
1983 Mid-Year Report

. NASA Grant NAG 1-138

SAGA: A Project to Automate the Management of
Software Production Systems

Principal Investigator
Roy H. Campbell

Research Assistants
Wayne Badger
Carol Beckman
George Beshers

David Hammerslag
Peter Kirslis

Paul Richards

University of Illinois
Department of Computer Science

1304 W. Springfield Ave.
Urban a, IL 61801-2987.

{N&SA-CR-17320$) SAGA: A PROJECT TO
AOTOHATE THE HANAGEHEHT OF SOFT8ARE
PRODUCTION SYSTEMS Progress Report
(Illinois fluiv. f Orbana-Champaiga.)- 149
HC A077MF.aOJ.,;j 1±__: I CSCL.

ABSTRACT

-16823

Onclas
G3/6J J3230

-tt-OC

This report details work in _
'1"-:-- the first

https://ntrs.nasa.gov/search.jsp?R=19840008755 2020-03-20T23:43:20+00:00Z

SAGA Project 1983 Mid-year Report

•ORIGINAL PAGE Eg
OF POOR QUALITY

1. Summary

This report describes the current work in progress for the SAGA project. The

highlights of this research are:

• A Parser Independent SAGA Editor.
• Design for the Screen Editing Facilities of the Editor.
• Delivery to NASA of Release 1 of Olorin, the SAGA parser generator.
• Personal Workstation Environment research.
• Release 1 of the SAGA Symbol Table Manager.
• Delta Generation in SAGA.
• Requirements for a Proof Management System.
• Documentation for and Testing of the Cyber Pascal Make Prototype.
• A Prototype Cyber-based Slicing Facility.

xfi&vJuaer,l$84 Demonstration Plan.
.^rV'SAGA Utility Programs.

A:-*', .,• ' -A .
£./ •jSummary.Jof'.UNIX Software Engineering Support.
''••• *«sTheorem Pro.ver Review.

.
2 ĉ'..The ianguage^Oriented Editor

• *-̂ J'.'t i '£**'
Several changes have been made to the editor during the past half-year. A new

parser was implemented, replacing the original one that had been in use. The old

parser was originally a batch parser that was modified to do incremental parsing.

However, its general structure was such that error handling was difficult, and partial

parses not possible in an interactive environment. The new parser repairs these

deficiencies. When an error is detected, the parse is automatically suspended and the

editor returns to command level. The user has the option of repairing the error

immediately, or of moving elsewhere in the program and possibly making a change

f there.

Although a parse tree containing a syntax error can only be modified from its

beginning up to the point of the error, this restriction may soon be removed. Appen-

dix A contains further details.

1UNDC is a trademark of Bell Laboratories.

SAGA Project 1983 Mid-year Report 3

2.1. Parser Independence

The new parser is encapsulated within a module of the editor. The interface

between this module and the rest of the editor is designed to be independent of the

parser and the form of the tables that the parser uses. Parsers from a variety of

different parser generating systems may now be used to build SAGA editors. Any

parser generating system may be used if the resulting parser and its tables can support

the functions required in the interface. This change gives us independence from the

Mystro NQLALR parser-generator, and we are in the process of adapting SAGA's Olo-

rin, and LEX and YACC of UNIX to use with the editor, both of which have full

LALR(l) parsing capability.

The component of the editor that interprets the semantics of the program being

edited has also been encapsulated into a module. A set of semantic evaluation pro-

cedure calls is provided at key points before, during, and after the parse to allow

semantic evaluation to occur if desired. With this added ability, we can now start

studying semantic analysis using Olorin.

The parser independent component of the editor that manipulates the parse tree

forms an editor "back-end"; it can be used as a module in other SAGA tools. For

example, it would allow a SAGA tool to manipulate the parse tree (perhaps to optimize

code) without requiring that tool to use the editor command language.

Design and implementation of a screen editor user interface is now top priority

and •will be underway this next half-year. Additionally, a general and extensible com-

mand language is being designed to give the editor a full set of commands, replacing

the basic command interpreter that was used during testing up to this point.

The new parser has been designed for an interactive environment, and so should

be more reliable than the old one. The new command language will provide enough

flexibility to let us begin using the editor in our own development work. We will soon

be able to start extensive editor testing, so that we can begin taking the editor from an

experimental tool to a usable one.

SAGA Project 1983 Mid-year Report 4

2.2. The Parser Modules

The Mystro-based parser module for the editor was the first to be finished and

has been used to debug the parser-independent SAGA editor modules.

The Olorin-based parser module for the SAGA editor is complete and testing is

in progress. Details of the status of Olorin can be found in Appendix B.

The standard UNIX tools, LEX and YACC, are being modified to be used to

build a parser module. The inclusion of a LEX- and YACC-based parser for the SAGA

editor allows the project to build editors for many of the languages used in UNIX

(including C, Berkeley Pascal, Ratfor,vand the UNIX Shell.)

LEX is a tool that generates lexical analyzers from a series of pairs: a regular

expression that describes a member of a lexical class and an action to be performed

whenever an element of that class is seen. It produces a function written in C that

reads the standard input until a lexical entity is recognized and then performs the

specified action.

The changes that are required to allow the LEX generated program to be

integrated with the editor are minor. The major change makes the lexical analyzer

expect input text to be passed as a parameter rather than reading it from the standard

input. A few changes have been made to the program LEX itself. These changes were

made to increase internal constants so that the large lexical specification for ADA2

could be processed.

The program YACC reads a BNF-like grammar augmented with embedded

actions and produces a C program that functions as a shift-reduce parser for the

specified language. Since the editor itself maintains the LR stack, the bulk of the code

that YACC generates can be removed, leaving only the LR tables and some code for

performing look-ups. These code fragments are distributed into many small routines

that are called from the parser interface.

2ADA is a trademark of the United States Department of Defense.

SAGA Project 1083 Mid-year Report 5

Most of the routines called for as part of the package "parsefns.p" have been

written. No work has been done on the procedures necessary for the package

"semanfns.p". It is unclear how difficult a task it will be to retrieve the actions from

the YACC generated code so that they could be available to the editor routines. Auto-

mation of the production of LEX and YACC based SAGA editors should be possible

by the end of the year. Further details are included in Appendix C.

3. Requirements for the Screen Editing Facilities of the Editor

A screen-oriented SAGA editor should be user friendly and provide several edit-

ing functions. Editing should be accomplished in a uniform screen-edit and command

mode and should be simple. The performance of the editor should be fast, predictable,

and reliable.

If desired, it should be possible to use the entire terminal screen or entire window

within a terminal screen to display any portion of the file being edited. The user

should be able to position the cursor within the screen to any point within the file of

text and insert, replace or delete text directly at 'the position of the cursor position;

any changes should be displayed as they are made.

The user should be able to select more complex editor commands by using the

command mode of the editor. The command mode displays commands temporarily at

the bottom of the screen. As such commands are executed, the screen will be updated

immediately soon as possible to display the changed text. Edit commands will enable

the user to move, copy, replace, insert or delete arbitrary fragments of text. These

fragments can be selected by cursor positions, lines, syntactic constructions or seman-

tic constructions within the text. Other commands will include scrolling or paging the

text within the display and positioning the cursor by a search for a given string of

characters, syntactic construction, or semantic construction. A detailed description of

the requirements for the SAGA editor is in Appendix D.

SAGA Project 1983 Mid-year Report 6

4. Delivery to NASA of Release 1 of Olorin, the SAGA Parser Generator

A copy of Olorin was released to NASA in August. George Beshers traveled to

NASA and installed the system on the ICASE VAX. Work has commenced on the new

release of Olorin that will include an attribute grammar scheme for encoding semantic

actions.

5. Personal Workstation Environment

We have continued to work on providing a suitable environment for SAGA on a

personal workstation. The UNIX port to the Cadlinc workstation is undergoing revi-

sion as we gain experience with the multi-windowed display and mouse input device.

Several small demonstration programs have been written to use these facilities. A brief

description of the capabilities of the current system is in Appendix E.

Work is also continuing to provide ethernet support compatible with the current

VAX local network with the eventual goal of using the Newcastle Connection to pro-

vide shared file/database access to the workstations. Moving SAGA to the workstation

still depends on our finding a suitable Pascal compiler that can run on the Motorola

MC68000 processor; our current expectation is to use the Path Pascal compiler for the

MC68000, which is currently being debugged as part of the NASA Project NSG 1471.

6. Release 1 of the SAGA Symbol Table Manager

The first implementation of the prototype SAGA symbol table manager has been

completed. During the Spring, the previously released functional specification was

reviewed and changed to include new functions needed to begin implementing attri-

bute evaluation during incremental re-parsing. The implementation of this

specification has been completed, and some limited testing has been performed with

the symbol table manager in isolation from the SAGA editor.

The additional functionality affected some basic concepts of the symbol table. It

is now possible to insert both symbol definitions and references into a context. A

definition is what is normally understood to be a symbol table entry. A reference

SAGA Project 1083 Mid-year Report 7

entry in a context indicates that a given symbol within that context may actually be

defined in a different context. This distinction is needed to locate all the references to

a particular symbol definition so that an attribute dependence graph can be con-

structed. (The reference mechanism is not a program cross reference; however, this

could be easily added using a reference list attribute to the reference.) Note that a

symbol can be both a reference and a definition simultaneously, in which case the

reference refers to itself. The reference lists are maintained correctly, even during

deletion from or insertion into contexts between the reference and definition.

A context "grafting" capability was also added to the basic symbol manager

design. A grafted context is a special context that functions as follows: A graft is a

context that, instead of containing symbol definitions and references, points to an

existing context. If, during a search for a symbol, the graft is encountered, the symbol

manager will look in the second context for that symbol. If the search fails in that

context, the graft's parent context is searched next, not the parent of the context

pointed to by the graft. This allows unnamed scope blocks to be created, such as dur-

ing the processing of a Pascal "with" statement. .

Current work on the symbol manager is directed toward integrating it with the

SAGA editor. Internal routines that were implemented with simple algorithms (such

as linear searching) are being replaced with more efficient ones. The symbol manager

is being altered to use the paged memory system of the editor instead of keeping the

entire symbol table in memory. More efficient mechanisms for defining attributes and

referring to them are being investigated while minimizing the restrictions on dynamic

attribute creation and deletion. A complete description for the symbol table manager

is currently being written as a Masters Thesis.

7. Delta Generation in SAGA

A software development environment should keep a record of every version of

the software as it is being developed and maintained. A new version of a program is

created whenever that program is modified. Software engineering may often require

SAGA Project 1983 Mid-year Report 8

the construction of many different versions of the same program: accommodating

hardware dependencies as the program is ported to different machines or allowing

several software engineers to develop independent parts of the program concurrently.

In particular, it must be possible to determine the differences between versions and

thereby the individual modifications that have been made to the program. These

changes provide management and maintenance information.

Modifications made to one version of a program can perhaps be applied to other

versions of the same program. For example, once a version of an operating system has

been ported to a new machine, it is very convenient if any subsequent modifications

that are made to the original program can be applied to a version of the program that

has been ported. One method of recording the differences between an earlier version

of a program and its subsequent versions is to store the differences between that earlier

version and the newer versions as updates or deltas. If the updates that are stored are

applied to the earlier version to obtain the later version, the delta scheme is called a

forward delta generation scheme whereas if the updates are applied to the later ver-

sions to obtain the earlier version, the delta scheme is called a backward delta genera-

tion scheme. In either case, the deltas are often generated by comparing the source of

the new version of the program with the source of the old version. It may not be very

easy to compute the exact deltas that distinguish the differences between versions.

Delta generation in SAGA is accomplished accurately. Two programs, one to

find differences between versions of a program edited with the SAGA editor, and the

other to reconstruct a parse tree from one tree and a set of differences, were written in

the last year. The difference program finds contiguous sections of changed lexical

tokens in the parse tree of an edited program. The insert and delete commands neces-

sary to produce one lexical token list from the other are saved in a command file. This

file may then be used to rebuild the lexical token list of the version. The editor can

reconstruct the entire parse tree from this list.

SAGA Project 1983 Mid-year Report 0

The SAGA editor records the changes made to a program by setting the "modify

bit" of terminal (leaf) nodes in the parse tree of the program as they are being edited.

The difference program uses these modify bits as an indicator of which lexical tokens

have been altered. The modified bit of a leaf node is set if the node was inserted or

one of its neighboring nodes was inserted or deleted. Thus, if a sequence of leaf nodes

representing lexical tokens has none of its modify bits set, then that sequence of leaf

nodes and the lexical tokens it represents are identical in the old and new version.

The difference finder searches the parse tree for such sequences. A delta consists

of the sequence of lexical tokens represented by leaf nodes between such unchanged

sequences, between the beginning of the program and the first unchanged sequence and

between the last unchanged sequence and the end of the program. The delta contains

the nodes that must be inserted or deleted to get from one version to the other. The

beginning and end of every delta is checked to determine if it can be reduced in size,

with as many nodes matched as possible. This algorithm also removes any nodes

whose modified bits were only set because a neighbor changed. For example, a change

may have been to replace a string of tokens with an identical string of tokens. Here,

the check will eliminate the change.

Since the difference finder depends on the modify bits, these must be reset before

editing of a new version commences. A copy program resets the modify bits in the

parse tree. The copy program is executed to produce a new version of the program.

Accurate delta information can be obtained by making new versions after every editing

session. Using this scheme, it is also feasible to produce delta information during an

editing session. Alternatively, if the modify bits are preserved between editing ses-

sions, the change information accumulates. Less accurate, but more condensed delta

information, can be obtained by making a new version after multiple editing sessions.

We await experimental evaluation of these schemes before recommending any particu-

lar version control and delta generation strategy.

SAGA Project 1983 Mid-year Report 10

The current scheme is implemented as a backward delta generation scheme.

That is, a current working copy of the parse tree is kept and deltas that represent

changes to restore that version to the earlier version are stored. The advantage of

storing backward deltas is that the current version can always be accessed quickly and

economically. However, we envisage the scheme being extended to include both back-

ward and forward delta generation schemes. The difference program is described

further in Appendix F.

7.1. The UNDO Operation

The purpose of the undo operation is to permit the selective removal of particu-

lar modifications that have been made to a program. It is intended to make the undo

operation available in the editor in conjunction with a module that can display the

differences between the current version of a program and other previous versions of

the same program. The user will be able to select a particular difference and remove

that difference from the current program.

7.2. Archiving Differences

The deltas created by the differencing software will be stored in a source control

system. We have begun the design of software that will allow us to store these deltas

under the control of RCS, a source control system.

8. Requirements for a Proof Management System

In a software development environment, it is often desirable, if not necessary, to

do formal proofs. These proofs are almost always difficult. This difficulty manifests

itself in two ways. The proofs cannot be given to a theorem prover unless the user is

willing and able to carefully guide the theorem prover along what he hopes is the right

path. The user cannot do the proof by hand since this method is too error prone and

is not easily verifiable.

In an attempt to make proofs easier and verifiable, work has begun on a proof

management system. This system will be composed of three parts:

SAGA Project 1983 Mid-year Report 11

• A Tree Editor,
• A Proof Checker, and
• A Theorem Prover.

Using these tools together "a programmer will be able to:

• More easily construct a proof,
• Verify the validity of his inferences,
• Use the theorem prover to prove those propositions that it can, and
• Check his work incrementally as the proof is being written.

Appendix G contains further details.

9. Documentation for and Testing of the Cyber Pascal Make Prototype

The Cyber Pascal Make prototype has been tested and demonstrated to work.

This prototype works in conjunction with the SAGA syntax-directed editor. While the

user is editing the source, the editor is verifying syntactic correctness and Make is col-

lecting information. On exiting the editor, the user invokes Make, which takes the

information produced by the editor and writes a program from the source stored in

the editor files. This program is the minimal one required to produce an object that

reflects changes to the source. This program is compiled by available separate compi-

lation facilities to produce an object code module. This object code module is then

integrated with the object code created from the old version of the program to produce

a new object code for the modified program.

Complete documentation for this facility is currently being produced as part of a

Masters Thesis. This documentation will include details of interaction with the SAGA

editor, editor-independent parts, and a user's guide.

10. Prototype, Cyber based, Slicing Utility

During the Spring semester, an experimental Pascal slicing utility was con-

structed from the SAGA tool base. The utility summarizes the updates that a portion

of a large program makes to specified variables. The summary consists of a program

(slice) which assigns the same values to the selected variables as the large program

except that the slice only includes computations that are required for the derivation of

SAGA Project 1983 Mid-year Report 12

the values of those variables. The slicing utility, although rudimentary, suggests

future SAGA tools. Appendix H contains further details.

11. June 1984 Demonstration Plan

The June demonstration will be based on a SAGA Pascal editor. The user inter-

face will be based on a full-screen display and have primitive windowing capability.

The windowing features will also be used to support help facilities. The editor will

include an extensible command language with pattern matching capabilities similar to

UNIX editors.

The editor commands will allow textual insertion, replacement, copying and dele-

tion of individual characters and provide immediate visual feedback. (For example,

the user can position the cursor anywhere on the screen and insert or replace charac-

ters at that point.) In addition, the editor will allow the insertion, replacement, copy-

ing and deletion of the lexical components of the program. This facility will be sup-

ported in a language and grammar independent manner by the use of regions that are

under user control and can be modified to encapsulate program fragments. These

regions \vill be used as arguments in the various editing commands. The contents of a

region may be stored in a permanent file for repeated future use in editor commands.

Structured editing will be demonstrated using the editor. That is, the top-down

refinement of a program by replacing place holders in standard statements commenc-

ing with the program declaration. The editor will also support some commands that

use the semantics of the edited text. These will allow the detection of variables that

are declared but not used or used and not declared and will also allow the user to find

the point of declaration of variables and procedures.

The editor demonstration will show incremental re-parsing of the input text,

error reporting of syntax and semantic errors, semantic-oriented program text format-

ting, and the ability to display, save, and input invalid programs as well as syntacti-

cally correct programs. An undo facility will be demonstrated that allows the user to

SAGA Project 1983 Mid-year Report 13

select a difference between an old version of a program and the current version of the

program and restore that text of the older version in the current version. The editor

will be demonstrated editing a large program (such as the symbol table manager,

which consists of approximately 1200 lines of Pascal code).

If possible, by that time, we will also demonstrate the make facility (this requires

porting the current version to UNIX and devising a scheme to allow appropriate

separate compilation using the Berkeley Pascal compiler). Various display commands

may be implemented in the demonstration editor including the ability to provide

several windows containing program parts, differencing windows which allow a pro-

gram version to be compared with a previous program version, and windows to supply

user information such as help facilities or documentation.

We will also start integration of the symbol table manager into the SAGA editor.

Addition of the symbol table to the editor will allow many of the static semantic errors

(like mismatched types) to be detected during program preparation. In addition, the

symbol table will permit cross referencing capability within the editor. Thus, the edi-

tor should be able to locate the declaration and subsequent uses of a variable. More

details can be found in Appendix I.

12. SAGA Utilities

Three programs written for the Cyber were converted to run on the VAX under

Berkeley UNIX. These three programs check a parse tree, compact a parse tree and its

string table, and compare two parse trees to determine if they are the same.

12.1. The Consistency Checker

The consistency checker takes a subtree of the parse tree and examines the fields

in the nodes. It tries to determine if the fields are consistent. The checking depends

on information in the nodes including pointer information and will detect abnormal

cycles in the parse tree. The consistency checker can be used as a separate program to

check the entire parse tree between edit sessions. It has proved a valuable tool in

SAGA Project 1983 Mid-year Report 14

developing the editor and some of the other utilities such as the compactor.

12.2. The Compactor

The compactor takes the parse tree and string table for a program which has

been edited and produces another tree and string table with any unused storage space

removed. Unused storage space can be created as nodes are deleted by editing com-

mands. No attempt is made within the editor to collect garbage produced by such

editing operations as this is difficult to determine, and would slow the operation of the

editor. Using this utility, space can be reclaimed without having to write out the pro-

gram in source code and reparse it.

12.3. The Equality Tester

The equality tester was written mainly to see that the compactor works correctly.

Nodes may be renumbered, but the tree structure must be the same for the two trees

to be equal. The equality checker can also be used to see if the programs that find the

difference between versions and rebuild parse trees from the differences are working

correctly.

Besides being converted to Berkeley UNIX Pascal, the equality checker was

changed so that it can handle large programs. The Cyber version keeps the map

between numberings of the nodes in an array in memory. The UNIX version keeps the

array in a file. Parts of the array are paged into memory by the same routines that

page parse tree nodes.

13. Summary of UNIX Software Engineering Support

A brief summary on the use of UNIX to support Software Engineering is included

in Appendix J.

SAGA Project 1983 Mid-year Report 15

14. Theorem Prover Review

During the last six months we have examined several forms of theorem provers as

part of a study of the requirements for a proof management system within SAGA. The

theorem provers studied are two interactive theorem provers: the UT interactive

theorem prover and LCF, and two batch theorem provers: Robust and VERUS.

Details of the study are included in Appendix K.

