-5 yield only one solution and it has the form:

$$
P=F+(B-H) \Delta \quad ; \quad \text { can be any number }
$$

The value of Δ that minimized the mean square prediction error for the test. pictures in Fig. 3 is 0.8 . This results In predictor IX.

$$
I X \quad F=.8 B+F-.8 H
$$

The terms in predictor IX have the following interpretation. Sample F is a perfect predictor for X when
the luminance and chrominance remain constant. When the Iuminance changes, the term ($B-H$) (. 8) adds a slope correction factor te F.

ORIGINAL PAGE IS OF POOR QUALITY

IV. Predictor Performance Results

The predictors were evaluated using the test pictures shown in Fig. 3. The evaluation 'was carried out without a quantizer. The performance criteria is a normalized predictor gain [2] which is defined as the ratio of the peak-to-peak signal power to the mean siquare error signal. Mathematically the performance criteria has the form of a signal-to-noise ratio and is given by:

$$
\begin{equation*}
\text { PRED. GAIN }=10 \text { LOG }\left[\frac{S_{p p}^{2}}{\frac{1}{M} \sum_{i=1}^{M}\left(x_{i} \cdot-P_{i}\right)^{2}}\right] \tag{9}
\end{equation*}
$$

$S_{p p}=$ the peak-to-peak signal amplitude and is equal to 256.
$X_{i}=$ the $i^{\text {th }}$ picture sample
$P_{i}=$ the prediction of sample X_{i} (See equation 1) $M=$ the number of samples in the picture.

The larger the PRED GAIN the better the pedictors
The results from testing the predictors without a quantizer are shown in TABLE I. TABLE if shows the PRED GAIN when the optimum value of N is used in Eq. 8 with predictors ' I thru VI. Ar attempt was made to increase the Jiction gain over that obtained from the optimum value of N by

making N variable. N was set to be a monotonically decreasing function of $|A-G|$. The hypothesis is that the value of $|A-G|$ is an indiciation of an edge. When $|A-G|$ Is large N should be small so that Eq. 6 gives more weight to the edge predictor, and when $|A-G|$ is small more weight is given to the subcarrier predictor. With a variable N the prediction gain increased by only . ldb to ldb (depending upon the predictor) over the best fixed N.

The $A D M$ predictors that relied on the most recent pels did. the best. Unfortunately these predictors also had the largest prediction coefficients and as a result they did not do the best when a quantizer was added.

ORIGINAL PAGE IS
V. ADPCM Quantizer

OF POOR QUALITY

The quantizer for the ADPCM coder is adaptive [3]. The way in which the quantization levels adapt is shown in Fig. 4. At each sampling instant, k, the quantizer has one of four values to choose from, such that

$$
-\mathrm{q}_{2}(\mathrm{k})<-\mathrm{q}_{1}(\mathrm{k})<\mathrm{q}_{1}(\mathrm{k})<\mathrm{q}_{2}(\mathrm{k})
$$

The quantizer will choose the value of $q(k)$ that minimizes $\therefore\left|\hat{x}_{k+1}-x_{k+l}\right|$. If the quantizer chooses either of the auter values, $\pm q_{2}(k)$, at time k then at time $k+1$ the quantizer will have a larger set of values to choose from such that $q_{2}(k+1)>q_{2}(k)$ and $q_{1}(k+1)>q_{1}(k)$. If the quantizer chooses either inner value, $\pm q_{1}(k)$, at time k, then at time $k+1$ the quantizer will have a smaller set of values to choose from such that $q_{2}(k+1)<q_{2}(k)$ and $\cdot q_{1}(k+1)<q_{1}(k)$. The

$$
\left.\begin{array}{l}
\left|q_{2}(k)\right|=\varepsilon\left|q_{1}(k)\right| \\
\left.\begin{array}{l}
\left|q_{2}(k+1)\right|=P\left|q_{2}(k)\right| \\
\left|q_{1}(k+1)\right|=p\left|q_{1}(k)\right|
\end{array}\right\} \pm q_{2}(k) \text { at time } k . \\
\left|q_{2}(k+1)\right|=Q\left|q_{2}(k)\right| \\
\left|q_{1}(k+1)\right|=Q\left|q_{1}(k)\right|
\end{array}\right\} \pm q_{1}(k) \text { at time quantizer chose } \begin{aligned}
& \text { If the quantizer chose } \\
& E=3.5 \\
& p=2.6 \\
& Q=0.9 \\
& q_{1}(\min)=2 \\
& q_{2}(\max)=31
\end{aligned}
$$

ORIGNAL PARE 范 OF POOR QUALITY

E, P and Q were optimized for the pictures shown in Fig. 4 for a sampling rate of $10.7 \mathrm{MHz}\left(3 f_{c}\right)$.

