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= heat transfer surface area of individual test plate segment 

= dimensionless function of collision integrals 

- molal isobaric specific heat 
= jet hole diameter 

5 mass diffusion coefficient 

= mass flux based on jet hole area 

= mean value of G j  over jet array 

= function found in rigorous expression for mixture viscosity 

= convective heat transfer coefficient resolved in streamwise 
direction, averaged across span 

= thermal Conductivity 

= thermal conductivity with frozen internal degrees of freedom 

= s t r e m i s e  length of heat transfer surface 

= molecular weight 

= ratio of molecular weights 

= mass fraction of component i 

= Nusselt number resolved in streamwise direction, averaged across 
span hd/ k 

= mixture pressure 

= partial pressure of component i 

= plenum pressure 

= Prandtl number, pcp/k 

Psat = saturation pressure 

Q = heat rate from individual test plate segment 
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= boiling temperature at one atmosphere 
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= fluid reference temperature for defining heat transfer coeffi- 

- 

cient# equivalent to adiabatic wall temperature 

= heat transfer surface temperature 

= humidity ratio (mass ratio of water vapor to air) 
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= Sutherland coefficient for thermal conductivity 
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the context 
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SUMMARY 

The applicability of forced convection heat transfer data and 

empirical correlations based on experiments with dry or nearly dry air 

to situations involving airlwater vapor mixtures (humid air) is consid- 

ered. The particular application which motivated the present study is 

the contingency cooling of helicopter gas turbine engine components 

using evaporatively cooled (and therefore humid) air. Heat transfer co- 

efficients were measured using both dry and humid air in the same forced 

convection cooling scheme and were compared using appropriate nondimen- 

sional parameters (Nusselt, Prandtl and Reynold's numbers). A forced 

convection scheme with a complex flow field, two-dimensional arrays of 

circular jets with crossflow, was utilized with humidity ratios (mass 

ratio of water vapor to air) up to 0.23. Results of a survey of the 

literature regarding the dynamic viscosity, thermal conductivity and 

specific heat of air, steam and airlsteam mixtures are reported. 

Methods for the determination of gaseous mixture properties from the 

properties of their pure components are reviewed in detail. Convenient 

methods for the determination of these properties with good confidence 

are described and the need for more experimentally determined property 

data for humid air is discussed. It is concluded that dimensionless 

forms of forced convection heat transfer data and empirical correlations 

based on measurements with dry air may be applied to conditions involv- 

ing humid air with the same confidence as for the dry air case itself, 

provided that the thermophysical properties of the humid air mixtures 

are known with the same confidence a s  their dry air counterparts. 



1. INTRODUCTION 

Forced convection heat transfer is an active area of experimental 

investigation motivated by a virtually unlimited number of applications 

that are of interest to designers of thermal systems. One important 

application €or forced convection heat transfer is the cooling of gas 

turbine engine components utilizing air drawn from the compressor 

section of the engine. Metzger and Mayle (1983) have discussed the 

continual improvement of gas turbine engine performance as made possible 

in part by improvements in gas turbine component cooling technology. 

Gas turbine engine component cooling fulfills two very important 

requirements that relate to the service life of component materials, 

namely: the maintenance of low overall component temperatures and the 

reduction in magnitude of local temperature gradients. The failure to 

meet either of these requirements, even for a relatively short period of 

time, can significantly shorten the service life of turbine engine 

components. Nevertheless, special situations do exist where a temporary 

need a r i s e s  for an increased  engine  power output which can only be 

realized by a corresponding increase in the turbine inlet temperature 

(and hence an exposure of the engine components to greater than 

desirable temperatures). Van Fossen (1983) provides two examples where 

such a need can arise in the operation of gas turbine engines for 

helicopter service. One example is an emergency situation where a twin 

engine helicopter loses one engine and an increase in power beyond the 

maximum power rating is required from the remaining engine for a brief 
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time in order to make a safe landing. A second example is on a hot day 

at high altitude where increased power is required for safe helicopter 

t ake-of f . 
A provision for the temporary extra cooling capability needed for 

gas turbine engines in special situations such as those just described 

has been investigated. Van Fossen (1983) has studied the feasibility of 

water injection (and evaporation) into the turbine coolant air of 

helicopter engines. This process is intended to lower the turbine 

coolant temperature during special situations by an amount necessary to 

maintain the turbine blades at their normal operating temperatures and 

thus prevent a redact ion of  blade s t r e s s  rupture l i f e .  Van Fossen used 

a computer model in his feasibility studies and concluded that water 

injection shows promising potential for actual engine use. Various 

humidity ratios (mass ratio of water vapor to air) for the humid air 

coolant were considered in Van Fossen's analysis with the maximum value 

being approximately 0.10. Other investigators have considered humidity 

ratios as high as 0.16 (Birschkron et al. 1981). 

The design analysis of turbine cooling depends extensively on the 

use of nondimensional heat transfer data and empirical correlations 

based on experiments with dry or nearly dry air. The water injection 

and evaporation technique discussed above requires heat transfer design 

analysis for situations where the coolant air stream may contain signif- 

icant quantities of water vapor. It might be expected that existing dry 

air correlations and/or data could be applied to these humid air cases 

provided the relevant nondimensional parameters (such as Nusselt, 
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Reynolds and Prandtl numbers) are evaluated using the appropriate humid 

air thermophysical properties. The primary objective of this thesis is 

to verify this expectation by direct comparison of dimensionless heat 

transfer coefficients obtained from experiments using dry air and humid 

air for the same test model geometry. Humidity ratios as high as 0.23 

are investigated. 

Because of the importance of accurate property data for use in 

making the comparisons of the dimensionless heat transfer data in this 

study, a literature survey was conducted covering experimental data for 

the dynamic viscosity, thermal conductivity and specific heat of air, 

steam and airlsteam (humid air) mixtures as well as methods for 

determination of gaseous mixture properties from the properties of their 

pure components. The results of this survey are discussed in Section 2. 

The basic experimental facility used in this study is the same as 

that used by Florschuetz et al. (1980, 1981) for earlier heat transfer 

studies motivated by the investigation of the air cooling of gas turbine 

engines. The facility was appropriately modified for humid, in addition 

to dry air experimentation. A description is given in Section 3. The 

particular cooling scheme modeled by this facility is that of j e t  

impingement by two-dimensional arrays of circular jets. An example of 

the application of this scheme in a gas turbine engine is the internal 

cooling of the midchord section of an airfoil as illustrated in Fig. 

1.1. Note that the jet flow from each row of jets, after impingement, 

is constrained to exit in such a manner as to create a crossflow for the 

remaining downstream jets. This example scheme is rather complicated, 
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F i g .  1.1 Example of Internal ly  Cooled Gas Turbine Air fo i l  
U t i l i z i n g  J e t  Array Impingement 
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involving many possible variations in the geometry and flow distribu- 

tions as well as complex flow interactions between the crossflow (which 

can be likened to a channel-type flow) and the jet flow. The jet array 

impingement scheme thus serves as a non-trivial example of a forced 

convection heat transfer configuration for which to carry out the 

desired comparisons. 

Section 4 outlines the experimental procedures and data reduction. 

Section 5 presents the comparisons of the heat transfer data for the dry 

and humid air tests as well as a discussion of these results. Conclu- 

sions based on the results of the study are given in Section 6. 

The authors are not aware of any previous investigations into the 

applicability of nondimensional dry air forced convection heat transfer 

data to situations involving humid air. Serksnis et al. (19781, using 

hydrogedcarbon dioxide mixtures and Pickett et al. (19791, using 

h e l i d a r g o n  mixturesJ found that the well known Dittus-Boelter and 

Colburn analogy correlations both significantly overpredicted their 

circular tube heat transfer data in the fully developed region. This 

was attributed to the low Prandtl numbers of the mixtures used (- 0.4) 

which were significantly below the smallest values (- 0 .7 )  for the data 

on which the correlations were based. A more recent correlation recom- 

mended by gays (1966) based on a family of numerical solutions including 

Prandtl numbers down to a value of 0.5 was found to give good agreement 

with the lower Prandtl number mixture data. 
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2. THERMOPHYSICAL PROPERTIES 

The work reported in this study is concerned with the acquisition 

and evaluation of heat transfer data that is presented by making use of 

the following three nondimensional parameters: 
- - 

Nu = hd/k, Rej = Gjd/p, and Pr = pcp/k . 
It is obvious that in order to evaluate such parameters for given 

experimental conditions, values of the transport properties of viscosity 

and thermal conductivity, and the thermodynamic property of specific 

heat for the gases of interest (namely dry and humid air) must be known. 

An attempt to obtain the most accurate. up-to-date. and easily used 

methods for the determination of these properties, with high confidence 

for engineering calculations, has been made for the data reduction and 

presentation portions of this work. The results of this effort are 

described in the following pages. Included are descriptions of several 

methods encountered in the literature regarding mixture viscosity and 

thermal conductivity and some original suggestions regarding the 

evaluation of humid air properties in particular. 