15. Conclusion

The early SAGA prototypes and designs have been considerably refined and

enhanced in the current research period. A basis for a first usable version of the

SAGA editor and other associated tools is now well advanced and we should have the

basic components of system available for demonstration early in June. A diagram of

the basic components is shown in Fig. 1.

We have developed several other prototype tools which will eventually be

integrated into the SAGA system. Workstation support software for the SAGA sys-

tem is being developed and several facilities are now available. Requirements for the

proof management system are nearly complete and we hope to build a prototype

shortly.

SAGA Project 1983 Mid-year Report 16

Language
source text

EDITOR
GE
R

VERSION
CONTROL

J

I
I i

\

I

i

Parse tree
and

symbol table

Object code
library

Version
history

INCREMENTAL
RECOMPILER

1 I

DIFFERENCE
ANALYZER

Executable
program

Summary
of

changes

Figure 1: SAGA System Tool Interaction

The parse tree and symbol table, object code, and version history comprise the "SAGA infor-
mation base". This figure shows the interaction of the various tools with the data. The ar-
rows show the direction of data movement.

SAGA Mid-Year Report

Appendix A

The Language-Oriented Editor

Peter A. Kirslis

Department of Computer Science

University of Illinois

Urban a-Champaign

Illinois, 61801-2987

October, 1983

Appendix A: SAGA 1983 Mid-Year Report 1

1. A Language-Oriented Editor

1.1. Review of Editor Capabilities

In SAGA, the language-oriented editor is used by the programmer for program

development. The editor incorporates an LALR(l) parser augmented for the interac-

tive environment with incremental parsing techniques [Ghezzi and Mandrioli, 80]. The

user's program is stored internally as a parse tree and associated string table. The text

string representation of the program is generated by routines which traverse a

doubly-linked list of parse tree terminal nodes; no separate textual representation is

kept. The user inputs his program from the keyboard in free format; no templates are

used and no non-terminals appear on the screen. There is an editing cursor which

moves through the program, and is always located between two terminals. The basic

editing operations insert or delete a sequence of tokens beginning or ending at the cur-

sor, or modify a sequence of tokens by copying them into a modify buffer, allowing tex-

tual modifications on this string of characters, and then tokenizing and parsing the

result. All other editing operations are built up from some combination of these basic

ones. At any time during the editing process, the user can ask the editor to print the

set of legal tokens (the follow set) that can appear at this point in the parse; the user

can also set an option which will cause the editor to automatically print the follow set

whenever more input is needed from the terminal.

1.2. Incremental Reparsing

The incremental reparsing algorithm is reasonably efficient; each node in the

parse tree contains all the information needed to begin a reparse from that point.

There is no explicit parse stack; rather, there is a "left threading" of nodes in which

each node points to the one that would be immediately below it in the stack. Each

node also contains the state in which the parser was put after the node was shifted.

..With this available information, in order to begin a reparse at a given point, all that

need be done is to find the most recently shifted node, set the stacktop variable to this

Appendix A: SAGA 1983 Mid-Year Report 2

node, set the parser's state to the state found in the node, and the new parse is ready

to begin. If the grammar in use contains empty productions (production rules with

null right hand sides), and empty tokens are present in that part of the tree, then it

may be necessary to traverse a few nodes in the tree in order to locate the most

recently shifted token. When the new input is complete, a set of matching conditions

determines where the newly built subtree can be grafted back into the original parse

tree. The editor has been designed with an interface between the editor and parser

that allows it to be used with any parser-generator program which can produce parse

tables and access routines that can conform to the editor's LALR(l) style interface.

Advantages of using the editor are that the programmer gets immediate feedback

about his errors, and that the parse trees generated are usable with other SAGA tools.

Since the editor takes all input in textual form, it can be immediately used with pre-

existing software; no conversion is needed. The editor's command language is

presently an ad hoc implementation, but it does provide basic editor capabilities; we

are in the process of designing a full command language whose elements will be orthog-

onal and extensible.

1.3. Error Handling

When a lexical error is encountered, the input string is marked at the point of

the error, and the user is asked to modify the input line and try again. When a syntax

error is encountered, the offending token is highlighted (or.otherwise distinguished).

The user has the option of repairing the syntax error immediately, or of scanning back

through earlier portions of the program and possibly making a modification there

(needed, for example, if a "begin" keyword was mistakenly omitted and its matching

"end" just encountered).

At the moment we require the editing of any program with at least one syntax

error to be limited to that portion of the program up to the first error. However, it is

not clear that this is a necessary restriction. There are many cases in which a

modification can be made to the program beyond the point of a syntax error, since the

Appendix A: SAGA 1983 Mid-Year Report 3

incremental parsing techniques may keep the reparse sufficiently localized that the ear-

lier section of the tree containing the error is never accessed. However, during a

reparse, a reduction could be called for which refers to a syntactically incomplete sec-

tion of tree because of the earlier error. If this case can always be detected in time to

stop the parser, then the parse can be suspended at this point, and the editing limita-

tion can be dropped.

1.4. Editor Generation

The editor has been designed to be reasonably language independent. To create

an editor for a new language, a new grammar and associated semantic routines must

be specified, but most of the editor's source code can be used as is. Figure 1 illustrates

editor generation. We have built editors for the Pascal language and several abstract

languages generated from grammars created by staff members at the University (and

used only by them). An editor for the C language will soon be implemented, as will an

editor for ADA® The editor runs on a VAX®under Berkeley UNIX® and an earlier

version runs on a CDC Cyber 175.

Appendix A: SAGA 1Q83 Mid-Year Report 4

Formal language
specification

PARSER-GENERATOR

Parse
tables

Semantic
actions

LOADER

Language
editor

Editor
source code

COMPILER

Editor
object code

References

Figure 1: Editor Generation

[Ghezzi and Mandrioli, 80] Ghezzi, C. and D. Mandrioli, "Augmenting Parsers to Sup-
port Incrementality," Journal of the ACM, Vol. 27, No. 3, (July 1980).

SAGA Mid-Year Report

Appendix B

Olorin Update

George M. Beshers

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801-2987

October, 1983

Appendix B: SAGA 1983 Mid-Year Report 1

1. Olorin Update

Since August, Olorin has progressed on several fronts. The input language for

attribute grammars is almost complete and several of the implementation problems

appear to be solved. The error correcting facility has been completed, tables can be

produced and preliminary testing has been performed. Techniques to reduce the size

of the parse tables are being developed. The interface between the current version of

the Olorin system and the SAGA editor will be delivered with the new SAGA editor.

Much of the progress to develop an Olorin attribute grammars scheme in the

first part of this year was a result of efforts to write attribute grammars for Pascal and

for the Olorin input language. This resulted in a redesign of the grammar for attri-

bute grammars to make the input more concise. Other work has addressed solutions

to the selective update problem for large attributes. This work will be presented more

completely in the year end report.

The implementation of the error correction facility is nearing completion. The

mechanism being used was originally suggested by [Modry, 76]. Many of the improve-

ments of [Schell, 79] are included. We expect that any single-token error would be

corrected. Olorin now generates the additional tables needed, and they appear to be

correct. The table reduction program has been extended to handle the additional

information, and the error correcting parser is being coded.

The current Olorin tables waste space. This problem stems from the need to

preallocate space to meet the needs of the largest language (ADA or HAL/S). To solve

this problem, four additions have been made to the Berkeley Pascal Compiler. The

compiler now recognizes the type address, the standard function tsize, and the stan-

dard procedures allocate and deallocate. The type address is a pointer to a variable

of any type. The function tsize returns the size of a variable. The two new standard

procedures, allocate and deallocate, take an address and a size in bytes, otherwise

they act like new and dispose. These additions were suggested by Wirth's Modula II

and conform to the specifications of the equivalent (same name) components in that

Appendix B: SAGA 1083 Mid-Year Report 2

language. The advantage of these procedures is that now only the space actually used

need be allocated. In particular, the error correcting information can be omitted from

the editor, with considerable savings in space.

The error correcting version of Olorin should be finished by the year end report.

The attribute grammar version should be done for the June demonstration.

References

Modry, John A., "Syntactic Error Recovery for LR Parsers", Technical Report
UIUCDCS-R-76-833, University of Illinois, Department of Computer Science,
(October 1976).

Schell, Richard M., Jr., "Methods for Constructing Parallel Compilers for use in a Mul-
tiprocessor Environment". Technical Report UIUCDCS-R-79-958, University of
Illinois, Department of Computer Science, (October 1976).

SAGA Mid-Year Report

Appendix C

Using LEX and YACC with the SAGA Editor

David H. Hammerslag

Department of Computer Science

University of Illinois

Urban a-Champaign

Illinois, 61801-2987

_ October, 1983

Appendix C: SAGA 1983 Mid-Year Report 1

1. INTRODUCTION

This paper documents the changes that were made to the source code of YACC,

LEX, and the programs they generate, so that they can be used with the parser-

generator independent interface to the SAGA editor as defined by Peter Kirslis. There

are eight routines in the Editor/Parser Generator interface:

Routine

tokenize

initparse

legalterm

legalnonterm

termname

nontermname

ruleleftside

rulelength

parseaction

Synopsis

Tokenize the characters in the line buffer and return a list of
parse-tree nodes.

Do any work necessary before the parse begins for the first time.

Given a state number, return a list of tokens that can legally
occur.

Given a state number, return a linked list of nonterminals that
can legally occur.

Given a token code, produce a printable representation of that
token.

Given a nonterminal code, produce a printable representation of
that nonterminal.

Given a rule number, return the code for the nonterminal on the
left hand side of the rule.

Given a rule number, return the number of symbols of in the right
hand side of the rule.

Given a state number and the code number of a grammar symbol,
determine the appropriate parsing action to be taken.

Of these eight, all but tokenize are implemented by using pieces of the C code

generated by YACC. Tokenize, the routine for lexical analysis, uses the LEX gen-

erated program, yylex, in its entirety. Because the interface is written in PASCAL and

the code generated by LEX and YACC is in C, most of the routines in the interface are

very small, and simply call a C routine that is actually a portion of the generated C

code .

Appendix C: SAGA 1083 Mid-Year Report 2

2. LEX

2.1. Changes to LEX Source

The changes to LEX source were made to increase internal constants so that the

rather large lexical specification for ADA®could be processed. The only changes occur
in sub2.c, they are as follows:*

Original
— 589,595

int s; {
register int *p, i, j;
int cnt, m;

! int temp[300], k, neg[300], n;
k = 0;
n = 0;
p = state[s];

— 594,600 -—
n = 0;
p = statefs];
cnt = *p++;

! if(cnt > 300)
error("Too many positions for one state - acompute");

for(i=0;i<cnt;i++){
if(name[*p] == FINAL)temp[k++] = left[*p];

Modified
*** 589,595

int s; {
register int *p, i, j;
int cnt, m;

! int temp[600], k, neg[600], n;
k = 0;
n = 0;
p = state[s];

*** 594,600
n = 0;

^These comparisons were generated by the UNIX utility "diff." See the UNIX Programmers Manual
for an explanation of the notation in the margins.

Appendix C: SAGA 1983 Mid-Year Report

p = state[s];
cnt = *p++;

! if(cnt > 600)
error("Too many positions for one state - acompute");

for(i=0;i<cnt;i++){
if(name[*p] == FINAL)temp[k++] = left[*p];

2.2. Changes to lex.yy.c

After the file lex.yy.c was generated by LEX, a number of changes were made to

the C routines of lex.yy.c. The net effect of these changes is to enable yylex to deal

with a buffer of text at a time.

2.2.1. Sagaio.c

The file sagaio.c consists of two routines, sagagetc and yywrap, and needs to be

included, either textually, or by an include statement at the beginning of lex.yy.c.

Sagaio.c contains:

sagagetc(buffer,pos)
int *pos;
char *buffer;
{

char c;
ifdef DEBUGIO

printf("Calling sagagetc with pos = %ld ...",*pos);
endif

c=(buffer[(*Pos)-l]);
ifdef DEBUGIO

printf("returning %c\n",c);
endif

(*pos)++;
return(c);

yywrapQ
{
return(l);

Appendix C: SAGA 1983 Mid-Year Report 4

2.2.2. Parameterization

The rest of the changes to lex.yy.c provide yylex the parameters necessary for

buffered input. There are nine places where the code needs to be changed. As the line

number of each change will vary with each different lexical specification used, the

changes are shown here with some surrounding context and commentary.

include "y.tab.h"

define output(c) putc(c,yyout)
/*
* Give 'input' the necessary parameters */
V

define input(buffer,currpos) (((yytchar=yysptr>yysbuf?U(*--yysptr)\
:sagagetc(buffer,currpos))==10?(yylineno-f+,yytchar):yytchar)\
==EOF?0:yytchar)

define unput(c) {yytchar= (c);if(yytchar=='0)yylineno~;\
*yysptr-f-4-=yytchar;}

define yymoreQ (yymorfg=l)
extern struct yysvf yysvec[], *yybgin;
define YYNEWLINE 10
/*
* Here sagagetc and yywrap, which are the two parts of sagaio.c are
* compiled separately and declared as external functions.
V

extern sagagetcQ;
extern yywrapQ;
/*
* yylex is given three parameters
V

yylex(buffer,currpos,length)
char *buffer;
int *currpos;
int *length;
{
int nstr; extern int yyprevious;
/*
* change the call to yylook
V

while((nstr = yylook(buffer,c\mpos)) >= 0)
/*

Appendix C: SAGA 1983 Mid-Year Report

* A second statement is added to the body of the while loop
* to return the length of the token found to the caller.
*/

{ *length—yyleng;
yyfussy: s\vitch(nstr){
case 0:
if(yywrapQ) return(O); break;

case -1:
break;
default:
fprintf(yyout,"bad switch yylook %d",nstr);
}} return(O); }
/* end of yylex */
/*
* yylook also needs two parameters
V

yylook(buffer,currpos)
char *buffer;
int *currpos;

if(yyz == 0)break;
if(yyz->yystoff == yycrank)break;

/*
* modify the call to input
V

*yylastch++ = yych = input(buffer,currpos);
try again:

ifdef LEXDEBUG

if (yytext[0] == 0 /* && feof(yyin) */)
{
yysptr=yysbuf;
return(O);
}

/* '
* modify the call to input

Appendix C: SAGA 1083 Mid-Year Report 6

V
yyprevious = yytext[0] = input(buffer,currpos);
if (yyprevious>0)

output(yyprevious);

return(O);

/* the following are only used in the lex library */
/*
* Add two parameters to 'yyinput'

*/yyinput(buffer,currpos)
char *buffer;
int *currpos;

/*
* modify the call to input
V

return(input(buffer,currpos));

yyoutput(c)
int c; {

output(c);

yyunput(c)
int c; {

unput(c);

2.3. Tokenize

The following function, 'tokenize', satisfies the requirements of the Editor/Parser

Generator interface.

(*
* 'tokenize' takes a buffer of characters and converts it into a
* linked list of parse tree nodes, returning a pointer to the list
* to the calling routine. If a lexical error occurs, the variable
* 'errorpos' is set to the position in the buffer of the first
* character of the error token, and no list is returned.
*)

Appendix C: SAGA 1983 Mid-Year Report

function tokenize(*
var inputbuf: charbuf; /* buffer of chars to be tokenized */

lastc: cbufindex; /* last char, in buffer. */
var errorpos: integer /* return: 0 or position of bad char */

): nodeindex*); (* return: list of tokens or 0 *)

var
list,t : nodeindex;
startchar,currpos: integer;
tokencode : integer;
index,length : integer;

begin
tokenize:=0;
inputbuf[lastc+l]:= chr(10); (* put in a newline for lex *)
list:=0;
currpos := 1;
startchar := 1;
length := 0;
while ((startchar< lastc+1) and (tokencode <> TERROR)) do begin

while ((inputbuf[currpos]=' ') and (currpos<lastc+l)) do
currpos:= currpos+1;

while ((inputbuf[startchar]=' ') and (startchar <lastc +1)) do
startchar:=startchar+l;

if startchar < lastc +1 then begin
token code:=yylex(inputbuf,currpos,length);
if tokencode = TERROR then errorpos := startchar

else begin
index:=addstring(inputbuf,startchar,(startchar+length-l));
t:= makenode(index,length,tokencode);

chain(t,after,list);
if list = 0 then tokenize:=t;

list:=t;
end; (* else *)

startchar:=startchar+length;
end; (* then *)

end; (* while still more tokens in the buffer *)

inputbuf[lastc+l]:=' '; (* replace the blank for the editor *)

end; (* tokenize *)

Appendix C: SAGA 1983 Mid-Year Report 8

2.4. Future work

Limited testing indicates that these modifications provide a suitable lexical

analyzer for use with the Parser-Generator independent interface for the SAGA editor.

The only work that needs to be done is to further modify the LEX source so that the

necessary modifications to lex.yy.c are made automatically.

3. YACC

3.1. Changes to YACC Source

The changes to the YACC source occur in two files, dextern and yl.c.

3.1.1. dextern

The changes to dextern serve two purposes. The first change is to increase the

number of allowable LALR(l) states for ADA, and the second is to define two files to

be used for the generation of PASCAL code fragments for inclusion in the

Editor/Parser Generator interface routines.

Original

— 17,23 -—
ifdef HUGE
define ACTSIZE 12000
define MEMSIZE 12000

! # define NSTATES 750
define NTERMS 127
define NPROD 600
define NNONTERM 300

— 120,125
/* I/O descriptors */

Appendix C: SAGA 1983 Mid-Year Report g

extern FILE * finput;
extern FILE * faction;
extern FILE *fdefine;
extern FILE * ftable;

/* input file */
/* file for saving actions */

/* file for # defines */
/* y.tab.c file */

Modified

*** 17,23
ifdef HUGE
define ACTSIZE 12000
define MEMSIZE 12000

! # define NSTATES 950 /* changed up from 750 for ada */
define NTERMS 127
define NPROD 600
define NNONTERM 300

*** 120,127
/* I/O descriptors */

extern FILE * finput;
- extern FILE * yynonterm;
- extern FILE * yyterm;

extern FILE * faction;
extern FILE *fdefine;
extern FILE * ftable;

/* input file */
/* file for nonterminals */

/* file for terminals */
/* file for saving actions */

/* file for # defines */
/* y.tab.c file */

3.1.2. yl.c

The change to yl.c is the addition of a call to a new procedure, writecase. This

call occurs in the main line of YACC .

Original

Appendix C: SAGA 1983 Mid-Year Report 10

— 50,55
cpres(); /* make table of which productions yield a given nonterminal */
cemptyQ; /* make a table of which nonterminals can match the empty string */
cpfir(); /* make a table of firsts of nonterminals */
stagen(); /* generate the states */
outputQ; /* write the states and the tables */
go2out();

Modified

*** 50,56
cpres(); /* make table of which productions yield a given nonterminal */
cemptyQ; /* make a table of which nonterminals can match the empty string */
cpfirQ; /* make a table of firsts of nonterminals */
writecaseQ;
stagenQ; /* generate the states */
output(); /* write the states and the tables */
go2out();

3.1.3. wc.c

Wc.c is a new module added to the YACC source files. It consists of one function,

writecase, which writes out the PASCAL procedure bodies for the interface procedures

termname and nontermname.

include "dextern"
writecase()
{
FILE *yynonterm;
FILE *yyterm;
int j,i,length;

yynonterm = fopen("yynterm",ttw'');
fprintf(yynonterm,abegin\n\t if ((tokencode<l) or\

(tokencode> %d))\n",nnonter);
fprintf(yynonterm, "\t\tthen writeln('bad token code = ',\

tokencode:l);\n");
fprintf(yynonterm,"\t\telse case tokencode of\nn);

NTLOOP(i){
if(i == 0) continue;

Appendix C: SAGA 1983 Mid- Year Report 11

if (nontrst[i].name[0] != ' ')
{fprintf(yynonterm, "\t\t\t %d : begin\n",i);
length=strlen(nontrst[i].name);
for (j=0;j<Iength;j++)

fprintf(yynonterm, "\t\t\t\t name[%d] := '%c';\
\n",j+l,nontrst[i].name[j]);

fprintf(yynonterm, "\t\t\t\t length := %d ;\n", length);
fprintf(yynonterm, "\t\t\t end;\n");

else fprintf(yynonterm, "\t\t\t %d : writeln('%d is\
not a nonterminal, it is probably an action');\n",i,i);

fprintf(yynonterm,"end; (* procedure *)\n");
fclose(yynonterm);

yyterm = fopen("yyterm","w");
fprintf(yyterm,"begin\n\t if ((tokencode<256 or (tokencode> %d))\

\n",ntokens+256);
fprintf(yyterm, "\t\tthen writeln('bad token code = ',tokencode:l);\n");
fprintf (yyterm, "\t\telse case tokencode of\nn);

TLOOP(i){
if(i ===== 0) continue;
fprintf(yyterm, "\t\t\t %d : begin\n",i+256);
length=strlen(tokset[i].name);
for(j=0;j<length;j++)
fprintf(yyterm, "\t\t\t\t name[%d] := '%c';\n",j+l,tokset[i].name[j]);
fprintf (yyterm, "\t\t\t\t length := %d ;\n", length);
fprintf (yyterm, "\t\t\t end;\n");

fprintf (yyterm, "end; (* procedure *)\n");
fclose(yyterm);

}

3.2. Changes to y.tab.c

The changes to the YACC generated file, y.tab.c, are much more drastic than the

changes made to lex.yy.c. Y.tab.c was broken down into many small code fragments

which were then turned into C functions to be called from the interface. There are

four such files:

Appendix C: SAGA 1983 Mid-Year Report 12

file •• ' synopsis

yyaction.c query the action table

yygoto.c query the goto table

yyleft.c return the left hand side of a rule

yyrlen.c return the length of a rule

Also, in order to minimize the size of these files, the YACC produced tables are written

out into individual files. There are eight files of tables: yyact, yychk, yydef, yyexca,

yypact, yypgo, yyrl, and yyrS. These file names correspond to the names of the tables

they contain.

