
n",4_s,T/x/-2._-7_/

NASA Technical Memorandum 85741

NASA-TM-85741 19840008523
r

1
J

STRUCTURAL OPTIMIZATION: CHALLENGES AND OPPORTUNITIES

JAROSLAW SOBIESZCZANSKI-SOBIESKI FdR" _EIz_I_Ti-.i',.,I'C_

l't07TO _F,TA'X.Z.*_}ZrSt.I"_liI__1100!_"

JANUARY 1984

Li_-_A_'-r,,,t,GPY

. L_NGLEYRESEARCH,:ENTER
LIBRARY,NASA

H...,,,TON,VIRGII'IIA

, I IANA
! NationalAeronautics and

Space Administration
jr

Langley FlesearehCenter
Hampton,Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19840008523 2020-03-20T23:32:38+00:00Z
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ABSTRACT

Recent developmentsin structuraloptimization,when taken
collectively,promiseinformedpracticingengineersa quantumjump in
their designcapability. In this paper,the area of structuraloptimiza-
tion is treatedin the broadercontextof a vehicledesign processwith a
focus on structuralsizing. A basic introductionto a formalapproachis
given,and severalapplicationexamplesare illustrated,to lay a back-
ground for the reviewof recentprogress. The main developments
discussedincludetechniquesfor reducingcomputationalcost of optimiza-
tion, methodsfor generatingsensitivityinformation,and the ways to
make the computerimplementationsmore practical. New prospectsare
presentedfor applyingoptimizationto very large problemsby formal
decompositioninto a numberof smallerproblemsin a manner compatible
with the trend towarddistributedcomputingfor the design process
organizedinto specialtygroups. Numerousreferencesare quotedas
points of entry to the vast literatureon the subject.

INTRODUCTION

This paper'spurposeis to alert engineersto severalrecent
developmentsin structuraloptimizationwhich,collectively,offera new,
excitingcapabilitythat shouldresultin a quantumjump of their produc-
tivitywhen incorporatedin designpractice. To that end, we take a
bird'seye view of structuraloptimizationas a tool for the designer,
examinethe trendsfurtherdevelopmentsare likelyto followin the near
term, and extrapolatethese trends intothe future.

To begin with, it may be illuminatingto take a broad lookat the
entire designprocessin which optimizationmay be used. A genericform
of such a processapplicableto any engineeringproductis shown in
figure i. It beginswith a functionaldefinitionof the objectto be
created,and then moves on throughthe phase of evaluationof the
externalinfluences(e.g.,loads on a structure)to the selectionof
designconcept,material,overallgeometryand internallayout.

Use of trade names or names of manufacturersin this reportdoes not
constitutean officialendorsementof such productsor manufacturers,
either expressedor implied,by the NationalAeronauticsand Space
Administration.



Quantification of the design physical characteristics is next, followed
by a detailed design to be passed on to a shop that will give the object
its materialform.

Since the ways in which the productwill be fabricated,tested,and
maintainedmust be consideredin its design,the correspondingphasesare
shown in figure1 as integralparts of the entire conception-to-scrap-
heap cycle.

An importantpart of the processis the feedback(symbolizedin
figure 1 by arrowsand a bar to the right)which rendersthe whole
processiterative. In general,the iterationsare numerous,may span
variousparts of the process,and may be nested in severallevels.

The processlaid out in figure1 illustratesa course of action
engineershave been takingsuccessfullyfor centuries,enjoyingits
creativeaspectswhile enduringits drudgery. In recenttimes,they have
been receivingmore and more supportfrom the computerin all phasesof
the processas shown in figure1 by the bar to the left.

Basically,computersupportconsistsof data storageand retrieval,
graphics,fast analysiswith multipathlogic,and the capabilityto
interfacewith externalsensorsand to drive the externaldevices (e.g.,
numericalcontrolof productionmachinery). These variousforms of
supportare utilizedas shown by arrows in figure I. Consistentwith the
natureof man and computer,the creativepart of the processtends to
stay with the formerwhile the latteris graduallytakingover the
drudgery.