The amount of research published regarding the determination of the 

properties of air, steam and polar-nonpolar gaseous systems (which 

characterizes humid air) is very great, although the available data for 

transport properties of the humid air system specifically is surpris- 

ingly meager. The authors are not research specialists on thermo- 

physical properties. The following discussion is presented from the 

viewpoint of one attempting to make intelligent and critical use of the 
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available information. In that sense, this discussion may be considered 

quite thorough, and should be useful for those having a similar purpose. 

An effort has been made to use terminology that is consistent with 

that found in the mixture property literature. A specified set of two 

(or more) component gases is referred to as a 'system.' Air and steam 

(humid air) is an example of such a system. (Here air is considered as 

one component). A given system containing specified relative amounts of 

each component is referred to as a 'mixture.' A humid air system 

containing a mole fraction of steam of 0.2 is an example of one possible 

mixture for that system. 

2.1 Steam Properties 

Kestin has recently reported internationally accepted formulations 

for steam viscosity (1976) and thermal conductivity (1978). The 

formulation for viscosity, adopted in 1975, and the formulation for 

thermal conductivity, adopted in 1977, are referred to as the 'Release 

on Dynamic Viscosity of Water Substance' (RDV75) and the 'Release on 

Thermal Conductivity of Water Substance' (RTC77). Actually, two 

formulations are provided for thermal conductivity8 one for industrial 

use, and the other for scientific use. The only significant difference 

between the two formulations is that the latter accounts for the 

expected 'singular' behavior of the thermal conductivity in a small 

region about the critical point and as such is more complicated than the 

industrial formulation. Since all the calculations for this work were 

far from the critical point, the industrial formulation was used. The 
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details regarding the regions of validity for the viscosity and thermal 

conductivity formulations are given in Appendix C. All of the formula- 

tions are lengthy, but the RDV75 and the RTC77 (industrial) formulations 

are easily coded on the computer. Appendix C lists the FORTRAN IV 

coding used. The formulations require temperature and density as 

inputs. The suggested formulation for density for the above relations 

(Sengers et al. 1982) is the 1967 International Formulation Committee's 

(IFC67) formulation for industrial use from which the 1967 American 

Society of Mechanical Engineer's Steam Tables (Meyer et al. 1968) were 

produced. There exists a newer formulation for density referred to as 

the Provisional International Association for the Properties of Steam 

(IAPS) Formulation 1982 that is also suggested and is expected to 

replace IFC67 upon its formal international acceptance in September, 

1984, at the Tenth International Conference on the Properties of Steam, 

MOSCOW, USSR (Kestin et al. 1983). The formulation IFC67 was used in 

this work. 

Formulae for the isobaric specific heat for steam are contained in 

a supplement to the IFC67 formulation for industrial use. Sengers et 

al. (1982) have indicated that in certain regions these formulae are not 

acceptable because they do not produce sufficiently smooth results. The 

IFC67 formulae however, do exhibit smooth behavior in the particular 

region of interest for this work. 

2.2 Air Promarties 

A large amount of experimental and derived data has been published 

10 



for the dynamic viscosity, thermal conductivity and specific heat of 

air. This data has been critically analyzed in the appropriate Thermo- 

physical Properties Research Center (TPRC) data series volumes 

(Touloukian et al. 1975, 1970a, 1970b). The recommended values 

tabulated therein were interpolated for the evaluation of the properties 

of pure air for this work. 

2.3 Gas Mixtures 

The expressions available for determining the properties of 

viscosity and thermal conductivity of gas mixtures vary from purely 

theoretical derivations to direct curve fits of experimental data. 

Semitheoretical methods exist which use the basic forms of the 

theoretical expressions and through the use of intuitive assumptions, or 

the process of backing out the appropriate constants from the available 

experimental data, modify the expressions in order to obtain better 

agreement with the experimental data. An extensive and fairly recent 

survey of the methods for determining viscosity and thermal conductivity 

of gas mixtures is contained in the applicable volumes of the Thermo- 

physical Properties Research Center's data series (Touloukian et al. 

1975, 1970a). 

Theoretical expressions for the viscosity and the thermal 

conductivity of gas mixtures are based on kinetic theory and can be 

divided into what are referred to as the '(simple) mean-free-path 

theories' and the 'rigorous theories'. 

Nearly ninety years ago, Sutherland (18951, using simple mean-free- 
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path arguments developed the following form for the viscosity of a 

mixture of n monatomic non-polar gases: 

: 
i=l n 

1 + *ij 5 
j =1 Xi 
J #i 

where Pi is the viscosity of component i. 

For a binary mixture, Sutherland's equation simplifies to: 

(2.1) 

Wassiljewa (1904) derived a similar expression for mixture thermal 

conductivity: 

Neither of the above equations compared very well with experimental 

data, even for very simple gas mixtures. This was mainly due to an 

inadequate consideration of the intermolecular forces present in the gas 

mixtures (Touloukian et al. 1975, 1970a). Both expressions however, are 

the starting point for a myriad of semitheoretical and semiempirical 

approaches to the evaluation of mixture viscosity and thermal conduc- 

tivity, many of which are not limited to monatomic or non-polar gas 

mixtures. These methods concern themselves with the evaluation of the 

'kij and @ij which are referred to generally in the literature as the 

Sutherland coefficients. 
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The more rigorous derivations of mixture properties, the basis of 

which is the notable work of Chapman and Enskog (Chapman and Cowling, 

1970) account for the effects of intermolecular forces at the expense of 

producing much more complicated expressions for mixture properties. 

Kestin (1982) has described the great success of rigorous developments 

in evaluating the pure and mixture properties of several 'simple' gases 

and mentions the increased difficulty of evaluating the properties of 

polyatomic and polar gases with rigorous theory (see also Touloukian et 

al. 1970a). Thermal conductivity is particularly difficult to evaluate 

theoretically because it depends strongly upon the transport of internal 

(rotational and vibrational), in addition to translational molecular 

energy (Mason and Monchick, 1962, 1965 and Touloukian et al. 1970a). 

Mason and Monchick (1962) have provided a rigorous expression for gas 

mixture viscosity that has given very good results for fourteen polar- 

nonpolar gas systems (humid air not included in comparisons). 

The complexity of the rigorous expressions for mixture properties 

has greatly deterred from their usefulness in typical scientific and 

engineering applications. The knowledge to be gained from such 

developments however, has been helpful in the development of useful 

semitheoretical expressions for viscosity and thermal conductivity which 

rely on the Sutherland and Wassiljewa forms mentioned earlier. It is 

noted that rigorous theory can be simplified to these forms (Gambhir and 

Saxena 1964, Mason and Monchick 1965). One expression for mixture 

viscosity that takes on the Sutherland form and which is notable because 

of its many citations and wide use is that of Wilke (1950) where the 
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Sutherland coefficients are given by 

2.4 AirISteam Svstem (Humid Air) 

The semitheoretical and semiempirical methods require experimental 

data in order to obtain accurate formulations. Experimental measure- 

ments for the viscosity and the thermal conductivity of humid air, 

however, are surprisingly scarce. For thermal conductivity, searches 

have resulted in only two references for such information. Gruss and 

S c h i c k  (1928) reported measurements at a single temperature (353 9). 

Their values for pure steam and pure air are reasonably consistent with 

the currently recommended values discussed in Sections 2.1 and 2.2. 

Their mixture values are consistent with predictions based on semi- 

theoretical methods such as those of Lindsay and Bromley (1950) which 

have been verified for other polar-nonpolar systems. Gruss and 

Schick's results are reproduced and discussed in more detail in Section 

2.4.2. The second reference is Zakharov (1962). His experimental 

measurements of dry air thermal conductivity obtained over the range 20 

to 60oC with the same apparatus he used for humid air measurements are 

found to deviate from the recommended air values of Touloukian et al. 

(1970a) by 10 to 20%. His mixture values are significantly larger than 

predictions based on the validated method of Lindsay and Bromley refer- 

red to above, in some cases by a factor of over two. For these reasons 

the data of Zakharov is not considered reliable and is therefore not 
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utilized in this study. For viscosity, the 'disgraceful' lack of 

experimental data was not corrected until the measurements of Kestin and 

Whitelaw (1964, 1965) ,  discussed in detail in Section 2.4.1.  This lack 

of experimental data has impeded the progress of the determination of 

the best method for estimating viscosity and thermal conductivity of 

humid air mixtures. As a result, one is forced to use a method that 

reproduces the limited experimental data accurately and assume it is 

valid at other temperatures, or use a method that has proven accurate 

for a variety of polatnonpolar gas systems and assume it is also 

accurate for humid air mixtures specifically. 