3.2.1. yyaction.c
/* Modified to work with saga parsefns.

Input params:
state *int the current state.
token *int the current token.

on action reduce ...returns 4 state = rule number,
on action shift ...returns 2 state = new state,
on action accept ...returns 0.
on action error ...returns 3.
V
extern int yychar;
define YYLAST 1893
define YYFLAG -1000
define YYACCEPT return(O)
define YYABORT return(l)

/* parser for YACC output */

#ifdef YYDEBUG
int yydebug = 1; /* 1 for debugging */
#endif
int yychar = -1; /* current input token number */

yyaction(state,token)
int *state;.
int *token;

Appendix C: SAGA 1983 Mid- Year Report 13

include "yyexca"
include "yyact"
include "yypact"
include "yychk"
include "yydef"

register short yystate, yyn;
register short *yyxi;

yystate = *state;
yychar = -1;

/* yynewstate (yystack all gone!) */
yyn = yypact [yystate];

if(yyn<= YYFLAG) goto yydefault; /* simple state */

if(yychar<0) if((yychar=(*token))<0) yychar=0;
if((yyn += yychar)<0 | yyn >= YYLAST) goto yydefault;

if(yychk[yyn=yyact[yyn]] == yychar){ /* valid shift */
yychar = -1;
yystate = yyn;
*state = yystate;
return(2);

yydefault:
/* default state action */

if((yyn=yydef[yystate]) == -2) {
if(yychar<0) if((yychar=(*token))<0) yychar = 0;
/* look through exception table */

for(yyxi=yyexca; (*yyxi!= (-1)) | (yyxi[l]!=yystate) ;\
yyxi += 2) ; /* VOID */

while(*(yyxi+=2)
>=0){

if(*yyxi == yychar) break;
}

if((yyn = yyxifl]) < 0) return(O); /* accept */

Appendix C: SAGA 1983 Mid- Year Report 14

if(yyn == 0) return(3);

/* reduction by production yyn */

#ifdef YYDEBUG
if(yydebug) printf("reduce %dO,yyn);

#endif
*state = yyn;
return(4);

3.2.2. yygoto

/* part of parse action
given a rule number that a reduction was made by, and
a state this returns the state to GOTO

V
define YYLAST 1893
yygoto(state,token)
int *state;
int *token;
{
include "yyact"
include "yypgo"
include "yyrl"
include "yychk"
int yyn;
int yyj;
/* consult goto table to find next state */
yyj = yypgo[*token] + (*state) + 1;
if(yyj>=YYLAST |yychk[(*state) = yyact[yyj]] != -(*token))\

(*state) = yyact[yypgo[*token]];

return(*state);

3.2.3. yyrlen.c
yyrlen(rule)
int *rule;
{
include

Appendix C: SAGA 1G83 Mid-Year Report 15

return(yyr2[*rule]);

3.2.4. yyleft.c
yyleft(rule)
int *rule;
{
include "yyrl"
return(yyrl[*rule]);

3.3. Parsefns.p

The bodies of the functions termname and nontermname will be in the files

yyterm and yynonterm which are automatically generated by the modified YACC. The

user needs to textually insert those files into parsefns.p. The remainder of the func-

tions included in parsefns.p are presented below. Note that at this time certain of the

functions (legalterm and legalnonterm) have not been written.

function initparser(*: boolean*);
begin
initialstate:=0;
finalstate:= 1;
maxrules := 414;
maxstates := 809;
maxtokens := 352;
initparser:=true;

end;

procedure termname(*
tokencode: tokenrange; /* a terminal token code */

var name: charbuf; /* return: a printable name */
var length: charbufindex /* return: name[l .. length] */

*);
(* insert yyterm here *)

Appendix C: SAGA 1983 Mid-Year Report 16

procedure nontermname(*
tokencode: tokenrange; /* a terminal token code */

var name: charbuf; /* return: a printable name */
var length: charbufindex /* return: name[l .. length] */

*);
(* insert yynterm here *)

function ruleleftside(*
rulenumber: rulerange /* a production rule number */

): tokehrange*);
begin

ruleleftside:=yyleft(rulenumber);(* return: the token on the left side *)
end;

function rulelength(*
rulenumber: rulerange; /* a production rule number */

): integer*); (* return: the number of tokens on
the right hand side of the rule *)

begin (* rulelength *)
rulelength:=yyrlen(rulenumber);

end (* rulelength *);

procedure parseaction(*
symbol: tokenrange; /* next terminal or nonterminal token */
estate: staterange; /* current parse state */

var action: actionkind; /* the action to be taken */
var result: short*); (* return: the new parse action *)

var temp: integer;
begin

if ((symbol >= 0) and (symbol < 184))
then begin

action := SHIFT;
result:= yygoto(cstate,symbol);

end

else if ((symbol >= 257) and (symbol <= 352))
then begin

temp := yyaction(cstate,symbol);
case temp of

0: begin

Appendix C: SAGA 1983 Mid-Year Report 17

result:=0;
action:=ACCEPT;

end;
1: begin

result:=-l;
action:=ERROR;

end;
2: begin

result:=cstate;
action:=SfflFT;

end;
3: begin

result:=-l;
action:=ERROR;

end;
4: begin

result:=cstate;
action:=REDUCE;

end;
end; (* case *)

end (*then *)

else begin
action := BADSYMBOL;

result:= -1;
end;

end; (* parse action *)

3.4. Future Work

There are several things that need to be done to complete this work. The miss-

ing procedures, legalterm and legalnonterm, need to be written, a preprocessor needs

to be written for YACC input, and much of the work needs to be automated.

3.4.1. legalterm and nonlegalterm

Earlier problems with these two procedures have been overcome, and the pro-

cedures are currently being implemented. They will not generate true follow sets, but

rather a subset consisting of those symbols on which a valid shift or reduction is

Appendix C: SAGA 1033 Mid-Year Report 18

known, that is the follow set minus those elements that are legal but are acted on only

by default reductions. (The editor then builds the true follow set by combining this

information with its parse stack context.)

3.4.2. YACC Preprocessor

Part of the interface calls for retrieving printable forms of terminals and nonter-

minals of the grammar. As noted above, changes have been made to YACC so that it

will make printable forms of the grammar symbols. Because of the inner workings of

LEX and YACC it is not possible to retain a nice form for the terminal symbols.

Therefore a preprocessor needs to be written for YACC. This filter will take YACC

definition lines of the form,

%token TPLUS(+) TSTAR(*) BEGIN

and strip off the parenthesised strings, while remembering that TPLUS is to be printed

as "+" and TSTAR as "*." The input can then be submitted to YACC in the usual

manner. Filtering the input will put one extra condition (aside from those imposed by

YACC) on the user. For the filter to be effective, each terminal symbol must appear in

a "%token" definition.

3.4.3. Automation

As was the case with changes to the code generated by LEX, most of the changes

to the code generated by YACC were made by hand. Clearly most, if not all, of the

required modifications could be and should be generated automatically. This includes

the C routines and the separation of the tables into separate files. Further, many of

the constants in the programs were hard-coded. Instead, they should be generated by

YACC.

Appendix C: SAGA 1983 Mid-Year Report 19

4. SUMMARY

Most of the routines called for by the Editor/Parser Generator interface have

been written and given some non-rigorous testing. Some early problems with the

interface have been cleared up, and the remaining work is in progress. This work

includes: writing the interface routines legalterm and legalnonterm, writing the YACC

preprocessor, and automating the generation process so that the step from YACC and

LEX input to a working editor needs as little user intervention as possible.

SAGA Mid-year Report

Appendix D

Language-Oriented Editor Requirements

Peter A. Kirslis

George M. Beshers

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801-2987

October, 1983

Appendix D: SAGA 1983 Mid-year Report 1

Language-Oriented Editor Requirements

An editor should provide a comfortable environment in which to edit a language.

It should allow easy specification of each section to be edited, and provide a syntax

that is uniform for all commands. A language-oriented editor must check the syntax

of the language as it is being edited, and also perform limited semantic checking. The

languages that can be edited should not be limited only to programming languages, but

any language that can be specified with an LALR(l) grammar; thus, the editor is more

widely applicable, and allows users to edit a number of languages while only learning

one set of basic commands.

1. User Interface

The user interface determines how the user converses with the editor. It should

be clear and consistent. There should be a small set of basic commands that provide •

enough power so that a new user can start editing quickly. Additionally, there should

be advanced commands that can be learned later to perform more complex editing

operations. On-line help should be available to provide immediate answers to any

difficulties the user may encounter.

An extensible command set should be considered, in which the user can define

new commands as sequences of already existing commands. A command macro facility

with parameter passing is fairly easy to implement, and provides a degree of customi-

zation to the user. Another advantage is that more complex commands can be built on

an experimental basis to test their usefulness.

Since the editor is maintaining a parse tree during the editing session, basic tree

manipulation commands can and should be provided; likewise, these can be included in

user-defined command macros to allow easy creation and testing of experimental

structure-oriented commands.

The editor should not replace commands found in text editors, but should aug-

ment those commands with structure-oriented ones.

Appendix D: SAGA 1083 Mid-year Report 2

The command set should be orthogonal and extensible, and its syntax should be

uniform. Orthogonality means that all commands complement one another, and that

arguments can be specified in the same way regardless of the command. Extensibility

permits commands to be defined for each language, improving the editor's usefulness

with other languages. Language-independent commands must be the same among

languages, and language-dependent commands must conform in syntax to the

language-independent ones. All the above must be supported by adequate help facili-

ties.

A higher-level user interface allows additional editor commands to be added

which specify operations more abstractly and at a level closer to the problem; e.g. com-

mands allowing reference to structural blocks in the language being edited in addition

to characters and lines.

2. Screen Editing

A screen editor provides a much more suitable user interface for development

than a line editor does. Changes made to the text are immediately displayed on the

screen. The editor reduces the user's need to keep a paper copy handy, since he no

longer has to mark it up to keep track of the changes just made.

A multiple window display should be considered, since being able to display two

separate sections of a program at once (e.g., declarations and statements) often

improves editing speed and reduces errors, since the additional information displayed

on the screen need not be remembered. These windows should be creatable, modify-

able, and removable independently of one another. If the windows may be overlapped,

then several contexts can be kept handy while only looking at one or two at a time. If

possible, full use should be made of all the lines on the screen even when in multiple

window mode. Some workstations also provide a mouse for graphical input; if one is

available, an editor should try to make use of it to move the cursor about a window in

which an editing command can act. An example of mouse use is marking a beginning

and ending line on the screen and then pressing a delete function key to remove those

Appendix D: SAGA 1983 Mid-year Report 3

lines from the file (and the display).

A screen editor can also display language errors more effectively than a non-

screen editor; the display can separately mark lexical, syntactic, and semantic errors,

and separate windows can be used to display more lengthy error messages.

3. Language Independence

The editor should' be as language independent as possible, with an automated

editor generation facility in which the input data file contains all the language depen-

dent information. This way, the bulk of the editor code need not be altered when

switching to a new language.

4. Parser

The parser and parser generating tools should be correct (recognize the specified

language, and no extraneous sentences.) Syntactic and semantic checking with

immediate error notification must be provided. A data structure should exist that con-

tains all state information about a parse that is underway. This structure permits par-

tial parses per call, and also allows the parsing of different parse trees. Nodes should

be re-used in the new tree whenever they are unchanged, to minimize copying and re-

linking.

A parsing method must be chosen: a recursive descent LL(1) parser or a table-

driven LALR(l) parser. The former method can be implemented by menus of tem-

plates, from which the user chooses the constructs to be added; this method prevents

syntax errors, but at the expense of flexibility. The latter method allows free-form

input of data from the terminal, and is much more flexible, but at the expense of more

complex code needed to handle syntax errors. The SAGA editor uses LALR(l) parsing.

Multi-line comments of unlimited length should be allowed., (They can be imple-

mented as a sequence of bounded one line strings.) There should also be a way to

search for sections of comments and modify them easily.

Appendix D: SAGA 1983 Mid-year Report 4

5. Semantics

The semantic evaluation mechanism must be sufficiently flexible to support arbi-

trary structures on each tree node. The semantic implementation should permit the

user to code simple attributes directly, and guarantee their maintenance within the

parse tree. It should also permit the user to code large structured attributes which are

selectively updated as the tree is modified.

6. Performance

We envision the SAGA editor user using a workstation with a great deal of dedi-

cated processing power. The hardware must have 32 bit addressing, a megabyte of

main memory, and large amounts of disk space. The processor itself must be as fast as

an M68000 or VAX 750.

The screen management routines should perform selective update, only rewriting

those portions which have actually changed since the display was first put on the ter-

minal screen.

Incremental re-parsing techniques should be used so that a minimum of.work

needs to be done to the parse tree when a change is made. The parser should operate

in O(nodes added + nodes deleted) time. It should not be necessary to re-parse the

program from the beginning up to the change, or to re-parse every token all the way

to the end. Searching the symbol table should take O((nesting level) * log(number of

symbols)) time.

The semantic evaluator should not do unnecessary re-evaluation. In particular,

small changes should not cause widespread propagation if such propagation is not

inherent in the language definition. An important example is the adding or deleting of

a statement in a procedure; this should not cause the re-evaluation of most of the

attributes in the remainder of the procedure.

The responsiveness of the SAGA editor should be fast enough to make SAGA a

viable alternative to conventional software tools. Users should not give up and return

Appendix D: SAGA 1983 Mid-year Report 5

to simple textual software tools because the editor keeps them waiting too long.

7. Modularity

The implementation of the editor should be as modular as possible so that indivi-

dual components can be more easily debugged, and so that modules can be re-used as

parts of other programs.

The program/data interface should be uniform so that the data produced by the
4

editor can be used by the remaining SAGA tools. The data side of the interface con-

tains the parse tree, string/symbol table, object library of compiled routines from the

parse tree, source history, and any other data structures needed to be kept between

program sessions. A uniform way of accessing data of different types (structure) is

desirable, although we may need a set of routines for each type of data.

8. Conclusion

The requirements discussed in this appendix provide guidelines along which to

develop a language-oriented editor. Attention to them should hopefully aid the design

of such editors.

SAGA Mid-Year Report

Appendix E

The CABLING Workstation Window System

Paul Richards

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801

October, 1983

Appendix E: SAGA 1983 Mid-Year Report 1

THE CADLINC WORKSTATION WINDOW SYSTEM

Personal workstations provide fast, economic computer support for many activi-

ties including software production. A key concern in providing support for such activi-

ties is an effective user interface. This user interface may be computationally expen-

sive; however, the availability of cheap processing power makes it practical to use such

an approach in a workstation. This document describes components of a user interface

for the SAGA software development project. The components include a window

manager, pointing device for use in menu selection, and Ethernet support.

1. Workstation Description

The CADLINC is a MC68000-based workstation with 750kb of memory, an 80Mb

hard disk, a 1024X800 bit-mapped raster display, a keyboard with attached mouse and

a 10 MHz Ethernet controller. Two serial ports provide serial communication with the

departmental VAXes for UUCP. The hardware provides adequate processing power to

use the workstation as a stand-alone programming development system.
®

Version 7 UNIX has been ported to the CADLINC, with some additional exten-
®

sions taken from the Berkeley VAX implementation of UNDC. These extensions

include a file system that performs operations in the "correct" order so that a crash in

the middle of a file operation will not irrevokably damage the file system, and an

improved terminal device driver that makes it easier to manage multiple processes

from a single terminal. Some low level system support for the 10 MHz Ethernet has

been developed, with current work attempting to provide the protocol support needed

to communicate with the departmental VAX network.

In addition to these extensions, a windowing display system has been written to

support the use of the raster display as the console terminal. This windowing software

will now be described in further detail.

Appendix E: SAGA 1983 Mid-Year Report 2

2. The Multi-Window Display System

The windowing system is an adaptation of software developed at MIT for another

workstation project called "NUnix". The MIT software supplemented the standard

Version 7 terminal device driver with a window device driver that provided "virtual"

terminal support on a bit-mapped screen. Additional support was provided for an

optional keyboard that could be associated with any of the virtual displays. The code

was organized in such a way that it was relatively easy to implement the core routines

that needed to drive the CADLINC hardware, and interface it with our implementa-

tion of UNIX.

To a user process, these "windows" look exactly like standard terminal devices,

including most of the standard UNIX device control (ioctl) functions. The initial state

of the system after startup uses the entire display as the system console. As such, t*he

window system is indistinguishable from a standard terminal connected with the pro-

cessor. The driver for the window system can emulate the Heathkit/Zenith H-19 ter-

minal and control codes, so that programs such as the t>t text editor that use cursor

motion can still be used with the console.

However, by issuing the appropriate device control function calls on the console,

additional sub-windows can be created. A sub-window is rectangular area on the bit-

mapped display that behaves as another terminal device, independently of what

activity occurs on the remainder of the display. Textual output written to that device

produces a display of characters on the rectangular region. The boundaries of the

region are treated as the edges of the terminal. If a line of text is written that is too

long for the area reserved to the sub-window, the characters beyond the right edge of

the window are not displayed. If several lines of text are written in the area, filling the

entire region, additional output can cause the region to scroll the previous text upward

or wrap around the sub-window and display the new text at the top line, depending on

options selected for the window.

Appendix E: SAGA 1983 Mid-Year Report 3

Several sub-windows can co-exist simultaneously on the raster display, with the

window device driver sorting out requests for each display. When a sub-window is

created, a UNIX "special device file" is created for that window. By referring to this

file, processes other than the window's creator can access the window. Using this capa-

bility, a process can open several windows and initiate other processes that are

attached to the windows. The MIT window manager performs exactly this function;

some illustrations of typical use of the window manager are described later.

Up to this point, only output operations on sub-windows have been described.

The windowing system also supports sharing a keyboard among the current windows.

One window is selected as the current "keyboard" window, which means that every-

thing entered at the keyboard is put into the input queue for that particular window.

Processes that request input from windows that are not the keyboard window are

suspended until that window becomes the keyboard window, and input data is entered

at the keyboard. Any process can request that a particular window become the

current keyboard window; hence, the processes that make such requests should have

some mutual agreement as how to share this device. The answer may be to use a

manager process such as the window manager to handle this facet of the windowing

system.

An additional capability of the windowing system is that it allows the sub-

windows to overlap, with windows partially or completely obscuring other sub-

windows. The window device driver knows which windows are fully exposed and

which are not. The handling of output to a covered window depends upon an option

selected for that window. One choice is to have the process suspended when it

attempts output to a covered window, until the window is uncovered (presumably by

the action of some other process). A second option is to have the window device driver

reserve enough memory to store the entire window's text, in an area called the

window's "save buffer." All output written to such a window is simultaneously stored

in the save buffer. If the window is covered and then re-exposed, the save buffer is

used to reconstruct the text on the window as it appeared before being covered. If,

Appendix E: SAGA 1983 Mid-Year Report 4

while the window is covered, some text is written on that window, the process is not

suspended. Instead, the output from the program changes the save buffer in the same

manner in which it would have made changes to the window. Then, when the window

is exposed, the new text is displayed on the window.

A process can request that the device driver notify it when the state of a window

that the process has open changes. This notification is accomplished via the UNIX sig-

nal mechanism, with a new type of signal SIGWIND. A process receives a SIGWIND

interrupt whenever one of the windows becomes covered or uncovered because of

action of this process or another. In this way, a program that uses a window for out-

put can be told when it needs to refresh the window, e.g. re-display whatever was

there before the window was covered.

A small collection of graphics primitives are also available for use with the win-

dowed system. A line drawing primitive (with clipping at window borders), and a ver-

sion of the BitBlt raster operation are available. Currently, the raster display memory

is accessible to every process' virtual address space, and the graphics routines directly

manipulate this memory. However, because of unanticipated interference between

several processes (and the kernel) simultaneously accessing this memory, such opera-

tions will have to be moved into the device driver. This is currently under develop-

ment.

3. The Mouse Pointing Device

The NUnix windowing system also implemented a device driver for a mouse

pointing device. However, most of the code that came with the windowing system was

machine dependent on the NUnix machine. A new implementation for the CADLINC

was written that fulfilled the needs of the MIT code.

The mouse is an integral part of the CADLINC system keyboard. This keyboard

produces output for both keystrokes and mouse data. The serial line device driver

must distinguish which source generated data that came from the keyboard system

and route it to the appropriate higher level routines. The mouse generates data on one

Appendix E: SAGA 1983 Mid-Year Report 5

of two conditions: either the mouse has been moved since the last data was generated,

or one of the buttons on the mouse has changed position (either depressed or released).