The quantizer transmits 2 bits to the receiver for each picture sample. The first bit, e_{1}, carries the sign of .$q(k)$ and second bit, e_{2}, signals the generation of $q_{1}(k)$ or $q_{2}(k)$.
VI. • ADM Quạntizer

The quantizer for the ADM coder is the ADM step size generator described by song [4]. It is sometimes referred to as a P, Q delta modulator because the step size increases by the factor P or decreases by the factor Q. The ADM coder
can be described by Eq. 10-14.

$$
\begin{align*}
& P_{K}=\sum_{i=0}^{l} a_{i} x_{k-i} ; \dot{a}_{j,} \text { is the } i^{\text {th }} \text { prediction } \tag{10}\\
& E_{k+l}=\operatorname{sign}\left\{X_{k+1}-\left(P_{k}+0.1 E_{k}\left|Y_{k-1}\right|\right)\right\} \tag{11}\\
& Y_{k}=\left|Y_{k-1}\right|\left(1.13 E_{k}+.29 E_{k-1}\right) \tag{12}\\
& \left.\begin{array}{l}
Y_{k(\min)}=2 \\
Y_{k(\max)}=31
\end{array}\right\} \quad \text { URIGINAL PAGE IS } \tag{13}
\end{align*}
$$

where the above variables are defined in Fig. 1 h.

When $E_{k}=E_{k-1}$ in Eq. 12, the step size Y_{k}, increases by the factor $P=1.4$ and when $E_{k}=E_{k-1}$, Y_{k} decreases by the factor $Q=.84$. The constants in Eqs $19-14$ were optimized for the pictures shown in Fig. 3 for a sampling rate of 21.4 MHz ($6 \mathrm{E}_{\mathrm{c}}$).
VII. Results of ADM and ADPCM Coding

This section gives the results of the evaluation of the predictors with quantizers. The performance criteria is a signal to noise ratio which is defined as the ratio of the peak to peak signal power to the filtered mean square error signal. The error signal (defined as $\hat{\boldsymbol{v}}_{k+1} \vartheta_{k+1}$) is filtered to eliminate the energy from out of band frequency components. These components stretch from 4.2 MHz to one half the sampling rate. The filters used to eliminate the out of band frequency components from the error signal were 5 pole butterworth filters with a cutoff frequency of 4.2

MHz. Tf the filtered error signal is denoted as EF, then the performance criteria is given by:

where (EF) i is the $i^{\text {th }}$ filtered error signal. M and $s_{p p}$ are defined for Eg. 9.

The results of $A D M$ and $A D P C M$ coding for the various predictors are given in Table II. A comparison of the predictors for $\operatorname{ff}_{\mathrm{c}}$ sampling with and without the ADM quantizer reveals that the $2 . D M$ quantizer has a significant effect on relative predictor performance: Table I shows predictor I to be the best predictor, but Table II reveals it to be among the worst predictors when a quantizer is added. This is probably due to its large prediction ..coefficients. Predictor VI is among the worst predictors in Table I (probably because of the small prediction coefficients of pel A) but it is among the best in Table II (probably because the sum of the squared values of the prediction coefficients are very small). The best predictor with an ADM quantizer is predictor IV. The reason for this is uncertain but it is probatiy due to the following factors: The coefficents are small; the most recent pel, A, is weighted more than any other pel, and it behaves well on slopes. If pels A thru H lie on a straight line of arbitrary slope then P will equal pel A for predictor IV.