2.4.1 Viscosity 

As mentioned earlier, Mason and Monchick (1962) have inves- 

tigated a theoretical expression for mixture viscosity which they have 

compared with experimental data for fourteen polatnonpolar systems 

(approximately 218 mixtures, humid air not included). The expression 

is : 

Here Ha,  is obtained from Hi, by interchanging the subscripts 1 and 2,  
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Af ,  is a dimensionless function of tabulated collision integrals and D,, 

is the mass diffusion coefficient. 

Mason and Monchick did not use the above in a purely theoretical 

way since experimental values were used for the component viscosities. 

They found that the deviation of mixture viscosity from experiment was 

always less than 5%, frequently less than 1% and averaged 1 to 2%. In a 

later paper by the same authors (1965) values of humid air viscosity 

based on the above expression are tabulated for both a purely 

theoretical calculation (including the component viscosities) and for a 

semitheoretical calculation using experimental values for the component 

viscosities and D,,. No experimental values for humid air are presented 

but the authors do argue qualitatively that the above expression used 

for humid air should be superior to the method of Wilke (presented 

earlier). The above equation for mixture viscosity simplifies to the 

Sutherland form, Eq. (2.11, if the terms involving H,, are neglected. 

Kestin and Whitelaw (1964) compared their experimental data for 

humid air to the curves generated by the theoretical values of Mason and 

Monchick. The values compare fairly well at low mole fractions of steam 

but are in poor agreement for mole fractions above about 0.6. This is 

mainly a result of unexpected inflections which occurred in the data at 

a mole fraction of steam of about 0.6. 

Saxena (1973) has surveyed the methods available for determining 

Sutherland coefficients for the viscosity of gas mixtures including some 

discussion of their temperature and composition dependence. From that 

Survey, he highlights two convenient methods for the determination of 
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the coefficients. The first method uses the following expression: 

(2.3) 

This equation, along with one experimental value of mixture viscosity 

and the Sutherland equation (2.1) determines a pair of coefficients. 

The second method is due to Saxena and Gambhir (1963) and uses the same 

expression except the molecular weight ratio is raised to the 0.85 power 

instead of unity. Mathur and Saxena (1965) compared method two to the 

experimental data for eleven polar-nonpolar binary gas systems (seventy- 

nine mixtures, humid air not included) and found an average absolute 

deviation of 0.4%. Their results confirm the expected composition 

independence of the coefficients. In addition, they indicate that the 

coefficients are approximately temperature independent for polar- 

nonpolar gas mixtures. For five of the ten binary gas systems investi- 

gr.ied, data was available at more than one temperature. Mathur and 

Saxena calculated Sutherland coefficients using data at the lowest 

temperature and then proceeded to calculate and compare the values of 

viscosity at the higher temperatures. By doing this, they added ninety- 

five mixtures (for the same eleven systems) to their comparisons and 

obtained an average absolute deviation of 1.8%. However, the present 

authors have noted that the trend in the deviation is for it to increase 

with temperature. Therefore, it seems appropriate to suggest that the 

coefficients be calculated using a mixture viscosity value at the 

temperature of the available data that is closest to the temperature of 
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interest. Nevertheless, it appears that coefficients evaluated at lower 

temperatures can be very useful at higher temperatures. 

Values for the Sutherland coefficients based on methods one and two 

described above were calculated by Saxena (1973) for a large number of 

binary systems (including some polar-nonpolar systems). For each 

method, values of the two coefficients were calculated at each mixture 

contained in the experimental data and then each pair of coefficients 

was used to compute values of mixture viscosity at all other mixtures at 

the same temperature. Three different deviations were then determined; 

the deviation between experimental mixture viscosity values and (1) the 

graphically smoothed ValaeSI (2 )  the calculated values of method one, 

and (3) the calculated values of method two. Provided that the first 

deviation, which reflects scatter within the experimental data itself, 

is not unreasonably large, an inspection of the remaining two deviations 

indicates the preferred pair of coefficients. If the first deviation 

and the smallest of the two remaining deviations are approximately 

equal, the best pair of Sutherland coefficients for reproducing the data 

within experimental uncertainty at a given temperature is determined. 

The recommended Sutherland coefficients resulting from this process have 

been tabulated for each temperature (Saxena 1973). A similar tabulation 

of Sutherland coefficients for a large number of gas systems utilizing 

methods one and two has also been included in the work by Touloukian et 

al. (1975). Eere, a different set of error calculations was used to 

find the recommended coefficientst (1) the mean absolute, (2) the 

root-mean-square, and (3) the maximum absolute devi8tion from the 
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experimental data. The recommended pair of coefficients was typically 

the one yielding the smallest values for all three deviations. 

Unfortunately, humid air was not included in either of the two tabula- 

tions just described. 

The present author has made calculations of the Sutherland 

coefficients for methods one and two with an experimental value of 

mixture viscosity from the data of Kestin and Whitelaw at 348 K and a 

mole fraction of steam of 0.193. This is representative of the typical 

mixture conditions of interest for this work. Calculated mixture 

viscosities using the coefficients of both methods reveal that they give 

essentially identical results. Mixture viscosity calculations using the 

method one coefficients are compared in Fig. 2.1 with the data of Kestin 

and Whitelaw (1964) obtained at six different temperature levels ranging 

from 298 K to 523 K. Calculated values using the Wilke method (1950) 

have also been included in the comparison. An additional curve at 523 K 

has been included in Fig. 2.1 using method one Sutherland coefficients 

evaluated at an experimental data point at that same temperature and a 

mole fraction of steam of 0.498. 

Inspection of Fig. 2.1 makes it immediately apparent that method 

one is more suitable for humid air viscosity calculations than the Wilke 

method. Further, it is apparent from the additional method one curve at 

523 K (made using the Sutherland coefficients calculated at that 

temperature) that it is good practice to calculate Sutherland coeffi- 

cients with a value of experimental mixture viscosity that is at the 

temperature level which is closest to the temperature level of interest. 
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--WILKE METHOD (1950) 

0, A ,a EXPERIMENTAL DATA 
(KESTIN AND WHITELAW 1964) 

MOLE FRACTION OF STEAM, X2 

Fig .  2 .1  Dynamic Viscosity of Humid Air a t  Severa l  
Temperature Levels 
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The previously mentioned inflections in the experimental data of 

Kestin and Whitelaw above a mole fraction of steam of about 0.6 become 

apparent in Fig. 2.1 if one imagines a curve smoothed through the data 

points and extended to the pure steam values at X, = 1.0. 

In the preceding calculations Kestin and Whitelaw's measured values 

for the pure component viscosities were used whenever possible. For the 

cases where the pure component viscosities were not measured by Kestin 

and Whitelaw, the data described earlier in Sections 2.1 and 2.2 was 

used (Touloukian et al. 1975 for air and RDV75 for steam). The 

deviation between measured component values (when supplied) and the more 

recent data was always one percent or less except for the viscosity of 

pure air at 523 K where there was a deviation of approximately 2%. 

An explanation at this point is appropriate regarding how the pure 

component viscosity of the steam was determined for those cases where 

pure steam (gaseous water) does not exist in an equilibrium state at the 

temperature and pressure of the mixture. In these cases, the viscosity 

of steam was evaluated at the temperature of the mixture and the corre- 

sponding saturation pressure for that temperature. 

Studnikov (19701, starting with an empirical formula for the 

thermal conductivity of mixtures containing a polar component, has 

developed an analogous empirical formula for humid air viscosity as 

follows: 

Stadnikov used Kestin and Whitelaw's experimental values at 298 K, 
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323 K ,  and 348 K to obtain a value for 'a' of 2.75. This reproduced the 

experimental data at these temperatures with a maximum divergence of 

0.1%. Despite the fact that Studnikov developed his empirical formula 

using only Kestin and Whitelaw's data at 348 K and below, his formula is 

found to remain accurate for higher temperature mixtures at low mass 

fractions. 

Tabulated values of Kestin and Whitelaw's humid air viscosity data 

along with the deviations of this data from the Wilke method, methods 

one and two (using Sutherland coefficients calculated at 348 K) and the 

Studnikov formula are contained in Table A.l of Appendix A. Deviations 

of the experimental data at 523 K using the method one coefficients 

evaluated at that temperature are also contained i n  Appendix A, Table 

A.2. 