An additional UNIX signal (SIGMOUS) is available to notify processes that new data is

available from the mouse.

The mouse device driver keeps a "current x" and a "current y" location for the

mouse, and the state information for each of the three buttons on the mouse. This

data is retrievable by either a UNIX read operation on the mouse device, or an ioctl

operation on an open window. If the mouse is opened as a file, the process opening the

mouse is given exclusive access to it, which means that no other process can read the

mouse. However, if the mouse is accessed via the window system, then all processes

that are using the current keyboard window are given access to the mouse data, and

others (accessing windows that~are not the keyboard window) are suspended until their

window becomes the keyboard window.

It is customary with mouse systems to use an additional cursor on the screen to

show the current location of the mouse. Under the current system, it is the user

processes' responsibility to display and maintain this cursor; the kernel only maintains

the mouse's position. This seems to be the biggest shortcoming of the current imple-

mentation, since the cursor tends to jump and skip if the processing load on the

workstation is high. Alternative methods of managing the mouse cursor are under

investigation.

4. An Example Session with the Window Manager

At the end of this report are several examples of the use of the window manager.

This section provides a narrative of what is being done with each example.

Figure 1 This is how the display looks when running as a standard terminal. The
reverse video stripe at the top is called the window's label, and indicates
the device name for that window. At this point we are about to invoke
the MIT window manager "wmgr."

Figure 2 This is the initial window manager display. The top of the screen is a
menu, which is a collection of options that can be selected by moving the

Appendix E: SAGA 1083 Mid-Year Report 6

mouse to position the cursor over a selection, and depressing a button on
the mouse. The cursor at this time is the inverted circle over the create
option, which is what we are about to do.

Figure 3 By depressing one of the mouse buttons, the create option has been
selected. The menu item is highlighted by reverse video, and the
manager prompts the user for the name of the new window (upper left
corner).

Figure 4 Now the window manager wants the user to select which options will be
selected for this window. The choices are selected again by moving the
mouse to position the cursor over an item and depressing the left button,
which toggles the option state. This window will have the following
options: emulate an H19 terminal, scroll from the bottom instead of
wraping around, and allocate a save buffer for this window. Depressing
the right button ends the option selection.

Figure 5 This menu is used to set the physical dimensions of the window. There
are two ways to accomplish this: the absolute pixel dimensions of the
window can be entered (which is what the Create-Window device control
function requires from the user process), or the mouse can be used to
point to where the window should go. The mouse is handled by the win-
dow manager, which tracks the mouse location and retrieves the or and y
locations of the corners of the window. In this menu, we have selected
the mouse to point to the location of the new window. The cross-hair
cursor shows where the upper left hand corner of the window is to be
placed.

Figure 6 Once the upper left hand corner has been fixed (by depressing and releas-
ing a mouse button), moving the mouse will "open" the window, which
means that the dashed lines indicate where the window will reside.

Figure 7 Now the window's location and dimensions have been selected, the win-
dow manager provides one other menu: the program menu. This menu
allows the user to create the window and leave it alone, or to create it
and start a program running with the window as the process's controlling
terminal. In this menu, the user has selected to start a csh process run-
ning in the window.

Figure 8 Now the window manager has issued the actual create-window call to the
window driver, and has started the csh process going. The label "Edi-
tor" is what we originally had specified in Figure 3. However, the
current keyboard window is still the window manager's control menu. In
order to use the new window, it must be selected as the keyboard win-
dow, as the user is about to do in this frame.

Figure 9 Asking to change the keyboard window brings up the list of available
, windows that are eligable to become keyboard windows. Here the user

selects the Editor window.

Appendix E: SAGA 1083 Mid-Year Report

Figure 10

Figure 11

Figure IS

Figure IS

Figure 14

Figure 15

Having attached the keyboard to the window, the user can start to
interact with processes attached to it. He is about to start a vi editing
session in the Editor window.

Here the user has entered a simple program using vi. The curses and
termcap terminal control libraries have been modified to query the win-
dow device driver for the dimensions of the window at terminal initialza-
tion time, so vi knows the dimensions of the window.

Now that the program has been entered, the user wants to create a
second window to do the compilation and testing. Here he is selecting the
location of the second window.

Having started a second csh in the new window, the user tries to compile
and load the program. In this case there is an undefined symbol in his
program, which indicates that the name of the arc-cosine routine is not
"arccos."

The user intends to look for the correct name of the subroutine. To do
this without disturbing the error message (so he can go back to it
quickly), he opens another window.

In order to find the correct name of the routine, the user searches
through the header file for the math library. He could have just as easily
started the man program to bring up an online UNIX Programmers
Manual page, or in the case of SAGA, opened another edit window to
look at the specifications for the math library.

Figure 16 The user has'changed his program, and switches back to the Editor win-
dow. Setting the keyboard to the Compile window causes it to overlay
the WhatzItCalled window. The text is restored from the save buffer.
Eventually the program is loaded with the correct library and is exe-
cuted.

It was not necessary for the user to re-start programs in order to locate the informa-

tion he needed at any point. Because the windows retain their information while they

are shuffled (like pieces of paper), the time to switch contexts is significantly reduced.

The remaining examples show other facets of the window system:

Figure 17 Here another window is opened to demonstrate the graphics library. The
program sun is a UNIX plot filter that knows about the window in which
it is run and scales the display accordingly, as can be seen in the next
figure.

Figure 18 The display of graphics data displayed by the program sun.

Figure 19 In this figure, a covered window is exposed and selected as the keyboard.
A directory listing of the window device directory shows the special files

Appendix E: SAGA 1983 Mid-Year Report 8

associated with the different windows currently available.

Figure 20 Accessing one window from a process not initially bound to that window
is relatively easy as can be seen by the echo command in the Compile
window accessing the Graphics window.

5. Future Directions

There are two components of the window system that are under improvement.

The first is to improve the reliability, further reduce the differences between standard

terminals and the window system, and provide improvements in the graphics part of

the window system. Some race conditions have been found in the UNIX interface to

the terminal handler. New algorithms for saving and restoring the hidden part of

covered windows have been published and should be included.

The other area of improvement is to produce a programming interface to the

window system that can be mapped to systems other than the CADLINC. The SAGA

editor is not going to be designed to run only under this window system - it also must

run with standard terminals. The document on the Maryland Window System [Torek,

1983] describes such a general interface. We are considering using this interface or a

derivative of it for use within the SAGA environment.

Welcome to Morlal

login: rlchards
Password:
Last login: Thu Oct 20 19
1% ps alx
F S UID PID PPID CPU
3 S 0 0 0 107
I S O 1 0 0
1 S 101 1270 1 28
1,S 0 17 10
1 S 101 1267 1 0
I S O 3 7 1 0
I S O 4 0 1 0
1 S 101 1268 1267 0
1 R 101 1273 1270 136

254 If
9600 fenorlan.ft
bin/ Include/
3% wngr

\O <

/5 o.\
£ u.
0 0

*

:39:48 on console

PRI NICE ADDR SZ VCHAN TTV
0 20 41 1 Ie4bc 7
30 20 74 8 Ic2d0 ?
30 20 63 8 IcZffl CO
40 20 7C 4 deOOO CO
30 202017 8 1C348 CO
40 20 6e 4 deOOO ?
40 20 5a 9 deOOO ?
40 20201f 4 deOOO CO
58 202062 15 CO

lib/ rawtape/
•box s re/

iI

TIME CMD
795:49 swapper
0:03 /etc/1n1t e3f7
0:09 -csh[r1chards]
0:04 sleep 9999999
0:00 -csh[rlchards]
0:13 /etc/update Q Q
0:32 /etc/cron -n 30
0:00 sleep 60 -n O
0:04 ps alx n ̂

•0>
to-be-done/ *> f
work/ 0 TS

3> O

rMl
g&&

I*nt
m li «

!•

sSM^̂ ^ (Rr i«

•XpOB* !
£ H§1S1

••fnt o-fn*

o c
-" a
TJ o

O
c

F i g u r e 2

wssam
l-fnt

••frvt crfnt

•xpos*

Figure 3

O O

o10
O

btg-vpaotng no-l«b«l

o o
~r\ JO
•o o

2

O Til
c ^

Figure 4

E rwov»-8

nool-0

color-

•odv-STORE

ulox-8

wldth-a QUIT

o o-n

02

O T5c >
> o—

Figure 5

r
ffifc^ii maaama^^^jfgaaKsmKfm^amsB^^mm^imamam ||jf^^r'|jy^Q^^S'fflMa^BJ^Kia:3K

• 13
nool—51

oolor*
ncxte-STORC

ulox-fl

<i«nK̂ 539

uleu-361

h»lght-258 QUIT

O O

O ̂!

30 r~

Figure 6

o oit a

S o
* 2O >
so r-
O -o
c >

Figure 7

sagMam^asM^
Ifnt •xpos*

r/.

Figure 8

O O

O
vrfs
O t»

5

r/.

o o•n »
•0 S
02

8?
o -oc

Figure 9

IX. vl test.c

Figure 10

O O
""

O
O
50

c
> PI

ifn1I c> hi>UbcJ •><POB«
B*

Ddl-fu

••frvt o-frvt *r«s* or*»at»

'Include <nath.h>
static double x;

{

X - 3.1415926535 / 2.0;
pr1ntf("The value of 'acos(p1/2)' Is: %f\n", arccos(x));

"test.c" [New file] a lines, 132 characters

O O-n »
-o 55
02

a

Figure 11

nooI-57 •odv-STORE uldtti-533 hvight-242 QUIT

'Include <oath.h>
static double x;

X - 3.1415926535 / 2.0;
pr1ntf("The value of 'acos(p1/2)' 1s: Xf\n", arccos(x));

"test.c" [New file] 8 lines, 132 characters

O O
in 2

2eO -2.

Figure 12

j5|'m^^Mflffijffi|i» | SSMzmMmmzmmssim aiJsaS IliPISfligJaliSSffl
l-fnt

sTn*

O..k»ybci
o-Tnt

•xpos* •cxll-rg

ormm\»

,,W<*j>̂ ^̂ ,«W<̂ 'ĵ faWŷ fl-ĵ i!:̂ î f̂ ^

1% cc -o test test.c
Undefined:
arccos
Id: format error 1n file test.o, bad type of symbol arcco
2%

«WSW**WI*WWJOTM;Ŵ *'̂ *̂ ^̂

'Include <nath.h>
static double x;

X - 3.1415926535 / 2.0;
pr1ntf("The value of (acos(p1/2)' Is: Xf\n", arccos(x));

"test.c" [New file] 8 lines, 132 characters

o —,
if

Figure 13

i U O III p,],J e^Y^^^ t̂KKMW**1****!̂ ^^^

IX cc -o test test.c
Undefined:
arccos
Id: fornat error 1n file test.o, bad
2X

type of symbol arcco

'Include <math.h>
static double x;

{

f̂ SW*i)«W»»**3i T-t»rF!n?f*«r*''«(j*eiwli v^-djj V

X • 3.1415926535 / 2.0;
pr1ntf("The value of 'acos(p1/2)' Is: Xf\n", arccos(x));

"test.c" [New file] 8 lines, 132 characters

O O•n »
-0 O
o 2.o ^

c
f»

-a

Figure 14

l*nt

••fnt

kt>Utod O i

o-Prvt •

•xpon nodi*u

•fas* or-wnte

•Myrtww#f9v$*«̂ :$3Ŵ ^
IX cc -o test test.c
Undefined:
arccos
Id: format error In file test.o, bad ty[
2%

•jflJai»»*!Si«8(!lift»̂ ^

IX grep cos /usr/lnclude/oath.h
extern double slnf), cos(), tan(), as1n(), acos(), atan()
extern double s1nh(), cosh(), tanh();
2%

l!tXI&<ttt ^

-rinclude <nath.h>
static double x;

ma1n() {

X - 3.1415926535 / 2.0;
pr1ntf("The value of 'acos(p1/2)' Is: Xf\n", arccos(x));

"test.c" [New file] 8 lines, 132 characters Figure 15

O O
-n 33
D O

O TS
C J»
> Q

Iff it .k»UtxJ O •xpc*• BOdl-fU 1

\ B-fnt ofrrt mrmxm _ _ er»at»]

I

arccos
Id: format error In file test.o, bad type of symbol arcco
2Y. I I
cc -o test test.c
Undefined:
acos
Id: format error In file test.o, bad type of symbol acos
3V. it -1m
cc -o test test.c -1m
4X. test
The value of 'acos(p1/2)' Is: 0.000000
5%

Include/oath.h
), cos(), tan(), as1n(), acosQ, atan()
i(), cosn(), tanh();

'Include <math.h>
static double x;

ma1n() {

X - 3.1415926535 / 2.0;
pr1ntf("The value of •acos(p1/2)1 Is: %f\n", acos(x));

"test.c" 8 lines, 130 characters

O O

21
o -o
C 3B>
> Or- m

Figure 16

KHEgnmaiMaaiia^^

arccos
Id: fornat error in file test.o, bad type of symbol arcco i()
2'A I I
cc -o test test.c
Undefined:
acos
Id: format error In file test.o, bad type of symbol acos
3% II -1m
cc -o test test.c -1m
4% test
The value of 'acos(p1/2)' 1s: 0.000000
5X

Include/math.h
, cos(), tan(), as1n(), acos(), atan()
), cosn(), tanh();

X sun <src/plot/750data/sun.f

•VI*!* StHmt U.I. tO t'mrf,

'Include <math.h>
static double x;

{

X - 3.1415926535 / 2.0;
pr1ntf("The value of •acos(p1/2)1 1s: Xf\n", acos(x));

'test.c" a lines, 130 characters Figure 17

O On̂

O

O
C
Q
m

WHf̂ y*11^̂
1-fivt kvybd O

î ffissmass ffitafflgwa

»*n* o/nt

•xpos*

»ras>

oodl-Tu

cr-»atn

arccos
Id: format error In file test.o, bad type of symbol arcco
2V. I I
cc -o test test.c
Undefined:
acos
Id: format error In file test.o, bad type of symbol acos
3'/. 11 -1m
cc -o test test.c -1m
4X test
The value of 'acos(p1/2)' Is: o.oooooo

nclude/nath.h
, cos(), tan(), as1n(), acos(), atan()
), cosh(), tanh();

jff.̂ ftaî »»!̂ Tfl̂ 'fê yEgtW"̂ faia»*w*̂

'Include <oath.h>
static double x;

{

X - 3.1415926535 / 2.0;
pr1ntf("The value of «acos(p1/2)' 1s: '/.f\n", acos(x));

X- 40000—D -y- 600

'test.c" a lines, 130 characters
Figure 18

O O
•n a
-o 55
02
O f>
30 T~

G -a
c. >
> Q

a

tcsybd

o-fn-t

vxpos* nodifu

rfMW^WKfcHWlffliS^^

arccos
Id: format
2% I I
cc -o test
Undefined:
acos
Id: format
3% 1 1 -1m
cc -o test
4% test
The value
5%

error In file test.o, bad tyi

test.c

error 1n file test.o, bad tyi

test.c -1m

of 'acos(p1/2V 1s: 0.000000

>̂ Ŵj0W.ft!4̂ WB̂ *̂ ^

IK grep cos /usr/lnclude/math.h
extern double s1n(), cosM, tan(), as1n(), acos(), atanQ
extern double s1nh(), cosm), tanhf);
2% 11 /dev/wdev
total Q
crw-rw-i— 1 rlchards a, 3 Oct 20
crw-rw-r-- 1 rlchards 8, 2 Oct 20

1 rlchards 8, 6 Oct 20
1 rlchards 8, 1 Oct 20
1 rlchards 8, 5 Oct 20
1 rlchards 8, 4 Oct 20

crw-rw-r--
crw-rw-r--
crw-rw-r--
crw-rw-r--
3%

22:33 Compile
22:31 Editor
22:39 Graphics
22:39 Legend
22:29 WhatzItCalled
22:37 Work

'Include <math.h>
static double x;

ma1n()

X - 3.1415926535 / 2.0;
pr1ntf("The value of 'acos(p1/2)' 1s: %f\n", acos(x));

0 -x- 0000-

"test.c" 8 lines, 130 characters Figure 19

O O

o -oc >> o

l*nt k •1jbd O •xpos* 1MMdify

| B-fnt 0-fnt mrmao ' or»«t»]

Hf«l|(K̂

6X
6X. echo "HI There" >/dev/wdev/Graph1cs

Include/oath.h
), cos(), tan(), as1n(), acosQ, atan()
i(), cosh(), tanh();

irdsJKiS
irds
irds
irds
irds

2% HI There

'Include <math.h>
static double x;

na1n() {

X - 3.1415926535 / 2.0;
pr1ntf("The value of 'acos(p1/2)' Is: %f\n", acos(x));

"test.c" 8 lines, 130 characters
Figure 20

O O-n g
•0 C>
02
O *>
33 P

SAGA Mid-Year Report

Appendix F

Differences and Possibilities for Diff and Undo Commands

Carol S. Beckman-Davies

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801-2987

October, 1983

Appendix F: SAGA 1983 Mid-Year Report 1

1. Finding Differences and Rebuilding Terminal Lists

Two programs, one to find differences between versions of a program edited with

the SAGA editor, and the other to reconstruct a parse tree from one tree and the

differences, were written. The program finding differences finds contiguous sections of

changed tokens. The insert and delete commands necessary to produce one token list

from the other are saved in a file. This file may then be used to rebuild the terminal

list. The editor can take the terminal list and build the entire parse tree.

The difference program uses a bit in each terminal node which indicates whether

it or its neighbors have changed. This modified bit is set if the node was inserted or

one of its neighboring nodes was inserted or deleted. Thus, a sequence of terminals

which do not have their modified bits set must occur as a sequence in the original ver-

sion. The difference finder searches for this sequence. When it finds the sequence, the

program brackets a change using the last unchanged section (or the beginning of the

program) and the section just found. The bracketed sections, the change section from

the old program and the one from the new, contain the nodes that must be inserted or

deleted to get from one version to the other. The beginnings and ends of the change

sections are checked to see if they match. As many nodes as possible are matched.

This takes out of the difference the nodes whose modified bits were set only because a

neighbor changed. It might also catch some changes that a user makes and later

undoes, but not all.

Since the difference finder depends on the modified bits, they must be set

correctly. This can be accomplished by copying the parse table and string table files

for the existing version, clearing the modified bits, and editing this tree. The modified
i

bits are preserved between editing sessions; therefore, the change information will

accumulate. Consequently, the difference between a working version and one with

modifications, where the modifications could have been entered in several sessions, can

be found. The parse tree must be preserved between editing sessions for the accumu-

lation to occur.

Appendix F: SAGA 1983 Mid-Year Report 2

The differences between the two versions, and a string file to hold the tokens to

insert, are kept. Backward differences are kept. That is, the current version is kept in

its entirety. The older version is obtained from the current version and the difference.

A problem with using the parser on a list of terminal nodes exists. The program

which reconstructs the terminal list reconstructs it exactly. When a list includes an

empty token, the parser deletes the empty token that was there and inserts another.

This wastes one node for every empty token in the program and sets the modified bits

in the empty token and the adjoining two nodes. This can be overcome by clearing

the modified bits. The compacter can reclaim the nodes, probably after editing when

compaction would be advisable anyway. Having the problem handled in this way is

probably easier than changing the parser.

2. Diff Command

Work on putting a difif command into the editor has begun. The first version

will be a simple command based on the difference finder which reports contiguous

differences. The simple difference command will display the old and new lines in the

program. The old and new blocks for a changed section will be displayed together. A

range for the difference can be specified in the current tree being edited. Only

differences within the range will be displayed. The user will also be able to specify the

number of lines of context to print around the difference.

Plans to improve the diff command and add an undo command based on the

differences are being developed. Several possibilities for these are under consideration.

Three issues need to be considered for the diff command: how to specify a range

for the diff, what to show, and how to show it. Some possibilities for specifying the

section of the parse tree for the diff are specifying a range with pointers and specifying

a subtree. The simple diff command will allow the user to specify a range on which to

find differences with two editor pointers. Differences before the range will be found to

match the section of code in the old version which corresponds to the new section of

interest. One way to avoid finding differences which do not interest the user would be

Appendix F: SAGA 1983 Mid-Year Report 3

to have the user give the starting location in the old program which corresponds to the

beginning of the new section. Or it might be possible to keep links between the two

versions. The diff command could find the link before the section of interest and

closest to it, and start finding differences from those points.

Specifying a subtree as the section in which to find the difference is another pos-

sibility. The type of subtree allowed could be restricted to "special" subtrees, such as

procedures, declarations, and statements. Links between the trees could be kept for

this type of difference as well. With special subtree differences, other methods to

match sections to be compared could probably be developed. Allowing several methods

for selecting sections to compare gives the most flexibility.

Once a difference is found, what should be shown to the user must be decided.

One possibility is to compress details in large differences. For example, if a diff on the

entire program is done, the differences could be reported for large sections, such as

saying, "procedure initialize has changed." If a diff is done on a procedure, changes

could be reported by declaration sections and statements, for example. The subtrees

on which to report should depend on the grammar.

