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1.	 HIERARCHICALP _""LING AND MONITORING WITH CONCEPTUAL LEVELS

t

This work deals with the use of knowledge-base architecture and plan-

w" ning	 control	 mechanisms to perform an intelligent monitoring task in the

flight domain.	 Progress made this past year centers oa the final	 refine-

ment	 of the conceptual levels planning approach and the implementation of

this design.	 At this time the implementation is 	 nearly	 completed.	 The

route level, the trajectory level, and parts of the aerodynamics level can
A

now be demonstrated.

-^ The conceptual	 levels	 approach	 proposes	 an	 alternate	 method	 of

obtaining global viewpoint: model the domain at different degree of global cs

"

fl^

viewpoint.	 A complex real -world domain such as the flight domain requires

global	 viewpoint	 durin`	 planning.	 Let us define the primitive ground- .	 t

Wlevel operators to be the physical control act,vns the f1ght crew	 perform

during	 flight.	 Suppose	 we	 record the flight crew during flight with a

video recorder.	 A physical action is what the flight crew does each 	 time

a control element is changed.	 Since the flight domain is a dynamic domain
1

' 	 t

and some of these control elements need to be adjusted frequently one	 can

see	 that the state space is quite large. 	 To plan a flight at the ground-:

,. 'level, worrying about the control positions second by second,	 is	 clearly 6

{a not fesible.

In addition to being a complex domain, the flight domain places addi -

tionaldemand on the planner because the plat must conform to domain con-

straints.	 Some constraints are global while others are more 	 local.	 For

3	 -	 -
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example,	 to	 have a safe flight, the aircraft should not run out of fuel,

ati should fl	 a navigable eours, such that it does not	 et lost	 should	 noty	 g	 g

I fly into a mountain nor through icing condition nor turbulence, should not

fly so fast that the airframe is damaged nor so	 slow	 that	 the	 aircraft
r

stalls.	 The	 planner	 must	 generate a plan that achieves the goal while

satisfying	 these constraints.
i

p

It is interesting to	 note	 that	 these	 constraints	 have	 different

scope.	 Scope	 means	 the	 extent of coverage over, the ground-level plan,

roughly analogous to global viewpoint.	 A constraint such as "the aircraft

I
should	 not	 run	 out	 of	 fuel"	 has very large scope since it affect the

structures of the entire plan.	 A constraint such as "do not stall the air-

craft"	 has	 very	 small	 scope since it affects very small portion of the

^ y ground-level plan.	 A constraint such as "do not fly in turbulence" has 	 a 1

scope	 somewhere	 in between.	 The reader may also notice that these con- {

straints are not directly related to each other. 	 For example, the "do not

k run	 out	 of fuel" constraint, while operating at a larger scope, is not a

more general version of the "do not fly in turbulence" constraint.
rf

The immediate effect of the conceptual levels approach 	 is	 to	 breakP	 P ^	 k

the	 complex	 domain	 into simpler homogeneous minidomains. 	 By specifying c

the minidomains along	 different facets of the domain, the domain complex-
'' 	i

ity	 is	 reduced	 to several nearly independent less complex domains which

are causally complete by th emselves.	 This	 reduction	 of	 complexity	 is
•x ; l

similar	 to	 the problem-solving paradigm that if a task is too difficult,

divide it into easier subtasks and solve ,the "s,ubtaskz.	 The division	 here
Ar

is to partition the domain semantics along the aspects of the domain, thus ;ff'

reducing the search space inside a	 subdivision.	 instead	 of	 complexity
f

,i



x

S

j.,

3

reduction through task decomposition, the complexity reduction is through

domain knowledge partitioning.

While domain complexity reduction im desirable, the flight planner

requires global viewpoint. Global viewpoint can be obtained through vert-

ical domain knowledge decomposition. This is done by constructing mini-

domains of different soo on or in other wo ds mod 1 the d ain at dif-p ,	 r 	 ,	 e	 om

feeent degree of global viewpoint.	 It is vertical because the	 minidomain

of	 the	 largest	 scope makes decisions which guide planning 	 at the mini-

domain of lesser scope.

Domain knowledge decomposition	 achieves a reduction in	 complexity,

but with the gain also comes the drawback of limited viewpoint. 	 The, cause

of this limited viewpoint is the partitioning	 of	 the	 domain	 knowledge. Y

The	 conceptual levels architecture achieves both broad viewpoint and nar-

row, focused viewpoint because of the multiple conceptual levels. 	 The top 'f

level	 is	 constructed to support the broad viewpoint and the bottom level
F

is constructed to support the tight detailed viewpoint. 	 The	 problem	 is

that	 since	 not	 one	 conceptual level can cover both the broad and tight

viewpoint, the planner cannot see the total picture at a given time.	 Thus
tl	 ;

e	 Q

the	 planner 4,annot plan with absolute accuracy at the high level, nor can 4

it appreciate its role at the low level.
t

Since tbiq levels hierarchy is designed to	 provide	 global	 viewpoint r

for	 the	 low-level	 planners, the inability to look ahead at low level is

not a problem.	 However, the high-level planner, not	 able	 to	 plan	 with 4

absolute	 accuracy,	 is	 a problem.	 Planning proceeds top-down; the route t'
t

planner	 plans to satisfy global constraints, then the trajectory 	 planner

plans	 to	 satisfy	 constraints	 of	 intermediate	 scope,	 and finally the

r4
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aerodynamics planner flies the aircraft and 	 tells	 the	 subsystems	 level

4 what	 is necessary to fly.	 Me difficulty is that since the route planner
i

is buffered from the engine systsm and the actual flying, it does not know

for	 certain	 what	 are	 the	 aircraft range and ceiling. 	 And yet, if the

route planner consider the trajectory, the aerodynamics control	 settings,

^ and	 the subsystem control settings to determine the exact range and ceil-

ing values while considering	 traversing	 an	 airway	 segment,	 the	 route

planner	 would be bogged down in detail which the architecture is de91.gned

specifically to avoid.

This is an insoluable catch-22 problem inherent to this architecture.