It is noted that none of the methods described above (including 

Mason and Monchick's theoretical expression) predict the inflections 

contained in the experimental data. Indeed, the form of these equations 

(assuming Sutherlaad coefficients independent of mixture composition) 

does not admit the prediction of such inflections. Therefore, no 

recommendation can be offered for a suitable method to be used in 

determining mixture viscosity of humid air at high mole fractions of 

steam. For low mole fractions of steam (i.e. 0.5 and less) methods one 

and two (Saxena 1973) and Studnikov's formula appear to work well. The 

purely empirical nature of Studnikov's formula makes it less appealing, 

however, and the slightly simpler form of method one over method two 

suggests that method one is a convenient choice for mixture 
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viscosity calculations. Method one finds further appeal in that it is 

exactly the same as the method chosen to calculate the ratio of the 

Sutherland coefficients for mixture thermal conductivity calculations as 

will be explained later. Hencer method one (Eq. 2.3) was chosen for the 

mixture viscosity calculations for this work. Howeverr the accuracy of 

method two and of Studnikov's formula in the region of interest for this 

work is such that either of those methods could have been used with the 

same confidence. 

2.4.2 Thermal Conductivite 

The added difficulty in calculating theoretical mixture 

thermal conductivity due to its strong dependence on energy transfers 

internal to the molecular structure was noted earlier. Because of thisr 

the rigorous theoretical expressions for mixture thermal conductivity 

are even more unwieldy than those for viscosity. Consequently, the 

practical appeal of semitheoretioal (and semiempirical) methods which 

are concerned with the determination of the appropriate Sutherland 

coefficients for use with Eq. (2.2) is again emphasized. 

An early semitheoretical expression for mixture thermal conductiv- 

ity which is analogous to Wilke's viscosity expression in its popularity 

is that of Lindsay and Bromley (1950) where the Sutherland coefficients 

are given by 

S is the Sutherland constant approximated by S = 1.5TBr TB being 
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the boiling temperature of the appropriate component at one atmosphere. 

Sij for a polar-nonpolar mixture is given by Sij = 0 . 7 3 3 m j  I Using 

this expression, Lindsay and Bromley were able to reproduce the experi- 

mental data for twenty gas systems (eighty-five mixtures) with an 

average deviation of 1.9%. Gruss and Schmick's experimental humid air 

data was reproduced with an average absolute deviation of 0.9%. Tondon 

and Sarena (1968) compared Lindsay and Bromley's method and three other 

methods described as follows: An 'approximate' method where 

and k:, Lj" are the component thermal conduotivities with frozen internal 
degrees of freedom; an 'empirical' method where the two Sutherland 

coefficients were calculated based on two mixture conductivities from 

the data; and a 'semitheoretical' method that used the expression: 

along with one mixture conductivity. After testing these methods 

against available experimental data for twelve polar-nonpolar gas 

systems (including humid air), the 'semitheoretical' method was 

considered most favorable with an absolute average deviation of 1.86% 

for ninety-seven mixtures. The 'empirical' method was tested for 

eighty-five mixtures and gave the highest absolute average deviation of 

2.70%. Tondon and Saxena suggest that the 'empirical' method may be 

considered the least attractive method because it requires two mixture 
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conductivities, while the 'approximate' and Lindsay-Bromley methods can 

be advantageous where there are no known values of mixture conductivity. 

Tondon and Saxena's comparisons for humid air in particular provided a 

3.5% absolute average deviation from the experimental data of Gruss and 

S c h i c k  for the 'empirical' method, while the three remaining methods 

each gave absolute deviations of approximately 1% or less. Tondon and 

Saxena's tests for systems where experimental data was available for 

more than one temperature indicated that, unlike the case for viscosity, 

no systematic error trend was apparent for higher temperature calcula- 

tions made with lower temperature Sutherland coefficients. The 

'semitheoretical' method, however was noted to be especially satis- 

factory for increasing temperature. 

The determination of recommended Sutherland coefficients for 

thermal conductivity based on three methods for a large number of gas 

mixtures (including humid air) was reported by Touloukian et al. 

(1970a). Method one uses the following expression: 

and one mixture thermal conductivity to calculate the coefficients. 

Similarly, methods two and three require one mixture value and the 

expressions: 

@A = ki 5 9 W a  + 88Y* + 150 

@ji kj 150Wa + 88M* + 59 
- 

where M* = 5 
Mi 
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and 

respectively. The coefficients were calculated at all mixtures for each 

temperature of the experimental data and the absolute, root-mean-square 

and maximum deviations were considered in finding the best pair of 

Sutherland coefficients for each method at each temperature. A best 

method out of the three was not suggested by Touloukian et al. The 

authors' own calculations for humid air using the tabulated coefficients 

indicated that methods one and three fit the experimental data of Grass 

and S c h i c k  slightly better than method two. The deviations of the 

individual experimental data points from the calculated values for these 

two methods are given in Appendix A, Table A . 3 .  

Deviations are also given in Table A . 3  for values of mixture 

conductivity calculated using Tondon and Saxena's published coefficients 

for their 'semitheoretical' method, based on Eq. ( 2 . 4 ) .  Since this 

method requires the use of pure component viscosities it was decided 

that a newly calculated pair of coefficients should be found using the 

more recently recommended pure component viscosity data discussed 

earlier in Sections 2.1 and 2.2 (Touloukian et al. 1975 for air and 

RDV75 for steam). Comparisons given in Table A . 3  based on these newly 

calculated coefficients indicate that they result in an average absolute 

deviation from the experimental data of 0.8%. 

In all of the above described mixture conductivity methods, the 

values used for the conductivity of the pure components were either 
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exactly or very nearly the same as those measured by Gruss and Schmick. 

A benefit of this procedure is that it tends to minimize the effect of 

any systematic error in the measured values on the determination of the 

best pair of Sutherland coefficients. Once a recommended pair of 

coefficients is found, these coefficients can be used along with what 

may be considered more accurate pure component conductivities in making 

mixture conductivity calculations. 

For the present heat transfer study, mixture conductivity values 

based on the 'semitheoretical' method of Tondon and Saxena (1968) with 

the newly calculated Sutherland coefficients were utilized. As already 

noted, these coefficients accurately reproduced the Gruss and Schmick 

data with an average absolute deviation of 0 . 8 % ~  and, in addition, 

Tondon and Saxena found that this method tested well for increasing tem- 

peratures. A graphical comparison with the data of Gruss and Schmick is 

shown in Figure 2.2. The solid curve in the figure was determined using 

the newly calculated Sutherland coefficients and the more recent pure 

component data (Touloukian et al. 1970a for air and RTC77 for steam). 

This curve lies uniformly above the Gruss and Schmick data by about 

4.0%, suggesting that their data may contain a small systematic error. 

The procedure used for determining the thermal conductivity of pure 

steam in cases where pure steam does not exist in an equilibrium state 

at the temperature and pressure of the mixture, was the same as that 

used for the determination of steam viscosity under such conditions. 
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That is, the thermal conductivity was evaluated at the mixture tempera- 

ture and the corresponding saturation pressure. 

The newly calculated coefficients used for the above calculations 

are an appropriate choice for the evaluation of mixture conductivity 

until the time that more experimental data is available. In the 

interim, it remains very difficult, impossible rather, to determine the 

best Sutherland coefficients for humid air thermal conductivity because 

of the small amount of experimental data that exists. Any additional 

experimental data for humid air thermal conductivity at various 

temperatures and mixture concentrations would be a welcome contribution. 

2.4.3 SDecific Heat 

It can be shown that for a mixture of n ideal gases, the 

mixture isobaric specific heat is provided by the following expression: 

where the pure component specific heats are evaluated at their 

individual partial pressures, Pi. and the mixture temperature. The 

concept of partial pressure follows from the Dalton model of gas 

mixtures where the properties of each component are taken as those that 

the component would have if it existed separately at the temperature and 

volume of the mixture. It follows from this that: 

n 

i=l 
P = C  Pi 
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This expression holds exactly for an ideal gas. Use of the ideal 

gas law yields: 

Pi = xi P 

Hsieh (1975) notes that experiment has shown that Dalton's model holds 

approximately for real gas mixtures in some ranges of temperature and 

pressure where the ideal gas law itself is quite inaccurate. In such 

cases, a real gas equation of state should be used in preference over 

the preceding equation in determining the partial pressures of the 

components. Van Wylen and Sonntag (1978) have mentioned, however, that 

even for a saturated gas-vapor mixture (such as humid air at saturation) 

the treatment of the gaseous phase as a mixture of ideal gases often 

gives good results. This observation seems to be confirmed by the 

present authors' comparisons of mole fractions determined utilizing two 

different methods; (1) the above ideal gas relations plus observations 

of humid air mixture dewpoint temperatures and ( 2 )  mole fraction 

calculations determined directly from measured air and steam flow rates 

(Sections 4.3 and 5.1). In light of this, Eq. (2 .5)  was used to 

determine humid air specific heat in the present study. 
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3. EXPERIMENTAL FACILITY 

A s  mentioned earlier, the test-unit assembly used in this study was 

the same as that used by Florschuetz et al. (1980, 1981) in earlier heat 

transfer studies with dry air. Fig. 3.1 shows the basic test model 

geometry and nomenclature for the jet array impingement scheme investi- 

gated. Spanwise and streamwise views of the test-unit assembly which 

incorporates the basic test model geometry are shown in Fig. 3.2. The 

assembly basically consists of a plenum in which either dry or humid air 

is introduced, a jet orifice plate through which the heat transfer fluid 

exits forming jets, and a segmented copper heat transfer test plate upon 

which the jets of fluid emerging from the plenum impinge. 