A subjective comparison between the ADM quantizer

* Optimum value for N
with predictor IV and the ADPCM quantizer with predictor IX was carried out using the picture processing facilities at The city College of New York: This facility enabled us to
\because computer simulate the $A D M$ and the ADPCM coders for the still
: pictures in Fig. 3 and then display the results on a SONY TRINITRON RECEIVER/MONITOR. Both coders produced the same quality pictures and both exhibited the same type of degradation. The degradation exhibited by the coders was edge busyness. There was no loss of resolution and little graininess except in very highly saturated colors. Contour noise was never visable, even for $Y_{m i n}=6$. Apparentily the subcarrier acts as an efective dither signal which breaks up any contour noise.

ORIGINAR PAGE R
OF POOR QUALITY
VII Real Time ADM Coder

A real time $A D M$ coder was built and subjectivel.y evaluated. The ADM coder was chosen over the ADPCM coder because it required fewer IC's to implement. rf predictor IV was implemented with $N=1$ the $A D M$ coder could be constructed with 22 IC's from the ECL la月K series, plus a D / A converter arid a comparator. An A / D converter is not required. If N was set equal to .75 the IC count would Increases from 24 (D / A and comparator included) to 25. If. the coder was made programmable so that any value of N could be chosen between 0 and 1 in increments if $1 / 8$ the IC count. "would increase to 29, and if. N was made equal to a function of $|A-G|$ the $I C$ count would increase to 34. The latter coder was built and subjectively evaluated. A block diagram of the coder is shown in Fig.5. The functional relationship
between N and $|A-G|$ is stored in ROM IT; therefore, by plugging in different ROMs we could change N. The p and Ω values of the step size generator (Eq. 12) were programmed into ROM I. By moving jumper wires we could implement. predictors III, IV or V. This large degree of programmability enabled us to check the val.jdity of the computer simulations agalnst a real time coder operating on motion pictures.

The real time subjective evaluations produced no suprises. They tended to confirm the results shown in TABLE II. The entries with the highest signal-to-noise ratios produced the best pictures. When $P=1.4$ and $Q=.8, N=$. $3 / 4$ produced slightly better pictures than $N=1$ for predictor IV. In general, when N was set equal to 1 the picture quality was very sensitive to changes in P, Q and the predictor. When P was increased from 1.4 to 1.5 and Q was reduced from . 8 to . 5, the picture quality' decreased considerably. This was not the case for $N=3 / 4$. Making N a function of $|A-G|$ did not noticeably !mprove the picture when compared with $N=3 / 4$.

ORIEINAL PAGE IS OF POOR QUALITY

IX Real Time Subjective Evaluation of the ALM Coder

The ADM ceder was programmed with PRED IV, N=.75, $\because P=1.4, Q=.8$ and subjectively evaluated. Ti. svaluation was performed by a group of viewers seated at a distance of 6 feet from a l9" monitor. The viewers watched several minutes of a daytime soap opera encoded with the ADM. The viewers evaluated the picture by.choosing one of the following responses:

1) The picture appears normal, just like a TV picture should appear.
2) The plcture appears degraded from a normal TV but the degradation is not annoying.
3) Same as (2) but the degradation is annoying.

Untrained viewers usually chose 1 or 2. The authors chose 2. After seeing the original and encoded pictures side by side most viewers chose option 2. A few chose option 3.

ORIGINAL. PAGE IG OF POOR QUALITY

It is possible to build a digital color TV bandwidth compressor, with a transmission rate of $21.4 \mathrm{Mb} / \mathrm{s}$, out of 26 standard IC's and produce usable quality prictures. The simplicity of the design was acheived by using an ADM step \therefore - size generator and a noveì predictor designed to operate with a sampling rate of 6 times the color subcarrier.

The ADM coder was compared with a DPCM coder which also transmitted at $21.4 \mathrm{Mb} / \mathrm{s}$. Both coders produced similar quality pictures but the $A D M$ coder required fewer IC's to implement.

ADPCM
(8)

\because Fig. 1 Block diagram of the ADM coder (a) ; Block diagram $\therefore \quad \ddots$ of the ADPCM coder (b)
21.4 MHz

Sampling Rate (ADM)

> ORIGINAL PACE II OF POOR QUALITY

Fig. 2 The figure above shows the location of the pels with respect to the subcarrier.