In this whole picture,our initialfocuswill be on an importantbut
relativelysmall part: optimizationof the quantitativecharacteristics
of the design. In that small part, we will concentrateon a still
smallerfragment: the optimizationof structuralmember cross-sectional
dimensions(asteriskin figure1) to minimizestructuralmass. This will
serve both as an introductionto the subjectand as a basis from which to
reviewthe recentadvancesand projectinto the future.

FORMAL OPTIMIZATIONIN STRUCTURALDESIGN

Probably,the earliestmethodfor structuraloptimizationhas been a
Fully StressedDesignmethodwhich iterative]ymodifiesa cross-sectional
area by the ratioof memberstressto allowablestress. This time-
honoredmethodgave rise to a whole body of weight-strengthalgorithms
(ref. I)* and, later,to a class of methodsknown as optimalitycriteria
methods (ref. 2). Anotherclass of methodsuseful in structuraloptimi-
zationoriginatedfrom the optimalcontroltheory (ref.3). This report
deliberatelyexcludesthese classesof methodsin order to focus on the
methodsbased on nonlinearmathematicalprograming(NLP).

IntroductoryExample
A tubularcolumn,figure2, is a simpleexampleto establishthe

basic definitionsand concepts. Let's assumethat at earlierstagesof
design,it was decidedthat a weight P has to be supportedat a height
z, and that a tubularcolumnis to be used for the support. These were
the qualitativedecisionsmade upstreamof the designprocess. What is

left now is a quantitativedecisionof sizingthe cross-sectionaldes__
variablesof R and t for a minimumobjectivefunctionof the column
mass, achievablewithin constraintsof stress,buckling,and minimum
gages.

Under the NLP formalism,the problemis reducedto findinga minimum
of the objectivefunctionconstrainedby the inequallt_constraintsin a

*The referencesare listedat the end in consecutiveorder.
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designspace definedby the designvariables. In the simple problemat
hand, the space is two dimensional,and the problemcan be graphedin the
R, t coordinatesas shown in figure3. Each curve in the figure
representsa constraintboundary(labeledby the corresponding
constraint,for example: an allowablestressconstraint)and dividesthe
designspace intodomainswhich are feasibleand infeasible(cross-
hatched side) with re--_t to that particularcons'traint.Superposition
of the objectivefunctioncontours (thedashedcurves)on the constraint

-. boundariesrevealspoint C as the constrainedminimumof mass.

Simplicityof the Concept
Optimizationbased on nonlinearmathematicalprograming(NLP)

clearlyseparatesthe analysisfrom search in the designspace and leads
the computerimplementationto a schemeshown in figure4. In that
scheme,the module labeled"optimizer"is a programsearchingthe design
space for a constrainedminimumfollowingthe numericalinformationon
the objectivefunctionand constraintssuppliedby the "analyzer"which
carriesintelligenceabout the physicsof the problem. The iterative
executionof the optimizerand analyzerin an optimizationloop is
stoppedby the "terminator"when appropriatemathematicaland physical
convergencecriteriaare met. The scheme in figure4 is the simplestone
possibleand, as later discussionwill show, it becomesmore complexin
large-scaleapplications.

State-of-the-ArtApplications
There have been numerousoptimizationapplicationsduringthe past 2

decades. Some recentexamplesrange from componentsof automotive
structures(refs.4 and 5) to entireaircraftstructure(ref. 6). The
latteris depictedin figure5 whose inset shows the mass reductionin
the processof optimization.A more generalapplicationinvolving
performanceof an entiresystemdescribesoptimizationof a light
aircraftfor a minimumcost of ownership(ref. 7).

Recent surveys(refs.8, 9, 10, 11, 12) presenthundredsof similar
examplesshowingdevelopmentof optimizationmethodswhich is both rapid
and acceleratingas attestedto by 177 referencescited in reference11
alone. However,reference11 also revealedthat most applicationsare
test cases carriedout to verifymethodsunder developmentratherthan
applicationsin real design.

In the next section,we will examinethe methodsand techniquesthat
have recentlybecomeavailable,to show thata coalescenceof these new
capabilitiesand the needs of industryfor increasedproductivitycreates
a new environmentin which the applicationlag indicatedin reference11
may be eliminated.