If differences are compressed, the user will sometimes want to see the actual code.

When that kind of difference is requested, giving the user context around the change

would be useful. The simple version of the diff command will let the user specify the

number of lines of context to show around the change.

Another possibility for displaying differences is to break them up according to the

parse tree. The simple version of the diff command will display all changes in one area

together. The changes might be at the end of one procedure and beginning of another,

or the end of a declaration section and beginning of the executable statements, or oth-

erwise unrelated. Perhaps a more informative method of display would show the

change to the first section, and then the change to the contiguous but unrelated sec-

tion, instead of showing them together. Division of differences should probably be

made on the basis of special subtrees, such as procedures or statements. A potential

Appendix F: SAGA 1983 Mid-Year Report 4

problem with using the tree structure is matching the old and new section. A change

which affects the special subtrees could be broken up; however, deciding which parts of

the old and new versions go together would be difficult or impossible.

Besides breaking apart contiguous differences, joining distant differences might

also be informative. Changes that are related might be far apart. For example, an

inserted repeat...until around an existing block of statements might be more informa-

tively displayed together. Displaying contiguous differences would show first the inser-

tion of the repeat, then any changes to the statement block, then the insertion of

until. This idea has some difficulties. First, some way to correlate the differences

must be found. Correlations can be obtained from: the grammar, if that is possible,

user input for each language or each edit session, the way in which commands are

entered (e.g., all changes between valid parse trees), or some other information.

Another question is how the user can know where the other parts of the change are in

relation to the rest of the code. The ordered display showing contiguous differences

gives the user an idea of where all the changes in the code are. If the new until clause

is shown when the new repeat is found, the user has fewer clues on the location of the

until clause.

Other amenities related to the actual display of the differences can be added.

These would generally not affect nor be affected by decisions on what to display. Some

possible improvements to the display could make it more informative. A special char-

acter could be printed at the beginning of lines with differences when context is given.

The old and new sections could be shown in separate windows. Some better indication

of where the difference is, e.g., line numbers or the name of the procedure containing

the difference, could be given. These features should not affect the rest of the diff com-

mand.

3. Undo Command

Another command which can eventually be added to the editor is undo. The

first decision to make for undo is whether diff and undo should be related. If they are

Appendix F: SAGA 1983 Mid-Year Report 5

unrelated, the only possibility for a basis for an undo seems to be the commands the

user enters. The commands can be undone in two ways: in a stack-like manner, undo-

ing the last command first, or in any order. Anticipating the effect of a stack-like

undo would be fairly easy for the user. A stack-like undo is very inflexible, however.

If a user deletes ten lines, then inserts ten lines, and realizes he deleted the wrong ten

lines, a stack-like undo does not help. Whether he uses the undo or not, he must

retype ten lines. A stack-like undo is simple, but of limited help.

A more flexible undo would allow undoing any command. This method has many

severe problems. First, the user must select a command to undo. Displaying the list

of commands that may be undone is, by itself, of little help. The user would generally

not be able to tell which command he wanted to undo. Before a command could be

undone, the location of the effect must be found. Since sections of code could be

inserted and deleted, any reference used to record the location of the command when

it was done cannot be used to undo it without translating the location somehow. Such

translation would probably be messy or expensive. Further, the meaning of an undo is

not always clear. The user might have deleted lines in a section of code that an undo

should delete. He might have inserted lines in a block an undo should delete. Undo

would be rife with special cases. The user would have many rules concerning undo to

remember. Seeing the effect of an undo would be difficult without performing the

work necessary to actually do it. An undo able to undo arbitrary commands would be

inefficient and hard to use.

The clear choice for a flexible undo which is relatively easy to use is one related

to diff. The user could request a difference and select a difference to be undone from

the ones displayed. Undo would have to follow a diff command which saved informa-

tion for it or execute a diff of its own. How the differences are displayed would have

little effect on undo. What is displayed is important. A difference displayed as one

unit by diff should probably be treated as a unit by undo.

Appendix F: SAGA 1983 Mid-Year Report 6

An undo which could reverse the effect of just the last command is also useful.

That undo would be unrelated to diff and the undo command discussed here. It could

be implemented completely separately from these, if it is decided that such a command

is beneficial.

Some principles should guide selection of features for undo. Undo should not

require much effort from the user. Undo should try to avoid introducing syntax errors

into the program. Having undo never cause errors would be difficult and more effort

than it would save. Finally, allowing the user to undo part of a difference would be

convenient. The user might not agree with the division upon which diff decides.

Many possible schemes for an undo command have been proposed but many of

them create a dilemma. If the undo only permits a change in one location at a time,

the introduction of syntax errors is guaranteed. Deleting or inserting a begin...end or

repeat...until requires changes in more than one location in the parse tree. Allowing

more than one change in the parse tree necessitates a change in the incremental

reparsing procedures. Plans for changing the parser are being developed, but it will be

some time before changes are implemented and stable enough to use. Until the parser

changes, many of these suggestions will be difficult to implement.

The-first undo scheme requires the user to select one or more differences from a

list of displayed differences as arguments to the undo command. This scheme would

be straight-forward to implement and should provide the user a simple selection pro-

cedure. The scheme encourages the user to select a set of syntactically related

differences as arguments to the undo in order to avoid introducing syntax errors.

However, this scheme does not allow the user to select part of a difference to be

undone.

Another possibility for selecting differences to undo uses movable pointers. Diff

could set "pointers" around the changed sections at the beginning and end of the sec-

tions in the new and old versions, four pointers for each difference. The user could

then move the pointers, that is, change the boundaries of the sections. When the user

Appendix F: SAGA 1883 Mid-Year Report 7

has the sections selected to his satisfaction, the section in the new program would be

-deleted and replaced by the section from the old version. If the user can select more

than one difference to undo, this command is quite flexible. It can avoid syntax errors

in the same manner as the first. The user can contract or expand the sections to

change. The user would, however, have to do more work with this type of command.

An added advantage of this type of undo is that it could be generalized to allow

replacement of arbitrary sections of the new version with arbitrary sections of the old.

A movable difference pointer undo is flexible but at the price of more work on the

user's part.

A third possible scheme avoids the user having to select multiple differences. The

difference provided as an argument to the undo command selects a subtree within

which the undo command will operate. Undo would use the first token of the

difference to select a subtree which is the largest subtree that has that token as its left-

most descendent. The first difference in the tree is undone. If it exists, the next

difference in the subtree is found. The user is queried about whether to undo that

difference. This continues until "the last difference in the subtree is reached. Alter-

nately, if the user does not undo a difference, the largest subtree that has the first

token of that difference as leftmost descendent could be found and all differences in

that subtree skipped. As one example of how this might work, consider a statement

block around which a user has put an if cond then begin ... end. The user decides

to undo the change. He selects the difference containing the if to be undone. This

selects the subtree, say statement, to which the if reduces. Undo removes the if

cond then and asks whether to delete begin. The user responds yes, so undo deletes

it, goes to the first change in the block statement, and asks the user if he wants to

undo that change. He responds no, so undo skips all the subtree for that difference.

Assuming that the skipping includes all changes in the statement list, undo asks

whether to delete end. The user responds yes. The difference is undone without

introducing syntax errors. The hope is that any change which must be undone with

another will be contained in the subtree that is selected, thus avoiding syntax errors.

Appendix F: SAGA 1983 Mid-Year Report 8

Selecting the largest subtree with the token as the leftmost descendent will not prevent

syntax errors if the user selects some difference other than the first one of a set that

must be undone together. The selected subtree will not contain all the differences that

must be undone. It is also not certain that all the differences that must be undone

together will be in the selected subtree even if the first difference is the one used to

select the tree. Syntax errors may still be introduced. Skipping subtrees decreases the

amount of work the user must do. The user might still have to answer too many

queries to make one change. The user is dependent on the division of differences which

diff gives. He cannot undo any finer differences. This method has a premise which

seems sound but is unproven, and it may require too much work from the user.

Probably the most severe problem with this method is the difficulty in explaining

it. A user who does not know much about parse trees or the grammar being used

would have difficulty predicting the effect of an undo. The user could select a subtree

in which to work with a tree oriented command instead of having undo select one

based on a token. This would make the scope of the undo clearer to the user, even for

one who understood parse trees well. Tree-dependent actions within the subtree would

still be confusing.

A final possibility for undo is a syntax-directed command. The user selects a

difference to undo. It is undone and reparsed. If no syntax error occurs, the command

is done. If one does occur, undo looks for a difference to undo that will correct the

syntax error. The desired difference must occur before the point at which the error

occurred. If more than one change can be undone to correct the error, undo could ask

the user which to undo. Even if only one change will correct the error, asking whether

to undo it would be a good safeguard. This type of undo does not require much extra

effort on the user's part but avoids syntax errors. It does not allow flexibility on how

much of a difference to undo. This method would take much more processing time.

Discovering whether undoing a change will correct an error would take time and would

have to be done for several changes. Once the correction is found, the reparsing must

be done a second time. This method will work with the reparsing method as it now

Appendix F: SAGA 1883 Mid-Year Report 9

stands. It only changes the tree in one spot at a time, which is all the incremental

parser can handle.

4. Summary

Several possibilities for an undo exist, each with advantages and disadvantages.

Perhaps the best method will be a combination of several suggestions. What is best

will also depend on the diff command. If diff breaks up contiguous differences well,

being able to undo only part of a change becomes less important. If diff relates

changes that must be undone together to avoid introducing syntax errors, the few

times that an undo causes an error can be tolerated. A method weak in avoiding

errors could be used. a

Related diff and undo commands seem to be a good idea for an addition to the

SAGA editor. Having undo related to diff improves the flexibility for the user. It also

complicates the design of the commands since features of one will affect the other. A

harmonious combination of diff and undo would make editing easier for a user.

SAGA Mid-Year Report

Appendix G

Proof Management System

David H. Hammerslag

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801-2987

October, 1983

Appendix G: SAGA 1Q83 Mid-Year Report 1

1. INTRODUCTION

Program verification often requires the proofs of large, cumbersome theorems.

Such proofs, when done by hand, are time consuming and error prone. An alternative

is to let a theorem prover attempt the proof. However, most theorem provers cannot

prove large involved propositions without user assistance. When the prover fails, the

user is left with little understanding of why the proof failed; was the proposition false,

or \vas the theorem prover simply unable to prove it? To aid in such proofs a proof

management system is being developed. This system will be used to aid the

programmer in doing formal, first order, natural deduction proofs, including the proofs

arising from program verification. The system will consist of three modules: a tree

editor, a proof checker, and a theorem prover.

2. THE TREE EDITOR

The user invokes the tree editor to create nodes, link them together into trees,

and edit the text in a node. Tree editor commands will be provided that are the tree

analogues to common line editor commands. Among such commands will be:

• Begin a new tree
• Add a child
• Delete a tree
• Move a tree
• Match a tree pattern (matching both tree properties and the text in the node)

The user must also be able to edit the block of text in the node. Therefore a text

editing facility is also needed to do insertions, deletions, movement, and substitution

according to pattern match.

The tree editor must also be programmable, able to perform tree I/O and able to

interface with other modules, either user or system defined. The programmability

could simply consist of the ability to store a sequence of operations to be reapplied at

any node. For tree level I/O, a representation of the tree data type, preferably human

readable, needs to be developed. To allow the editor to interface with outside

Appendix G: SAGA 1983 Mid-Year Report 2

programs, i.e. a pretty printer or, in this case, a proof checker, the structure of the

tree data type must be available to "the outside world."

3. THE PROOF CHECKER

The proof checker will allow the user to verify that the tree that he has built in

the tree editor constitutes a valid proof. A set of inference rules will be known by the

proof checker and presumably the inference rules referred to in the tree nodes by the

user will be among those rules that the proof checker knows about. When the proof

checker has determined what rule of inference was used it can recursively work its way

down the tree. As it verifies the validity of nodes it will use a protected field to mark

the node as being verified. The proof checker will allow quick confirmation of the

validity of the proof. __

There are still many issues unresolved concerning the proof checker. One of

these issues is what the proof checker should do when it comes upon, a node that

cannot be verified. What can be done depends on how the proof tree is constructed.

If all of the nodes are of the same type, namely assertions, then when the proof

checker comes upon a node that cannot be verified, it should still continue down the

tree to the lowest level possible, verifying as much of the tree as-possible. If a node's

children are not necessarily all of the same type, then it would not be possible for the

proof checker to go any deeper into the tree. In either case, the proof checker will

mark as verified only those nodes whose inference rule has been verified. In addition

to helping the user find his errors, this will also make subsequent rechecks of the same

tree much faster.

4. THE THEOREM PROVER

In this system, the theorem prover will be treated as a black-box. Once invoked,

it will run with little or no guidance from the user. Little if any information, aside

from whether the proposition was true or not, will be returned to the user. It is not

anticipated that a prover will be written, but rather that an existing theorem prover

Appendix G: SAGA 1083 Mid-Year Report 3

can be used. Clearly an interface between the tree editor and the theorem prover will

have to be written. Additionally, the theorem prover will have to be able to either

mark nodes itself, or pass sufficient information back to the editor so that the editor

can mark the appropriate nodes.

5. THE TREE NODE

Although the three modules will be distinct, they will interact. The point of that

interaction will be through (proof) tree nodes. In addition to pointers to other nodes,

the node will consist of a block of arbitrary text. To increase the generality of the

editor the meaning of the text in the node will be interpreted by convention. A

convention for proof tree nodes might be:

«LABEL >; <INFERENCE _RULE> ;< ANTECEDENTS >; <FORMULA>).

Then a node:

(MAIN THEOREM ; Modus Ponens ; (g(x),(p->q)); f->p)

would be interpreted as representing a proposed theorem, f->p, referred to as "MAIN

THEOREM" which was deduced from its children via modus ponens, and has

antecedents "g(x)" and "p->q". Additionally, each node will have at least one field

which is protected from the user; these fields may contain system information such as

whether or not the proposition represented by the node has already been proven.

6. TOOL INTERACTION

Interaction of the theorem prover, the proof checker, and the tree editor will

allow the user to write proofs in a convenient environment. Ideally the user will spend

most of his time in the tree editor, building proof trees. During an editing session the

user will be able to invoke the proof checker or the theorem prover at any arbitrary

node. If the proof checker is called, it will attempt to verify the proof of the current

proposition. If the theorem prover is called, it will try, under constraints of time

and/or depth of search, to prove the proposition designated by the current node. Both

of these constraints will be viewed as parameters that may be adjusted by the user. If

Appendix G: SAGA 1083 Mid-Year Report ' 4

the proposition is proved, either by the proof checker or the theorem prover, the

protected field will be set to signify that the proposition is true.

In order to speed up proof checking, the protected information in the node will

be used to keep the proof checker from rechecking a proposition if it has been

previously examined by the proof checker, verified, and had none of its children

modified. At this point some of the generality has been taken away from the tree

editor; it must now keep track of which nodes have been changed and must reset the

protected field for ancestors of the modified nodes. The loss of generality in the editor

is offset by the time gained in proof checking, where trees will not have to be

rechecked.

7. DISCUSSION

There are already systems in existence that could be considered to be proof

management systems. For example Abraham's Proofchecker FOL and AFFIRM

[GerTOa, ISI79] all, in one manner or another, encompass the notion of making formal

proofs easier. One of the important differences between existing systems and our

proposed system is the separation of the three components in our system; the editor

will have only limited knowledge of the proof checker, and no knowledge of the logic

used by the proof checker. This gives the user great flexibility in how the system is

used. We believe that this flexibility constitutes an advantage.

One manifestation of this flexibility is the ability to construct alternate proof

trees. For example, if the proposition being proven was "(A OR B)," it could be to the

users advantage to be able to have proofs of both A and B under construction at the

same time. In our system, because the editor has no knowledge of the logic being

employed, the user could certainly have two, or any number of children, attached to

the "(A OR B)" node. Then, when the user is satisfied that one of these children is the

root of a proof, either by inspection or by using the proof checker on that subtree, he

could delete the extra children before the proof checker is asked to verify the "(A OR

B)" node. As most other systems require that any tree constructed be a valid proof

Appendix G: SAGA 1983 Mid-Year Report 5

tree, this sort of flexibility by the user would not be allowed.

Another advantage of our system becomes apparent when programming the

editor. Most systems require that any programming be proven correct in one manner

or another (see [BoySl] for a discussion of some of the strategies used). A user defined

rule that is correct only some of the time could not be employed under such a system.

In our system the user may program the editor to build any sort of tree he desires,

whether it constitutes a valid proof tree or not. Therefore the user is free to program

the partially correct rule and use it at his discretion. Any misuse of the rule will be

caught by the proof checker. It is up to the user, who presumably wrote the rule, to

determine when it should be used, however if he is in doubt, the proof checker could

always be invoked immediately after the rule was used.

8. CONCLUSION

Through the interaction of the tree editor, the proof checker, and the theorem

prover, the task of writing, understanding and "debugging" complex proofs should be

greatly simplified. By using the theorem prover the user can be freed from the tedium

of doing proofs in all of their rigorous detail, and by using the proof checker as the

proof is being written, the user can detect errors in his reasoning earlier, where they

are more easily correctable.

Appendix G: SAGA 1083 Mid-Year Report 6

References
[Boy81]

R. S. Boyer and J. Strother Moore, "Metafuctions: proving them correct and
using them efficiently as new proof procedures," pp. 103-184 in The Correctness
Problem in Computer Science, ed. Robert S. Boyer; J. Strother Moore, Academic
Press, London (1981).

(Ger79a]
S. L. Gerhart, D. R. Musser, D. H. Thompson, D. A. Baker, R. W. Erickson, R. L.
London, D. G. Taylor, and D. S. Wile, "An Overview of Affirm: A Specification
and Verification System," USC Information Sciences Institute, Marina del Ray,
Ca (November 1979).

[ISI79]
ISI Research Staff, "Program Verification: Annual Report, Fall 1979," USC
Information Sciences Institute, Marina del Ray, Ca. (1979).

SAGA Mid-Year Report

Appendix H

A Program Sheer for Pascal 6000

F. M. Hardin

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801

October, 1983

A PROGRAM SLICER FOR PASCAL 6000

BY

FRED MATTHEW HARDIN

B. S., Texas A&M University, 1982

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1983

Urbana, Illinois

ill

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Professor Mark A. Ardis for

all his guidance and help; I also thank Pete Kirslis and Wayne Badger

for graciously answering all my questions about SAGA.

Finally, I would like to give special thanks to my family for all
I

their support and advice throughout my years in college.

iv

TABLE OF CONTENTS

1. INTRODUCTION 1

2. SAGA EDITOR 2

3. PROGRAM SLICING 4

3.1. Purpose 4

3.2. Methodology 6

4. METHOD OF IMPLEMENTATION 8

4.1. General Algorithm 8

4.2. Null Statements 11

4.3. Assignment Statements 11

4.4. Procedure Call Statements 12

4.5. . If Statements 12

4.6. With Statements 13

4.7. Case Statements 14

4.8. Begin Statements 15
*

4.9. Loop Statements 15

4.9.1. For Statements 17

4.9.2. While Statements 18

4.9.3. Repeat Statements 18

5. IRREGULARITIES OF IMPLEMENTATION 19

5.1. .With Statements 19

5.2. Goto Statements 19

6. CONCLUSION 21

APPENDIX—PASCAL 6000 GRAMMAR 23

REFERENCES 29

1. INTRODUCTION

There are many tools in existence used to aid programmers in debug-

ging their programs. A recent development in this field has been the

program slicer [2, 3, 4,], a tool that attempts to produce a minimal

form of a program that produces a given behavior.

This thesis examines the implementation of a program slicer for a

syntax-directed CDC PASCAL 6000 editor implemented on the SAGA system, a

software development system developed at the University of Illinois [1].

As a means of introduction to the actual implementation, a brief

examination of the SAGA PASCAL editor will be followed by a general dis-

cussion of program slicing. The methods of the implementation will then

be discussed along with certain problems encountered during the work.

2. SAGA PASCAL EDITOR

The PASCAL 6000 editor of the SAGA system is a syntax-directed edi-

tor that uses a grammar to do an LALR parse and produces a parse tree

and string table for the file currently begin edited.

The parse tree produced by the editor contains, in tree form, the

list of production rules used to decompose the program. Each node of

the parse tree is either a terminal or nonterminal. A nonterminal node

represents the right hand side of a production rule with the son node(s)

used to represent the left hand side. A terminal node has no son and.

points to the string table entry that holds the characters of the par-

ticular terminal. In Figure 1, a graphical description of the parse

tree for the beginning of a typical program is shown.

The string table produced by the editor is a long array of charac-

ters used to hold all the words and characters needed to print out the

program. All the keywords, variable names, procedure names, and special

characters ("+", "-", "*", "/", "=", etc.) are held in this array. The

individual elements of this array are accessed by giving the starting

point of the string in the array and the length (in characters) of the

string.