^^p One	 must	 choose between risking the combinatorial explosion to ensure an

' accurate world model at the high level or risking a bad plan at	 the	 high

level due to an inaccurate world model.	 The least of two evils appears to
F

be the second choice: plan at high level with a possibly inaccurate	 world

model.	 This	 approach	 introduces two new wrinkles to top-down planning:

n replanning may be necessary and bottom-up verification of the world 	 model
§
}y

J

t

K

is required.

Planning is ;necessarily top-down in	 this	 architecture because	 the

low-level	 planner	 cannot	 make	 global	 decisions and yet it cannot plan
^	 E

without the global decisions since these global 	 decisions influence	 its
,w

F
planning.	 Planning	 decisions are made at high level based on a possibly {

°_ inaccurate world models and yet this high-level world 	 modal can	 not	 be
ba

verified	 until	 the	 low-level	 plan	 is set.	 When the low-level plan is

done, it is examined to verify that it agrees with the model of the	 level
it

above,	 and	 agian	 vith the levels above.	 Thep lan is not finished until

ra
all the models agree.

i
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Model updating is also necessary when the external world changes

unexpectedly. For example, suppose the flap is stuck after takeoff. The

trajectory level and the route level should be aware of this and check

their plans to make sure they are still good. Similarly, a failed engine

or an unexpectedly stiff headwind re4uires model updating and plan check-

ing. The model updating is initiated at the level where the change

occurred. For example, a stuok flap is initiated at the aerodynamics

level, and a fuel leak is initiated at the subsystems level. The extent

of model updating depends on the situation and is controlled by inter-

level planning control.

The conceptual levels planner is implemented in Franz LISP.	 More

specifically, it is implemented in rule system and frame system. All

static knowledge structures are implemented in a locally	 developed	 frame F

s
system, written in Franz LISP. 	 All active knowledge structures are imple-

mented in a rule s system, more specifically, the OPSS rules system written

in Franz LISP.	 Both knowledge structure systems are contained in the same
`s

lisp environment running on a VAX 11 /780 computer.	 In	 addition,	 a	 PDP-

11/45	 computer and a Ramtek color graphics system are used to display the f
Er

aircraft environment.'

The rules contain the meta-planning 	 knowledge.	 This	 meta-planning j

knowledge	 ct..ntain both the intra-level planning control knowledge and the

inter-level planning	 control	 knowledge.	 Presently,	 approximately	 100

rules	 are	 implemented.	 These	 rules	 control the planning at the route 'a":

level, the trajectory level, and the	 partially	 implemented	 aerodynamics "f	
p

level.	 As	 the	 levels	 are	 further developed and refined, there may be

approximately 200 rules.

^Y F
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The frame system is used to represent domain knowledge and the plan

structure. In fact, since thore are Four levels, the entire plan struc-

ture is made up of four substructures. The domain knowledge represented

in a frame consists of knowledge such as the airports, the vortac

transmitters, the airway segments between the vortao transmitters, the

attainable eruiza trajectories, the attainable climb trajectories, the

attainable descent trajectories, thA cruise phase, the climb phase, the

descent phase, the climb force vector equilibrium system, the cruise force

vector equilibrium system, etc. The plan operators are represented in

frame structure, and naturally the resulting plan is similarly

represented.

The planning system is presently implemented down to the aerodynamics

level. The planning process is displayed both on a terminal and on the

Ramtek graphics monitor. The aerodynamics level will be completed in the

near-term future. More detailed discussion of the theory and the imple-

mentation is available shortly in a technical report.
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2.	 FUNCTT4N-DIRECTED MECHANIM RAT_QNALIZATI QN

t Scenario

t

Consider the following scenario.	 An expert in a specific mechanism

1

domain	 is	 given a diagramatic representation of the physical structure
fk

f

4

of an instance of a specific mechanism. 	 Furthermore, let us assume that

he	 is told the name of the mechanssm.	 This name is meaningful to him -

N
he knows what the abstract function of the mechanism instance	 must	 be.

t
What	 we	 require	 of	 this	 expert	 is	 an	 explanation of the instance

behavior of the instance in question. 	 This explanation is a product	 of

x the application of the expert's mechanism understanding process.

4

Mechanism Understanding

We are interested in the underlying concepts and principles of this 14

mechanism understanding process.
1

There may be several instances of a specific mechanism - for	 exam-

ple, there are several instances of the amplifier which use the transis-

tor as the active element, and sever4 instances of the amplifier 	 which

use the operational amplifier as the active element. 	 As a further exam- r

° ple, there are several instances of the thermostat - one incorporating a
F

bimetallic	 strip	 as	 the	 temperature-sensitive	 element,	 and another
°

incorporating a gas bellow as the temperature-sensitive 	 element.	 Thus ..

- the	 physical structures of the various instances in question may appear !

quite different.	 However, the	 abstract	 function	 of	 these	 instances
^l

remains	 the	 same.	 The	 instance	 behaviors,	 which	 are	 generated
rt	

T

i

T
.. .......	 ..	

Yli	 I'w.°	 p	 .,ter, r 	 - _—	 __

i
- - __	 y^ 
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analytically from the physical structures, will accordingly be unique to

the inutance in question. However, the expert seems to be able to cope

- he can rationalize an instance of a mechanism which appears familiar,

but which he has never seen before. Accordingly, the generation of an

explanation of the instance behavior must begin from the known abstract

function of the mechanism instance in question.

Generally speaking, the understanding process is a forward qualita-

tive reasoning or qualitative simulation. 	 The explanation of the

instance behavior of the instance in question is an artifact of the

expert's analytical understanding prQ#̂  ess. This understanding process

may be based on functional component state models as the qualitative

knowledge primitives (ire Kleer], or it may be based on functional pro-

cess models as the qualitative knowledge primitives (F'orbual.	 Some

input signal is introduced as the input of the instance or situation.