Fig. 3 Test pictures used for evaluation

ORIGINAL PAGE IS

$q(k) \quad$ OF POOR QUALITY

Quantizer levels at time
$k+1$ if $P_{k}<\left[q_{1}(k)+q_{2}(k)\right] / 2$

Fig 4 Adaptive quantizer: The quantization levels expand or compress for each picture sample as shown.

Fig. 5 Block Diagram of the ADM Coder

1. Brainard, Netravali and Pearson, Predictive coding of composit NISC oolor television signals, Bell Syst. Tech. J.
2. J, O'Neal, Bounds on subjective performance measures for source encoding systems, IEEE Trans on Info Theory, May 1971
3. N. S. Jayant, Adaptive quantization with a one-word memory, Bell Syst. Tech. J., Sept. 1973
4. "Song, Garodnick, Schilling, A variable step size robust delta modulator, IEEE Trans on Comm, Dec. 1971
5. I. Dinstein, DPCM prediction for NISC composite signals, Comsat Technical Review, Fall 1977
6. V. Devarajan and K.R. Rao, DPCM coders with adaptive prediction for NTSC composit TV signals, IEEE Trans on Comm,:JuIy 1980
7. Lei, Scheinberg, Schilling, Adaptive delta modulation systems for video encoding, IEEE Trans on Comm Nov. 1977

Appendix B

WALSH TRANSFORM CODING OF NTSC COMPOSITE COLOR SIGNALS

J.B.Bai, J.Barba, N.Scheinberg, D.L.Schilling
City College of New York'
Department of Electrical Engineering
New York, New York lan31

Abstract

NTSC composite color television signals are sampled at four times the color subcarrier and transformed using intraframe two dimensional walsh functions. We show that by properly sampling a composite color signaj and employing a Walsh transform the YIQ time signals which sum to produce the composite color signalcon be represented, in the transform domain, by three component signals in space. By suitably zonal qunatizing the transform coefficients the YIQ signals can be processed independently to achieve data compression and obtain the same results as component coding. Computer simulations of three bandwith compressors operating at $1.99,1.53$ and 1.8 bits/semple are presented. The above results can also be applied to the PAL color system.

INTRODUCTION

The video images used in this paper were obtained by the system shown in fig.l. The NTSC composite video signals is sampled at four times the color subcarrier and uniformly quantized to $8 \mathrm{bits} /$ sample and stored in the frame freeze unit. The frame freeze can store two frames, each frame consisting of 512 samples/line and 512 ines/frame field interlaced. The computer interface allows inages to be transferred between the computer and the frame freeze.

Fig. 2 shows the block diagram of the computer simulated system. The frame of video is partitioned into 15×3 s sample data matrix upon which the two dimensional Walsh transform operates. In general, let the array $f(i, i)$ represent the samples of an, NTSC composite image over an array of N^{2} point.s. Then the two dimensional Walsh transform, $F(u, v)$, of $f(i, i)$ is given by the matrix product
$\left\lceil F(u, v)\left|=\frac{1}{N^{2}} H(u, v)\right|\{f(i, j) \mid\{H(u, v)\}\right.$

Where [H(u,v)] is the Hadamard matrix consisting of Walsh functions of order N. The inverse transformation is defined as
$\lceil f(i, j)]=[H(u, v)][F(u, v)]\{H(u, v) \mid$
The result of the Walsh transform is a $16 x 16$ coefficient matrix where each coefficient represents the projection of the data matrix onto a particular Walsh pattern. Data compression (handwidth compression) can be achievad because the image energy which is usually uniformly distrubuted in the spatial domain, tends to be concontrated in those transform coefficients which represent the lower frequency component of the Walsh domain. The majority of the other transform coefficients are always nearly zero and need not be transmitted.

The transform coefficients can be partitioned as follows:
j) Luminance information coefficients: These coefficient constitute the majority of the entries in the coefficient matrix and are generally clustered about the low Erequency components.
2) The I color signal coefeicients: These coefficients always appear in a fix location in the coefficient matrix when the composite signal is properly samplen. 3) The Q color signal coefficients: These coefficients always appear in a fix location in the coefficient matrix when the composite sigral is properly sampled.