RECENT DEVELOPMENTS

Each of the particularmethods,techniques,and algorithmsdiscussed
in this sectionhas been selectedon the basis of their specialpotential
for makingoptimizationmethodsmore cost effectiveand easierto apply
from a practicingengineerviewpoint,and as being either at or near the
maturitylevel requiredof the tools ready for industrialuse.

Search for ConstrainedMinimum
A recentsurvey (¥ef. 13) providesan efficiencyratingof 14

algorithmsfor searchingdesignspace for constrainedminimumthat are
candidatesfor the "optimizer"functionin figure4. Since it is very
difficult,if not impossible,to distinguishin such efficiency
comparisonsbetweenthe efficienciesof the optimizerand the associated
problem-dependentanalyzer,resultsof this and other similarsurveys
have to be taken with a grain of salt and one has to acknowledgethat no
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consensus has, as yet, emergedon how to order the list of algorithms.
However,two algorithmsknown as an AugmentedLagrangianMethod and a
GeneralizedReducedGradientMethodhave gained recognitionas leading
contendersfor top spots on the list. Both methods,whose mathematicsis
explainedin the literature(forexample,refs. 14 and 15) are credited
with fast convergenceand have an importantpracticaladvantageof being
able to begin with eitherfeasibleor infeasibledesigns.

Before leavingthis subject,one might add a note of cautionthat
there are problemsin constrainedminimumsearchthat still can only be
solvedfor a limitedclass of applicationsor that poseenormous
numericaldifficultiesdue to complexand discontinuousshapesof the
constraintboundaries. An exampleof the formeris a multipleminimum
problem (ref.16) and an exampleof the latteris optimizationof a
structurewith dynamicconstraints(ref. 17).

ComputationalCost Reduction
Most of the cost in large-scaleproblems,in fact as much as 99

percentof it, stems from repetitiveexecutionof analysis. Radical
reductionof that cost, therefore,can best be achievedby reducingthe
use of full analysisin the optimizationloop and using an inexpensive
but approximateanalysisin the loop as depictedin figure6. There are
severaltechniquesavailablethat may be used for approximateanalyses:
they are groupedin categoriesin Table 1. All the categorieshave a
common goal of providingmeans for rapid (i.e.,inexpensive)analysisof
a modifiedstructure.

Extrapolationmethods.One of the two main approximationtechniques
is a linearextrapolation(topof the table)by a Taylor series (refs.18
and 19) using first derivatives,or by a perturbationtechnique(ref.20)
akin to the small parametermethodused for the solutionof nonlinear
differentialequations. The usefulnessof linearextrapolationin
optimization(knownas a piecewiselinearoptimization)has been
demonstratedmany times;a particularlyconvincingexampleis given in
reference21.

Dimensionalityreduction.The othermain approximationtechniqueis
a dimensionalityreductionwhich reducesthe numberof unknownsin the
equationsto be solvedrepetitivelyin the optimizationloop. There are
severaltechniquesin this major category. The lumpingtechniqueresults
in two finite-elementmodels: a highly refinedone used in the full
analyis (loop $$ in figure6) and a simplifiedmodel, used in the
approximateanalysis (loop€€) and periodicallyadjustedto correlateits
characteristicswith the resultsfrom the refinedmodel. This approach
provedto be usefulfor thin-walledstructuressuch as a delta wing case
(ref. 22) where largebuilt-upsubassembliesmay be represented
effectivelyby stiffness-and mass-equivalentplatesand beams. The
well-knownmethod of substructuring,e.g., (ref. 23) has the same effect
of simplifyingthe finite-elementmodel. A particularlyusefulform of
s_bstructuring,calleda superelementmethod is describedin references
24 and 25.

The reductionof the numberof unknownsin the analysiscan also be
obtainedby formalcondensation,e.g. (ref. 23), or by a Rayleigh-Ritz
method using appropriatebase functions. It has been shown in reference
26 that the resultingcondensedstiffnessand mass matricescan be Very
inexpensivelyupdatedin the optimizationby a linearextrapolation,if
the base functionscan be regardedas constant. Dimensionalityreduction
in analysiscan also be carriedout by an incompletemodeling (ref.27)
and by multigridtechniques(ref. 28). In responseto a similarneed for
reductionof the repetitiveanalysiscost in nonlinearstructural
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analysis,a numberof usefultechniqueshave been developedas reviewed
in reference29.