This input signal is then propagated through the qualitative constraints

1

r

J	 '
n

^n
.N

^a

imposed by the primitive models, and the qualitative constraints imposed

by their connection scheme into an instance or situation. The imprecise
N

resolution of this analysis is introduced because of the approximate

nature of qualitative simulation. Thus, qualitative simulation leads to

many possible interpretations of instance behavior, each with a unique 	
'II

set of key assumptions chosen at decision points encountered during the 	 r
8

course of that simulation. We are identifying such ambiguity classes.	 1

We believe that a qualitative simulation process of some kind is;A2

^f

necessary for understanding how an instance of a mechanism can achieve 	 ix
i!

the characteristic function of that mechanism.	 j
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This qualitative simul).wi.on step should not be applied without some

careful, knowledge -based focusing and simplification of the instance in

question. Domain knowledge of the abstract meohanism function and

domain knowledge of physical subst'ructures encountered in the past can

and should be utilized to properly frame the mechanism instance for

understanding through qualitative simulation.

.2.3• Prgblem Eogua

The understanding process begins with the expert knowledge of the

abstract function of the mechanism. The expert knows what the instance

must be designed to achieve. This expert knowledge serves as global

control to direct the analytical understanding process. It in used to

direct a decomposition of the understanding problem into many separate,

almost -independent, stand-alone subproblems. In doing no, this expert

knowledge is used to constrain the understanding analysis by establish-

ing all of the environments of complete definitive mechanism operation,

one for each subproblem. An environment is identified with a functional

goal that the instance behavior must achieve. The composition of all of

the functional goals of all of these almost- independent subproblems is

the overall mechanism Function. An environment is specified by adding

the knowledge of what input signal is characteristic of the srt;lfunction

goal, and what output signal is expected to be achieved as an effect of

the constraints imposed by the components and connection scheme of the

instance in question.

,t

i?
t
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Take as an example, the nand circuit.	 The abstract function of the

nand.. circuit is a multi-state truth table description using the language

of logical 1 0' and 1 1 1 .	 Knowing that the instance in question is a nand

circuit,	 the	 appropriate	 chunk	 of	 knowledge comes to the fore. 	 The

expert immediately makes many knowledge based assumptions. 	 Among	 these
V

assumptions,	 he	 decomposes the understanding of the instance into four

f lmost-independent subproblem environments	 -	 one	 for	 each	 situation

associated	 with	 a truth table entry.	 The composition of the resulting

explanations of all of these understanding	 subproblems	 is	 a	 complete
C:-

w'" explanation	 of the overall nand circuit function.	 Associated with each

environment is the function goal of that 	 environment	 -	 achieving	 the

appropriate	 logic	 signal	 vector	 at	 the	 output	 terminals, when the

eharacteristia input logic signal vector is introduced at the input ter-

°` minalr,	 Tt,^.	 expert thus decomposes his analytic understanding problem
$

into four separate perspectives (a perspective is a 	 physical	 structure

in	 an	 environment with a specific function goal). 	 These four perapee -
a-,

tives can be reduced to three if symmetry of nand circuit 	 input	 termi-

nals is taken into account - the (0 1 -> 1) situation and the (1 0 -> 1)

situation are symmetrical.
t

Problem focus is achieved by using the 	 abstract	 function	 of	 the

instance	 in	 question	 to direct the decomposition of the understanding

problem.	 A perspective allows us to focus on the subproblem at hand	 to

,the exclusion of all other subproblems. 	 For each subproblem, it identi-

fies the specific environment in which that instance 	 must	 operate	 and tr

the	 specific	 function	 goal or subfunction that that instance behavior 3	 f

must achieve.	 A perspective also focuses 	 the	 subproblem	 at	 .hand	 by

__ A.-4
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A telling us what irrelevant •, details to ignore and discard in the analyti-

cal understanding process for that subproblem.	 For each	 subproblem	 of

the nand circuit, we are no longer concerned with the specific node vol-

'cage values.	 We instead speak in a language of 	 logical	 1 0 1	 and	 111.

The	 perspective	 also	 dictates	 the type of qualitative analysis which

t4

should be used to analyze each particular subproblem. 	 We	 know	 not	 to
1

,. perform	 small	 signal	 perturbation	 analysis to determine the relevant

instance behavior.	 We are no longer interested in the state	 transition

history	 of	 the	 multi-state	 components.	 We	 instead know to perform

steady-state do analysis for each nand circuit perspective.

' 2.4.	 Problem 5iml2lifieation

o,

The analytical understanding process is controlled and organized in

a	 top-down	 manner into perspectives as directed by the mechanism func-

tion.	 The understanding problem is thus focused through a decomposition,

process.	 A	 protean to simplify the subproblem at hand is the recogni-

tion and consequent clustering of	 physical ,substructures 	 into	 single ;!

behavioral	 entities.	 This process works in a bottom-up manner since it

begins from the physical structure of the 	 instance	 in	 question.	 The
'^h i k

expert	 often distinguishes and circles substructures on the diagramati-

1

^y

cal represenation of the instance in question.	 He recognizes these sub-

,r

structures as ones that he has seen before.	 This recognition simplifies

the physical, structure	 of	 the	 instance	 in	 question	 by	 a	 physical.' {

i abstraction	 of	 detail.	 Each recognized substructure is composed in a*

sense and replaced by a single macro-component with unit function. 	 The

result is a simpler physical structure with fewer constituent components

N

 mar,. ,.
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in a simpler connective topology.

Take as an example, the two-stage do amplifier. 	 The abstract func-

tion	 of	 the	 two-stage do amplifier is an equational de kscription using

the language of 'Gain' and 'Offset'. 	 An amplifier expert would	 immedi-

ately	 recognize that the instance contains two physical substructures -

amplifier stages - which each contain three components, and one physical

substructure	 -	 voltage	 divider - which contains two components.	 As a

?m result, the expert can generate another level of diagramatic representa-

tion	 of	 the	 physical	 structure	 of the mechanism instance.	 This new

' representation level is the result of 	 an	 abstraction	 of	 the	 initial

r diagrammatic	 representation	 of the physical structure of the mechanism
tM E+

'S instance.	 He composes these three 	 physical	 substructures	 into	 three

macro-components	 through	 a physical abstraction of detail. 	 The result

is a simpler physical structure of three 	 constituent	 components	 in	 a

' simpler linear connective topology. 	 Associated with each macrocomponent

is its own abstract function description.	 Each amplifier stagy; has	 its

own	 component	 parameter 'Gain'.	 Thus, there is an associated abstrac-

tion of the parametric description of the 	 new	 components	 in	 the	 new

i

level of physical structure.	 The physical structure may be reduced even

further, to two components,	 if	 the	 expert	 recognizes	 that	 the	 two

`^- amplifier	 stages	 can	 be	 composed	 into a single functional composite

amplifier stage - a still more abstract level of physical stuoture. 	 The
i

gain	 parameters	 of the two amplifier stages are multiplied together to

produce the more abstract parameter 	 gain	 of	 the	 composite	 amplifier

stage.