Typical lixif coefficient matrixs are shown in fig. 3 . The signals describer in statements (2) and (3) above can also represent the uv color signals in the pal system. Which signals are represented in (?) and (a) ahove will depend on the sampling rejative to the color subcarrier.

Thus, the Walsh transform not only maps the time sianals into walsh spectrum signals and compacts the energy distribution, hut also acts jike a romb Eilter which seperates the ryo romponents of the composite NTGC sinnals and maps them into specifir locations of the coefficient matrix. Note that the Nalsh transform ean also be used as a color detector since the coefficient which
represerits the color information represents the intensity of the baseband color signal.

The process of zonal qunantizing the coefficient matrix consists of first selecting the coefficients to he transmitted and then quantizing the coefficients prior to transmisaion. The coefficient selection depends on the statistical distribution of the energy in the coefficient matris. The larger the percentage of the siteray contained in the transmitted coeffllients, the better the guality of the reconstructed image. The percentage of the energy lost due to those coefficients not selected for transmission is equivalent to the mean square error. Thus, the selection of the coefficients to be transmitted is basicaliy the task of transmitting as much energy as possible in a given bit rate. The quantizer performs both unfform and nonuniform quantization for the coefficients which represent the lower frequency components and those coefficients which represent the higher frequency components respectively. The nonuniform characteristics resemble the Laplace distribution. This results in a trade off between bit rate reduction and reduction in quantization error.

THE WALSH SPECTUM OF I,O SIGNALS IN THE NTSC COLOR SYSTEM

In the NTSC color system,

$$
\begin{aligned}
& I=G .596 R^{\prime}-0.275 G^{\prime}-0.321 B^{\prime} \\
& Q=0.212 R^{\prime}-G .523 G^{\prime}+0.311 B^{\prime}
\end{aligned}
$$

where:

$I, Q=$ the baseband color differential signals

$R^{\prime}, G^{\prime}, B^{\prime}=$ the tristimulate values gamma rorrected signais

A NTSC composite color signal is given by:

$$
S=Y+I \cdot \cos \left(2 \pi f_{s c}+33^{\circ}\right)+0 \cdot \sin \left(2 \pi f_{s c}+33^{\circ}\right)
$$

where:

S $=$ the NTSC composite color signal
$Y=$ the luminunce siqnal.
$\begin{aligned} f_{\text {sc }} & =3.579545 \mathrm{MHz}=(227+1 / 2) E_{h} \\ & =\text { color subcarrier. }\end{aligned}$
$E_{h}=$ the horizontal line frequency.
There are two points that one should note. Firstly, the color signals appear as amplitude modulated waveforms where the amplitudes of the modulated waveform are the baseband cojor differential signal. Secondjy, the phase