Example of Parse Tree Structure

Parse Tree:

<PROGRAM HEAD>

<FULL PROGRAM>

|<PROGRAM>

PROGRAM" | |<TOKXIDENT>] |"("| |<EXT_FILE_PART> | [")

"TEST"

I

<TOKXEOF>

KMAIN BLOCK>

^ r >

Production Rules Used:

[1] <FULL_PROGRAM>
[2] <PROGRAM>
[6] <PROGRAM_HEAD>
[269] <TOKXIDENT>
[273] <TOKXEOF>

-> <PROGRAM> <TOKXEOF>
-> <PROGRAM_HEAD> <MAIN_BLOCK>
-> PROGRAM <TOKXIDENT> (<EXT_FILE_PART>) ;
-> TOKXIDENT
-> TOKXEOF

Figure 1

3. PROGRAM SLICING

3.1. Purpose

Program slicing is an attempt to reduce a program to a minimal form

that produces a given behavior. This behavior is represented by a slic-

ing criterion that has the form of variables at a given point in the

program. An example of a slicing criterion would be "variables {x y z}

at line 10." The part of the program retained after slicing is called

the slice; statements of the retained program are referred to as being

in or included in the slice.

A slice includes all statements of the original program that can

possibly affect the values of the variables listed in the slicing cri-

terion immediately after execution of the line listed in the slicing

criterion. In other words, the slice is the answer to the following

question: if the program were to stop execution immediately after the

listed line, what statements in the program could have possibly affected

the values of the listed variables at this point?

Figure 2 shows an example program and some slicing criteria with

their resulting slices.

Program slices can have many practical uses. A slice can be very

useful as a debugging aid in that it can remove all the non-essential

statements in a program when the cause of a bug is trying to be deter-

mined [4], Slices can also be useful during program maintenance by

allowing a person who did not write the code to quickly determine which

ORIGINAL PAGE 13
OF POOR QUALITY

Examples of Program Slices

Full Program:

1 program test(input, output);
2 begin
3 sum := 0;
4 diff := 0;
5 read(a, b);
6 read(c);
7 _if_ (c = 0) then
8 sum := a + b
9 else

10 diff := a - b;
11 write('sum =', sum, 'diff = ', d i f f) ;
12 end. (* program test *)

Slice of {c} at Line 8:
\

1 program test(input, output);
2 begin
6 read(c);
12 end. (* program test *)

Slice of {diff} at Line 8:

1 program test(input, output);
2 begin
4 diff := 0;
5 read(a, b);
6 read(c);
7 if_ (c = 0) then
9 else
10 diff := a - b;
12 end. (* program test *)

Figure 2

statements are important to a particular behavior of the program to be

modified [4], The last major use of a program slice is to give a meas-

ure of the sequential nature of the program. If two slices of the saae

program have few statements in common, then the slices represent paral-

lel threads in the program that could possibly be executed by parallel

processors to speed up the execution of the program as a whole [3].

3.2. Methodology

The basic methodology of slicing involves the removal from the pro-

gram of lines that have no effect on the program's behavior as specified

by the slicing criterion. A converse approach to the problem is to

start with nothing and decide which lines from the program should be

included in the slice. The latter approach lends itself well to the

slicing of a block-structured language like PASCAL.

In many block-structured languages, there are two basic types of

executable statements, assignment statements and control statements. In

general, an assignment statement is included in the slice if it can

affect, .either directly or through a chain of other assignment state-

ments, the variables in the slicing criterion.

For example, if the assignment statements

b := c; a := b;

have been executed, then the value of "a" after execution of the second

statement depends on the value of "b" prior to the second statement.

Likewise, the value of "b" prior to the second statement depends on the

value of "c" prior to the first statement. Thus, the value of "c" prior

to both statements affects the value of "a" after the execution of both

statements. By following the reverse control flow of the program frea

the statement listed in the slicing criterion, a set of variables of

interest (VOI) can be calculated for each statement in the program.

Therefore, an assignment statement will be included in the slice if it

affects the value of any variable in the current VOI.

Since the flow of a program is crucial to the order in which

assignment statements are executed, any control statement is included in

the slice if it can choose either to execute or not execute an assign-

ment statement that has already been included.

4. METHOD OF IMPLEMENTATION

4.1. General Algorithm

The initial step for the slicing algorithm is to build a statement

tree from the structural information of the program held in the parse
\

tree and string table. To determine the statements of a program from

the parse tree, it is necessary to recognize which production rules sig-

nify the beginning of a new statement or output line. A new output line

is necessitated by certain keywords in the language such as else or end.

A new node in the statement tree is created for each new statement or

output line found in the parse tree. Figure 3 shows the list of produc-

tion rules that cause the creation of a new node in the statement tree.

The program statement will always be the root of the statement

tree, and statements of the program are added as sons of the root as

they appear in the program. Simple statements (assignment, procedure

call, and null statements) will always be leaf nodes without any sons,

and compound statements (all others) will be parent nodes with at least

one son. Figure 4 shows an example of a program and its statement tree.

The next step of the algorithm is to determine in which of the sons

of the program statement does the statement listed in the slicing cri-

terion fall. The slicer then slices from right to left all the sons of

the program statement beginning at the son in which the statement listed

in the slicing criterion falls.

Production Rules that Create Statement Tree Nodes

Rule 9 Production Rule

[2] <PROGRAM> —>
[24] <DECL_ELEMENT> —>
[25] <DECL_ELEMENT> —>
[26] <DECL_ELEMENT> —>
[27] <DECL_ELEMENT> —>
[28] <DECL_ELEMENT> —>
[29] <DECL_ELEMENT> —>
[118] <VALUE_INIT_PT> —>
[162] <BEGIN_SYMBOL> —>
[163] <END_SYMBOL> —>
[231] <MATCH_STMT> —>
[232] <MATCH_STMT> ~ —>
[233] <MATCH_STMT> —>
[234] <MATCH_STMT> -->
[235] <MATCH_STMT> —>
[236] <MATCH_STMT> —>
[237] <MATCH_STMT> —>
[238] <MATCH_STMT> —>
[239] <MATCH_STMT> —>
[240] <MATCH_STMT> -->
[241] <MATCH_STMT> —>
[242] <MATCH_STMT> —>

[244] <UNHATCH_STMT> —>
[245] <UNMATCH_STMT> —>

[246] <ELSE> —>
[249] <CASE_END> —>
[250] <OTHER_SYMBOL> —>
[251] <END_SYM_BRK> —>
[254] <CASE_ELEMENT> —>
[258] <UNTIL SYMBOL> —>

<PROGRAM_HEAD> <MAIN_BLOCK>
<LABEL_DECL>
<CNST_DEF_PART>
<TYPE_DEF_PART>
<VAR_DECL_PART>
<PROC_DECL>
<FCN_DECL>
<VALUE_SYMBOL> <VAL_INIT_LIST>
BEGIN
END
<ASSIGN_STMT>
<PROC_STMT>
GOTO <LABEL>
BEGIN <STMT_LIST> <END_SYM_BRK>
<WHILE_STMT>
<REPEAT_STMT>
<FOR_STMT>
<WITH_STMT>
<CASE_STMT>
<EMPTY_STMT>
<TOKXPLACE>
IF <EXPRESSION> THEN <MATCH_STMT> <ELSE>
<MATCH_STMT>
IF <EXPRESSION> THEN <STATEMENT>
IF <EXPRESSION> THEN <MATCH_STMT> <ELSE>
<UNMATCH_STMT>
ELSE
END'
OTHERWISE
END
<CASE_LBL_LIST> : <STATEMENT>
UNTIL

Figure 3

10

Example of Statement Tree Structure

Full program:

1
2
3
4
5
6
7
8
9

program test(input, output);
begin

read(a, b, d, e, f);
if a=b then

c := d
else

c := e?
writeln(c, f);

end.

Statement Tree:

program test(input, output);

begin read(a, b, d, e, f);

c := d

if a=b then

else

writeln(c, f)

c := e;

Figure 4

For simple statements, the one statement is sliced and is included

in or excluded from the slice accordingly. For compound statements, the

general rule is to slice all the sons of the compound .statement from

rightmost son to leftmost son. If any of the sons have been included in

the slice, then the parent compound statement is also included in the

11

slice.

At the beginning of the slicing procedure, the variables listed in

the slicing criterion make up the initial value of the VOI.

4.2. Null Statements

Since null statements contain no variables, they are never included

in a slice, and they have no effect on the VOI.

4.3. Assignment Statements

An assignment statement is included in a slice if the target vari-

able on the left hand side of the assignment is currently in the VOI.

If the statement is included, then the left hand side variable is

removed from the VOI, and all other variables in the statement are added

to the VOI. Note that these other variables included all array indices

and pointer variables used on the left hand side of the equation as well

as all variables used on the right hand side.

For example, if the current VOI is {a, b}, then none of the assign-

ment statements,

c := a + b; h[a] := c; at := b;

would be included. Note that even though the variable "a" is on the

left hand side of two of the statements, neither are included because

"a" is not being altered by either statement. Given the same current

VOI, then the statement,

a[x] := c[d] + et - f.g - 1;

12

would be included, and the VOI would be set to {b, c, d, e, f.g, x}.

4.4. Procedure Call Statements

Since the SAGA editor does not contain any scoping and declaration

information normally held in a symbol table structure, it is not feasi-

ble for the slicer to locate a procedure, substitute parameters, and

slice the statements that make up the procedure. In addition, it would

be impossible for the slicer to do anything about previously compiled

procedures held in a library. Thus, it was decided that all procedure

calls would automatically be included in a slice and that all variables

in the parameter list would be added into the current VOI.

The only exceptions to this are the procedures write and writeln;

these are never included in a slice. It is possible to single out write

and writeln because the two never affect the value of any variables, and

the PASCAL 6000 grammar separates them from other procedure calls, thus

allowing for their unique handling. Note that write and writeln can

technically change the value of a variable that happens be a file, but

without the symbol table information mentioned above this special case

cannot be detected, so it is ignored.

4.5. If Statements

An if-then or if-then-else statement is sliced by first slicing

both the then statement and the else statement. If either statement is

included, then the if statement is included in the slice, and all vari-

ables in the condition expression are added to the VOI. Otherwise, the

13

if statement is not included in the slice, and the VOI is not altered.

To make the slice obtained from an if-then-else statement syntacti-

cally correct, it is sometimes necessary to add punctuation to an else

statement that was not included in the slice. In the program slice of

Figure 5 , if a semicolon is not added to the end of line 3, the slice

will not be syntactically correct. To prevent this problem, it is

necessary for the slicer to add a semicolon to an else clause that has

none of its statements included, and whose last statement originally had

a semicolon. Note that if a semicolon is added to all else clauses that

had no statements included, then line 8 of the example slice would make

the program syntactically incorrect.

4.6. With Statements

A with statement is sliced by first slicing the statement enclosed

by the with. If that statement is included in the slice, then the with

statement is included in the slice, and all array indices and pointer

variables in the record expression are added to the VOI. Note that the

record name is not added, since the VOI is a set of variables, not a set

of record names.

For example, if the with statement,

with a[c] .b do ...

is included in a slice, then only the variable c is added to the VOI,

because a[...].b is a record name and not a variable. Note that the

record name is a prefix of variable names that may be included in the

14

Punctuation Addition

1 if_ a = 0 then
2 b := 1
3 else
4 d := 3;
5 if_ c = 0 then
6 if_ f = 0 then
7 c := b
8 else
9 d := 1
10 else
11 b := b + 3;

Slice for criterion of {b, c} at line 11:

1 ^f_ a = 0 then
2 b := 1
3 else ; (* semicolon added to original line *)
5 if_ c = 0 then
6 jLf_ f = 0 then
7 c := b
8 else (* no semicolon added *)
10 else
11 b := b + 3;

Figure 5

VOI, even though the record name itself is not.

4.7. Case Statements

A case statement is sliced by first slicing all statements in each

individual case element of the statement. If any statement from a case

element is included then the case statement is included in the slice,

and all variables in.the case expression are added to the VOI.

15

4.8. Begin Statements

A begin statement is sliced by first slicing all statements in the

begin-end block. If any statements in the block are included, then the

begin statement is included; otherwise the begin statement is not

included, and the VOI remains unaltered.

4.9. Loop Statements

The processing of loops presents a special problem for the slicing

algorithm since it is impossible to determine how many times a given

loop would execute. Figure 6 shows an example where a slice depends on

how many times a while loop executes. If the while loop of Figure 6

executes zero times, then the value of "a" after the end of the loop is

0, and there would be no statements from the loop body included in the

slice. If the loop executes exactly one time, then the value of "a"

after the end of the loop is 1, and the only statement from the loop

body to be included in the slice would be statement 7. By the same

logic, it can be seen that the final value of "a" and the statements

from the loop body to be included in the slice depend on the number of

times the loop is executed. Unfortunately, there is no way for the

slicer to determine from the code how many times a given loop will exe-

cute. Thus, the slicer must make the worst case assumption that a loop

will execute enough times so that all possible statements from the loop

body will be included in the slice.

16

Slicing of Loops

1 a := 0;
2 b := 1;
3 c := 2;
4 d := 3;
5 while (not done) do
6 begin
7 a := b;
8 b := c;
9 c := d
10 end; (* while loop *)

pre-loop V01 = {a}

Figure 6

By this assumption, the slicer must slice each loop body it

encounters over and over until the VOI from the previous pass is not

changed after the current pass. Before each pass is made, the VOI that

existed before the previous pass is added to current VOI to save the

intermediate results of each pass. This is done to account for the pos-

sibility that a given loop will execute less than the number of passes

necessary to obtain the final slice. When the VOI remains unchanged

after any pass, then all statements to be included from the loop bodv

will have been recognized by the slicer. Note that the intermediate

slices obtained after each pass are monotonically increasing in size, so

the process of slicing the loop over and over must terminate.

Another problem in slicing loops involves the interpretation of

having an initial slicing criterion that starts the slice in the middle

17

of a loop. Should one assume that the loop executes once, twice, or

many times before it stops at the statement designated by the slicing

criterion? The answer to this is to again assume that loops will exe-

cute a large enough number of times so that all statements of interest

in the loop body will be included in the slice. The practical result of

using this assumption is that there will be no discernible difference

between starting the slice in the middle of a loop versus starting the

slice at the end of the loop. If the user wanted a slice that assumed

that a loop executed a specific number of times, then the user's only

recourses are to use the slicer results and walk through these by hand

to get the desired results, or to modify the program and reslice.

4.9.1. For Statements

A for statement is sliced by first slicing the body of the loop.

If any statements in the loop body are included, then the for statement

will be included in the slice, and successive passes of slicing the loop

body are then made to calculate all statements in the loop body to be

included. After all passes have been made, the implied assignment

statement of the for statement is handled by removing the left hand side

variable from the final VOI and adding all other variables from the for

statement to the final VOI. For example, if the final VOI after all

passes is {a, b}, then the statement,

for a := (z + 1) ̂ p_ (x * y + 2) _do ...

will result in the VOI being changed to {b, x, y, z}. Finally, the ori-

ginal pre-loop VOI is added to the final VOI to account for the possi-

18

bility that the loop may execute zero times.

4.9.2. While Statements

A while statement is sliced by first slicing the body of the loop.

If any statements in the loop body are included, then the while state-

ment will be included in the slice, and all variables in the while

expression are added to the VOI obtained from the first slice of the

loop body. Successive passes of slicing the loop body are then made to

calculate all statements in the loop body to be included. In addition,

the original pre-loop VOI is added to the VOI obtained after all passes

have been made to account for the possibility that the loop may execute

zero times.

4.9.3. Repeat Statements

A repeat statement is sliced by first slicing all statements in the

loop body. If any statement is included from the loop body, then the

repeat statement is included in the slice, and all variables from the

until expression are added to the VOI obtained from the first slice of

the loop body. Successive passes of slicing the loop body are then made

to calculate all statements to include from the loop body. Note that

unlike while and for statements, the pre-loop VOI is not added to the

final VOI obtained after all passes have been made on the loop body

since the loop body in a repeat statement must execute at least one

time.

19

5. IRREGULARITIES OF IMPLEMENTATION

5.1. With Statements

As mentioned above, the SAGA editor does not now contain variable

and scoping information normally held in a symbol table structure.

Without this information it is impossible for the slicer to determine

the correct context for .a with statement; the slicer has no information

on how to append variable names to a record name given in a with state-

ment. Since a context cannot be determined, the slicer ignores the

record name in a with statement, and treats each variable name in any

statement Inside the with statement as it appears .in the original pro-

gram. For example, in Figure 7 the slicer would interpret each variable

in the assignment statement as it appears regardless of the presence of

the with statement. The variable "a" would be seen as "a", not "rec.a",

and so on.

A user could possibly get around this problem by including both the

short and full names of a variable if he wished to use that variable in

the slicing criterion. However, one must be careful with this approach

because the slicer will not equate the long and short names of the same

variable, possibly leading to an incorrect slice being produced.

5.2. Goto Statements

Because of the extreme difficulty in tracing the reverse control

flow of a program that has goto statements in it, it was decided that

goto statements would be completely ignored if encountered by the

20

With Statements

var
rec : record

a : integer;
b : real

end;

with rec do
a := bT c;

~~ Figure 7

slicer. The practical effect of this is that any program that contains

a goto statement will probably not slice correctly.

21

6. CONCLUSION

The PASCAL 6000 slicer described above has been implemented to run

with the SAGA syntax-directed editor. The slicer is currently running

on a CDC Cyber 175 machine.

This thesis has shown that a useful debugging tool, the program

slicer, can be implemented fairly easily. Namely, a tool that can

remove program statements that are not important to the current program

behavior being studied by a programmer. This tool can also be used by

programmers trying to maintain unfamiliar programs.

The few problems with designing a program slicer were overcome

without too much difficulty. The problem of slicing loops was solved in

a reasonably efficient manner. The problems encountered in slicing with

statements are due to the unavailability of symbol table information.

With this information available the problem would not exist. The prob-

lems of goto statements could be solved by using a slightly more complex

flow analysis scheme analogous to dataflow analysis. Finally, true

dataflow analysis could be used to solve the problems of procedure call

statements. Time limitations were the main reason these were not done

in the slicer implementation.

There are several methods by which slicers could be implemented.

The slicer could easily be implemented as part of a compiler since the

compiler already computes all the necessary parse tree and symbol table

information needed by a slicer. Since symbolic debugging tools usually

22

contain dataflow analysis routines, it should not be too difficult to

implement a program slicer with this kind of tool. Overall, the program

slicer is a potentially useful debugging and maintenance tool that has

been shown to be reasonably simple to design and implement.