z	 1j

f	 ;a

,m}

r
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1

1`	 1

x

3



A

)

13

Problem simplification is achieved cg l using	 the	 knowledge	 gained

from	 past	 experience	 to recognize and abstract familiar substructures
1

enseounced in the mechanism instance in question. 	 Each	 maer000mponent
t

model	 is	 described	 or	 encoded using syntactically the same format as

that used to describe primitive component models.	 In this way, a physi-

cal structure composition hierarchy is produced that enables explanation

at various levels of detail. 	 The analysis is also	 focused	 by	 working

with	 the	 more	 abstract	 parameters which describe the macro-component

function rather than the more numerous, less abstract 	 parameters	 which
f

describe	 the	 functions	 of	 the	 substructure	 components.	 Physical

abstraction focuses on the appropriate level of the 	 parameter	 language

to	 be	 used	 in	 the description of instance behavior. 	 Unlike perspec-

tives, the introduction of levels of detail summarizes and saves detail,
r^

which	 may	 be recalled for consideration rather than being totally dis-

carded.
f^
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3• USING DM-.LEVEL 14ECHANISM MOD= FU DDjAafi ES a PENDENT

FAILURES

,V

F;

3.1•	 Overview, And ,S Ummary i

This final report summarizes the result of our research on 	 the

model-based	 diagnoses	 under	 many years of NASA support.	 We first

briefly overview our approach to the mechanism	 diagnosis	 problems.

In	 our	 diagnosis methodology, we decompose the diagnosis task into

two subtasks: hypothesization and verification. 	 In the hypothesiza-

tion	 phase,	 a set of failure possibilities is heuristically postu-

lati^d. Then in the verification phase, the expected behavior of each

failure	 hypothesis, as predicted from reasoning with the deep-level

mechanism model, is matched against the symptoms actually	 observed.

The	 main	 theoretical issues of our research lie in the development ai.

of a deep-level mechanism model (which we call the 	 state-transition '.

model,	 and the use of such a model for reasoning about the qualita-
a

tive behavior of a faulty mechanism (a process 	 which	 we	 call	 the
f'

predictive	 analysis).	 Those theoretical issues are thoroughly dis-

cussed in Pan's Ph.D. dissertation [11, which also investigates	 two

interesting	 aspects	 of hypothesis verification, namely, the use ofsV

qualitative symptom features, and the use of transient	 symptoms	 in i

verification. II

In this report, we focus our discussion on	 issues	 related	 to

the	 hypothesization	 process	 which, though less theoretical in its

nature, serves as an important link between Ue	 proposed	 diagnosis

theory	 and	 its	 real-world	 applications..	 In the next section, we

first use an idealized mechanism model (called 	 the	 Production-Line

t

y:i	 r ^....... ..	 .,	 ..	 .. .	 .........r:.:..^.u...e.. -. ua	 4	 -_--rig	
..	 _..	 +..J..,

r
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model) to explain: (1) how traditional diagnosis approaches have

been "made" easy, and (2) what the underlying assumptions being

imposed on there approaches are. Then we discuss our heuristical

approach for dealing with a non-ideal situation: the real-world ana-

log mechanisms. A Flow-Causality model is introduced to decompose

the functionality of a mechanism into two levels: the Causal Level

in which the diagnostic principles developed for PL-modeled mechan-

isms can be "heuristically" applied (with exceptional cases), and

the Flow Level in which special (expert) diagnostic knowledge for

each type of flow systems has to be adopted. As the result of the

discussions on diagnoses based on the PL-mechanisms, the limitations

of a straightforward diagnostic approach can be better understood,

and the analyses of its weakness forms the basis for the future

development of a diagnosis strategy applicable to general analog

f

mechanisms.

At the end of this chapter, we propose a system organization

for the future intelligent diagnosis system constructed based on our

theory.

3.	 Generations Qf ZAIJ,ure Hypotheses	 {, '
i

	Within the context of a time-complicated mechanism with	 ti:a

dependent-failure	 possibilities,	 the generation of	 failure	 +° J

hypotheses is a task of postulating possibilities of the primary,

	

failure based on the initial symptom-snapshot which triggers the 	
*a`

detection of a i'ailure. Our hypothesis generation is similar to
x,

	

traditional diagnosis problems in two ways: (1) the task is based on	 t
i

symptoms observed at one single snapshot, and (2) the goal is to

E.
t.
r.
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d
assert a set of single -failure possibilities which can potentially

d causes the observed symptoms. In view of our overall diagnosis

approach, the verification process will refine the result of this

failure hypothesization to (1) incorporate the use of time-elapsed

symptoms for resolutions among the hypotheses, and (2) understand

and thus explain dependent failures.

A naive approach for generating failure hypotheses is to pro-

pose all possible failures. However, by doing so, an enormous com-

putational problem will be created in the verification process. 	 A

smarter approach will adopt some heuristically-based reasoning pro-

cess to select a set of most-likely failure possibilities among the

space of all possible failures.