Dimensionalityreductionin optimizationis not limitedto just the
reductionof the numberof unknownsin analysis;it also entails
reductionof the numberof design variables(ref.30) and repetitively
evaluatedconstraints(ref. 19). The designvariablescan be reducedin
number by making them dependenton a smallernumberof judiciouslychosen

" "master"variables. By means of such variablelinking,designerscan
• effect their judgment(as they do now) as to the way cross-sectional

dimensionsshouldbe distributedover the structure.
4

' Primal-dualapproach.Anotherapproachto the analysiscost
reductionwhich now appearsto be developinginto an entirelydistinctive
body of techniques,is known as primal-dualmethodwhose comprehensive
expositioncan be found in references31 and 32. The methodmaps the
originalstructuraloptimizationproblem(primalproblem)from its design
space of many physicaldesign variablesintoa space definedby the
problem'sLagrangemultipliers. The substituteproblem(dualproblem)in
that space has a relativelymuch smallernumberof variablesbecausethe
,numberof Lagrangemultipliersis equal to the numberof active
constraints,which is usuallymuch less than the numberof physical
design variables. In addition,the only constraintsin the dual problem
are arithmeticallyvery simplerequirementsof non-negativityof the
Lagrangemultipliers. The optimumsolutionof the dual problemis mapped
back into the space of the physicaldesignvariablesto obtainthe
originalproblemsolution. The three-phaseoperationof mappingfrom
primal to dual space,dual problemoptimizationand reversemappingis
iteratedbecausethe mappingrelieson approximateexplicitrelations
based on derivativesof the objectivefunctionand constraintswith
respectto the physicaldesignvariables,and these derivativesneed
updatingas the designmoves away from the point where they were
evaluated. Besidesgood convergence,the methodoffersa very important
benefitof being able to handlediscretedesignvariables(e.g.,standard
thicknessesof sheetmetal)as well as continuousones within the same
problem (ref.33). It also has a theoreticalsignificanceof unifying
the optimalitycriteriaand NLP methodsas shown in reference34.

Computationof derivatives.Most of the previouslydiscussed
techniquesdependon derivatives(gradients)of the objectivefunction
and constraintswith respectto the design variables. In many practical
applications,the cost of computingthese derivativesby finite
differencesmay becomeprohibitive,despiteplacingthe computation
outsidethe optimizationloop,therefore,analyticaltechniquesfor
derivativecalculationare preferred.

As a generalprinciple,the derivativesof a numericalsolutioncan
be obtainedanalyticallyby differentiatingthe governingequationsof
the problemin order to constructequationswhich containthe derivatives
as unknowns. For example,differentiationof the load-deflection
equations Ku = L with respectto a design variable x yields the
equation K(@u/Bx)= (-@K/3x)u, for @P/@x = O, that can be economically
solved for Bu/ax at a cost similarto that of anotherloadingcase by
reusingthe decomposedmatrix K and the vector u saved from the

. solutionof Ku = L. The derivative _K/_x can be inexpensively
obtained,eitheranalytically,if K is a linearfunctionof x (e.g.,x
being a membraneelementthickness),or by finitedifferences. Use of
the latterin the analyticalequationfor Bu/@K is referredto as a
semianalyticaltechniquefor computing Bu/@x.

Algorithmicdetailsfor analyticaland semianalyticaltechniqueare
given in many sources(e.g.,refs. 5, 26, 35, 36), and, recently,a
method has been proposedin reference3 for bypassingthe stiffness
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matrix derivativesin calculationof derivativeswith respectto the
overallshape variables. Some examplesof the efficiencyof analytical
and semianalyticaltechniquesin applicationto aircrafttype, built-up
structuresare given in figure7 taken from reference37.