ORIGINAL PAGE IS
OF POOR QUALITY

23

APPENDIK — PASCAL 6000 GRAMMAR

Rule # Production Rule

[1] <FULL_PROGRAM> —>
[2] <PROGRAM> —>
[3] <PROGRAM> —>
[4] <PROGRAM> —>
[5] <PROGRAM_HEAD> —>
[6] <PROGRAM_HEAD> ~ >
[7] <EXT_FILE_PART> —>
[8] <EXT_FILE_PART> —>
[9] <EXTERNAL_FILE>' —>
[10] <FILE_CHAR> —>
[11] <FILE_CHAR> —>
[12] <FILE_CHAR> —>
[13] <FILE_CHAR> — —>
[14] <MAIN_BLOCK> —>
[15] <MAIN_BLOCK> —>
[1 6] <BLOCK> —>
[17] <BLOCK> —>
[18] <DECLS_WTH_VAL> —>
[19] <DECLS_WTH_VAL> —>
[20] <DECLS_WTH_VAL> —>
[21] <DECLS_WTH_VAL> -->
[22] <DECLARATIONS> —>
[23] <DECLARATIONS> —>
[24] <DECL_ELEMENT> —>
[25] <DECL_ELEMENT> —>
[26] <DECL_ELEMENT> —>
[27] <DECL_ELEMENT> —>
[28] <DECL_ELEMENT> —>
[29] <DECL_ELEMENT> —>
[-30] <LABEL_DECL> ~>
[31] <LABEL_SYMBOL> —>
[32] <LABEL_PART> —>
[33] <LABEL_PART> —>
[34] <LABEL> —>
[35] <CNST_DEF_PART> —>
[36] <CONST_SYMBOL> —>
[37] <CONST_DEF> ~>
[38] <CONST_DEF> —>
[39] <CONST_DEF> —>
[40] <CONST_DEF> ~>
[.41] <CONST_DEF> ~>
[42] <CONST_DEF> —>
[43] <CONST NAMER> —>

<PROGRAM> <TOKXEOF>
<PROGRAM_HEAD> <MAIN_BLOCK>
<DECLS WTH VAL>

<EXT FILE PART>)
PROGRAM <TOKXIDENT>
PROGRAM <TOKXIDENT>
<EXTERNAL_FILE>
<EXT_FILE_PART> , <EXTERNAL_FILE>
<TOKXIDENT> <FILECHAR>

<DECLS_WTH_VAL> <STMT_PART>
<STMT_PART>
<DECLARATIONS> <STMT_PART>
<STMT_PART>
<DECL_ELEMENT>
<VALUE_INIT_PT>
<DECLS_WTH_VAL> <DECL_ELEMENT>
<DECLS_WTH_VAL> <VALUEJ_INIT_PT>
<DECL_ELEMENT>
<DECLARATIONS> <DECL_ELEMENT>
<LABEL_DECL>
<CNST_DEF_PART>
<TYPE_DEF_PART>
<VAR_DECL_PART>
<PROC_DECL>
<FCN_DECL>
<LABEL_SYMBOL> <LABEL_PART> .;
<LABEL>
<LABEL>
<LABEL_PART> , <LABEL>
<TOKXCONST>
<CONST_SYMBOL> <CONST_DEF>
CONST
<CONST_NAMER> <CONSTANT> .;
<CONST_NAMER> <TOKXIDENT> ;
<TOKXPLACE> ;
<CONST_DEF> <CONST_NAMER> <CONSTANT> ;
<CONST_DEF> <CONST_NAMER> <TOK.XIDENT>
<CONST_DEF> <TOKXPLACE> ;
<TOKXIDENT> =

ORIGINAL PAGE IS
OF POOR QUALITY

24

[44] <CONSTANT> —>
[45] <CONSTANT> —>
[46] <CONSTANT> —>
[47] <CONSTANT> —>
[48] <SIGN> —>
[49] <SIGN> —>
[50] <UNSIGNED_NUM> —>
[51] <TYPE__DEF_PART> —>
[52] <TYPE_SYMBOL> —>
[53] <TYPE_DEF> —>
[54] <TYPE_DEF> —>
[55] <TYPE_DEF> —>
[56] <TYPE_DEF> —>
[57] <TYPE_DEF> —>
[58] <TYPE_DEF> —>
[59] <TYPE_NAMER> ~>
[60] <TYPE> —>
[61] <TYPE> -->
[62] <TYPE> —>
[63] <TYPE> - —>
[64] <SIMPLE_TYPE> —>
[65] <SIMPLE_TYPE> —>
[66] <SIMPLE__TYPE> —>
[67] <SIMPLE_TYPE> —>
[68] <SIMPLE__TYPE> —>
(69] <SCALAR_TYPE> —>
[70] <SCALAR_TYPE> —>
[71] <STRUCT_TYPE> —>
[72] <STRUCT_TYPE> —>
[73] <STRUCT_TYPE> —>
[74] <STRUCT_TYPE> —>
[75] <ARRAY_TYPE> —>
[76] <ARRAY_TYPE> —>
[77] <INDEX_LIST> —>
[78] <INDEX_LIST> —>
[79] <INDEX_ELT> —>
[80] <INDEX_ELT> —>
[81] <RECORD_TYPE> —>
[82] <RECORD_END> —>
[83] <FIELD_LIST> —>
[84] <FIELD_LIST> —>
[.85] <FIELD_LIST> —>
[86] <FIXED_PAE.T> —>
[87] <FIXED_PART> —>
[88] <RECORD_SECT> —>
[89] <RECORD_SECT> —>
[90] <RECORD_SECT> —>
[91] <VARIABLE_LIST> —>
[92] <VARIABLE_LIST> — >
[93] <VARIANT PART> ~>

<UNSIGNED_NUM>
<TOKXSTRING>
<SIGN> <UNSIGNED_NUM>
<SIGN> <TOKXIDENT>

<TOKXCONST>
<TYPE_SYMBOL> <TYPE_DEF>
TYPE
<TOKXPLACE> ;
<TYPE_NAMER> <TYPE> ;
<TYPE_NAMER> <TOKXIDENT> ;
<TYPE_DEF> <TYPE_NAMER> <TYPE> ;
<TYPE_DEF> <TYPE_NAMER> <TOKXIDENT>
<TYPE_DEF> <TOKXPLACE> ;
<TO(CXIDENT> =
<SIMPLE_TYPE>
<STRUCT_TYPE>
PACKED <STRUCT_TYPE>
<POINT_TYPE>
(<SCALAR TYPE>)

<CONSTANT>
. <TOKXIDENT>
<TOKXIDENT>
. <CONSTANT>

<TOKXIDENT>

OF <TYPE>
OF <TOKXIDENT>

<CONSTANT> ..
<TOKXIDENT> .
<CONSTANT> ..
<TOKXIDENT> .
<TOiOCIDENT>
<SCALAR_TYPE>
<ARRAY_TYPE>
<RECORD_TYPE>
<SET_TYPE>
<FILE_TYPE>
ARRAY [<INDEX_LIST>
ARRAY [<INDEX_LIST>
<INDEX_ELT>
<INDEX_LIST> , <INDEX_ELT>
<SIMPLE_TYPE>
<TOKXIDENT>
RECORD <FIELD_LIST> <RECORD_END>
END
<FIXED_PART>
<FIXED_PART> ;
<VARIANT_PART>
<RECORD_SECT>
<FIXED_PART> ;
<VARIABLE_LIST>
<VARIABLE LIST>

<VARIANT PART>

<RECORD_SECT>
<TYPE>
<TO(CXIDENT>

<TOKXIDENT>
<VARIABLE LIST> <TOKXIDENT>
CASE <TAG> OF <VARIANT LIST>

ORIGINAL PAGE 13
OF POOR QUALITY

25

94] <TAG> ~->
95] <TAG> —>
96] <VARIANT_LIST> —>
97] <VARIANT_LIST> ~>
98] <VARIANT> —>
99] <VARIANT> —>

[100] <FLD_LST_PART> —>
[101] <CASE_LBL_LIST> —>
[102] <CASE_LBL_LIST>—>
[103] <CASE_LABEL> —>
[104] <CASE_LABEL> —>
[105] <SET_TYPE> —>
[106] <SET_TYPE> —>
[107] <FILE_TYPE> —>
[108] <FILE_TYPE> —>
[109] <POINT_TYPE> —>
[110] <VAR_DECL_PART> —>
[111] <VAR_SYMBOL> ~>
[112] <VAR_DECL_LIST> —>
[113] <VAR_DECL_LIST> ~>
[114] <VAR_DECL_LIST> -->

[115] <VAR_DECL_LIST> —>

[116] <VAR_DECL_LIST> —>
[117] <VAR_DECL_LIST> —>
[118] <VALUE_INIT_PT> —>
[119] <VALUE_SYMBOL> —>
[120] <VAL_INIT_LIST> —>
[121] <VAL_INIT_LIST> ~>

[122] <VALUE_NAMER> —>
[123] <VALUE_SPEC> —>
[124] <VALUE_SPEC> —>
[125] <VALUE_SPEC> —>
[126] <VALUE_SPEC> —>
[127] <VALUE_SPEC> —>
[128] <VALUE_SPEC> —>
[129] <VALUE_SPEC> —>
[130] <SET_VAL_LIST> — >
[131] <SET_VAL_LIST> —>
[132] <SET_VAL_ELMTS> —>
[133] <SET_VAL_ELMTS> -->
[134] <SET_VAL_ELMTS> —>
[135] <SET_VAL_ELMTS> —>
[136] <VALUE_LIST> -->
[137] <VALUE_LIST> —>
[138] <VALUE_LIST> —>
[139] <VALUE LIST> —>

<TOKXIDENT>
<TOKXIDENT>
<VARIANT>
<VARIANT_LIST>
<CASE LBL LIST>

<TOKXIDENT>

<VARIANT>
: <FLD LST PART>

<CASE LABEL>

(<FIELD_LIST>
<CASE_LABEL>
<CASE_LBL_LIST> _
<CONSTANT>
<TOKXIDENT>
SET OF <SIMPLE_TYPE>
SET OF <TOKXIDENT>
FILE OF <TYPE>
FILE OF <TOKXIDENT>
f <TOKXIDENT>
<VAR_SYMBOL> <VAR_DECL_LIST>
VAR
<VARIABLE_LIST> : <TYPE> ;
<VARIABLE_LIST> : <TOKXIDENT> ;
<VAR_DECL_LIST> <VARIABLE_LIST> ;
<TYPE> ;
<VAR_DECL_LIST> <VARIABLE_LIST> :
<TOKXIDENT> ;
<TOKXPLACE> ;
<VAR_DECL_LIST> <TOIOCPLACE> ;
<VALUE_SYMBOL> <VAL_INIT_LIST>
VALUE
<VALUE_NAMER> <VALUE_SPEC> ;
<VAL_INIT_LIST> <VALUE_NAMER>
<VALUE_SPEC> ;
<TOiCXIDENT> = .
[<SET_VAL_LIST>]
[]
NIL
<TOKXIDENT>
<CONSTANT>
(<VALUE_LIST>)
<TOKXIDENT> (<VALUE_LIST>)
<SET_VAL_ELMTS>
<SET_VAL_LIST> , <SET_VAL_ELMTS>
<CONSTANT>
<TOKXIDENT>
<CONSTANT> .. <CONSTANT>
<TOKXI1)ENT> .. <TOKXIDENT>
<CONSTANT> OF <VALUE_SPEC>
<TOtaiDENT> OF <VALUE_SPEC>
<VALUE_SPEC>
<VALUE_LIST> , <CONSTANT> OF
<VALUE SPEO

ORIGINAL PAGE 19
OF POOR QUALITY

26

[140] <V ALUE_L I ST>

[141] <VALUE_LIST>
[142] <VALUE_LIST>
[143] <PROC_DECL>
[144] <FCN_DECL>
[145] <PROC_FCN_FOLL>
[146] <PROC_FCN_FOLL>
[147] <PROC_FCN_FOLL>
[148] <PROC_FCN_FOLL>
[149] <PROC_HEADING>
[150] <FCN_HEADING>

[151] <PARM_LIST>
[152] <PARM__LIST>
[153] <FRML_PARM_LST>
[154] <FRML_PARM_LST>
[155] <FRML_PARM_SCT>
[156] <FRML_PARM_SCT>
[157] <FRML_PARM_SCT>
[158] <FRML_PARM_SCT>
[159] <PARM_GROUP>
[160] <P ARM_GROUP>
[161] < STMT_P ART>
[162] <BEGIN_SYMBOL>
[163] <END_SYMBOL>
[164] <BLOCK_BODY>
[165] <STMT_LIST>
[166] <STMT_LIST>
[167] < STATEMENTS
[168] <STATEMENT>
[169] < STATEMENT>
[170] <STATEMENT>
[171] <ASSIGN_STMT>
[172] <ASSIGN_STMT>
[173] <VARIABLE>
[174] <VARIABLE>
[175] <VARIABLE>
[176] <VARIABLE>
[177] <VARIABLE>
[178] <VARIABLE>
[179] <EXPRESS_LIST>
[180] <EXPRESS_LIST>
[181] <EXPRESSION>
[182] <EXPRESSION>
[183] <EXPRESSION>
[184] <REL_OP>
[185] <REL_OP>
[186] <REL_OP>
[187] <REL OP>

—>

— >
— >
— >
— >
— >
— >
— >
— >
~>
— >

<VALUE_LIST>
<VALUE_SPEC>
<VALUE LIST>

<TOKXIDENT> OF

<VALUE SPEC>

; <PROC_FCN_FOLL>
<PROC FCN FOLL> :

<PROC_HEADING>
<FCN_HEADING> ;
<BLOCK>
FORWARD
EXTERN
FORTRAN
PROCEDURE <TOKXIDENT> <PARM_LIST>
FUNCTION <TO(OC1DENT> <PARM_LIST> ;
<TOKXIDENT>
(<FRML PARM LST>)

<FRML PARM SCT>
<FRML_P ARM_S CT>
<FRML_PARM_LST> _ _
VAR <PARM_GROUP>
<PARM_GROUP>
<PROC_HEADING>
<FCN_HEADING>
<VARIABLE_LIST> : <TOKXIDENT>
<VARIABLE_LIST> : DYNAMIC <TOKXIDENT>
<BEGIN_SYMBOL> <BLOCK_BODY> <END_SYMBOL>
BEGIN
END
<STMT_LIST>
< STATEMENT
<STMT_LIST> ; <STATEMENT>
<MATCH_STMT>
<UNMATCH_StMT>
<LABEL> : <MATCH_STMT>
<LABEL> : <UNMATCH_STMT>
<VARIABLE> := <EXPRESSION>
<TOIOCIDENT> := <EXPRESSION>
<VARIABLE> [<EXPRESS_LIST>] .;
<TOKXIDENT> [<EXPRESS_LIST>]
<VARIABLE> . <TOfOCIDENT>
<TOKXIDENT> . <TOK.XIDENT>
<VARIABLE> t
<TOK.XIDENT> t
<EXPRESSION>
<EXPRESS_LIST> , <EXPRESSION>
<SIMPLE_EXPRES>
<SIMPLEEXPRES> <RELOP> <SIMPLEEXPRES>

—> <TOKXPLACE>

--> 0

—> <=

ORIGINAL PAGE I®
OF POOR QUALITY

27

[188]
[189]
[190]
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]
[214]
[215]
[216]
[217]
[218]
[219]
[220]
[221]
[222]
[223]
[224]
[225]
[226]
[227]

[228]
[229]
[230]
[231]
[232]
[233]
[234]
[235]
[236]

<REL_OP>
<REL_OP>
<REL__OP>
<SIMPLE_EXPRES>
<SIMPLE_EXPRES>
<SIMPLE_EXPRES>
<SIMPLE_EXPRES>
<SIMPLE_EXPRES>
<SIMPLE_EXPRES>
<SIMPLE_EXPRES>
<ARITH_OP>
<ARITH_OP>
<ARITH_OP>
<ARITH_OP>
<ARITH_OP>
<ARITH_OP>
<ARITH_OP>
<ARITH_OP>
<FACTOR>
<FACTOR>
<FACTOR>
<FACTOR>
<FACTOR>
<FACTOR>
<FACTOR>
<FACTOR>
<FACTOR>
<ACT_PARM_LIST>
<ACT_PARM_LrST>
<ELEMENT_LIST>
<ELEMENT_LIST>
<ELEMENT>
<ELEMENT>
<PROC_STMT>
<PROC_STMT>
<PROC_STMT>
<PROC_STMT>
<PROC_STMT>
<SPECIAL_PARMS>
<SPECIAL PARMS>

<FIELD_
<FIELD
<FIELD"
<MATCH~
<MATCH~
<MATCH
<MATCH~
<MATCH
<MATCH~

WTDTIO
WIDTH>
~WIDTH>
"STMT>
"STMT>
"STMT>
"STMT>
"STMT>
"STMT>

IN
<TOiOCIDENT>
<FACTOR>
<TOKXSTRING>
<SIGN> <FACTOR>
<SIGN> <TOKXIDENT>
<SIMPLE_EXPRES> <ARITH_OP> <FACTOR>
<SIMPLEEXPRES> <ARITHOP> <TOtCXIDENT>

OR
*

/

DIV
MOD
AND
<VARIABLE>
<UNSIGNED_NUM>
NIL
(<EXPRESSION>)
[<ELEMENT_LIST>]
[1
<TOK.XIDENT> (<ACT_PARM_LIST>
NOT <FACTOR>
NOT <TOKXIDENT>
<EXPRESSION>
<ACT_PARM_LIST> , <EXPRESSION
<ELEMENT>
<ELEKENT_LIST> , <ELEMENT>
<EXPRESSION>
<EXPRESSION> .. <EXPRESSION>
<TOKXIDENT> (<ACT_PARM_LIST>)
<TOltXIDENT>
WRITE (<SPECIAL_PARMS>)
WRITELN (<SPECIAL_PARMS>)
WRITELN
<SIMPLE_EXPRES> <FIELD_WIDTH>
<SPECIAL_PARMS> , <SIMPLE_EXPRES>
<FIELD_WIDTH>
: <SIMPLE_EXPRES> : <SIMPLE_EXPRES>
: <SIMPLE_EXPRES>

<ASSIGN_STMT>
<PROC_STMT>
GOTO <LABEL>
BEGIN <STMT_LIST> <END_SYM_BRK>
<WHILE_STMT>
<REPEAT STMT>

ORIGINAL PAGE 19
OF POOR QUALITY

[237]
[238]
[239]
[240]
[241]
[242]

[243]
[244]
[245]

[246]
[247]

[248]

[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]

[258]
[259]
[260]

[261]

[262]
[263]
[264]
[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]

<MATCH
<MATCH
<MATCH
<MATCH
<MATCH
<MATCH

_STMT>
"STMT>
~STMT>
~STMT>
~STMT>
~STMT> — >

<EMPTY_STMT> —>
<UNMATCH_STMT> ~>
<UNMATCH_STMT> —>

<ELSE> —>
<CASE_STMT> ~>

<CASE_STMT> -->

<CASE_END> ~>
<OTHER_SYMBOL> —>
<END_SYM_BRK> ~>
<CASE_LIST> — —>
<CASE_LIST> —>
<CASE_ELEMENT> —>
<CASE_ELEMENT> —>
<WHILE_STMT> —>
<REPEAT_STMT> —>

<UNTIL_SYMBOL> —>
<FOR_STMT> —>
<FOR_LIST> —>

<FOR_LIST> —>

<FOR_LIST> -->
<WITH_STMT> ~>
<RCD_VAR_LIST> ~>
<RCD_VAR_LIST> —>
<RCD_VAR_LIST> —>
<RCD_VAR_LIST> >
<RCD_VAR_LIST> —>
<TOKXIDENT> —>
<TOK.XSTRING> —>
<TOKXCONST> ~>
<TOKXPLACE> —>
<TOKXEOF> —>

<FOR_STMT>
<WITH_STMT>
<CASE_STMT>
<EMPTY_STMT>
<TOKXPLACE>
IF <EXPRESSION> THEN <MATCH_STMT> <ELSZ>
<MATCH_STMT>

IF <EXPRESSION> THEN <STATEMENT>
IF <EXPRESSION> THEN <MATCH_STMT> <ELSI>
<UNMATCH_STMT>
ELSE '
CASE <EXPRESSION> OF <CASE_LIST>
<CASE_END>
CASE <EXPRESSION> OF <CASE_LIST>
<OTHER_SYMBOL> <STMT_LIST> <CASE_END>
END
OTHERWISE
END
<CASE_ELEMENT>
<CASE_LIST> ; <CASE_fi:LEMENT>
<CASELBLLIST> : <STATEMENT>

WHILE <EXPRESSION> DO <STATEMENT>
REPEAT <STMT_LIST> <UNTIL_SYMBOL>
<EXPRESSION>
UNTIL
FOR <FOR_LIST> DO <STATEMENT> OD
<TO(CXIDENT> := <EXPRESSION> TO
<EXPRESSION>
<T010CIDENT>
<EXPRESSION>
<TOKXPLACE>
WITH <RCD_VAR_LIST>
<VARIABLE>
<TOKXIDENT>
<RCD_VAR_LIST>
<RCD_VAR_LIST>
<TOKXPLACE>
TOKXIDENT
TOKXSTRING
TOKXCONST
TOKXPLACE
TOKXEOF1

OD

<EXPRESSION> DOWNTO

DO <STATEMENT> OD

<VARIABLE>
<TOKXIDENT>

29

REFERENCES

[1] Campbell, R. H., and Richards, P. G., "SAGA, A System to Automate
the Management of Software Production", Proceedings of the 1981
National Computer Conference, Chicago, May 1981.

[2] Weiser, Mark, "Deducing Sequential from Parallel Behavior", Sub-
mitted for Publication, 1982.

[3] Weiser, Mark, "Program Slicing", Proceedings of the 5th Interna-
tional Conference on Software Engineering, March 1981.

[4] Weiser, Mark, "The-Slicing Abstraction in Software Production and
Maintenance", Unpublished Paper, January, 1979.

SAGA Mid-Year Report

Appendix I

June Demonstration Plan

Roy H. Campbell

George M. Beshers

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801-2987

October, 1983

Appendix I: SAGA 1083 Mid-Year Report

JUNE DEMONSTRATION PLAN

1. OVERVIEW

The June demonstration will be designed to exhibit the SAGA editor as the pri-

mary user interface to the SAGA system. The principal points to be covered are the

reliability, language independence, user interface, and semantic checking ability of the

editor. To establish user confidence the editor must be reliable; that is, the results of

any editing operation must be predictable and must conform to the specification of the

editing commands. For ease of use, each phase and facility of the SAGA system must

be independent of the language being edited. For example, error messages detected by

the language-specific components of the SAGA system must be reported in an accurate

and appropriate but language-in dependent manner. The user interface must support

textual as well as structured and language-oriented editing commands; the same editor

interface should allow the editing of English text as well as software specifications and

programs. The editor should detect as many language-dependent errors as possible so

that the user spends less time in a compile-edit cycle.

2. DEMONSTRATION PLAN

The goal of the June Demonstration will be to show that the SAGA editor can

support software development activity. The demonstration will show that the editor:

• is reliable. It will perform editing commands according to their
specifications.

• is reasonably fast. Although no attempt will be made to optimize the edi-
tor, the demonstration will show that the editor commands have a
response time which is reasonable for an interactive software
development tool.

« has a uniform response time.

• is predictable. The result of performing various editor commands in com-
bination should be obvious from the function of those commands.

Appendix I: SAGA 1983 Mid-Year Report 2

• is documented. Full documentation of the commands as they exist for
the demonstration will be available both in the form of a manual and
in the form of on-line help.