A straightforward approach is to adopt the production -system

paradigm [ 2] by which expert's rules for diagnoses are encoded and

utilized to map the symptoms to possible failures. While not ques-

tioning the effectiveness of the production-system approach in deal-

ing .;.rith a specific ,mechanism, such approach totally bypasses the

well -formulated modeling knowledge which engineers develop to

analyze the domain. An alternative approach will be , to develop a

functional model of the mechanism, and to use the model in deriving

failure hypotheses from observed symptoms. In comparing these two

approaches, the model-based approach is theoretically more interest-

ing in that the methodology we develop in dealing with the modeling

of mechanisms and the using of models can be applied on othe r

mechanisms, while with the production-system approach each mechanis m
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has to be treated as a special easel.
E	

s^
4 In this chapter, our focus is on the model-based approach. 	 Wef

first discuss the hypothesization problem in an idealized mechanism

f
modeled by the "loopfree -production-line" model, which helps us

{ understand the limitations of existing Aldiagnosis worka and setsi	 .

the .stage for the discussion of our approach in	 dealing	 with	 non-

ideal situations.	 We then discuss the hypothesis generation problem

in an analog mechanism with a proposed functional model, called 	 the

"flow-causality model".

A 1.2._t.	 .hg Loonfree-Pro	 ei tion Line, Model ,1, ,	 Mechanisms

!

a To understand how failure possibilities can	 be	 hypothesized

from	 symptoms by 'reasoning with a functional model of the mechan-

ism, we first study an ideal situation in which such tasks can	 be 1

performed	 with a straightforward diagnostic logic. 	 Assuming that

we are dealing with an ideal mechanism in which interactions among

sub-modules	 can be modeled in such a way that ( 1) propagations of
;a

effects	 ( signals)	 among	 modules	 is	 always	 "unidirectional",

namely,	 hatever	 failure	 occurred beyond the output of a moduleY s	 Y	 P  t
4

L.

will not affect the behavior of upstream	 modules,	 (2)	 a	 module'
i

will behave differently if its input is abnormal, and (3) there is 31	 `

.a no loop existing in propagations of effects 	 among	 modules.	 For

the	 purpose	 of	 easy	 reference,	 we will call such an idealized ^c

However,, a diagnosis approach based on the production system 	 Para-
digm has its advantage in that it can encode global diagnostic knowledge
which is not direct rationalizable from deep-level mechanism models. Ex- "	 !
amples	 of	 such	 knowledge	 are	 special	 experiences (e.g., engine vi-
brates), priori-probabilities, etc. ?

i
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mechanism the loopfree-production-line model (since	 a	 production

line	 is	 usually loop-free, we call it a "production-line r' ( PL )

model for short) for 	 its	 similarity	 to	 the	 station-to-station
f

interactions	 in	 the	 production-line	 of a factory.	 As shown in

figure 3.1(a), a typical product-j',on line has a 	 sequence	 of	 pro-

oessing	 stations	 (A,B,C,D in this example). Interactions between

two processing stations are done by a conveyer belt which 	 carries
o.

partial products from one station to another.	 If a failure occurs

A(say in station C, as shown in figure 	 3.1(b)),	 we	 will	 observe

symptoms	 in	 station	 C (partial products piling up) and stations

° downstream to Cwhich is station D with no "input" products),(	 P	 P	 ), but

never on its upstream stations A and B.

In a mechanism describable	 by	 the	 loopfree-production-line t

model,	 the	 partially-ordered	 causalities	 are	 implicitly esta-

blished among its modules, corresponding to the directions of sig-

nal	 propagations.	 With	 the	 assumption	 that there is a way to

determine the normal/abnormal status of 	 an	 operational	 module2,

the	 isolation of the faulty module can be achieved by backtracing '.•-
affi

(Q{
IA	

+.i	 s
along the causal paths of the mechanism.	 In the	 following	 Para- .

graphs,	 we	 discuss	 four	 basic	 diagnosis	 principles, (namely,
f	 ^

causal-baektracing, fault-identification,	 common-cause,	 implied-

exoneration), 	 within	 hypothetical	 situations for their applica-

tions.

t

2 In WATSON's	 tusk	 of	 isolating	 radio-receiver	 failures	 at	 the ,p
stage-level	 [3], the operational status of each stage is defined by the
"normality" of stage-output signal.

^^. t
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Figure 3.1 A Loopfree-Production-Line (PL) Model and a Failure Exacple
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As shown in figure 3.2(a), interactions among functional

module A, B, and C are such that A enables B and B enables C.

Operational statuses of B and C are known to be abnormal while A

is known to be normal. To isolate the possible failure in this

example, we first reason that since C is enabled by B and B is

abnormal, the the abnormality of C must be inherited from the

abnormal B (by the "uni-directional" assumption), and thus C is

exonerated (by the "single-failure" assumption). The above rea-

soning steps to exonerate an abnormally-behaved module are called

the Causal-Backtraeing principle,, With C exonerated, we infer

that since B is enabled by A and A is normal, B's abnormality must

be due to its own failure (by the "uni-directional" assumption).

The failure of the PL mechanism is thus postulated to be func-

tional module B. We call such reasoning steps the Failure-

Identification principle. At this point, applications of the two

diagnosis principles illustrated are local in nature, namely, the

related information they utilize always comes from direct neigh-

bors of a module. We now discuss how non-local information can be

incorporated in their deduction processes.

Because of the limited availabilities of sensors, we may not

be able to determine the operational status of each module. By

^ y the single-failure assumption, we can extend the causal-

backtracing principle to achieve indirect failure associations.

For example, in a PL mechanism as shown in figure 3.2(b), by

t\CAr

	 applying the extended version of the backtracing principle., C and

D are exonerated even if the status of C is unknown. 	 Again, by

e ;t

N	

}(

^^'' .^.^^^W ni.+	 .nay3:*r ,./` ^v	
.i
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Figure 3.2 Examples to Illustrate Fault-Isolation Principles
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the fault-identification prinoiple, B 	 is	 postulated	 to	 be	 the

culprit.	 However,	 not	 in	 all	 eases can the isolation process

localize one specific faulty module. 	 In a	 PL	 mechanism	 with	 a

E
similar	 causal structure but without the operational status of B,

as shown in figure 3.2(o),	 a	 set	 of	 possible	 faulty	 modules,

namely, B, C, and D, is postulated instead.