The generalprincipleunderlyingthe analyticalderivative
calculationis also valid,if the governingequationsare solved
iterativelyand, therefore,it appliesin dynamicand bucklinganalysis
for derivativesof eigenvaluesand eigenmodes(refs.5, 38, 39). It also
generalizesto the higherorder derivatives(refs.40, 41, 42).

As pointedout in reference5, the sensitivityinformationin the
form of derivativesis usefulto designersas a quantitativeguide and an
answerto the "what if" type of questions,even if it is not used in an
optimizationalgorithm. As evidencedby references35, 37, and 43, one
may expect that sensitivityinformationwill soon becomean output option
routinelyavailablein major structuralanalysisprograms.

Design-OrientedAnalysis
Developmentsdiscussedin the precedingsubsectionshave evolved

collectivelyinto a new capabilitythat can be calleddesign-oriented
analysis. Its basic featuresover and above regularanalysisare a
capabilityfor gradientgeneration,means to trade the computationalcost
for accuracy(e.g.,selectionof techniquesfromTable 1), and a modular
implementationthat keeps outsidethe optimizationloop those parts of
the analysisthat remainunaffectedby the designvariablechanges.
Experienceto date indicatesthat by use of design-orientedanalysis,the
computationalcost of structuraloptimizationcan be well controlledand
kept below 30, and in many cases below 10, times the cost of the ordinary
analysisof the structureat hand.

Once the optimizationcost is under control,it is possibleto
comparethat cost with the benefitsof the reducedmanpowercost,
shortenedtask calendartime, and increaseddesignquality. In this
manner,one can rationallyassessthe optimizationcost effectivenessin
a particularapplicationat hand.

Optimizationin StructuralDynamics
Applicationsto structuresunder dynamicloadswhich are

particularlyimportantto automotivedesignhave been impededby the
phenomenonof resonancewhich splitsthe design:spaceinto disjoint
subspaces. Since most of the searchalgorithmsrequirecontinuityof the
functionsand their derivatives,these algorithmscan not searchacross
the disjointsubspaceboundaries,and becausethe number of subspaces
grows rapidlywith the numberof eigenvaluesit is impracticalin most
cases to performa separatesearchwithineach subspace.

An innovativesolutionto that difficultyhas been recentlyoffered
in reference44. Under the proposedapproach,the problemis divided
intoa continuousoptimizationperformedwithinthe resonanceboundsin
one subspaceat a time, followedby a transferto a subspaceinexpen-
sively selectedfrom the neighboringsubspaceson the basis of havingthe
greatestpotentialfor furtherstructuralmass reduction.

Sensitivityof OptimumDesignsto ProblemParameters
From a designer'sviewpoint,existingoptimizationtechniqueshave a

deficiencyof providingsinglepoint information,when comparedwith the
traditionalparametricstudiesthat clearlypresent"what if" type of
informationin a graphicalform. That deficiencycan be eliminatedby
analyzingan optimumsolutionfor its sensitivityto those physicalquan-
tities that were kept constant(problemparameters)in the optimization.
For example,assumethat the cantilevertruss shown in figure8 was
optimizedto obtainminimumstructuralmass and optimumcross-sectional
areas subjectto stressconstraints. The truss dimensions H and L6



were among the constantsof the problem. Now we want to know how the
mass and cross-sectionalareas changewhen the dimension H is increased

_ by, say 10 percent. Intuitionfails to give the answerbecausethere are
two conflictingtrends: mass of the horizontalrods can be reducedas
the truss depth increases,but the uprightand diagonalrods gain mass
since they become longer. The answercan be obtainedwithoutthe "brute
force"parametricapproachof repeatingthe optimizationfor an

" incremented H by means of an algorithmdescribedin reference45.
The algorithmis basedon the same approachof differentiationof

the governingequationsthat was discussedin the sectionon computation
of derivatives. For a constrainedminimum,the governingequationsare
the Lagrangemultiplierequationswhose differentiationwith respectto
the parameterleads to a set of simultaneousalgebraicequations. In
these equations,the coefficientsare functionsof the objectivefunction
and active constraintderivativesevaluatedat the constrainedminimum,
and the unknownsare the derivativesof the optimumdesignvariableswith
respectto the parameter. Solutionof the equations,producesthe
derivativeswhich are then used to calculatethe total derivativeof the
objectivefunction.