The incorporation of the test unit assembly into the overall exper- 

imental test facility is shown in Fig. 3.3. Separate air and steam 

sources are individually regulated and are combined to form the desired 

humid air mixture. The air supply consists of a compressor with an 

aftercooler. The aftercooler removes essentially all water vapor from 

the compressed air, so that for the present purpose this air may be 

considered dry. This was verified by the results of saturation tests 

made during the experimental runs (Sections 4.3 and 5.1). The air 

supply passes through filters and regulators before it reaches a flow 

meteting section consisting of a square-edged orifice. Orifice upstream 

and differential pressures are measured with U-tube or well-type 

manometers and the air temperature just downstream of the orifice is 

measured using a copper-constantan thermocouple. (Manometers and 
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thermocouples not shown in Fig. 3.3). An electric heater in the air 

line allows preheating of the air before it mixes with the steam. 

The steam supply comes from the campus physical plant and is 

typically at 430 K and 0.58 MPa in the main. The steam flow passes 

through a strainer and regulator before being measured by a variable 

area flowmeter. A bourdon gauge with 0.1 psi divisions is used to 

measure the pressure in the steam line just upstream of the flowmeter. 

The steam temperature is measured with a copper-constantan thermocouple 

also located just upstream of the flowmeter (not shown in Fig. 3.3). 

The 2.66 cm inside diameter air and steam lines are joined together 

at a common piping tee followed by a pipe flow length of over forty 

diameters to insure complete mixing of the air and steam flows before 

reaching the plenum. The entire steam and mixture path including the 

plenum is wrapped with heating tapes and covered with fiberglass 

insulation to prevent condensation. Thermocouples mounted at various 

locations along the path allow the pipe surface temperatures to be 

monitored. 

A brief description of the essential details of the test unit 

assembly (Fig. 3.2) will now be provided. More extensive details of the 

assembly can be found in an earlier report by Florschuetz et al. (1980). 

The assembly consists of a single test plate unit containing the 

segmented copper test plate and is capable of accommodating several 

different test configurations by means of interchangeable plenums, 

spacers and jet plates. The plenum size shown in Fig. 3.2 was used for 

all of the work reported here. In order to be consistent with the 
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nomenclature of earlier work it is referred to as the B-size plenum. 

This plenum, and its matching jet plates, cover just a portion of the 

entire heat transfer test plate surface available. Packing material in 

the plenum provides uniform flow characteristics approaching the jet 

plate. A copper-constantan thermocouple mounted in the plenum and a 

static pressure tap for a manometer connection (not shown in Fig. 3.2) 

allow for temperature and pressure measurements to be made at a location 

inside the plenum just upstream of the jet orifice plate. 

All of the jet plates used in this study contain uniform inline 

patterns of 180 holes (18 spanwise holes by 10 streamwise holes). Bole 

diameters were 0.254 or 0.127 cm and in all cases the jet holes are 

counterbored so that the plate thickness at each hole location is the 

same as the hole diameter. 

The various geometries studied are denoted by the plenum size 

followed by the streamrise and spanwise hole spacings, and the channel 

height in terms of jet hole diameters in parenthesis. The letters I or 

S denote inline or staggered arrays respectively. Hence a typical 

configuration is given as B(5,4,3)I indicating the B-size plenum and an 

inline array with +/d, yn/d and z/d taking on the values 5, 4 and 3 

respectively. 

The individually heated copper segments which make up the test 

plate allow streamrise resolved heat transfer coefficients to be 

determined. A one-for-one matching exists between the centerlines of 

the first ten segments and the ten immediately opposite spanwise rows of 

holes in the jet plates. The A.C. power input to the segment heaters 
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can be individually controlled by the use of variac potentiometers. A 

total of eleven segment heaters are supplied with powerr ten correspon- 

ding to the ten spanwise rows of jets and an eleventh acting as a guard 

element. The dimensions of each copper segment are 12.0 cm in the 

spanwise direction by 1.27 cm in the streamwise direction by 0.635 cm 

thick. The heat transfer surface length in the streamrise direction, 

denoted by L, is taken as the distance from one-half of the streamwise 

hole spacing (Xn/2) upstream of the first jet hole location to one-half 

of a streamwise hole spacing downstream of the last jet hole location 

and is equal to 12.7 cm for all the configurations utilized in this 

study . 
The thermocouple voltages are recorded by a digital data logger 

with a compensated reference junction. The segment heater power 

measurements are made after conversion to D . C .  by a solid state signal 

conditioner and are also recorded by the digital data logger. 
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4. EXPERIMENTAL PROCEDURES AND DATA REDUCTION 

4.1 Tnical Test Runs 

The preparation for a typical test run included the installation of 

the appropriate channel height spacer and jet plate for the desired 

geometric configuration onto the test-unit assembly. The various 

configurations and experimental conditions for which data was obtained 

are summarized in Table 4.1. The geometries chosen represent a range of 

jet array flow conditions varying from highly nonuniform (for the 

B(5,4,1)1 geometry) to essentially uniform (for the B(10.8,3)1 geometry) 

pressure and row by r o w  jet flow distributions along the streamwise 

direction of the channel. For each configuration at which a humid air 

run was made a corresponding dry air run was also performed at roughly 

the same mean jet Reynolds number. The test run procedures for both the 

humid and dry air runs are described in the following paragraphs. 

At the beginning of a humid air run the air regulators were 

adjusted for the desired air flow. Air flow measurements were made 

using standard 1.778 or 2.54 cm diameter square-edged orifice plates 

according to the methods of the American Society of Mechanical 

Engineers * (1959) publication Fluid Meters which provides tables of 

coefficients for various standard square-edged orifice diameters. Power 

was supplied to the air heater in order to obtain an air temperature 

which, according to a simple energy balance calculation, would provide 

the desired mixture temperature upon introduction of the steam flow. 

Preheating the air in this manner insured that the resultant mixture 
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temperature would be above that of saturation for the mixture. 

The steam and mixture lines, along with the aluminum plenum, were 

heated to temperatures above the expected saturation temperatures using 

the installed heating tapes before starting the steam flow. Heat-up 

times for the pipes and plenum from room temperature were typically 

thirty to forty minutes. Low power inputs were supplied to the copper 

test plate segments to bring them above room temperature as well. After 

the necessary pipe, plenum and air heating was established, the steam 

regulator was adjusted for the desired steam flow rate. The flow rate 

was measured using the variable area meter. 

After introduction of the steam flow, power to the segment heaters 

was set to zero and the segment temperatures were monitored while 

approaching steady state conditions. The time period allowed to reach 

steady state conditions was typically two hours. Once steady state was 

attained for this zero segment heater power condition the individual 

segment temperatures were recorded. In most cases, two non-zero power 

input levels referred to as the maximum and the one-half power levels 

followed the zero power condition. These power level settings involved 

adjusting the individual variac potentiometers for each segment heater 

in such a way as to achieve an essentially isothermal test surface. 

Temperature differences between adjacent segments were typically no more 

than 0.1 K and the temperature difference between any two given segments 

was typically no more than 0.25 K. Whenever the adjustment to a new 

power level was made, a time period of typically forty minutes to an 

hour was allowed to pass in order to achieve steady state conditions 
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before recording the necessary data. 

The minimum temperature in the plenum for any given humid air run 

was limited by the saturation temperature for the humid air, which in 

turn depended on the humidity ratio and the plenum pressure level 

required to achieve the desired mixture flow rate for that run. The 

maximum temperatures for the test plate segments were limited by certain 

materials used in the construction of the test plate, which was not 

designed for operation at high temperatures. For the tests reported 

here, the maximum test surface temperatures were 355 K, 

Surface-to-plenum mixture temperature differences for non-zero power 

input test conditions ranged from 3 to 12 K. 

For mixture Case 2 (W = 0.23) only a zero and a maximum power level 

condition were run due to the fact that using all three power levels 

would have required a long run time with a high humidity mixture that 

was being partially exhausted into the laboratory. 

A complete set of data recorded for each power level condition, 

besides the individual segment temperatures and power inputs, included 

the plenum pressure and temperature, the air-metering orifice tempera- 

ture and upstream and differential pressures, the steam temperature and 

pressure at the flowmeter as well as the flowmeter reading itself, and 

the barometric pressure. 