' OF POOR QUALITY

of the modulated waveforms always change 18月 from line to ilne. When the sampling frequency is equal to four times the color subcariler and the sampling occurs at $12,162,192$, and 2 R2 degress of the subcarrier, the sampled morulater J. and Q signals will he as shown in fig.4. Thus, if we consider a 15×15 data matrix in the two dimensional space, the patterns of the modulated slgrais, I and 2 , will be the same as the patterns of the two dimensional Wajsh functions (16,9) and (16,8) respectively. In other words, the carrier of the I and 0 color information are the same as the two dimunsional walsh functions (16,9) and (16,8). The result is that amplituries of the modulated z and 0 slgnals wlll be equal to the values of the coefficients (16,9) and $(15,8)$ in the Walsh domain. If any other data matrix size such as Bx\&, 4×4, etc were useri, the ampliune of the I and Q signalis will also have corresponding coefficients. Just as the modulated I and Q siqnals have their respective bandwidths fo the Fourjer domain, the will also have their respective bandwiths in the wajsh domain. The result is that there are coefficients in the walsh domain which represent the higher components of the I and Q signals as shown in fig.3. The luminance signal, on the other hant, will in gereral not be mappea onto the Walsh patterns $(15,8)$ and $(16,9)$ and thus will not be mapped onto the coefficients in the Walsh domain which correspond to the I and Q signals. This is similiar to what occurs in the Fourier domain where the liminance signal in general does not occupy the same frequency spectrum of the colorwsignals. Thus, the J and Q components of an NTSG composite siqnal will be mapped onto certain coefficients in the Walsh Coefficients matrix which represents the spectrum of these signals. If the haseband I and 0 sianals are seperately samplet at fosc/4 anत transformed using two dimensionál Walsh functions, the energy of the τ and 0 signals will be compacter into coefficient (l, l) and neighborina coefficients. The coefficients ohtainer in this manner and thosp obtalined hy transforming the NTSC composite sianals would be identital. If we transform the baseband sianals, for example, the coefficients (1, 1), (1, ?) and (2, 1) which are oht:ainer hy transforming the 1 siqnal will he equal to copfficjents (15.n), (1) 5,19) and (15,9) rospertivaly as shown
 performer on the romposito siqnal the corressponding rombnnonts will be (8,5) , ($\because, \therefore 17,5$) respectively. \therefore yartar diagram is shown in fig.5. Each color has a presseriheत position in the vector diagram. Pith n, T
and U, V represent two dieferent coordinate systems. The NTS system uses the QI coordinates whereas the PAL system uses the UV coordinates. Every color can be represented by its profections along the axis of elther of these two coordinate systems or along any other sultable defined set of axis. With reference to fig.5, if. the simpling is started at point 1 and continved at 2,3 and 4 then the coefficients (16,8).... and (15,9).... will be equal to the components of Q and I as stated above. This means that by sampling at this phasf relative to the color subcarrier that the basis vertors $(15,8)$ and $(16,9)$ will correspond to the sampled Q and I chrominace signals respectively i.e, the Q signal will be in phase with the vector (16,8) and the I siqnal will be in phase with the vector (16,9). Note that phase shifts of'gn degress wilj still. produce similar results. In general, the color signal is time varying so that the coeffleients (16,8) and (16,9) actually represent the average value of the 0 and I signals taken over an area equal to the transform block size. The coefficients $(16,7),(15,8) \ldots$ and $(15,19)$, (15,9).... represent the higher frequency components of the Q and r signals respectlvely. The sum of the vectors $(16,8),(16,7),(1,5,8), \ldots$ is equal to the Q signal just as the sum of the vectors $(16,9),(16,19),(15,9), \ldots$ is equal to the I signal. The sum of all the vectotis in the Walsh domain is equal to the NTSC composite signal.

If the sampling phase relative to the color subcarrier deviates from the above, the basis vectors (lf, $)$ and (16.9) will no longer correspond to the vectors of the the chrominance signals. The result would be that the coefficients (15,8) and (15,9) would now contain components of both the Q and I signals.
 be seperated then the samitidisg phase is unimportant. However, the amount of compression is identical in both cases.

To show that the above analysis is correct the NTSC color bars signaj was sampled and transformed as तescribeत above. The result of this transformation is shown ir table l. The slight variation of the Q and I signals form the ideal values is due to the sampling phase not being exactly as shown in figs. 4 and 5. However, the results do show that the vectors $(\{6,8)$ and $(15,9)$ correspond to the Q and I signals.

For the $P A L$ color system the color subcarrier is at a higher frequency than in NTSC and the chrominance sional are not phasc shifter by 33 angi. relative to the color suhcarrier ad in the NTSG system. Consequently, for signals in the PAL system the sampling
phasa relative to the color subcarrier, requirud to seperate the chrominance signals in the Walsh domain, should ba displaced by 33 derrees rajativn to tha NTSC system, i.e, for the PAL system, sampling should beqin at point J'.

STATISTICAL PROPERTIES OF COFPFICIENTS . IN THE WALSII DOMAIN

In order to assian bits to each coefficient in the transform domain and choose quantization characterlstics for each coefficient, the energy distribution in the coefficient matrix and the probability density of ench coefficient were considered. The energy density distribution in the walsh domaln is defined as:

where:
$E D(i, j)=$ energy density of coefficient (1,j). Thls is कūerãger over the entire image.
$V(i, j)=$ the value of coefficient (i,i). $(i, j)=$ the elements in the coefficient metrix.
$W=$ the size of the matrix used. $B^{2}={ }^{n}$, the total number of mati.x in the partioned image.