In the truss example,the optimumsensitivityderivativeswith
respectto H can be used to extrapolateas shown in figure9 to find
that the mass actuallydecreasedto 0.97 of the referenceminimummass
for 10 percentincrementof H. Reoptimizationconfirmsthe above result
and indicates(continuousline in figure9) that in this case the linear
extrapolation'saccuracyis reasonablygood for up to 20 percentchange
of H for structuralmass and for cross-sectionalarea of rod 1 (taken
as an exampleof a designvariable). Althoughintroducedin the context
of structuraloptimization,the algorithmis entirelygeneral. It could
be used, as well, to evaluate_he sensitivityof the maximumpayloadto
the aircraftrange assumedas a problemparameterduringthe optimization
of the aircraft. A similarapplicationin automotivedesignmight be the
sensitivityof the minimizedfuel consumptionper unit of distanceto the
parameterof a minimumrequiredacceleration.

Adaptabilityof Softwareto Varietyof DesignApplications
The task of developingan optimizationprogramsystemequippedwith

the searchand analysiscapabilitiessuitablefor the presentand future
needs of a large numberof users is more difficultthan developmentof a
specificanalysisprogram. The reasonis that design,in contrastto
analysis,is to a large extendan art and we want it to remainthat way
least we loose its vital ingredientsof creativityand inventiveness.
This puts an optimizationsoftwaredeveloperin the situationof not
knowing,precisely,what will be the objectivefunction,design
variables,and constraintsin each potentialapplicationand what will be
the preferredprocedure. The use of a numberof prewiredoptions,
similarto the NASTRAN(ref.46) "rigidformats,"does not allow for the

• requiredflexibility,and past attemptsto use this approachresultedin
optimizationprogramsthat were often disappointingto the users.

One solutionlies in a programingsystemconceptwherebythe problem
dependentparts of the procedureare left for the user to code in the
form of programs(usuallysimpleand short)to be insertedin the system
when the optimizationproblemis formulated. An exampleof such a system

A is PROSSS (forProgramingSystem for StructuralSynthesis),which is
describedin references47, 48, and 49. In PROSSS,the problem-dependent
codes connectthe analyzerand optimizeras seen in figure 10. The
Optimization-to-Analysis(O-A)processoris a code that embodiesthe
design variabledefinition. It convertsthe numbersthe optimizer
manipulatesas design variablesto the structuralinput parameters
recognizedby the analyzer. All sorts of judgmentaldevicessuch as
designvariablelinking(ref. 30) can be coded into this processor. The 7



Analysis-to-Optimization(A-O)processoron the oppositeside of the
analyzerincorporatesthe objectivefunctionand constraintdefinition.
It selectsfrom the analyzer'soutputthe quantitiesneededto calculate
the objectivefunctionand constraintvaluesin a mannerdecidedby the
user. The flowchartin figure10 is the simplestof the PROSSS
proceduraloptionsand correspondsto figure4. Other optionsinclude
combinationsof an analyticalgenerationof gradientsand a piecewise-
linearoptimization.

The programingsystemapproachpermitsa commoncore of programs,
termeda skeletonform in figure11, to be sharedby many forms
specializedfor applications(righthand side of figure11). Each
specializedform has its own 0-A and A-0 processorswhich, once prepared
for a certainclass of applications,can be assembledwith the skeleton
modulesfor executionusingexecutivesoftwaregenerallyavailableon
most computersin the form of utilitiesembeddedin the operating
system. If he so desires,a designercan limit his view of the
programingsystempreparedfor a specificapplicationto see it as a
black box into which he feeds inputto obtainoptimumsolutions. The
detailsof settingup the specializedforms for the varietyof company
applicationscan be left to staff specialistswho can replicatethe
system into an array of specializedtools.

Two examplesof very differentapplicationsof one programingsystem
from reference48 are shown in figures12 and 13. The formerillustrates
a minimummass optimizationof a fuselagesegmentunder stress,
displacement,and bucklingconstraintswith the inset showingthe
resultingcross-sectionalmaterialdistribution. The latterdepictsa
shape optimizationthat startswith a portalframeworkand ends with a
significantlylightertruss.

