General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

United States Department,of the Interior

GEOLOGICAT SURIEY
EROS Data Centet
Sioux Falls. South Dakota 5:198

OAB 12-99
December 30, 1983
(E84-10075) LaEDSAT 4 INVESTIGATION OF
faEmatic happer and hultispectral scanner applications Quarterly Report (EROS Data
Center, Siour Falls, S. Dak.l 3 p Unclas HC 102/HF 101
Memorandum
To: Technical Officer
From: Principal Investigator aN 31
Subject: Quarterly Renort; Landsat 4 Investigation of Thematic Mapper and Multispectral Scanner Applications (PCN902-91548; S-10757-C)

1) Problems

No problems occured this quarter.
2) Accomplishments

An experiment was started which is designed to merge as much scene information as possible into the red, green, blue layers of film, or channels of a video display, from four of the six reflective bands of TM data.

The TM scene of San Francisco (2/12/83, Path 44 Row 34) was selected for this experiment with test sites of rural Sacramento and the urban/rural interface around Berkeley. The study builds upon early results from three sources. The first source was Hass and Waltz, whose research indicated int bands 3, 4, 5 were the combination thich yield the most information for natural resource assessment in central South Dakota. The second source was Colvorcoresses who selected TM bands 1, 3, 5 for making ar. image map over the Washington, D.C. area with particular interest in urban areas and conastal waters.- The third source was Chavez and his work with the Optimum Index Factor (OIF) which was used to evaluate six bands three at a time for a total of 20 combinations. The OIF placed $T M$ bands $1,4,5$ at the top of the list for most information contained in the Washington D.C. scene.

This study involves combining TM bands $1,3,4,5$, via Hue-Intensity-Saturation (HIS) transformation and replacement of the intensity channel with a fourth band. Attempts are being made to quantify information lost from replacement of the intensity band in this procedure. Secondary objectives are to present a color composite of "normal" colors which could be easily interpreted and to make and perspective view images.

3) Significant Results

Six different band combinations, listed in Table l, of TM data were selected for evaluation by four experienced photointerpreters. The interpreters were asked to rank the band combinations according to the ease with which they could distinguish the category of image feature designated for each set of combinacions. There were four sets of combinations selected for each category of image feature. Two $T M$ scenes were used as test areas, both acquired Auguist 12, 1983. The two scenes, 40392-16363 of the Oklahoma City, Oklahoma area and 40392-18144 of the Sacramento Valley, California area, were enlarged to 1:250,000 and 2cm circular chips were cut from each print. Each set ranked was composed of the identical area from the same scene in the six different hand combinations.

A nonparametric rank order test was carried out on the data to determine if the interpreters found no differenc mong the band combinations in ranking for the designated categories. Kendall's coefficient of concordance (W) was calculated and the significance of the (W) value was determined by a chi-square test. Table 1 summarizes the results of the evaluation, and shows the rank order of band combinations indicated as valid by rejection of the null hypothesis.
4) Publications

Sadowski, F. G., Haas, R. H., Sturdevant, J. A., Anderson, W. H., Seevers, P. M., Feuquay, J. W., Balick L. K., Waltz, F. A., and Lauer, D. T., Study of thematic mapper and multispectral scanner data applications (Executive Summary): in Iandsat 4 Third Workshop, Greenbelt, Maryland, 1983.
5) Recommendations

None
6) Data Utility

Some problems are becoming evident in the switch from Scrounge format to TIPS format. Test sites residing in two quadrants cause some extra effort in matching and mosaicking the test site together.

Table 1
Visual Interpretation of TM Band Combinations

Category	Ranking of Band Combinations						Chi-square values
	234	123	235	345	543	347	
1. Urban features	1-2	6	5	4	1-2	3	29.920 *
2. Water sediment patterns	2	1	3	5-6	4	5-6	59.680^{*}
3. Field boundaries	2	6	4	3	5	1	22.857
4. Within field vegetative patterns	2	6	5	3	4	1	36.893*
5. Within field soil patterns	1	5	6	2-3	2-3	4	11.286
6. Water-vegetation boundaries	2	6	5	1	4	3	38.500*
7. Drainage patterns	1	6	2	5	4	3	20.286
8. Forest vegetation types	2	6	5	1	4	3	72.393*
9. Timber-grassland differentiatipn	1	6	2	4	5	3	54.893*
10. Small ponds	4	6	5	3	2	1	57.607*
11. Vegetative patterns in grassland	3	2	6	5	4	1	24.821
12. Marsh vegetation patterns	1	6	5	2	4	3	$48.071{ }^{*}$

[^0]
[^0]: (1) Color sequence of combinations was blue, green, red