We now explore	 a	 more	 sophisticated	 diagnosis	 principle,

called	 the	 Comon-Cause	 principle, which takes the advantage of

special causal-fanout structures existing in 	 the	 PL-model	 of	 a

mechanism.	 In	 a	 situation	 as shown in figure 3.2(d), the fact

that abnormal Cn and abnormal Dm share the same catoal 	 "upstream"

module B imply that the failure is due to a common cause upstream,

namely,	 B.	 In	 this	 case,	 by	 further	 applying	 the	 fault-

identification	 principle	 on	 A and B, we postulate that B is the

culprit even with no knowledge about the operational 	 statuses	 of

Cl...Cn-1	 and D1 ... Dm-1.

The dia^nCLS,j	 principles	 developed	 so	 far	 emphasize	 the

direct	 and	 indirect	 uses	 of module-abnormalities (symptoms) in

postulating	 possible	 failures.	 We	 now	 discuss	 the	 Implied.- ^	 e
♦ t

A Exoneration	 principle which excludes some functional modules from
I

p
i

failure possibilities by reasoning with normal (or no-fault) meas-

urements.	 To be able to apply the implied-exoneration principle,

we introduce an "intentional design" assumption which 	 states:	 "a
ire	 .

functional	 module	 will	 not	 operate	 normally	 unless	 all	 its *`

enabling-preconditions are satisfied". This 	 mean•,	 if	 a	 module ^t

i fails,	 all	 modules	 causally-enabled by it will show symptoms if
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sensor-measurements are available.	 Also, no	 module	 should	 have

implicit redundancies built in 3 .	 Potential	 applications	 of	 the

implied-exoneration 	 principle	 are	 illustrated by an example, as

shown in figure 3.3.	 In	 the	 Pi.-modeled	 mechanism	 with	 causal

relationships	 as	 shown	 in	 figure	 3.3 1 knowing that functional

module F is abnormal prompts the	 postulation	 of	 a	 failure	 set

which	 includes	 A,	 H,	 C,	 D,	 G,	 and	 H by applying the fault-

n° identification principle. 	 However, knowing F	 is	 operating	 nor-

mally	 causes	 us to assert, by the implied-exoneration principle,
f,

that A t Bf and C must be operating normally even though no 	 direct

measurements are available. (D may be partially faulty, namely, it

may have a normal output to E while fails in	 the	 output	 to	 G.) R

Therefore,	 by	 applying	 the	 implied-exoneration	 principle, the

fault-isolation process postulates a smaller possibility-set 	 with 1

l D, G, and H being potential culprits.
^t

In reviewing Brown's WATSON approach for the 	 troubleshooting

of	 ra¢io-receivers	 13J 4 ,	 we	 find	 it	 is	 a simple case of our

fault-identification process, 	 namely,	 it	 is	 a	 straightforward

application	 of the identification principle alone to a near-ideal !II

mechanism: a radio-receiver with stage-decomposed modules.

3

In case of a real-world mechanism in which redundancies	 do	 exist,

+

rV°R
they	 should be made explicit in the causal description. The detail will

cf^

be discussed within the context of flow-causality models.rnr..
The author must point out that WATSON's reasoning is for 	 the	 gen-

erations	 of	 test-points,	 which	 implicitly assumes that the status of
each functional module can be determined. Thus, our comment is not about

r

the	 weakness	 of	 his	 approach, rather, is about the generality of his
theory.

'dip
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Figure 3.3 Examples to Illustrate Fault-Isolation Principle (cont.)
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Fault 1golation ,A .A Rail--World ,gig Mechanism

The study of failure isolation on the ideal mechanism 	 serves

as	 the foundation for the understanding of failure isolation in a

non-ideal real-world mechanism. 	 Summarizing the results from pre-

vious	 discussions,	 the	 four diagnostic principles are developed

based on following assumptions made on an ideal PL mechanism:

" a	 Single-FailureAssumption -- Only[] y one failure can occur in	 a

mechanism at a time.

[b]	 Unix-Directional Ass r,wption -- Propagation of 	 causal	 effects

among	 functional	 modules	 are	 "uni-directional". 	 Only one

failure occurs at one time.

[c]	 Status-Determinable Assumption -- There exists a	 mapping	 by

which	 the	 normal abnormal	 operational status of each Tune--
1

tional module can be determined if some sensory 	 measurements

are available.

Applying these four diagnosis principles to non-ideal mechan-

is-zas results in a heuristic (rather than exclusive) set of failure
^`	 F

,k
hypotheses in the sense that the actual failure will 	 be	 included

w	
p
a	 ^

in	 the	 possibility set most of the time -- exceptions are due to #'

violations of ideal assumptions on the PL mechanism.	 To layout	 a

n practical	 approach	 for	 failure	 isolations in a non-ideal real-
1 ^ 41

world mechanism and to understand the limitation of such approach,

it	 is	 most helpful to discuss our fault-isolation methodology by

studying the conditions under which these 	 ideal	 assumptions	 are

violated in an analog mechanism. t
rt

a
s
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!J7i'll'{7 The single-failure assumption is consistent with the purpose

of our hypothesization task, which is to postulate a set of

primary-failure possibilities. With respect to the second assump-

tion of uni-directional casual propagation, we rarely find any

real-world mechanism which can satisfy this assumption without

exceptions. Therefore, we propose a flow-causality model which

organizes the functionality of an engineered mechanism into

causally-related flow-groups. The intention is to provide a func-

tional decomposition of the overall mechanism into modules of

flow-subsystems with neat-unidirectional inter-module interac-

tions. Within a flow-group, variables are closely-associated in

h	
the sense that any failure "almost" certainly will affects all

I^s

variables in the same flow subsystem. 	 Such property of close 	 ?

'W	 associations among variables also makes the condition favorable to
F

apply the four diagnosis heuristics since the operational status

of each functional module is likely to reflect on any given sensor

within the flow subsystem. Interesting as the idea may sound, we

have to stress at this point that there exists counter-examples in

	

real-world mechanisms which will, conditionally violate the basic 	 }`	 i
3

assumptions of the PL model. 	 Therefore, the effectiveness of

	

applying the four diagnostic heuristics to a real-world mechanism 	 {,,
i

depends on how often the ideal assumptions are violated -- which,

in author's opinion, is an engineering-oriented issue.	 For this	 ^^ 99

	

reason, the author emphasizes the engineering aspect of our 	 ;`I

hypothesization methodology in terms of its usefulness, rather

than its theoretical importance.