The sveraqe value of each coefficient is given by:
$A V=\frac{1}{B^{2}} \sum_{m=1}^{B} \sum_{n=1}^{B} v_{m, n}(i, j)$
and the coefficient variance is given hy:
$V A(i, j)=\frac{1}{B^{2}} \sum_{m=1}^{B} \sum_{n=1}^{B}\left[V_{m n}(i, j)-A V(i, i)\right)^{?}$
The statistical results obtainet
from various ifferent tynes of images indicate that the picture enerqu is compacted int.n those coefficients which represent the lower frequency somponents such as coefficients $11,11,11,21,17,11$ and those coefficients which represent. the color information surh as
coefficients ($16, R$) and (16,9), as shown In Eig. F . Ir fig.f, the darker arens in the figure represent the greater energy density. Also, the coefficients which contain the same energy form hyperboins in the coefficient matrix. The energy density of the SMPTE 1 test silde is shown in fig.7.
the average values of coefficients $(1,1),(16,8)$ and $(16,9)$ represent the average intensity of luminence, Q and I siqnals respectively. The other coefficients have nearly zero average value. The coefficients (1, 1), $(15,8)$ and $(16,9)$ also have the greatest change in variance whereas the other coefficients have much smaller changes in varlance.

The energy density distrithution is one of the basic finctors used to celactorthome confficients which nre to be transmitted. Those coefficients which contain zero or almost zero energy density are not transmitted. In order to obtain the optimal bit assignment, the number of bits assigned to each coefelcients is proportional to its variance. In this paper, the number of bits assigned to each coefflcient were calculated by the equation:
$B(i, j)=\log _{2}| | A V(i, j)\left|+3 \cdot \operatorname{va}^{\frac{1}{2}}(i, j)\right|+1$
The $B(1, j)$ matrixfor various images incicate that coefficients (1,1) requires 9 bits allocated, which is the largest bit allocation. Approximately half the coefficients in the $B(i, j)$ matrix require less than 3 bits. Those coefficients which contain less than onal/iag relative energy density are not trinsmitted. The statistical results also indicate that those coefflcients which have the same bits allocation form hyperbolas in the $B(i, j)$ matrix.
statistical results also indicate that for most images coefficients (1, 1) has an almost liner probabilijty distribution, as shown if fig. g_{i}. Coefficients (15.8) and (15,9) in general, have a L, juace probability density. However, if. an imaqe contains only a constant hue or if it contains a specific hue which is strong, then the density will have its greatest value at some level. other than that of the Laplace density.

The density of the other coefficients can be represented by a Laplace density with zero average value. The actual density may not he symmetric. The average value of the coefficient indicates the amount of skew. The majority of the corfficients have an average vilu ciose to zero. The density plots of coefficient $(1,2)$ in the Walsh domain for the SMPTE \#1 and SMPTE \#A test. slites are shown in fig.9.

Thus, linear quantization is suitable for coefficients (1, 1), (lf,R), and (16,9) and any other coefficient which requice 7 or more bits. Nonundform guantization with a Laplane characteristlc is suitable for nll other coefficients which are to be transmitted.

SIMULATION OP CODEC

To simulate the codec a video image is first partitioned into data matrix and then each data matrix is transformed into a coefficient matrix using the walsh transform. In order to obtain good quality image at the receiver and maintain as low a hit rate as possible, it is necessary to find which coefficients of each matriy ought to be transmitted and how many bits are sufficient to code these coefficients. Three types of filter are used as shown infig.la.

On the average, FILIA requires 1.a9 bits/sample, FIL15 rigquires 1.53 bits/sample and Filis requires 1. al bits/sampie. Table ? shows the amount of energy that is transmitted by each illter. Note that the values in Table? to not take into consideration the quantization error. The number in these filters represent the number of bits required to code the corresponding coefficients. Coefficients requiring 7 , 8 or 9 bits are coded using a uniform quantizer with quantization spacing of 0.5 if the largerst level allowed in the coefficient matrix is 756 . Coefficients requiring less than 7 bits are coried using a nonuniform quantizer.