Large-ScaleProblems
Many practicalstructuraldesignproblemsare so complexand contain

such a large numberof designvariablesand constraintsthat it is
impracticalto try to optimizethem as singleproblems. There are also
organizationaldifficulties. If the problemis large, it is certainthat
a design organizationis, or will be, createdto allow many engineers
and, prefereably,many computersto work on variousparts of the problem
concurrently. This is the soundmanagementprincipleof developinga
broad work front in the organization.The conceptof foldingthat work
front intoa singlestreamwithinan optimizationproceduredoes not
appearto be a very practicalproposition. However,an optimization
procedurecan be developedthat allowsfor a systematicdecompositionof
the probleminto severalparts to cover the widely developedorganiza-
tionalwork front. In operationsresearch,there are mathematicalmeans
to carry out such decomposition(ref. 50), primarilyin applicationto
economicsystems. A formulationof decompositionfor engineeringsystems
is given in reference51 which shows how to preservethe couplings
betweenthe parts of the decomposedproblemby means of the optimum
sensitivityderivativesdiscussedpreviously. A specialcase of
decompositionof a large structuraloptimizationproblemleads to an
optimizationprocedurethat parallelsthe processof analysisby
substructuring. One particularform of such decompositionhas been
proposedin reference52. A somewhatdifferentimplementationis shown
in reference53.

Two-leveldecomposition.The basic conceptsof the decomposition
processcan be presentedin a simplifiedmanner by consideringa two-
level approach. A minimummass optimizationof the simpleframework
shown in figure 14 (ref.53) will serve as an example. Withoutdecom-
positionthat optimizationcould be carriedout with the 18 cross-
sectionaldimensionsdepictedin figure 14 (inset)as design variables

O



and with constraintsimposedon the displacements,and on stressesdue to
the materiallimitsand local buckling. In optimizationby decomposi-
tion, this problemis dividedinto a set of three separatesubproblems
for each beam and a coordinationproblemfor the assembledstructure. In
a beam subproblem,the beam is regardedas loadedby the invariantend-

. forcesobtainedfrom the assembledstructureanalysis,and the design
variablesare six detailedcross-sectionaldimensions. The objective
functionis not the beam mass. Instead,it is a cumulativemeasureof

° the stressand local bucklingconstraintviolationsin the beamwhich is
being minimizedsubjectto inequalityconstraintsin form of the bounds
on the dimensions,and the equalityconstraintsthat make the beam cross-

' sectionarea, A, and moment of inertia,I, equal to the valuesset in the
coordinationproblem.

In the coordinationproblem,the frameworkstructureis optimized
for minimummass subjectto constraintson the frameworkdisplacements
and the cumulativemeasuresof constraintviolationsin each beam using
the beam A's and momentsof inertiaI's as six higherlevel design
variables. In this optimization,the cumulativemeasuresof constraint
violationare linearlyextrapolatedfor each beam using their optimum
sensitivityderivativeswith respectto the end-forcesand the beam A's
and I's which are parametersin the beam optimizationsubproblem. The
coordinationproblem(whichincludesthe assembledstructureanalysis),
and the beam subproblems(whichcan be workedon concurrently),are
repeatediterativelyuntil the objectivefunctionis minimizedand a11
constraintsare satisfied. The two-levelapproachis illustratedin
figure 15 which shows the decompositiontree and the information
exchangedbetweenthe structureand substructurelevels. Transmitted
downwardare the valuesof A, I, and the end-forcesfor each beam.
Returnedupwardare the derivativesof the cumulativemeasuresof
constraintviolationsto conveyto the systemlevel the coupling
informationhow the beam constraintswill react to changesin the values
of A and I. The resultis a conversionof a problemof 18 design
variablesinto 3 problemsof 6 local variableseach and 1 problemof 6
higher level variables. Comparisonof the approachwith the optimization
withoutdecompositionreportedin reference53 showedgood correlationof
the resultsand promisingoveralleffectivenessof the decomposition
method.