• is crash resistant. Edits will be performed on a temporary copy of a
SAGA files. The permanent copy will only be updated on a success-
ful conclusion of the editing session. This permanent file will be used
for back-up if the system crashes during an editing session (provided,
of course, that the system does not destroy the permanent file's con-
tents).

Various tests will be shown to demonstrate the various editing facilities. These

tests include:

• a Pascal, ADA, C, and text editor.

• positioning of the cursor.

• reading a large (1000 line) program into the editor from a text file.

• interactively reading and~correcting a program read in from a text file.

• modifying a large (1000 line) program and demonstrating the incremental
reparse using the debug features.

• screen-editing a Pascal program. Characters will be inserted, deleted, and
replaced using cursor positioning and direct data entry at the cursor
position.

• command-editing a Pascal program. Lexical components of the Pascal
program will be inserted, deleted, replaced, and copied. Commands
that use line, syntactic and semantic properties of the program to
select components of the program for modification will be demon-
strated. Use of these commands will not require knowledge of the
formal specifications of the language (that is, the productions of the
grammar and semantic attributes of the productions).

• searching a Pascal program. The cursor will be positioned by a search
command.

• verification of the editor using an editor test suite. A test suite of com-
mands will be read and executed by the editor command interpreter
to verify the correct implementation of the various editing com-
mands.

• verification of the file system interface by executing repeated
modifications to.a file.

• verification of the correct parsing of a program being edited. Various
incorrect Pascal programs will be read by the editor and it will
correctly determine the lexical, syntactic, and some semantic errors

Appendix I: SAGA 1»83 Mid-Year Report 3

within those programs. The Pascal verification suite will be used as
a basis for these tests.

• correct suspension of the incremental parser when an error is detected.
The editor should suspend attempting to parse an incorrect program

. and should return to screen-edit and command mode.

• non-formatting capability. The editor should read program text and
write program text without reformatting that text.

• formatting capability. The editor should reformat programs that are
entered. This reformatting should provide suitable display of com-
ments.

• simple text editing. The editor will be demonstrated editing simple text
such as might be found in formal documentation of a program.

• structured editing. The editor will be used with a set of user-defined
command extensions that enable the user to develop his program by
top-down development.

In addition to these basic_facilities, the editor may have the additional features, if

time permits, which will allow a demonstration of the following.

• Display of differences between two versions.

• Application of the undo command to one or more differences.

• Use of a Berkeley Pascal Make facility to reduce compilation time.

3. DETAILS OF FEATURES TO BE DEMONSTRATED

3.1. Reliability and Robustness

Reliability is perhaps the single most important requirement in an editor. For

the June demonstration, we plan to have a verification suite for the editor. The suite

will include: all the editor primitive commands, a comprehensive set of command

sequences, and a few examples of command procedures. Reliability will also be

enhanced by a set of built in consistency checks, the frequency of which can be con-

trolled by the user.

The June demonstration will include a simple back-up facility for SAGA edited

files. This back-up scheme will consist of automatically copying a file to be edited into

temporary storage. This temporary file will be edited by the user. At the end of the

Appendix I: SAGA 1983 Mid-Year Report 4

editing session, the temporary file will be copied back into permanent storage. If a sys-

tem crash occurs during editing, any changes that have been made to the file will be

lost. We are currently considering more sophisticated recovery schemes which will

allow crash recovery capability during editing. One proposal is to maintain a session

file (trace of user activity), and a backup copy of the parse file. Recovery could also be

integrated with the diff and undo schema. Another alternative is to supply additional

information in the parse file to facilitate recovery. We have not actually made a design

decision on this problem and it will not form part of the June Demonstration.

3.2. Language Independence

Language independence will be demonstrated by having a few different editors

available for demonstration. In this way we will demonstrate the flexibility of the edi-

tor, generation tools and of the editor's command language. Examples of languages for

which we believe the SAGA editor can be very useful are Pascal, Ada, C, Euclid, CLU:

that is, languages with formal definitions, and static scoping. Thus textual editing

should be the same regardless of language. Structural editing should use the same

commands, but on different types of sub-trees. The semantic errors and other infor-

mation should be displayed in a consistent fashion.

3.3. User Interface

Because software developers spend a great deal of time editing, the user interface

to the SAGA editor is very important. As soon as full-screen editors became available

to the SAGA project team, everybody started using them. We believe from our own

experience, therefore, that full-screen editing is more desirable than line editing.

The editor used at the demonstration will have a new user-extensible command

language which has textual and tree manipulation primitives and cursor positioning

commands. The ability to be able to define new commands, possibly as macros, is an

important mechanism for allowing the user or group of users to devise appropriate

editing facilities which they consider user friendly and appropriate.

Appendix I: SAGA 1983 Mid-Year Report 5

3.3.1. Full Screen Display

After some discussion within the SAGA group, work is underway to give the

SAGA editor a full screen display. We believe that the advantages of having a full

screen editor are worth the development effort and the CPU overhead. The require-

ments for the display are similar to requirements for the displays of other full-screen

editors. Thus, we plan to use either the curses package which comes with the Berkeley

4.1b UNIX® system or the Maryland window package (which already supports win-

dows).

3.3.2. Command Language

The command language is currently in the design phase of development. The

goal with the language is to produce a powerful and extensible tool for editing both the

text and the associated parse trees. The language must permit the user to examine the

results of the semantics associated with his program (particularly the symbol table

error messages), in whichever language he is working. Finally the command set must

be devised as a language, not just a set of commands, which a user can learn and

remember without constant reference to the on-line help facilities or manuals.

The ability of the SAGA editor to do textual manipulation of a program should

be comparable to other full screen editors. To test this criterion a the following basic

text grammar will be used to generate a SAGA editor for simple text. (Note:

LETTER, DIGIT, EOLN, EOF are considered to be predefined.)

/(terminal

word =

(LETTER (LETTER I DIGIT)*)

I DIGIT*

I '!' I '"' I '#' I ' I '%' I '*• | '\" ... ;

(* All valid ASCII punctuation *)
eoftoken = EOF ;
space = ' ' I '\09* ;
eolntoken = EOLN ;
Sparser_skip space eolntoken ;

Appendix I: SAGA 1083 Mid-Year Report 6

(* White space should not be part of the graomar *)
Sgramnar
file

: »ord_list eoftoken ;

word_list
: »ord_list word
I ;

In Olorin, end-of-line (EOLN) is the ASCII character, but end-of-file (EOF) is the

physical end of the file. Thus, this grammar takes zero or more words where a word is

a normal identifier, an integer, or a punctuation mark. This simple grammar will be

used to demonstrate the application of the editor to English text.

3.3.3. Formatting and Comments

The SAGA editor is currently too restrictive when formatting the program text.

In future versions of the editor, the amount of automatic formatting will be at the dis-

cretion of the user. This includes the possibility of preserving the input format as

would be done with a conventional editor.

At the time of the demonstration, comments will be handled correctly. The user

will be able to do textual editing within comments. Multiple line comments will be

allowed.

3.4. Symbol Table and other Semantics

The preliminary work for building a parser generator to support attribute gram-

mars is over half done. These attribute grammars will interface with the symbol table

to provide some semantic checking by the SAGA editor. Errors which the SAGA edi-

tor for Pascal will catch include:

Undeclared Identifiers,
Identifiers used improperly, i.e., type where constant is required,
Type.checking of expressions,
Type checking of parameter lists.

Thus most compile time errors will be caught by the SAGA editor. Examples of errors

Appendix I: SAGA 1083 Mid-Year Report 7

that will probably not be caught are:

goto into structured statements,
memory allocation overflow,
any run-time check.

Any semantic evaluation which is performed by the editor at demonstration time

will not be optimized. We will restrict the semantics for the Pascal SAGA editor so

that most evaluations do not propagate any great distance through the evaluation tree.

4. SUMMARY

In June, we hope to provide a convincing demonstration of the SAGA editor.

The demonstration will show the features of the editor that are reliable, and several

new features which may be less dependable. The demonstration will include examples

that show how the editor supports software engineering.

SAGA Mid-Year Report

Appendix J

Summary of UNIX Software Engineering Support

Roy H. Campbell

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801-2987

October, 1983

Appendix J: SAGA 1983 Mid-Year Report 1

1. UNIX as an Environment for Software Engineering

UNIX is used by many organizations as the operating system environment within

which to support software engineering. In this short paper, we outline some of the

major reasons why UNIX has become adopted for such use. The reasons we provide

are not comprehensive, but they summarize the benefits that have been experienced

from using UNIX to support a wide range of research and software development activi-

ties within the Department of Computer Science at the University of Illinois. The

experience represents accumulated knowledge based on the use of nine networked

UNIX systems by at least 300 users (faculty, research assistants, and secretaries).

It is sometimes not obvious to newcomers to UNIX why UNIX users are so

pleased with the operating system. Certainly, UNIX is a system that must be used to

be appreciated. Many of the "facilities and capabilities of the system do not exist in

other operating systems; or if they do exist, they are often not sufficiently well-

integrated with other system provisions to allow the power of UNIX. This power is

not obvious to the casual observer of the UNIX system.

UNIX is particularly useful to the software engineer because it provides many

basic tools with which software can be developed, organized, and maintained. In par-

ticular, the UNIX environment encourages the user to prototype (that is, construct an

example implementation from the various software components available on UNIX),

build tools using standard utilities (for example: AWK - a powerful pattern matching

editor; YACC - a parser generator; LEX - a lexical analyzer generator) and tailor the

UNIX environment to support a software development project.

UNIX is based on a hierarchical organization of two fundamental system con-

cepts: system resources (files, directories, devices, data, and programs) and processes.

The hierarchies provide locality of reference and a scheme for structuring user pro-

grams and data.

The file hierarchy permits the creation of an unlimited number of directories and

files of arbitrary sizes allowing users to freely exploit the file system itself as a means to

Appendix J: SAGA 1983 Mid-Year Report 2

organize software modules and systems. For example, a user can create a separate

directory for each set of related files with which he is working. A program also can be

put in its own directory, and split into small files that can be separately compiled.

Because small files of a few words are economical, UNIX encourages the user to develop

personalized libraries of useful job control procedures. Such libraries are very impor-

tant for the construction of software engineering environments as they allow the sys-

tem to be tailored to providing better support. The file system also supports dating

user files with the last access time and modification time. These times may be accessed

easily through UNIX utilities and are exploited extensively in source and object control

software (Source Code Control System, Make).

The process structure of UNIX permits users to create background jobs as well

as foreground jobs - all with the same operating system commands. Neither the job

control language nor the actual programs being run need to be changed. UNIX also

provides convenient and powerful ways to control background jobs. The progress of

background jobs can be examined and the jobs may be terminated, suspended or

moved to lower priorities in the system. The process hierarchy allows a collection of

concurrent processes to be terminated by the user if the user so desires.

A great strength of the UNIX system is the uniform way in which it supports file

and device access. All such access is organized like an indexed file in which the record

is a byte. Operations on files and devices include read, write, and seek a record. Dev-

ices which do not support a particular operation (a line printer will not support a read

or seek) return standardized error codes. Thus, all I/O from a program is uniform, no

matter to which device the I/O is directed. This permits simple redirection of I/O

from one program to a file, a device, or to the I/O of another program (a UNIX filter).

Communication between processes is simple and understandable. Each process

may communicate with other processes through pipes. A pipe is a specialized form of

I/O which is buffered in memory and provides a stream of bytes from the output of

one process to the input of another. Alternatively, processes may also transmit brief

Appendix J: SAGA 1983 Mid-Year Report 3

messages through signals, a form of software interrupt. These two forms of communi-

cation permit the construction of concurrent pipelines of processes.

Processes are very economical on UNIX. User processes tend to be small and

implement a particular function. Because of the pipeline ability, it is customary to

design a software system as a collection of small interacting processes. These processes

may be reused in different ways by reconnecting their pipes in a different manner.

This encourages the development of many small, but useful, software modules.

UNIX I/O to terminals is organized as an ASCII byte stream. UNIX has very

good I/O control facilities built into its kernel allowing many different terminals to be

connected to a system. The I/O also provides a very useful downloading capability. A

system running UNIX is particularly easy to interface to other, small systems (like

microprocessor systems on a board) and the downloading facility permits fast develop-

ment of software for that small system. The I/O support has also encouraged the use

of dial-in lines and the networking of UNIX systems.

UNIX is written in C, a reasonably high-level programming language. C pro-

grams are small and modular. The language encourages separate compilation. The

separate compilation and linking facilities are a major reason why UNIX can be run in

a self-supporting manner on small machines. C supports the user making a small

change in one software module of a large system by allowing that module to be recom-

piled and relinked into the system very quickly. This is very important for prototyp-

ing and the construction of particular tools from existing software modules.

UNIX has a very powerful command language supported by a command inter-

preter called the shell. The shell permits the creation of other shells recursively. Each

shell provides an environment for executing shell commands. The ease with which new

instances of the shell can be created allows easy construction of different environments.

For example, the UNIX editor may be invoked within a shell, and within the editor

another UNIX shell might be instantiated. The first editor may edit a program listing

and the second shell may be used to invoke a dynamic debugging facility for that

Appendix J: SAGA 1983 Mid-Year Report

program.

Perhaps the greatest contribution UNIX can make to providing a software

engineering environment comes from the wealth of portable software that has been

written for UNIX. Most of this software is written in a modular fashion, with separate

compilation a concern, as collections of small processes in C. We list some of the pro-

grams we have found very useful:

nroff A text formatting program. Important because it encourages good clear docu-
mentation of software in manual and technical report styles. Most of the
documentation for UNIX is prepared for processing by this program.

troff A type setting program. Various forms of this program allow most type set-
ting equipment to be used for documentation.

man A program which retrieves manual pages for on-line documentation of UNIX
and user facilities.

grep A program for quick "searches of text files for particular patterns of charac-
ters.

style A program which checks the style of English prose.

diction A similar program to style.

spell A program which checks the spellings and endings of words. Spell has a
30,000 word dictionary.

sees A program to manage source programs and text. Source programs can be
logged out of a library. A record is kept of which user has logged out which
programs. Locks may be placed on particular programs to prevent them from
being logged out and changed. Sees supports version control and records
differences between versions in the form of forward differences.

res A similar program to sees which supports version control and keeps backward
differences between versions.

sdb A symbolic debugging system for C.

make A program that can be used to determine which modules out of a large collec-
tion of modules require reprocessing (recompiling) because of changes made to
those modules since the last execution of make.

mail A program to transmit mail from one user to another.

notes A program which supports a distributed (networked) discussion forum
between users. Notes have been used for documenting bugs and fixes,
designs, programs, hardware, projects, agendas and minutes, etc..

vi Screen Editor.

Appendix J: SAGA 1983 Mid-Year Report 5

emacs Screen Editor with programmable interface.

ed Simple line editor.

ex Line editor.

xed Line editor with interactive cursor/character commands.

sort Will sort on any field.

awk String processing language.

uucp A facility to transfer files between UNIX systems and execute remote com-
mands on one UNIX from another. Uucp may be used over any asynchronous
line that can be used to transmit bytes.

SAGA Mid-Year Report

Appendix K

Theorem Prover Reviews

_ David H. Hammerslag

Department of Computer Science

University of Illinois

Urbana-Champaign

Illinois, 61801-2987

October, 1983

Appendix K: SAGA 1983 Mid-Year Report 1

1. INTRODUCTION

As preliminary research for the proof management system, several theorem

provers have been informally investigated. This is a subjective survey of some these

theorem provers. Note that, unfortunately, some of the theorem provers discussed

have not been used by the author; the only exposure to them has been from the litera-

ture.

With the proof management system in mind, several aspects of the individual

provers were considered. One of the most important criterion was the speed of the

prover. A prover that is to be useful in a proof management system must respond

quickly. The "intelligence" of the prover is a factor that, while important, is often at

odds with the speed criterion. We would like a prover to be clever enough to prove

nontrivial propositions. The ease of use of the prover was also examined. Ease of use

has two aspects: the ease with which a user can use the prover by itself, and the ease

with which it could be utilized in the proof management system. A final criterion was

the amount of feedback that the theorem prover returns or could return to the user or

the proof management system in the event of a failed proof. Four theorem provers

will be discussed. They fall into two broad categories: those which interactively

accept and respond to user input, and those which take a proposition and attempt to

prove it in a batch mode.

2. Interactive Theorem Provers

To use an interactive prover, the user types input, either propositions to be pro-

ven or directives, to the system and then carries on a dialogue with the system until

the proposition is proved. Two of the interactive theorem provers investigated are:

the UT interactive theorem prover [Ble83], and Edinburgh LCF [Gor79].

2.1. The UT Theorem Prover

The UT interactive theorem prover is part of a theorem proving system. It

attempts to prove propositions given to it by using a system of natural deduction.

Appendix K: SAGA 1983 Mid-Year Report 2

Because it uses a natural deduction system, the steps that the prover makes are more

likely to be understood by the user than are the steps used by a refutation style

prover. When the prover cannot prove a proposition, the user can ask the theorem

prover where it failed, then attempt to guide the prover over that spot via directives

and proof steps.

As it is already part of a system, this prover is not likely to be usefully adapted

to the proof management system. It is however, useful and interesting to compare the

UT system with the proposed management system. Briefly, the prover does not allow

the user to arbitrarily step around in the proof tree, nor does it allow the construction

of arbitrary proof trees. Both of these features will be available in the proof manage-

ment system. On the other hand, the UT theorem prover offers more sophisticated

proof techniques such as subgoaling and rewriting; it is unlikely that these features will

be directly accessible to the user of the proof management system.

2.2. LCF

Edinburgh LCF (Logic for Computable Functions) is an extension of the LCF

system originally written at Stanford University. It can be used as either an interac-

tive proof checker (in the spirit of Stanford LCF), or as a programmable theorem

prover. In its latter use, LCF is rather difficult for the novice to use. LCF has its own

language, ML (Meta Language), for communicating with the system. ML is a very

strongly typed language, and one of the types is theorem. Using ML, a user can write

procedures which map forms or theorems to theorems. The user defines these "tacti-

cals" which are applied, under the user's control, to the proposition to be proved. In

this use, and as an interactive proof checker, the LCF user is hampered by the difficult

syntax and strong typing of ML. Due to its close ties with its user defined theories and

ML, it is unlikely that LCF could be used in another system.

Comparing LCF with the proof management system is a difficult task. In LCF

the user is really trying to program a theorem prover with his own heuristics, while in

the proof management system the user is viewing the theorem prover as a decision

Appendix K: SAGA 1983 Mid-Year Report 3

procedure. When LCF is being used simply as a proof checker, it is similar to the

proof management system without the flexibility gained by generalized tree editing.

3. Batch Theorem Provers

A batch theorem prover is what one is likely to think of when one thinks of a

theorem prover; i.e., the user presents a proposition to the theorem prover without the

ability to guide the prover while the proof is underway. Of the batch theorem provers

researched, two are surveyed here: the Robust theorem prover [Gre83], and VERUS

[Com83|.

3.1. Robust

The Robust theorem prover is being developed at the University of Illinois. This

prover uses a variation of the resolution method, with controlled forward and back-

ward chaining. Employing this method gives the prover two advantages: it is able to

prove theorems of moderate difficulty, and it is very fast.

Because this is a resolution style prover, no useful information is available to the

user if a proof fails. However, as the prover becomes more powerful, this becomes less

of a concern. Since this prover is still being developed, it is awkward as a stand alone

prover (all of its input must be in clause form). On the plus side, because the prover is

still under development and is being developed locally, interfacing the prover to the

proof management system would be greatly simplified.

3.2. VERUS

The VERUS theorem prover uses the Hintikka tableau method of theorem prov-

ing and therefore is very fast. It was written with a specific purpose in mind: proving

theorems about state machine specifications. VERUS is easy to use as a stand alone

prover, as this is its intended use. It is really two programs, a parser which takes a

high level, structured proof outline and produces input to the prover, and the prover

itself. Due to this two phase approach, it would probably be relatively easy to use

VERUS in a proof management system.

Appendix K: SAGA 1983 Mid-Year Report 4

There were also negative aspects to VERUS. Due to the fact that the tableau

method is used, the prover must be supplied with constants for instantiation. While

this could be done by the management system, it would complicate the interface.

VERUS does not appear to be very intelligent. For proofs of any consequence, a sub-

stantial user-supplied proof outline is required. Further, VERUS performs especially

poorly outside of state machine specification proofs. Finally, because VERUS was writ-

ten by a private corporation, it would be difficult to get the source code, and therefore

difficult to work with.

Appendix K: SAGA 1983 Mid-Year Report 5

References :

[Ble83]
W. W. Bledsoe, "The UT Interactive Prover," The University of Texas, Austin,
Austin (April 1983).

[Com83]
Compion Corp., "VERUS User's Guide," Compion Corporation, Urbana, 111 >
(January 1983). - 4 I

[Gor79]
Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth, Edinburgh
LCF, Springer-Verlag Lecture Notes in Computer Science, No. 78, New York
(1979).

[Gre83]
Steven Greenbaum, Paul O'Rorke, and David Plaisted, "Comparisons of Abstrac-
tion and a Robust Resolution Strategy," Department of Computer Science,
University of Illinios, Urbana, Illinios (September 22, 1983). ~^ .."T