I
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3.2. ,Z.., .	 FunctigpAj, Decompositions And ,thg ZjgX-Cans lity Model

Our	 of developing the	 Flow-causality	 model	 of	 apurpose

mechanism is to create a functional description which is organi-

zationally similar to that of the Production-Line model 	 in	 the

hope	 that	 the	 ^,solation	 principles	 developed	 for the ideal

mechanism can be similarly applied for the generation	 of	 fault

hypotheses.

Intuitively, the functionality of an	 engineered	 mechanism

can	 be	 described as a set of causally-related subsystems which

implements the intention of	 its	 designer.	 For	 example,	 the

mechanism of a simple ,jet-airplane can be functionally organized

h into following subsystems: the fuel subsystem, the 	 engine	 sub- ..

system,	 the	 oil	 subsystem,	 the electrical subsystem, and the

hydraulic	 subsystem.	 Following	 the	 intention	 of	 airplane

n
engineers, the causalities among the subsystems are, as shown in

4-!

g
figure 3.u, such that the fuel subsystem drives the engine	 sub-

system, and the engine subsystem in turns drives tho oil subsys-

tem, 	 the electrical subsystem, and the hydraulic subsystems.

In order to activate each subsystem, the designer 	 arranges
j

a	 set	 of	 components	 in	 such	 a way that some "products", or
i

called "medium" can be forced to other causally-depended subsy6- ;;n

tems.	 With	 this	 view, we can abstractly characterize a func-

tional	 subsystem	 as	 a	 "flow	 subsystem"	 which	 creates	 and ► ^^4'

transfers	 a	 particular type of medium to other subsystems, and

the sensors in a subsystem serve to monitor 	 the	 "potential-of-
ij

flow"	 or	 the	 "rate-of-flaw"	 at	 various	 points	 of	 a	 flow r
:E

a

i

a ^	 _^. ...	 iii.. /.ir yr r....r.	 ..^	 ...	
........a^.....:^.

_.._a.+.n ..	 ^`	 luia rYrlS
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Figure 3.4 Causal Dependencies among Subsystems of an Airplane Mechanism
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subsystem. In some types of flow subsystems, the medium is

stored (as in 9,.1, oil subsystem) rather than created (as in a

electrical subsystem), thus the "quantity-of-medium" ('as the

oil-quantity) becomes relevant. Some typical flow subsystems

and their corresponding media are listed below:

.Types. sf	 ZIS& Media

Oil Subsystem	 engine-oil
Hydraulic Subsystem 	 hydraulic-fluid
Electrical Power Subsystem	 electricity
Thermal -Transfer Subsystem	 heat
Pneumatic Subsystem 	 air

An interesting observation is that the flow-variables

within a flow subsystem are closely-associated in the sense that

there seldom is a case that symptoms of a failure show on some,

but not all, of the flow variables. In contrast, variables

belong to two causally-related subsystems are likely to be

unidirectional -associated in the sense that a failure in the

"driven" subsystem usually will not reflect on the "driving"

subsystem.

Finally, we discuss representational issues of the flow-

causality model by an example of cooling mechanism, commonly

used in the central air-conditioning system, as shown in figure

3.5(a). As shown in figure 3.5(b), the cooling mechanism is

functionally decomposed into three flow -subsystems: the

electrical -subsystem, the water -circulation subsystem, and the

heat-removing subsystem, with electricity, water, and heat as

flow-media respectively.

P



^n 4
(D+

30

OF FUUrt 4,.'+LtiY

Filter

	

	 Heat Transfer Path
Heat Exchanger

FfLz	 L3

Tr

1	 Heat Source 

Radiator 

Fuse	

Pl	
Water Pump	 Heat Sink

V,

Lo	 ^ ,"	 La

== Water Tunk

(a)

r
1

f

F

Electrical Subsystem
Medium' "Electricity"

Drive ,/	 Wo ter
Circulation Subsystem

Medium : "Water"

Drive

(b)

e-*--	 Heat
Removal Subsystem

Medium: "Heat"

r-P -7963

Figure 3.5 A Cool ing-Mechanism Example for the Flow-Causality Model
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The causalities among these three subsystems are described

as following:

(drive 'ELECTRICAL-SUBSYSTEM 'WATER-CIRCULATION-SUBSYSTEM)
(drive 'WATER-CIRCULATION-SUBSYSTEM 'HEAT-REMOVING-SUBSYSTEM)

For each flow-subsystem, we further establish the associa-

tion between each function roles and physical components by

which the function is actually implemented. As shown in figure

3.6 0 the abstract functional role "reservoir" is implemented as

the "WATER-TANK", the "booster" as "WATER-PUMP", etc. The

"delivery-path" is implemented by a group of components which

structurally are in series. A frame-like representation is

adopted to describe the subsystem model:

subsystem-name: 'WATER-CIRCULATION

abstract-functional-template: 'HYDRO-FLOW-CIRCULATION

medium: 'WATER /* a-kind-of non-compressible fluid */

functional-roles: /* mapping to the structural components */

reservoir: 'WATER-TANK
supply-path: 'LO
booster: 'WATER-PUMP
delivery-path:

(in-series L1 FILTER L2 HEAT-EXCHANGER L3 RADIATOR L4)
drain: 'WATER-TANK

Notice that the specification in the "abstract-functional-

template" slot serves as a linkage to a body of knowledge about

•i

br

t

i
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a general non-compressible hydro-flow circulation subsystem

which this particular WATER-CIRCULATION-SUBSYSTEM is an instance

of.	 To be included in	 this	 knowledge	 chunk	 is	 a	 piece	 of

knowledge	 to	 map	 observed	 symptoms	 into	 a	 set	 of failure

hypotheses5.