Multileveldecomposition.Consideringstructuralassembliesmuch
largerthan the frameworkexample,we can envisionfigure 15 expanedto a
tree of more than two levelsas shown in figure16 for an aircraft
structure. Each of the elementsor nodes of this schemecould be
occupiedby groupsof peopleand computersworkingconcurrentlyon their
parts of the problem. In other words,we see the decompositionscheme
blendingwith the familiarorganizationof a designoffice into a wide
work front for peopleand machines.

ComputerPower
Recent computer trends towardcheaper hardware, and distributed

computingreplacingcentralizedprocessingsupportvery well the
optimizationdevelopmentspresentedherein. Alreadyavailableare
electronicwork stationsinterconnectedin a network (ref.54) that give
an engineerthe desk-sidepower of a large computer,an access to
computingand data handlingcapabilityof any computerin the network,

" and, what is most important,a directaccess to data generatedby other
membersof the designteam. High-levelprograminglanguagesare also
availablefor executingmajor computercodes in logicallycomplex
sequences,as if they were subroutinescalledfrom a main program,even
though they may run on differentcomputers. A step in that directionwas
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taken by dispersing the programing system from reference 48 between a
minicomputer and a mainframe computer (ref. 55).

Optimization procedures tend to generate voluminous data and,
therefore, can benefit from the new software for efficient data handling
that have recently been developed especially for engineering purposes
(ref. 56). That software addresses the data managementproblem at two
levels. The lower level program (ref. 57), an equivalent of a file
cabinet, has already been used with excellent results in major
applications (ref. 58). The higher level program (ref. 56), an
equivalent of a reference library, is in testing.

It is apparent that these computer technology developments not only
form a base on which to operate the organization shown in figure 16 but
they actually require such organization if their full potential is to
materialize.

CONCLUDINGREMARKS

Recent developmentsin structuraloptimizationtechniquesand
increasesin computerpower have been reviewed. The pictureemerging
from the reviewcan be summarizedas shown in figure 17. Severaldevel-
opments,each correspondingto a sectionin this paper, have a great
potentialto reinforceeach other with a synergisticresultof a quantum
jump in practicalusefulnessof optimizationin design. The improved
optimizationcapabilitycoincideswith a steadilyincreasingneed for
formal methodsto supportdesign of structuresin which new technology,
such as compositematerials,or new functionalrequirements,such as a
significantlylower vehiclemass for improvedfuel efficiency,reducethe
reliabilityof previousexperiencein guidingthe design decisions,
especiallythe quantitativeones. It is apparentthat all ingredients
now exist to spur the expansionof optimizationmethods from their
present limitedposition in figure 1 both upstreamand downstreamof the
design process. Upstream,the challengeof multidisciplinaryoptimiza-
tion will immediatelybe encounteredand the rewardswill be magnified
becauseeach disciplinewill have an opportunityto influencethe design
earlierthan is now feasible. Downstream,the role of optimizationas a
mathematicalorganizationalframeworkfor a large team wil be
increasinglyimportantbringingbenefitscommensuratewith the large
resourcescommittedduring the final stages of the design process.

However,the synergisticuse of all the methodologyreviewedin this
presentationin everydaydesign practiceis unlikelyto materializesoon
unless a concentratedeffort is made by practitioners,managers,and
researcherswho are motivatedby an awarenessof the opportunitiesand
potentialgains offeredby the evolvingstate of the art. If this
presentationcontributedto that awareness,its purposewill be
fulfilled.
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Fig. I.- A designprocess. 15
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Fig. 2.- Compressedcolumn as an exampleof structuraloptimization.
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Fig. 3.- The column design in a constraineddesign space.
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Fig. 5.- Optimization of a complete airframe.
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Fig. 8.- A cantilever truss optimized for minimummass under
stress constraints.

Fig. 9.- Cantilever truss: objective function and one cross section
as functionsof parameterH.
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Fig. 16.- Groupsof peopleand computersworkingconcurrentlyon a
large,decomposeddesignproblem.
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Fig. 17.- Coalescenceof the stimulifor furtherintensifieddevelopment
and use of optimizationmethods. 23
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