Dry air test runs followed a simplified procedure to that described 

above where the additional effort required in preheating the steam lines 

and adjusting and measuring the steam flow was eliminated. Unlike the 

cases with humid air, these runs were not constrained by the need for an 
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elevated plenum fluid temperature in order to avoid saturation condi- 

tions. The air for these runs could simply be introduced at the 

slightly-below-ambient temperatures that resulted from the air 

compressor's aftercooler as was the practice for prior studies using the 

same air supply (Florschuetz et al. 1980). However, after the first dry 

air run had been performed it was decided to perform later runs at 

similar temperature levels and differences to the humid air runs. This 

procedure would tend to minimize any bias due to possible differences in 

heat leaks resulting from two different operating temperatures. 

4.2 Segment Heat Transfer Coefficients 

The heat transfer coefficient for each active segment of the test 

plate was evaluated from 

h = ( Q / A )  / (Ts-Tr) (4.1) 

where Q is the segment heat rate determined from the power measurements 

after correcting for the segment heat leaks, A is the heat transfer 

surface area of the segment, Ts is the segment surface temperature and 

Tr is the adiabatic wall temperature. 

Three data sets (Q,Ts) were available corresponding to the three 

steady state conditions (zero, half, and maximum power levels described 

above) recorded for each geometry at a specific flow rate. Values of h 

were determined by a linear least squares fit to the three data sets. 

Values of Tr also resulted from the fit. It is clear from Eq. (4.1) 

that only two data sets (Q,Ts) would be required to determine h and Tr. 
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The use of three sets permits a check on the expected linearity of Q 

with Ts. Significant deviation of the three points from a straight line 

would indicate invalid data. To check the linearity, values of h 

computed using each of the three possible combinations of two members of 

each data set (zero/maximum, zero/half and half/maximum power input 

levels) were compared with values of h from the least squares fit line. 

For the dry air runs 95% of the individually computed values were within 

- + 3% of the values based on the fit line. For the humid air runs the 

corresponding result was f. 4% for 95% confidence. 

A comparison of the data for the dry air runs made for this work 

with the corresponding (i.e. same geometry and Reynolds number) data 

from the runs by Florschuetz et al. made approximately four years ago 

indicated excellent long term reproducibility with deviations of fi 3% 

for 95% confidence and fi 4% for 100% confidence. 

4.3 Saturation Tests 

A saturation test to add confidence to the humidity ratio (or mole 

f rac t ion)  determined f r o m  the measured mass f low r a t e s  was performed f o r  

all of the humid air r u n s  except Case 1 as follows: The inline air 

heater power was lowered by small increments resulting in a gradual 

decrease in mixture temperature as measured by the plenum thermocouple. 

While the mixture temperature decreased the flow exhausting from the jet 

plate-to-impingement surface channel was carefully observed for any 

traces of liquid. The mixture temperature at which condensate was first 

observed was recorded. Then, the air heater power was increased. As 
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the mixture temperature in the plenum began to rise the temperature 

where condensate was no longer observed was recorded. These two 

temperatures were always within 0.5 K and their average was used as a 

measurement of the mixture saturation (dewpoint) temperature. The 

saturation pressure for steam (Psat) corresponding to this temperature 

was then found from the ASME Steam Tables (Meyer et al. 1968). Using 

Dalton's model (Section 2.4.3) and the mixture (plenum) pressure (Po), 

the mole fraction of steam was then calculated from: 

Xa = PsatIPo 

4.4 ExDerimental Uncertainties 

Florschuetz et al. (1980) examined the experimental uncertainty for 

heat transfer coefficients and Nusselt numbers obtained with the same 

test-unit assembly used for the experimental work reported in this study 

and the same dry air experimental procedures described in Section 4.1. 

On the basis of 95% confidence the composite uncertainty for heat 

transfer coefficients was about 2 4% for the geometric configurations 

that were the same as those considered for this work. Uncertainties for 

the 0.127 and 0.254 cm diameter jet hole diameters were 2 2% and 2 1% 

respectively. The resulting composite uncertainty for Nusselt numbers 

is then conservatively characterized by 2 5%. 

The air mass flow rate determined using square-edged orifice plates 

has an uncertainty of about f- 2%. The variable area flow meter used for 

steam flow measurement was tested against both the 1.778 and the 2.54 cm 

standard square-edged orifices using room temperature air and was found 
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to have good repeatability and the expected relative accuracy. A 

calibration curve based upon the 2.54 cm orifice test was made for use 

in the steam flow measurements. The composite steam mass flow rate 

uncertainty, taking into consideration the meter calibration, scale 

reading, and steam temperature and pressure measurements is estimated to 

be 2 4%. This uncertainty is primarily dependent upon the uncertainty 

associated with the fluctuating meter scale reading which ordinarily 

fluctuated about an apparent mean value. h e  to the relatively small 

contribution to the total flow rate made by the steam, the composite 

uncertainty for the total humid air mixture flow rate (dry air flow rate 

plus steam flow rate) is just 2 2%. 

Composite uncertainty for the mean jet Reynolds number for both the 

dry air and humid air runs based on the jet hole diameter and flow rate 

uncertainties is 2 3%. The composite uncertainty in the humidity ratio 

(and also the mole fraction) based on the air and steam flow rate 

uncertainties is 2 4.5%. The uncertainty for mole fraction based on the 

saturation tests (Section 4.3) is estimated at 2 4%. This is primarily 

dependent on the uncertainty in determining the saturation (dewpoint) 

temperature. 
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5 .  RESULTS AND DISCUSSION 

5.1 Saturation Tests 

The mole fraction determinations based on the saturation tests 

described in Section 4 . 3  are compared with those based on the measured 

flow rates in Table 5.1. As stated in Section 4.4,  the uncertainties 

for the mole fractions based on the saturation tests and the measured 

flow rates were both about 2 4%. The two different mole fraction 

determinations are consistent to well within experimental uncertainty. 

For reduction of the humid air heat transfer data mole fractions based 

on the flow rate measurements were used. 

5 . 2  Heat Transfer Coefficients 

A s  mentioned in the introduction, the objective of this study is to 

verify the expectation that dry air heat transfer data may be applied 

with confidence to situations involving humid air provided that the 

correct humid air thermophysical property values are used in evaluating 

the relevant nondimensional parameters. Heat transfer using jet array 

impingement h a s  served in this work as an example cooling scheme with 

which to obtain data for carrying out the comparisons necessary to 

establish this verification. 

Results of fjricr dry air studies with jet array impingement 

(Florschuetz et al. 1980) have shown that values of Nusselt numbers 

resolved to x, in the streamwise direction (referred to as segment 

Nusselt numbers) for a given geometry and streamwise location are 
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Table 5.1 Comparison of  Mole F r a c t i o n s  Determined 
from Measured Flow Rates  w i t h  Values  from S a t u r a t i o n  Tests 

Case Mole f r a c t i o n  X, based on: Pe rcen t  
d e v i a t i o n  

Measured f low S a t u r a t i o n  
rates t e s t s  

2 0.267 0.266 0.4 

3 0-094 0 094 0.0 

4 0.170 0.169 0.6 

5 0.200 0.208 -3.8 
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proportional to Rejm where m varies somewhat from segment to segment but 

is typically about 0.7. Values of m determined from these previous dry 

air studies were used to interpolate the segment Nusselt numbers of the 

dry air runs of the present study to match exactly the humid air run 

Reynolds numbers. The Reynolds numbers for the dry and humid air runs 

made for any given geometry were very similar (see Table 4.1). 

The Prandtl numbers for dry and humid air runs differed by 3 to 7%. 

It is generally accepted that Nusselt number dependence on Prandtl 

number (at least for Prandtl number on the order of one which is the 

case for gases) is proportional to Prn where n is either 0.33 or 0.40. 

A value for n of 1/3 was chosen here to represent the experimental data. 

Use of n = 0.4, however would not have resulted in a significant 

difference. 

The necessary thermophysical property values for reducing the 

experimental data in nondimensional form were determined according to 

the methods described in Section 2. 
-1 1 3 

Figures 5.1, 5.2 and 5.3 show values of NrSr for humid and dry 

air runs for five cases (three different geometries). It is apparent 

that overall the humid and dry air results are quite consistent. Recall 

that in Section 4.4 the uncertainty in the Nusselt number for 95% 

confidence was conservatively estimated to be 2 5%. For the purpose of 

comparison of dry and humid air data obtained with the same test rig it 

is appropriate to eliminate any possible contribution made to the 

overall uncertainty as a result of a systematic error (or bias) in the 

data. It was noted in Section 4.2 that the long term reproducibility of 
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dry air runs for 95% confidence was 2 3%. It therefore seems reasonable 

to suggest an uncertainty that is slightly less than the overall value, 

say 2 4% for the purpose of comparison of the dry and humid air data. 

The height of the data points in Figs. 5.1 through 5.3 represents 8% (f- 

4%) on the logarithmic scale, reflecting this experimental uncertainty. 