In a mechanism with built-in redundancies at the 	 subsystem

level,	 these	 special	 relationships	 will	 be	 explicitly

represented in their causal descriptions. 	 For	 example,	 in	 a
N

modern DC-10-like [4] airplane, the fuel subsystem, the electri-

cal subsystem, and the hydraulic subsystem are all designed with
,r

heavy redundancies, as shown in figure 3.'l. 	 As a typical	 ease,

P the	 casual relationships between the power-plants (engines) and

the electrical subsystem will be described as:

t,

(drive
a (or

ry
'POWER-PLANT-1

zfi POWER-PLANT-2 A.
s 'POWER-PLANT-3

'ELECTRICAL-SUBSYSTEM
)

ti

r

h	 1

i

i

5 One simple approach is to attach a pre-coded 	 procedural	 knowledge
to	 the	 frame of abstract flow-subsystem so that it can be inherited by "•
all flow-subsystems of the same type.	 Our emphasis is on the 	 organiza-
tion	 of	 the	 flow-subsystem	 knowledge.	 The failure-postulation pro- +
cedure, because of its engineering nature,	 is	 not	 discussed	 in	 this
thesis.	 An illustration of its applications will be discussed later in i
an example.

t
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3.2•2.2. ,Failure Hvoothesization Wjj .LU, Elgii-Causality Mg_del_

The task of failure hypothesization is achieved in two

steps: subayates isolation and failure postulation. In this

section, we illustrate the process of failure hypothesization by

the example of water-cooling mechanism, shown in figure 3.5.

Firot, we deal with the problem of isolating the faulty

:subsystem.	 The	 subsystem-level of a flow-causality model pro-
,

vides a description of	 causal	 relationships	 among	 subsystems

us	 f the	 deal PL-modeled mechanism. 	 Asanalogous	 to that o	 i	 p

condition to applying the four 	 isolation	 principles	 developed

for	 the ideal mechanism, we need to define a predicate by which

^ the operational status of each subsystem can be determined 	 from
s

its related sensors, which happen to be available.	 Knowing that

^s
sensors are installed in an 	 operational	 mechanism	 to	 monitor }

flow-related	 variables,	 thus,	 by	 the	 flow-causality	 model, iu

available sensors are divided into groups according to 	 associa-

tions	 of their corresponding variables.	 The operational status

of each subsystem module is defined as follows: (1) 	 the	 status

is	 said to be normal if all available sensors in a flow zu^sys-
t

tem have normal readings, (2) the status is said to be 	 abnormal
s

if	 any	 sensor in the subsystem shows deviation from. its normal

u	 value, and (3) the status is unknown	 if	 no	 sensor-reading	 is

available.	 With	 the	 definition	 of the subsystem status, the ^,F

four isolation heuristics can be applied to isolate 	 the	 faulty'

subsystem.	 In the example of a cooling mechanism, given that P2

and T3 readings are deviated from their normal range but 	 V1	 is

i y

_mow+	

M



!t

36
i

r

normal, we heuristically isolate the failure to the water-

circulation subsystem by applying the causal-backtracing and the

fault-identification principles.
a

Second, with the focus shafted to a particular flow-

subsystem, a set of failure hypotheses is postulated with the

application of the prooedural knowledge inherited from the
1

abstract flow-subsystem to which. this flow-subsystem is an

 instance of. The failure-postulating procedure only concerns

itself about interpreting variables which are related to this

flow-subsystem. Continuing the coolie mechanism exa mple in fiY	 g	 g	 -P	 g

ure 3.5, from the sensor-observation that P1 is normal, it

exonerates three functional, roles: the booster, the supply-path,

and the reservoir, from being considered as possible culprits.

	

Thus, the failure, if it indeed occurs within this flow- 	 ,E
i

subsystem, must come from the delivery-path or the drain (which

is excluded in this case since it is the open space in the i

WATER-TANK).	 Interpreting a low flow-rate (Ff) detected in a

serial path (L1 -> FILTER -> L2 -> HEAT-EXCHANGER -> L3 -> RADI-

ATOR -> L4), following two rules can be applied:

(1) Upstream-leakage -- any component upstream to the point of

	

detection can be leaking to cause the low flowrate measure-	 11
It

	

.	 went.

(2) Path-cloggage -- any component in the flow path can be

clogged to cause the detected low flowrate.	

I^` x

T	 ^	

=r^

i	 As the result of applying these flow-tracing rules, the

`	 following possible failures are postulated: L1 leakage, L1

v
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ologgage, FILTER cloggage, L2 cloggage, HEAT-EXCHANGER ologgage,

L3 cloggage, RADIATOR cloggage, L4 cloggage. To re-emphasize

,
	

the significance of our hypothesization-and-verification.

approach, we stress that the "L1 leakage" is an outstanding case

during the verification phase due to its unique time-elapsed

t
effects.	 Among the above failure hypotheses, the predictive

analysis process will conclude that only the "L1 leakage" asser-

tion will be expecting further symptom-event: the dropping of P1

to zero after some time delay because the water-tank will even-
y
	

t

tually become empty. If this symptom indeed is observed over the

P1 sensor some time later, the diagnosis process can conclude

that the "L1 leakage" is the culprit.

,¢onclusioa
1

As the conclusion of our study, we propose a	 future	 computer-

based	 intelligent	 diagnosis system be organized as shown in figure

}Q}ij-

	 3.8.	 The time-continuous sensory data is first 	 abstracted	 into	 a

sequence	 of qualitative symptom everts, which will be compared with
3{{

the predicted failure behavior frn-m the intelligent	 diagnosis	 pro-

gram.	 Those	 accepted failure hypotheses, together with their jus-
{
a

tifieations, will be (1) presented through some means of man-machine ^.

interfaces	 (e.g.,	 graphical	 or	 text	 display, voice synthesizer, #	 i

etc.) in a form which can be readily understood by people so	 as	 1"Oo 1fi

help them in their decision-making6 , (2) presented through a 	 shared

6 We call this feature the JA elligent interface	 since	 it	 presents &
the	 diagnostic	 result	 with	 concise	 ,justification,	 rather than just
presenting the raw data.

{

^° 3
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At+ 1

^F

data base ^n its entirety to other intelligent prcgrams so as to

	

h	 allot other intelligent activities (e.g., recovery-planning) to
4p

proceed.	 t

i

1
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