The coefficients which represent the lower frequency components of an image are assigned a larqer number of bits because 1) they have larger energy and variance 2) the quantization noise in these coefficients are easijy seen by human eyes, and 3) there are large changes in the average value of these coefficients from image to image so that a nownform guantizer is not suitable.

The result of using these three filters are shown in fig.ll. The only degradation that is visiable when usina Fthle is that there is a small amount of nojse.

The processed image with Fitif has stairwave contouring at slanted edaes and noticable resolution dearadation. This is due to the fact that most of the coefficients which represent. the detalls in an imaqe are suppresser.

The processen imane with Filla has substantial noise and littlo resolution degradation. The reason for this is that the coefficients are allocated a small number of bits anc consequently the quantizer generates substantial amount of guantization noisa.

In order to show that the coefficients (16,8) and (16,9) nearly represent the 0 and s tignals respectively, two other fillers i.e. FILYQ and EILYI were used. These filters are the same as filter FILI8 except that coefficients $(16,9),(16,19)$ and $(15,9)$ are suppressed in Fibyo end coefficients $(16,8)$, $(16,7)$ and $(15,8)$ are suppressed in FILYI. The image processed with FtLXI is shown in ilg.d2. In this case the color vectors are nll on the I axjs of the vectorscope as shown in fig.13. All the color components in the processed image belong to two opposite hues.

CONCLUSION

We have shown that a NTSC composite.ㅇignalmenn she decomposed into its Yro components by applying a two-dimensional walsh transform to a properly sampled NTSC composite color signel. In addition, the $X I Q$ components are always mapped into fix locations of the coefficient matrix in the Walsh domain.

The advantage of this technique is that there is no loss of information that is normally associated with the use of comb Eileters in order to perform component coding of NTSC composite signals. The above results were extended to the PAL color system.

Enemples of component coding were presented which yield very good picture quality at 1.8 bits/pixel. At these rates two digital NTSC television signals can be transmitted over z single 36 MHz . satellitetransfonder using QPSK. modulation:"

Fig. 2 Block diagram of codec for iUTSC signals

(a) subcarricr (b) mod. Q
(c) mod. I (d) sampled Q
(c) sampled I

Fig. 5 Locations of samples on color vector diagram

Fig. 9 Level histogram of coefficient (1,2)
Fig. 9 Level histogram of coeffic

	(15,8)	$(16,9)$	$(1,1)$	
white	0.0	0.0	215	
yellow	-21.7	20.0	168	
cyan	-13.4	-40.8	148	
green	-34.5	-29.2	136	
magneta	35.2	19.3	117	
red	13.9	40.0	164	
burst	-17.3	10.2	50	
TABLE 1 Color bars coefficients				

TABLE 1 Color bats coefficients

Fig. 6 Energy cistribution in coefficient matrix

SMPTES1 SMPTE\#A

FILI	99.89	99.94
FIL15	99.94	99.96
FILI.	99.91	99.95

TABLE 2 Energy transmitter

(a)

Abstract

(b)

			7				,	4	\pm						7
0	7	\cdots	4	4	4	2	4	4	4						?
7	7	*	4	4	\pm	4	4	3	1	7					- :
7	4		4	$\stackrel{1}{*}$	4	3	3	7	1	1					- 1
5	4	1	\pm	4	,	3	3	?	-	-					:
5	4	\checkmark	\pm	?	1	\pm	3	7	F	1					$:$
5	4	4	7		7	$?$	\cdots	\square	-						-
5	A	4	,	:	\%	,	0	F	1	-	1				*
4	4	1	,	7	,	it	\cdots	1							*
4	2	3	1	?	\cdots	\dagger	0	*	*	+	,				10
	3	2	-	"	:	$\stackrel{ }{ }$	7	1	-	*					
4	,	,	-	*		?	\%	,	*	-					
4	1	$\stackrel{1}{ }$	*		-	1	4	4	*						!
7	3	\cdots	${ }^{1}$		*	:	4	4							
	1	?	,				5	5							
	1	*	$\stackrel{\rightharpoonup}{*}$:	"	4	A	9							

シie. 16 Maree Zilters
(a) $E=10$
(i) $\operatorname{EIIL5}$
(c) TIエIE

ORIGINAL PAGE IS OF POOR QUALTTY