It can be seen that virtually all of the humid air points are coincident 

with or overlap the dry air points. These results provide strong 

verification for the anticipated applicability of the dry air data to 

the humid air case and also indicate that the suggested methods for the 

determination of the various thermophysical properties involved may be 

used with good confidence. The values of NuPr for the various 

cases along with the percentage deviations between the dry and humid air 

values are presented in tabular form in Appendix B, Table B . l .  

-1 f 3 

The only deviation which clearly exceeds experimental uncertainty 

is for the first points of Case 5 (Pig. 5.3). Comparison of the dry air 

value with the data of Florschuetz et al. (1980) for the corresponding 

geometry and Reynolds number indicates that the air data point is 

consistent and thus, the humid air value is suspect. Some observations 

of the jet plate and the first segment of the test plate after the runs 

of Case 5 suggest a possible explanation for this result. The jet plate 

and heat transfer test plate were completely cleaned before the dry and 

humid air tests of Case 5 were run. After Case 5 was run the plenum was 

removed and the jet and test plates were inspected. Discoloration of 

both plates observed at the upstream end of the channel (location of 

segment one), indicated that a thin layer of liquid water (possibly from 

5 2  



inadvertent condensation which occurred while achieving this test 

condition) may have been trapped against the upstream end wall of the 

channel and covered a small fraction of the surface of segment one. No 

cross flow exists at that location to overcome the force of surface 

tension that may have prevented this condensate from being forced away 

from the upstream endwall, If some condensate were present at the 

described upstream location, the evaporation of water from the first 

segment would have no doubt significantly increased the heat transfer 

coefficient for that segment as is observed in Fig, 5.3. 

It is of interest to examine the effect of the presence of water 

vapor on dimensional heat transfer coefficients relative to those for 

dry air. Starting with the relation 

1/ Nu a Rejm Pr 

the ratio of the dry air to humid air heat 

same geometry and flow rate can be expressed 

transfer coefficent for the 

as : 

Results of calculations based on this expression (using m = 0.73) at a 

temperature of 345 K and humidity ratios varying from 0.0 to 0.25 are 

plotted in Fig. 5.4. While the effect of using dry air rather than 

humid air properties is seen to not be extremely large (remaining just 

under 10% for a humidity ratio of 0.25) it is emphasized that this 
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result has apparently not been previously verified directly by heat 

transfer measurements with humid air for a range of controlled humidity 

ratios. 

5 5  



6. CONCLUDING REMARKS 

Comparison of nondimensional heat transfer data from convective 

heat transfer experiments using both dry and humid air of various 

humidity ratios up to 0.23 has verified the equivalency of the data 

provided the appropriate thermophysical property values are used in 

evaluating the relevant nondimensional parameters. This verification is 

based on experiments made with a complex forced convection cooling 

scheme (heat transfer to arrays of circular jets with crossflor). 

Designers who wish to apply nondimensional heat transfer data or 

correlations based on dry air studies to situations involving humid air 

heat transfer can do so with essentially the same level of confidence as 

if they were concerned only with dry air. If nondimensional dry air 

heat transfer data is evaulated for humid air situations using dry, 

rather than humid air properties however, the heat transfer coefficients 

obtained will be in error. The error increases with increasing humidity 

ratio approaching 10% for a humidity ratio of 0.25. 

Several methods for determining the properties of viscosity and 

thermal conductivity of humid air were described in Section 2. The 

methods selected for use in the data reduction for this work have proven 

to be convenient and useful. 

The work carried out for this study in reviewing the present state 

of humid air property determination has resulted in a number of observa- 

tions which are recounted below. One observation is that any new 

experimental data for the properties of dynamic viscosity and thermal 

56 



conductivity of humid air would be useful for either an addition to the 

available temperature range, or a verification of the meager existing 

measurements. For the viscosity of humid air there is a specific need 

to investigate the inflections that occurred in the experimental data of 

Kestin and Whitelaw. For thermal conductivity, the need for experi- 

mental data is very great. The data of Zakharov, as discussed in 

Section 2.4, appears to be of questionable value leaving only the very 

small amount of data of Gruss and Schmick at one temperature and four 

different mixtures. 

The semitheoretical methods used to determine the mixture 

properties of dynamic viscosity and thermal conductivity for this study 

require an experimental value of the property at one mixture composi- 

tion. In the case of viscosity, the data of Kestin and Whitelaw may be 

sufficient to warrant an exitended investigation to determine which 

mixture value is best for determining the Sutherland coefficients that 

will reproduce all of the experimental data with the least deviation. 

Approaches similar to those that have been carried out for other systems 

(as descr ibed i n  Sec t ion  2 . 4 . 1 )  could be used i n  making t h i s  determina- 

tion. It is unknown whether such an effort would result in Sutherland 

coefficients that provide better results than those obtained by the 

suggested approach based on a mixture data point selected at the avail- 

able temperature level which is closest to the temperature of interest. 

For thermal conductivity the determination of a 'best' pair of 

Sutherland coefficients cannot really be accomplished until there is 

more experimental data available. 
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The interest in the thermophysical properties of humid air in this 

study was motivated by the concept of using humid air for gas turbine 

engine component cooling. Thus, in regard to the need for more experi- 

mental humid air thermophysical property data, it should be emphasized 

that data obtained for high temperatures is of particular interest. 
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APPENDIX A 

THERMOPHYSICAL PROPERTIES OF HUMID AIR 

Percent deviations indicated in all tables of Appendix A are 

deviations of the experimental data from the calculated values based on 

the methods i n d i c a t e d .  
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Table A . 2  Dynamic V i s c o s i t y  of  Humid A i r  a t  523 K 

V i s c o s i t y  i n  K g / m - s  X 10+6 
S u b s c r i p t s  1 and 2 refer t o  a i r  and steam r e s p e c t i v e l y  

Pure component v i s c o s i t i e s :  p1=28. 179 p 2= 1 8 22 1 

Mole frac- Experimental  Method one* Percent  
t i o n  o f  d a t a  ( K e s t i n  (Saxena 1973) Devia t ion  
steam 

x 2  

0.230 
0.356 
0.498 
0.575 
0.598 

0.695 
0 764 
0.795 
0-799 

0.661 

and Whitelaw 
1964) 

prn prn 

27.216 
26.124 

23.164 
22.905 
21.726 
21.240 
19.614 
19.292 
19.219 

24 303 

26.644 
25.619 

23.516 
23.272 

22.187 
21.365 
20.981 
20.931 

24-303 

22 577 

Average Absolute  Dev ia t ion  : 

*Sutherland C o e f f i c i e n t s  
( eva lua ted  a t  523 K ,  X2=0.498) 

2.15 
1.97 
0.00 

-1 e50 
-1 957 
-3 9 77 
-4 27 
-8.19 
-8 05 
-8.18 

3.97 
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APPENDIX B 

TABULAR REDUCED DATA (NuPr”/ ’ ) 
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. . .  IN - M . . .  -0- 

ln*M ** 
. . .  cuw- 

Mcu- 
Lnln 

. . .  a, 
5 0 

m- 
i 

,m cn 0 
M M  I4 

ai > 
k 
.d 
ai 

2 
a 

r( 

' k  
t c C O 0  

u3 Lncu ** 
. . .  --cu 

w l n c u  ** 
. . .  

*-I 
0 
m 
a, 
5 
rl 
ai 
P 
k 
-4 
4 

h 
k 
0 

a 

LnlnO 

0 0 0  ** 
. . .  *cue 

0 mcu 
In* 

. . .  C O C O l n  

0 mcu 
*M 

. . .  
k 
+I 

3 
4 
ai > 
k 
.d 
ai 

a 
.d 

CUNO 

M M O  ** 
. . .  u3 M* 

*Mol 
lnln 

. . .  -mln  . . .  
t c Q 0  
M M  

*me- . . .  *ma 
* c u N  
lnln 

COmCI 
M - M  
l n L n  

. . .  

. . .  

COMLn 

MM- 
M M  

Mu3N 

cu-cu 
M M  

. . .  

. . .  
u3 *cu 
lnln 

*M- ** 
r: 
ai c-aJ m M * * .  

LnCOM 

*My 
L n l n  

. . .  
0 
9 s 

a 
0 
5 
X 
'tc 
0 

d 
C O t c -  ** 

*Mal 
-cuN 
M M  I 

. . .  *-I 
0 
E: 
0 
4 
P 
ai 
.d 
> 
a, a 
+> c 
a, 
0 
k 
a, 
PI * 

Mu3 w 
(v . . .  

OCOO ** I 
cu mu3 
0 0 0  
Lnln I 

. . .  - tcln 

O m N  
lnln 

. . .  
m c: 
0 m 

w Mcu 
Fa-- 
lnm I 

. . .  cuNw 
a w n  
lnln 

. . .  

v 
c 

F9 

a, 
d 
P 
rd 
H 

M* 
-u3 

COO 

MCO -a 
0 -  

e.. 
MOO 

c- II 
-3 
F9 

* .  
*oo - II 
-3 
P) 

ln II -s 
F9 

69 



APPENDIX C 

FORTRAN IV CODING OF FORMULATIONS FOR TRANSPORT PROPERTIES OF STEAM 

The following pages contain the single precision FORTRAN IV coding 

for the international formulations RDV75 and RTC77(Indastrial) for the 

dynamic viscosity and thermal conductivity of water and steam (Kestin 

1976,1978). The coding of RTC77 contains conditional statements for the 

exponential function arguments. This was done to avoid computer 

execution error messages. Most computers will handle exponential 

underflows in such a manner as to not effect the final answer making the 

need for such conditional statements optional. 

The available information regarding the regions of validity for the 

formulations is contained in the comment statements at the top of each 

program listing. 
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C************************************************************ 
C DYNAMIC VISCOSITY OF WATER SUBSTANCE 
C 
C FORTRAN IV CODING OF INTERNATIONAL FORMULATION RDV75 
C 
C (FROM KESTIN, J., "NEW VALUES FOR THE VISCOSITY OF 
C WATER SUBSTANCE", MECHANICAL ENGINEERING, VOL. 98, NO. 7, 
C JULY 1976, P. 79.) 
r( 
b 

C VARIABLES: 
C 

C RHOS=STEAM DENSITY (KG/M**3) TSK=STEAM TEMP (K) 
C 
C REGION OF VALIDITY: 
C 
C 273.2 < TSK < 1073.2 AND 
C 0 < RHOS < 1050 (OR 0 < PRESSURE < 100 MEGAPASCAL). 
C 
C EXTENSIONS TO REGION OF VALIDITY: 
C 
C PRESSURE=1000 MPA FOR 273.2 < TSK < 373-2 
C PRESSURE=350 MPA FOR 373.2 < TSK < 833-2 
C 
C 
C************************* .~**********************************  

C MUSTM=DYNAMIC VISCOSITY (XI 0+6 KG/M*S) 

REAL MUZ,MUZERO,MUS,RHOCS,TCS,TSK,RHOS 
REAL MUSTM,TSK,RHOS 

-0-0036744/ 
DATA B/0~~01~~8,0~162888,-0~130356,0~9~7919,~0*55~~~9~ 
0~146~4~,0~2~5622,0*'789393,0.6776~5,1~207552,0*0670665, 
~-0.0843370,-0.274637,-0.743539,-0~959456~-0~687343~ 
,-0.497089,0.195286,0.1458~1,0.263129,0~347247, 
,O. 21 3486 ,O* 100754,-0 032932 ,-O* 0270448,-0*0253O93, 
, -0.0267758, -0.0822904,O 0602 253, -0 D202595/ 
TCS=647.27 
RHOCS=3 1 7.763 

C SPECIFY RHOS,TSK 
RHOS= 
TSK= 

MUZ=A (1 ) 
DO 10 K=2,4 
KZ=K-1 

C CALCULATE MUZERO 

MUZ=MUZ+A(K)* (TCS/TSK)**KZ 
10 CONTINUE 
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MUZERO=((TSK/TCS)**O.5)/MUZ 
C CALULATE MUSTM 

DO 15 J=2,5 
JZ=J-1 
MUS=MUS+B(l,J)*(RHOS/RHOCS-l.)**JZ 

15 CONTINUE 
DO 20 I=2,6 
IZ=I-1 
DO 30 J=1,5 
JZ=J-1 

MUS=B( I, 1 ) 

IF (J.EQ.l) GO TO 40 
MUS=MUS+B(I,J)*((TCS/TSK-I .)**IZ)*((RHOS/RHOCS-I.)**Jz) 
GO TO 30 

40 MUS=MUS+B(I,J)*((TCS/TSK-~.)**Iz) 
30 CONTINUE 

MUS TM=MUZ ERO* EXP (RHOS/ RHOC S* MUS ) 
WRITE(6,*)TSK,RHOS,MUSTM 

100 CONTINUE 
STOP 
END 

20 CONTINUE 
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........................................................... 
C THERMAL CONDUCTIVITY OF WATER SUBSTANCE 
C 
C FORTRAN IV CODING OF INTERNATIONAL FORMULATION RTC77(IND) 
C 
C (FROM KESTIN, J., "THERMAL CONDUCTIVITY OF WATER AND 
C STEAM", MECHANICAL ENGINEERING, VOL. 100, NO. 8, 
C AUGUST, 1978 P. 46.) 
C 
C VARIABLES: 
C 
C THERMAL CONDUCTIVIT'I=CSTM (W/M**2 K) 
C DENSITY=RHOS (KG/M**3) TEMPERATURE=TSK (K) 
C 
C REGION OF INVALIDITY: 
C 
C RECTANGLE ABOUT CRITICAL POINT WHERE: 
C TSK=CRITICAL TEMPERATURE PLUS OR MINUS 1.5 K AND 
C RHOS=CRITICAL DENSITY PLUS OR MINUS 100 KG/M**3 
C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL TSK,RHOS,CSTM 
REAL A(4),B(3),BB(2) ,N4),CW 
DATA A/ 1 0281 1 E-2,2.9962 1 E-2 
DATA B,BB/-0.397070,0.400302,1 -06000, -0 171 587 
DATA D/7.01~0gE-2,1~1~3520E-2,1~6~~~7E-3,-1.020O0/ 
DATA C/O 642857, -4 1 1'7 1 7 -6 1 7937,3.08976E-3, 

TCS=647.3 
RHOC S=3 1 7.7 

C SPECIFY RHOS,TSK 
RHOS= 
TSK= 

CZ=A( 1 ) 
DO 10 I=2,4 
IZ=I-1 

10 CONTINUE 

1 56 1 463-2 -4 22464E-3/ 
2 3921 9/ 

,8.22994E-2,10.0932/ 

C CALCULATE CZERO 

CZ=CZ+A(I)*((TSK/TCS)**IZ) 

CZERO=((TSK/TCS)**O.5)*CZ 

ARGI=BB(I ) * (  (RHOS/RHOCS+BB(2))**2) 
IF(ARG1 .LE.-180.2) GO TO 21 
IF(ARG1.LE.l.E-7.AND.ARGl.GE.O) GO TO 20 
CBAR=B ( 1 )+B (2 ) * (RHOS/RHOCS )+B (3 ) *EXP ( ARGl ) 
GO TO 25 

C CALCULATE CBAR 

20 CBAR=B( 1 )+B(2)*(RHOS/RHOCS)+B(3) 
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GO TO 25 
21 CBAR=B(l )+B(2)*(RHOS/RHOCS) 

C CALCULATE DELC 
25 DTSTAR=ABS(TSK/TCS-I .O +c(4) 

S=C ( 6 ) *  (DTSTAR** ( -0.6) 1 
Q=2 O+C (5 ) * (DTSTAR** (-0 6) ) 
R=Q+1 .O 
ARG2=C 1 )*(l .-(RHOS/RHOCS)**2.8) 
ARG3=Q I R* ( 1 . - (RHOS/RHOCS) **R) 
IF ARG2.LE.-180.2) GO TO 31 
IF t ARG2.LE.l.E-7.AND.ARG2.GE.O) GO TO 30 
DELC 1 = ( (D (1 ) * (TCS/TSK** 1 0) )+D (2) ) * ( (RHOS/RHOCS) ** 1 8) * 
, EXP (ARG2) 
GO TO 35 

30 DELCl= ( (D (1 ) *  (TCS/TSK**lO) )+D (2) ) *  ( (RHOS/RHOCS)**l -8) 
GO TO 35 

31 DELCl=O. 
35 IF ARG3.LE.-180.2) GO TO 41 

ARG4=C (2)* ( (TSK/TCS) ** 1 .5)+C (3) * ( (RHOCS/RHOS)**5) 

IF t A R G 3 - L E . l . E - 7 . A N D . A R G 3 . G E . O )  GO TO 40 
DELC2=D (3) *S* ( (RHQS/RHOCS) **Q) *EXP (ARG3) 
GO TO 45 

40 DELC2=D(3)*S* ( (RHOS/RHOCS)**Q) 
GO TO 45 

41 DELC2=O. 
45 IF(ARG4.LE.-180.2) GO TO 51 

IF(ARG4.LE.l.E-7.AND.ARG4.GE.O) GO TO 50 
DELC3=D(4)*EXP(ARG4) 
GO TO 55 

50 DELC3=D ( 4 )  
GO TO 55 

51 DELCS=O. 
55 DELC=DELCl+DELC2+DELC3 

CSTM=CZERO+CBAR+DELC 
WRITE(6,*)TSK,RHOS,CSTM 
STOP 
END 

C CALCULATE CSTM 
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